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Formal models of decision-making have traditionally focused on
simple, two-choice perceptual decisions. To date, one of the most
influential account of this process is Ratcliff’s drift diffusion model
(DDM). However, the extension of the model to more complex
decisions is not straightforward. In particular, conflicting situa-
tions, such as the Eriksen, Stroop, or Simon tasks, require control
mechanisms that shield the cognitive system against distracting
information. We adopted a novel strategy to constrain response
time (RT) models by concurrently investigating two well-known
empirical laws in conflict tasks, both at experimental and modeling
levels. The two laws, predicted by the DDM, describe the relation-
ship between mean RT and (i) target intensity (Piéron’s law), (ii)
standard deviation of RT (Wagenmakers–Brown’s law). Pioneering
work has shown that Piéron’s law holds in the Stroop task, and has
highlighted an additive relationship between target intensity and
compatibility. We found similar results in both Eriksen and Simon
tasks. Compatibility also violated Wagenmakers–Brown’s law in a
very similar and particular fashion in the two tasks, suggesting a
common model framework. To investigate the nature of this com-
monality, predictions of two recent extensions of the DDM that
incorporate selective attention mechanisms were simulated and
compared to the experimental results. Both models predict Piéron’s
law and the violation of Wagenmakers–Brown’s law by compatibil-
ity. Fits of the models to the RT distributions and accuracy data
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allowed us to further reveal their relative strengths and deficien-
cies. Combining experimental and computational results, this
study sets the groundwork for a unified model of decision-making
in conflicting environments.

� 2014 The Authors. Published by Elsevier Inc. This is an open
access article under the CC BY-NC-ND license (http://creativecom-

mons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Over the past 40 years, the fundamental process of making decisions on the basis of sensory infor-
mation, known as perceptual decision-making, has grown up to an extensive field of research. The
interest has increased in part due to the introduction of the sequential sampling framework (for
reviews, see Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006; Ratcliff & Smith, 2004). To make a deci-
sion, it is assumed that the brain accumulates samples of sensory evidence until an absorbing choice
boundary is reached. The inherent noise in both the physical stimulus and the neural signal makes the
process stochastic, potentially leading to an incorrect choice. The rate of approach to a boundary is
called drift rate, and depends on the quality of the extracted sensory evidence. The boundary is
hypothesized to be under subjective control, and can be modulated depending on timing demands.
A higher boundary criterion will require greater evidence accumulation, leading to slower and more
accurate decisions. The interaction between drift rate and choice criteria has an obvious property: it
provides an integrated account of both response time (RT) and accuracy in choice laboratory
experiments.

The drift diffusion model (DDM) developed by Ratcliff and coworkers (Ratcliff, 1978; Ratcliff &
Rouder, 1998) belongs to this theoretical frame. The model was originally developed to explain simple
two-choice decisions in terms of psychologically plausible processing mechanisms, and has proven to
account for a large range of paradigms (for a review, see Ratcliff & McKoon, 2008). However, its exten-
sion to more complex decisions is not straightforward and is currently the object of an intense field of
research in both experimental psychology (e.g., Hübner, Steinhauser, & Lehle, 2010; Leite & Ratcliff,
2010; Smith & Ratcliff, 2009; Stafford, Ingram, & Gurney, 2011; White, Brown, & Ratcliff, 2011;
White, Ratcliff, & Starns, 2011) and neuroscience (e.g., Churchland, Kiani, & Shadlen, 2008; Resulaj,
Kiani, Wolpert, & Shadlen, 2009). The present study aims to evaluate whether the DDM can be
extended to conflicting situations, and contributes to this emerging field.
1.1. The drift diffusion model: basic architecture and mathematical properties

As other sequential sampling models, the DDM posits that RT is the sum of two components, a non-
decision time and a decision-related time. The decision process takes the form of an accumulation of
evidence delimited by two boundaries representing alternative choices. The starting point of the dif-
fusion depends on prior expectations, and can be located everywhere on the axis joining the two alter-
natives, being closer to the more expected alternative. In each moment, the incremental evidence is
the difference between sensory inputs supporting choice 1 versus 2. This difference is a random var-
iable which follows a Gaussian distribution, with mean l (drift rate) and variance r2 (diffusion coef-
ficient). The combination of sensory evidence into a single variable and its linear stochastic
accumulation over time present an interesting property. If the diffusion is discretized, then the process
becomes a random walk and is formally equivalent to the sequential probability ratio test (SPRT;
Wald, 1947). SPRT is optimal in the sense that it minimizes expected decision time for any given accu-
racy level, and maximizes accuracy for a given decision time (Wald & Wolfowitz, 1948). Bogacz et al.
(2006) have argued that optimality may be a hallmark of human cognitive control, the ability to adapt
information processing from moment to moment depending on current goals. According to this view,
the DDM may provide a privileged framework to study such control processes, and offers an interest-
ing departure point to approach decision-making in conflicting situations.
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Two properties are predicted by the DDM when task difficulty (drift rate) is manipulated. Those
properties have so consistently been observed in both detection1 and choice experiments that psychol-
ogists have proposed them to be psychological laws. First, the mean and standard deviation (SD) of RT
distributions increase at approximately the same rate when drift rate declines. Empirically, the linear
relationship between the mean and SD of RT distributions holds for a broad range of paradigms and gen-
erally leads to very high correlations for each individual (Pearson’s r > .85; Luce, 1986; Wagenmakers &
Brown, 2007; hereafter referred to as Wagenmakers–Brown’s law). Second, the chronometric function
predicted by the DDM when the two alternatives are equiprobable is an hyperbolic tangent function
of the following form:
1 At fi
betwee
Mean RT ¼ a
l

tanh
al
r2

� �
þ Ter
where a, l, and r2 are respectively the boundary, drift rate, and diffusion coefficient of the diffusion
process (Ratcliff, 1978). Ter is the non-decision time. For a suprathreshold range of stimulus intensi-
ties, this function mimics Piéron’s law (see Palmer, Huk, & Shadlen, 2005, Experiment 3). Piéron’s law
states that mean RT decreases as a power function of the intensity of a stimulus according to:
Mean RT ¼ aI�b þ c
where a is a scaling parameter, I represents stimulus intensity, c the asymptotic RT, and b determines
the rate of decay of the curve (Piéron, 1913). Although initially investigated in the context of detection
tasks (e.g., Chocholle, 1940), Piéron’s law has proven to hold in choice experiments (Palmer et al.,
2005; Pins & Bonnet, 1996; Stafford et al., 2011; van Maanen et al., 2012). In conclusion, Piéron and
Wagenmakers–Brown’s laws are consistent with the diffusion framework, and may reflect a general
tendency of human decision-makers to approach optimal behavior.

1.2. Conflict paradigms

Besides ‘‘simple’’ situations, one often has to make decisions in a multiple stimuli environment,
only some of those stimuli being relevant for the task at hand. One source of paradigms designed
to study such situations are so-called conflict tasks. Empirical findings in these tasks converge toward
an apparent stimulus–response (S–R) compatibility effect. Responses are slowed down and less accu-
rate when a task-irrelevant aspect of a multi-attribute stimulus is associated to the response opposite
to that of the relevant aspect (Hommel, 2011; Kornblum, Hasbroucq, & Osman, 1990). The interfering
association can be physical, conceptual, or artificially created by task instructions. Examples of such
conflict tasks are the Stroop (Stroop, 1935), the Eriksen flanker (Eriksen & Eriksen, 1974), and the
Simon (Simon & Small, 1969). The Stroop task requires participants to report the ink color of a word
string. The word denotes a color that can be either identical to the ink (e.g., the word ‘‘blue’’ printed in
blue ink) or different (e.g., the word ‘‘blue’’ printed in red ink). In the Eriksen task, subjects give a man-
ual response to a central symbolic target (e.g., a right response for the letter S and a left response for
the letter H) flanked by distracters calling for the same (SSS) or opposite (HSH) response. Finally, in the
classical version of the Simon task, subjects are requested to press a right or left button in response to
the color of a lateralized stimulus. Conflict arises when stimulus position and response side do not
correspond.

The existence of interference effects demonstrates that performance is suboptimal. Because the
standard DDM implements an optimal decision-making strategy (Bogacz et al., 2006), one can hypoth-
esize that it will have difficulties to account for conflicting situations. The present work investigates
how conflict tasks interact with Piéron and Wagenmakers–Brown laws, and how recent extensions
of the DDM cope with such interactions. Through these investigations, we aim to highlight potential
processing similarities and lay the foundation for a unified framework of decision-making in conflict-
ing environments. Two DDM extensions that incorporate selective attention mechanisms are
rst glance, the DDM appears incompatible with detection tasks. However, detection can be conceptualized as a choice
n the presence of a particular stimulation versus noise (see van Maanen, Grasman, Forstmann, & Wagenmakers, 2012).
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simulated and their predictions with regard to Piéron and Wagenmakers–Brown laws tested against
experimental data from two different conflict tasks. A final evaluation of the models is performed
by fitting them to the full data sets, taking into account RT distributions and accuracy. While DDM
extensions capture critical properties of the two psychological laws, common to both conflict para-
digms, they fail to qualitatively reproduce the complete pattern of data. Their relative strengths and
deficiencies are further elucidated through their fits.
1.3. Modeling decision-making in conflicting situations with diffusion processes

Distributional analyses in conflict tasks have revealed faster errors than correct responses when
S–R are incompatible. Notably, plots of accuracy rates as a function of RT quantile (i.e., conditional
accuracy functions, CAFs) show a characteristic drop of accuracy for faster RT quantiles in this condi-
tion. By contrast, CAFs for compatible trials are relatively flat (Gratton, Coles, Sirevaag, Eriksen, &
Donchin, 1988; Hübner & Töbel, 2012; White, Brown, et al., 2011; Wylie, Ridderinkhof, Bashore, &
van den Wildenberg, 2010; Wylie et al., 2012). Previous studies have indicated that a standard
DDM can produce faster errors than correct responses if and only if inter-trial variability in the starting
point of the accumulation process is added (Laming, 1968; Ratcliff & Rouder, 1998). However, this
additional assumption would lead to equivalent increases in fast errors in the compatible condition,
contrary to what is observed. Two recent diffusion developments account for this asymmetry by
assuming an increase in attentional selectivity for the relevant stimulus attribute over the course of
a trial, whatever the S–R mapping. The improvement of the quality of evidence induces a time-varying
drift rate. The two models, depicted in Fig. 1, differ regarding whether selective attention operates in a
discrete (dual-stage two-phase model of selective attention, DSTP; Hübner et al., 2010) or gradual
manner (shrinking-spotlight model, SSP; White, Ratcliff, et al., 2011). In the DSTP, response selection
is performed by a diffusion variable with two functionally different phases. The drift rate of the first
phase is governed by sensory information passing through an early attentional filter (early selection
stage). It is defined as the sum of two component rates, one for the relevant stimulus attribute lrel

and the other for the irrelevant attribute lirrel (lirrel is negative in incompatible trials). Because the
Fig. 1. Basic architectures of the DSTP (left panel) and SSP (right panel) diffusion models. The rate of evidence accumulation for
response selection improves discretely in the DSTP and continuously in the SSP (compatible trials: plain lines; incompatible
trials: dashed lines). See text for details.
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early attentional filter is imprecise, lirrel often prevails over lrel, and the net drift rate moves toward
the incorrect response boundary in incompatible trials, provoking fast errors. In parallel, a second dif-
fusion variable with drift rate lss fulfills the role of target identification (late selection stage). Because
two diffusion processes are racing, different scenarios can occur. (i) The response selection variable
reaches a boundary before the target identification variable. In this case, the model reduces to a stan-
dard DDM, and responses are mainly determined by the irrelevant stimulus attribute. Conversely, a
target can be identified before the selection of a response. (ii) If the identification is correct, the drift
rate of response selection increases discretely from lrel ± lirrel to lrs2. This second phase of response
selection, driven exclusively by the selected stimulus, counteracts early incorrect activations in incom-
patible trials and explains the improved accuracy of slower responses (see Fig. 1, left panel, for an
illustration of this scenario). (iii) If the identification is incorrect, lrs2 is negative, and the model gen-
erates a slow perceptual error. Taking the Eriksen task as a working example, Hübner and colleagues
showed that their model could account for RT distributions and accuracy under a wide range of exper-
imental conditions. However, the DSTP has been challenged by a more parsimonious single-stage
model with a continuous time-varying drift rate. White, Ratcliff, et al. (2011) used the attentional
zoom-lens analogy (Eriksen & St James, 1986) as a basic mechanism for weighting sensory evidence
over time. Their SSP model was specifically developed to account for spatial attention dynamics in
the Eriksen task, and was consequently formalized in a less abstract way compared to the general
selective attention framework of the DSTP. The SSP assumes that spatial attention is dispersed early
in a trial, allowing influence from the flankers, and progressively narrows toward the central target,
whatever the S–R compatibility (see Fig. 1, right panel). The attention weight attributed to the target
(flankers) is modeled as the integral of a unitary Gaussian distribution with standard deviation sda,
over a region of space corresponding to the target (flankers). Importantly, sda decreases at a linear rate
rd. In every time step, the perceptual input of the target ptar and each flanker pfl is weighted by the allo-
cated quantity of attention, and the resulting evidence defines the evolving drift rate. pfl is positive in
compatible trials and negative in incompatible trials. For a standard Eriksen task, the model assumes
that each item provides the same quantity of evidence p (p = ptar = pfl). Under this assumption, the drift
rate in compatible trials is constant (the attention weights always sum to 1). The situation is different
in incompatible trials where the drift rate is initially directed toward the incorrect boundary, trigger-
ing fast errors, and progressively turns toward the correct boundary as attention shrinks. White and
colleagues demonstrated that this simple model provides a better fit performance compared to the
DSTP in the Eriksen task, although strong mimicry has been noticed. Hübner and Töbel (2012) recently
showed that the superiority of the SSP is actually tied to specific experimental situations. Indeed, the
fits of both models are virtually indiscernible for the RT distributions of correct responses. The discrep-
ancy concerns the dynamic of errors in the incompatible condition. The SSP predicts an improvement
of accuracy that is too fast, a problem attenuated when the proportion of fast errors is low. However,
the divergence is small and further emphasizes model mimicry. Further computational details regard-
ing the spotlight component of the SSP are provided in Appendix A.

An important property of the DSTP and SSP models is that they predict larger RT mean and SD for
the incompatible compared to the compatible S–R condition, that is, a consistent RT moment ordering.
The shrinking mechanism of the SSP is assumed to operate similarly across S–R mappings, and the
drift rate for incompatible stimuli gradually converges toward that of compatible stimuli, but never
surpasses it.2 Because the diffusion coefficient remains constant, this scheme necessarily leads to a wider
spread of RT for the incompatible condition (see Schwarz & Miller, 2012, for a similar reasoning based on
another continuous time-varying drift rate scheme). The same logic applies to the DSTP, with a discrete
convergence of drift rates toward lrs2. Although the onset and sign of lrs2 are conditional on the late
selection stage, this additional flexibility does not challenge, on average, the consistent RT moment
ordering between compatibility conditions. While this statistical pattern is characteristic of the Stroop
(Pratte, Rouder, Morey, & Feng, 2010) and Eriksen tasks (Hübner et al., 2010; Ridderinkhof, Scheres,
Oosterlaan, & Sergeant, 2005; White, Ratcliff, et al., 2011), the reversed ordering has consistently been
observed in the standard version of the Simon task (Burle, Possamai, Vidal, Bonnet, & Hasbroucq,
2 More precisely, the drift rate converges toward a limit equal to the perceptual input of the target.
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2002; Pratte et al., 2010; Ridderinkhof, 2002; Schwarz & Miller, 2012). That is, the incompatible condi-
tion is associated with the largest mean and the smallest SD, which violates Wagenmakers–Brown’s law.
This singularity led researchers to propose that the Simon effect may be incompatible with the diffusion
framework (Pratte et al., 2010; Schwarz & Miller, 2012). Given the success of time-dependent diffusion
processes in modeling the Eriksen task, such an assumption would mean that decision-making draws
upon qualitatively different mechanisms depending on the nature of the conflicting situation.
1.4. Piéron and Wagenmakers–Brown laws as a window on decision-making mechanisms

As introduced above, Piéron and Wagenmakers–Brown laws are hallmarks of a standard DDM with
constant drift rate. In their studies, neither Hübner et al. nor White et al. (Hübner & Töbel, 2012;
Hübner et al., 2010; White, Brown, et al., 2011; White, Ratcliff, et al., 2011) explored properties of their
model when the perceptual intensity of the relevant stimulus attribute is manipulated. Simulations of
the SSP and DSTP, presented in Section 2, aimed to determine whether Piéron and Wagenmakers–
Brown laws still hold under the assumption of time-varying decision evidence. To our knowledge,
the two laws have never been concurrently investigated in conflict tasks. An exception is found in a
recent study by Stafford et al. (2011). Those researchers manipulated the intensity of colors in a stan-
dard Stroop task. Five suprathreshold color saturation levels were presented in an intermixed fashion.
In each compatibility condition, mean RT and color discriminability scaled according to Piéron’s law.
Interestingly, the two factors combined in an additive fashion. Results remained similar when the
word and the color were spatially separated (i.e., separate Stroop task). Section 3 extends those find-
ings by providing an empirical test of Piéron and Wagenmakers–Brown laws in Eriksen and Simon
tasks. The Eriksen task was naturally chosen insofar as the DSTP and SSP models have specifically been
tested on it. The Simon task was also introduced because we could anticipate a violation of Wagen-
makers–Brown’s law. To allow a direct comparison between the two experiments, we used the stan-
dard Simon task and a version of the Eriksen task in which subjects have to discriminate the color of a
central circle while ignoring the color of flanking circles (Davranche, Hall, & McMorris, 2009). The per-
ceptual intensity of the target could thus be varied along the same color saturation dimension. Color
saturation was manipulated within a highly controlled perceptual color space while keeping constant
any other aspect of the display. Notably, the color saturation of the flanking circles in the Eriksen task
remained invariable (maximum saturation level), just as the eccentricity of the targets in the Simon
Fig. 2. Stimuli used in the present experiments (only the variation of color saturation for the red stimulus is shown as example).
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task (see Fig. 2). Six color saturation levels were chosen to span a wide range of color intensities, and
were presented in a randomized fashion. The design offers sufficient experimental conditions to con-
currently investigate Piéron and Wagenmakers–Brown laws.
2. Model simulations

Because the SSP is intractable mathematically (Ratcliff, 1980), both models were simulated using a
random walk numerical approximation (Diederich & Busemeyer, 2003; Ratcliff & Tuerlinckx, 2002)
and a 1 ms time step. Our simulations aimed at quantifying the mean and SD of decision times (DT)
for each compatibility condition when the perceptual intensity of the relevant stimulus attribute is
manipulated while that of the irrelevant attribute remains constant. To obtain reliable estimates of
SD, 100,000 trials per condition were simulated. As a parametric baseline, we used the best-fitting
group parameters for each model reported by White, Ratcliff, et al. (2011) from Experiment 1 (stan-
dard Eriksen task) and assumed unbiased starting points of diffusion processes.

2.1. SSP predictions

The SSP model has five free parameters: a (boundary separation), Ter (non-decision time), p (per-
ceptual input of any item in the display), sda (standard deviation of the Gaussian distribution), and rd

(attentional shrinking rate). The parametric baseline was a = 0.129, p = 0.383, sda = 1.861, rd = 0.018
(see White, Ratcliff, et al., 2011, Table 2). Ter was set to zero. To manipulate independently the percep-
tual intensity of the target and the flankers, the perceptual input parameter p was decomposed into
the input for the target ptar and the input for each flanker pfl. ptar decreased from 0.383 to 0.183 in steps
of 0.01, corresponding to different levels of perceptual intensity. pfl was equal to 0.383 (maximum per-
ceptual intensity). All the remaining model parameters were kept constant. Fig. 3A represents the sim-
ulated SSP prediction for the mean and SD of DT across conditions. Wagenmakers–Brown’s law holds
for the perceptual factor, but is strongly violated by S–R compatibility. Focusing on mean DT also
reveals an increase of the compatibility effect as ptar decreases, because it takes more time for the deci-
sion process to overcome incorrect activations. The Piéron’s like behavior of the predicted chronomet-
ric functions is obvious from Fig. 3B, where the relationship between ptar and mean DT is plotted in a
log–log space. The approximate linearity is diagnostic of a power function analogous to Piéron’s law.

2.2. DSTP predictions

The DSTP model has seven free parameters: a (boundary separation for the response selection pro-
cess), Ter (non-decision time), c and lss (boundary separation and drift rate for the target identification
process), lrel (component rate for the relevant stimulus attribute), lirrel (component rate for the irrel-
evant stimulus attribute), and lrs2 (drift rate for the second phase of response selection). The paramet-
ric baseline was a = 0.128, c = 0.177, lss = 1.045, lrel = 0.108, lirrel = 0.241, and lrs2 = 0.414 (see White,
Ratcliff, et al., 2011, Table 2). Ter was set to zero. The early selection stage of the DSTP is not modeled.
Perceptual inputs receive early attention weights giving rise to the component rates for the relevant
and irrelevant stimulus attributes, lrel and lirrel. We thus decomposed lrel assuming that it is the prod-
uct of ptar = 0.383 (perceptual input of the target) and an attention weight of 0.282. This gives
lrel = 0.108, which is the best-fitting value reported by White and colleagues. ptar was manipulated
in the same way as the SSP, decreasing from 0.383 to 0.183 in steps of 0.01. lirrel remained constant
(0.241). Because the perceptual manipulation necessarily affects the identification of the target, lss

also decreased from 1.045 (best-fitting value) to 0.445 in steps of 0.03. Fig. 3C and D show the result-
ing predictions. Similar to the SSP, the DSTP predicts Piéron and Wagenmakers–Brown laws for each
compatibility mapping separately. The compatibility effect also increases when the perceptual inten-
sity of the target decreases, because both early and late selection mechanisms are reduced.

Under difficult target selection conditions (e.g., narrow spacing between target and flankers),
Hübner et al. (2010) observed that lrs2 increases to keep performance at a reasonable level, at least
when target selection difficulty is manipulated blockwise. Whether this compensatory mechanism
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Fig. 3. Predictions from the SSP (A, B) and DSTP (C, D) diffusion models for the Wagenmakers–Brown (left panels) and the log-
transformed Piéron (right panels) laws when the perceptual intensity of the target decreases while that of the irrelevant
stimulus attribute remains maximal. Circles represent compatible conditions, stars represent incompatible conditions.
Perceptual input levels of the target are symbolized by gray shading. Also shown are lines of best fit for each compatibility
mapping (dashed lines). Left panels: SD of DT versus mean DT (both in milliseconds). Right panels: chronometric functions
displayed in a log–log space.
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holds for randomized designs is uncertain. In Appendix B, we provide an additional simulation of the
DSTP, identical to the previous one, except that lrs2 increases from 0.414 to 0.490 as target intensity
decreases. This slight parametric variation produces a curvilinear shape for the relationship between
the mean and SD of DT within each compatibility condition (see Fig. B.1). Since, anticipating our
empirical findings, we have a strong linear relationship for target intensity, a constant lrs2 provides
a more parsimonious model and a better description of this aspect of the data.
2.3. Discussion

The present simulations uncover similar chronometric properties of the SSP and DSTP models.
Piéron and Wagenmakers–Brown laws are predicted for each compatibility condition separately along
with a super-additive interaction between target intensity and compatibility. These predictions are
largely similar to those of a standard DDM (Stafford et al., 2011). A major difference should be empha-
sized, however: the linear relationship between the mean and SD of RT distributions, proposed to be a
psychological law, is broken by the compatibility factor. In line with our theoretical analysis of time-
varying drift rate dynamics (see introduction, Section 1.3), the SSP and DSTP models also produce a
consistent DT moment ordering between compatibility conditions, and this is true for every target
intensity level (as can be observed, in Fig. 3A and C, by comparing point and star markers with the
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same gray shading). Those singularities represent a benchmark against which empirical data will be
contrasted.
3. Experiments

3.1. Experiment 1: Eriksen task

3.1.1. Method
3.1.1.1. Participants. Twelve students (Mean age = 23.7 years, SD = 4.4, 7 female) from the University of
Aix-Marseille completed experiment 1 and were paid 10 €/h. They were naive with respect to the pur-
pose of the experiment and reported to have normal or corrected-to-normal vision and normal color
vision. This experiment was approved by the ethical committee of the Aix-Marseille University, and by
the ‘‘Comité de Protection des Personnes Sud Méditerrannée 1’’ (approval n� 1041). Participants gave
their informed written consent according to the declaration of Helsinki.

3.1.1.2. Stimuli and apparatus. Subjects were tested individually in a dark room (�0.08 cd/m2). They
were seated in a comfortable chair 150 cm in front of a CRT color monitor with a refresh rate of
100 Hz. At this distance, 1 cm on the screen corresponded to approximately 0.38� of visual angle. Stim-
ulus presentation and collection of data were controlled by Psychopy (Peirce, 2007). Special attention
was paid to the manner in which Psychopy utilizes the vertical refresh rate/sync of the monitor to
ensure RT data was not influenced by the vertical blank interval. Stimuli were red and blue circles
(radius = 0.24�) presented on the horizontal midline of a 12.18� � 9.15� black field. On every trial, a
target circle appeared in the center of the field and was flanked by two circles at an eccentricity of
0.8� center to center. We manipulated the color saturation of target circles while keeping their lumi-
nance constant. To obtain identical levels of perceptual saturation between red and blue, we used the
CIE Lightness Chroma Hue device-independent3 colorimetric space (Commission Internationale de
l’Eclairage, 1976), which is a variant of the CIE L*a*b* space specifically designed to accurately map color
perception. Chroma quantifies the degree of perceptual saturation across colors. Lightness is a non-linear
transformation of luminance. Although the two concepts are different, it is always true that colors with
the same lightness will have the same luminance. Six suprathreshold chroma levels (15%, 25%, 35%, 45%,
60%, and 80%) were chosen to span a large range of color intensities. Red (Hue = 30�) and blue
(Hue = 280�) colors always had the same lightness (L = 51), corresponding to a luminance of approxi-
mately 19 cd/m2. The chroma level of the flankers was set to 80%, and was never modulated. Colors were
calibrated by means of a Brontes colorimeter (Admesy B.V., The Netherlands). Responses were made by
the subject pressing either a right or a left button with the corresponding thumb. Button closures were
transmitted through the parallel port of the computer to reach high temporal precision. Buttons were
arranged on the top of two plastic cylinders (3 cm in diameter, 7 cm in height) serving as handgrips,
and the distance between the cylinders was 20 cm.

3.1.1.3. Procedure. Subjects performed 24 blocks of 96 trials in a single-session experiment lasting
approximately 100 min. Within a block, trials were defined by factorial combination of flanker hue
(red or blue), target hue (red or blue), and target chroma (6 saturation levels). Half of the trials were
congruent (i.e., same color for target and distracters), and the other half were incongruent (different
color). They were pseudo-randomized by Mix software (van Casteren & Davis, 2006) so that first order
compatibility sequences (i.e., compatible–incompatible CI, CC, IC, and II) occurred the same number of
times. Chroma levels were not paired equally often with each of the possible compatibility sequences,
since this would have added too many constraints and could have led to predictability. However, a
posteriori analysis showed that chroma levels were fairly well balanced within the compatibility tran-
sition matrix. On every trial, an array of three circles was presented, and remained on-screen until the
subject responded, with a maximum duration of 1500 ms. The next trial started 1500 ms after
3 Although the CIE LCH is considered a device-independent color space, it needs a white point reference. We chose the standard
and widely used CIE D65 illuminant.
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stimulus offset. Subjects were instructed to respond as fast and as accurately as possible to the color of
the central circle, and to ignore the color of the flanking circles. Half of the subjects gave a left-hand
response to a blue target and a right-hand response to a red target. This mapping was reversed for the
other half of the subjects. At the beginning of the experiment, subjects performed a practice block sim-
ilar to the experimental blocks. Practice trials were excluded from analyses.

3.1.1.4. Power function fitting procedure. Luce (1986) proposed that Piéron’s law encompasses a non-
decision component (the asymptotic RT c, in the sense that it is the shortest RT that can be achieved)
and a decision-related one (the power term). In line with this assumption, Bonnet (1992) found that c
was only sensitive to sensory modalities, and argued that it was tied to non-decisional processes. Sim-
ilarly, electromyographic evidence suggests that motor execution is insensible to flanker and Simon
interferences (Burle et al., 2002; Hasbroucq, Possamai, Bonnet, & Vidal, 1999; Rösler & Finger,
1993). In contrast, S–R compatibility factors are traditionally thought to affect decision-making
(Kornblum et al., 1990), and this hypothesis represents the core basis of the DSTP and SSP models.
We thus constrained our fitting procedure to produce a unique c estimate for compatible and incom-
patible conditions. Other parameters (a, b) were free to vary between compatibility conditions. A loss
function was computed between the theoretical power curve and empirical data, and this function
was minimized with a SIMPLEX routine (Nelder & Mead, 1965). The initial parameter values were
drawn from uniform distributions with boundaries defined by previous fits of Piéron’s law to choice
data (Stafford et al., 2011; van Maanen et al., 2012). Each power function was fitted several times,
best-fitting values serving as a starting point for the next run. Stimulus discriminability was opera-
tionalized using chroma parameters. Following Stafford et al. (2011), Piéron’s law was fitted both
on the group and individual data, and goodness-of-fit was assessed by computing Pearson’s correla-
tion coefficient between observed and predicted data.

3.1.1.5. Data analyses. Mean RT and proportions of errors were submitted to an ANOVA with flanker
compatibility (compatible, incompatible) and chroma (6 saturation levels) as within-subject factors.
An arc-sine transformation was applied to normalize proportions before analysis (Winer, 1971).
Greenhouse–Geisser corrections were applied in case of violation of the sphericity assumption
(Greenhouse & Geisser, 1959). Other specific analyses will be detailed in the text.

3.1.2. Results
3.1.2.1. RTs and accuracy. Anticipations (responses faster than 100 ms, 0.007%) and trials in which par-
ticipants failed to respond (0.03%) were discarded. There was a reliable flanker effect on RT
(M = 44.5 ms), F(1,11) = 42.4, p < .001, gp

2 = 0.79 (see Table 1). The main effect of chroma was also sig-
nificant, F(5,55) = 60.7, p < .001, e = 0.41, gp

2 = 0.85. Lower chroma levels were associated with slower
RT (amplitude of the effect, M = 58.9 ms). Importantly, the interaction between chroma and compat-
ibility was not significant, F(5,55) = 0.6, p = 0.6, e = 0.5, gp

2 = 0.05. Error rates revealed a similar pat-
tern. We found main effects of compatibility, F(1,11) = 17.6, p < .005, gp

2 = 0.62, and chroma,
Table 1
Mean response times (ms) and error percentages (parentheses) for each flanker compatibility condition and chroma level for
Experiments 1–2.

Experiment and Cond Chroma levels (%)

15 25 35 45 60 80

1. Eriksen
comp 445 (14.2) 421 (8) 410 (5.3) 400 (4.3) 392 (4.1) 387 (4.7)
incomp 488 (32.6) 472 (22.4) 452 (15.4) 447 (13.2) 434 (11.4) 428 (10.7)

2. Simon
comp 420 (15.9) 408 (10.1) 390 (7) 379 (5.7) 373 (4.8) 370 (6.8)
incomp 447 (22.8) 428 (14) 414 (9.5) 402 (7.9) 390 (7.8) 388 (6.9)

Note. comp: compatible trials; incomp: incompatible trials.



172 M. Servant et al. / Cognitive Psychology 72 (2014) 162–195
F(5,55) = 52.7, p < .001, e = 0.5, gp
2 = 0.83. Error rate was higher in the incompatible condition, and

increased as chroma decreased. The interaction between chroma and compatibility failed to reach sig-
nificance, F(5,55) = 2.03, p = 0.17, e = 0.3, gp

2 = 0.16.
In order to provide some quantitative support to the plausibility of the null hypothesis of additivity,

we further computed a Bayesian ANOVA on mean RT (Rouder, Morey, Speckman, & Province, 2012)
with the R package Bayesfactor (Morey & Rouder, 2012). More precisely, we evaluated the ratio of
the marginal likelihood of the data given model M0 (implementing additive effects between compat-
ibility and color saturation) and given model M1 (including interactive effects between compatibility
and color saturation), a ratio known as Bayes factor. The Bayes factor measures the relative change in
prior to posterior odds brought about by the data:
Fig. 4.
(RT) da
pðM0=DataÞ
pðM1=DataÞ

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{posterior odds

¼ pðM0Þ
pðM1Þ

zfflfflffl}|fflfflffl{prior odds

� pðData=M0Þ
pðData=M1Þ

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{Bayes factor

ð1Þ
The Bayes factor for M0 over M1 was BF0,1 = 15.1 ± 0.63%, revealing that the data are 15 times more
likely under the additive model M0 compared to the interactive model M1. According to a standard
scale of interpretation (Jeffreys, 1961), a Bayes factor of about 15 represents strong evidence for M0.
3.1.2.2. Piéron’s law. Fig. 4 displays the best-fitting Piéron’s curve for each flanker compatibility con-
dition along with observed mean RT. From a qualitative point of view, Piéron’s law seems to describe
the data well. This impression is reinforced by very high correlation coefficients between observed and
predicted data, both at the group and the individual levels (see Tables 2 and 3).
3.1.2.3. Wagenmakers–Brown’s law. Following the methodology of Wagenmakers and Brown (2007),
we computed the RT mean and standard deviation (SD) of our 12 experimental conditions for each
individual. Fig. 5A displays the resulting scatter plots along with Pearson’s r coefficients of correlation
and lines of best fit. The r values ranged from 0.49 to 0.96 with a mean of 0.78, and the majority of
subjects showed an r < .85 (9 out of 12 subjects). The parameters of the linear relationship seem to
be influenced by the S–R compatibility factor. This impression is reinforced when the mean and SD
of each experimental condition are averaged across subjects (see Fig. 5B).
Piéron’s law for each flanker compatibility condition of Experiment 1. Symbols represent empirical mean response time
ta, solid lines are best fitting power curves.



Table 2
Fit of Piéron’s law to the group data for each compatibility condition, Experiments 1–2.

Experiment and Cond Correlation coefficient c (ms) a b

1. Eriksen
comp 0.999* 337 44 0.47
incomp 0.993* 337 85 0.31

2. Simon
comp 0.984* 279 83 0.29
incomp 0.993* 279 100 0.28

Note. comp: compatible trials; incomp: incompatible trials.
* Significant p < .001.

Table 3
Fit of Piéron’s law to the individual data for each compatibility condition, Experiments 1–2.

Experiment and Cond Correlation coefficients

M SD

1. Eriksen
comp 0.92 0.12
incomp 0.88 0.11

2. Simon
comp 0.92 0.11
incomp 0.96 0.04

Note. comp: compatible trials; incomp: incompatible trials.
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To try to separate out the effects of random variability from the experimental manipulations, we
built a linear mixed effects model (Pinheiro & Bates, 2000). Contrary to general linear model methods,
mixed models allow to structure the variance of the observations by modeling random effects. This
development leads to more constrained parameter estimates. The models were specified using the
R package lme4 (Bates, Maechler, & Bolker, 2012). We estimated p-values by means of Markov chain
Monte Carlo (MCMC, Baayen, Davidson, & Bates, 2008). Model selection was performed by computing
a Bayesian information criterion (BIC; Schwarz, 1978) that penalizes models according to their com-
plexity (i.e., number of free parameters). The best model is the one with the smallest BIC. Such a model
predicted SD of RT based on mean RT and compatibility as fixed factors along with by-subject random
intercepts. The interaction term between mean RT and compatibility was removed, because its contri-
bution was not significant and penalized the model. We found main effects of mean RT and compat-
ibility (both MCMC p < .001). Controversies exist regarding how model selection should be done and
which statistical assessment should be performed (e.g., Barr, Levy, Scheepers, & Tily, 2013; Schielzeth
& Forstmeier, 2009). In Appendix C, we provide additional analyses with more complex random effect
structures and likelihood ratio tests to assess fixed effects. All analyses converged and confirmed our
observations. The compatibility factor violates Wagenmakers–Brown’s law by modulating its inter-
cept. The best-fitting parameter for the fixed effect of compatibility indicates that the intercept is low-
ered by about 10 SD units in the incompatible condition. Note, however, that for each level of chroma,
both RT mean and SD are larger in the incompatible than the compatible condition.

3.1.3. Discussion
In agreement with the DSTP and SSP predictions, the results of Experiment 1 show that Piéron and

Wagenmakers–Brown laws hold for each compatibility condition separately in an Eriksen task. Linear
mixed effects model analyses revealed that the intercept of the linear relationship between RT mean
and SD is lowered by the incompatible mapping. However, time-varying diffusion models also predict
an effect of compatibility on the slope of the linear law (see Fig. 3). This discrepancy may be linked to
the relationship between compatibility and color saturation. We found that the two factors combine
additively, as revealed by a Bayesian analysis, while diffusion models predict a super-additive
interaction.



Fig. 5. Standard deviation (SD) of response time (RT) versus mean RT across the 12 experimental conditions from Experiment 1.
Circles represent compatible conditions, stars represent incompatible conditions. Chroma levels are symbolized by gray
shading. (A) Each subplot displays data from 1 of the 12 participants. Lines of best fit (dashed lines) and Pearson’s r coefficient
correlations are also shown. (B) Data averaged across subjects. Dashed lines are constructed using the best-fitting parameters of
the more parsimonious linear mixed effects model. Their equation is provided in the inset.
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The next experiment investigates another conflicting situation, the Simon task, considered to be
incompatible with the diffusion framework due to an inconsistent RT moment ordering between
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compatibility conditions (Schwarz & Miller, 2012). Consequently, particular attention will be paid to
how RT mean and SD scale across experimental conditions.

3.2. Experiment 2: Simon task

3.2.1. Method
3.2.1.1. Participants. Twelve students (Mean age = 23 years, SD = 2.4, 6 female) were recruited from the
same pool as Experiment 1 and were paid 10 €/h. None of them was informed in advance about the
purpose of the experiment, and none of them participated in the first experiment. All the students
reported to have normal or corrected-to-normal vision and normal color vision. This experiment
was approved by the ethical committee of the Aix-Marseille University, and by the ‘‘Comité de Protec-
tion des Personnes Sud Méditerrannée 1’’ (approval n� 1041). Participants gave their informed written
consent according to the declaration of Helsinki.

3.2.1.2. Stimuli and apparatus. Stimuli, colors and apparatus were identical to Experiment 1. In each
trial, however, only one circle was presented 1.6� to the left or right of the vertical midline. A
0.23� � 0.23� gray cross in the center of the screen served as fixation point. The luminance of the cross
was identical to that of the colors (�19 cd/m2).

3.2.1.3. Procedure. Subjects worked through 28 blocks of 96 trials in a single-session experiment last-
ing approximately 100 min. Within a block, trials were defined by factorial combination of stimulus
location (left or right), hue (red or blue) and chroma (6 saturation levels). They were pseudo-random-
ized in the same way as Experiment 1. A trial started by the presentation of a fixation cross. One sec-
ond later, a target circle appeared either to the right or to the left of fixation. Stimuli disappeared as
soon as a response was emitted, or after a response deadline set to 1000 ms. Subjects were instructed
to respond as fast and as accurately as possible to the color of the circle irrespective of its position. Half
of the subjects gave a left-hand response to a blue target and a right-hand response to a red target.
This mapping was reversed for the other half of the subjects. At the beginning of the experiment, sub-
jects performed a practice block similar to the experimental blocks. Practice trials were excluded from
analyses.

3.2.2. Results
3.2.2.1. RTs and accuracy. Anticipations (responses faster than 100 ms, 0.02%) and trials in which par-
ticipants failed to respond (0.18%) were discarded. There were main effects of compatibility on RT,
F(1,11) = 70.2, p < .001, gp

2 = 0.87 (Simon effect, M = 21.6 ms; see Table 1), and chroma, F(5,55) = 86,
p < .001, e = 0.5, gp

2 = 0.89, (amplitude of the effect, M = 54.9 ms). The interaction between chroma
and compatibility was not significant, F(5,55) = 1.5, p = .2, gp

2 = 0.1. Main effects of compatibility
and chroma were also reliable on error rates, F(1,11) = 13.5, p < .005, gp

2 = 0.6 and F(5,55) = 52.5,
p < .001, e = 0.5, gp

2 = 0.83 respectively. However, there was a slight trend for a compatibil-
ity � chroma interaction, F(5,55) = 2.4, p = .09, e = 0.5, gp

2 = 0.18. Tukey post hoc tests revealed that
the Simon effect was only reliable for 15% (p < .05) and 25% (p < .001) chroma levels.

A Bayesian ANOVA was further computed on mean RT in the same way as Experiment 1. The data
favored the additive model M0 over the interactive model M1 by a Bayes factor of BF0,1 = 7.2 ± 0.61%,
providing substantial support for additive effects (Jeffreys, 1961).

3.2.2.2. Piéron’s law. Best fitting Piéron’s law for each compatibly condition and observed mean RT are
displayed in Fig. 6. As in Experiment 1, Piéron’s law describes the data well. The correlation coeffi-
cients between observed and predicted data are very high, both at the group and the individual levels
(see Tables 2 and 3).

3.2.2.3. Wagenmakers–Brown’s law. The data was analyzed in the same way as Experiment 1. Pearson’s
r values for each individual are generally lower compared to those observed in the Eriksen task
(mean = 0.58, range 0.15–0.95; see Fig. 7A). A rapid look at the averaged data (Fig. 7B) makes clear that
Wagenmakers–Brown’s law is violated by the compatibility factor. As anticipated, the incompatible



Fig. 6. Piéron’s law for each compatibility condition of Experiment 2. Symbols represent empirical mean response time (RT)
data, solid lines are best fitting power curves.
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condition is associated with a smaller SD of RT compared to the compatible condition for each color
saturation level. The linear mixed effects model with the lowest BIC index comprised by-subject ran-
dom intercepts, and RT mean and compatibility as fixed factors. The interaction term was again
removed, because it was not significant and penalized the model. The effects of compatibility and
mean RT were reliable (both MCMC p < .001). The best-fitting parameter for the fixed effect of com-
patibility revealed that the intercept of Wagenmakers–Brown’s law was lowered by about 15 SD units
in the incompatible condition (see Appendix C, for additional analyses leading to similar conclusions).
3.2.3. Discussion
The pattern of results from Experiment 2 is similar to that previously observed in the Eriksen task.

Piéron and Wagenmakers–Brown laws hold for each S–R compatibility condition separately. The
incompatible mapping lowers the intercept of the linear law by about 15 SD units, but does not affect
its slope. Those results provide strong support for a common model framework between Eriksen and
Simon tasks, and time-varying diffusion models appear likely candidates. While the DSTP is suffi-
ciently abstract to be extended to different conflict tasks (Hübner et al., 2010), the SSP was specifically
designed for spatial attentional control. However, White, Ratcliff, et al. (2011) hypothesized that the
spotlight component of the SSP may also center on a more abstract feature space to account for
non-spatial attentional effects in the Eriksen task (e.g., grouping effects). In the Simon task, the irrel-
evant spatial feature of the stimulus would be gradually suppressed as the spotlight narrows on the
relevant color feature.

Two aspects of the data, however, seem to challenge the models. In line with previous studies, we
found an inconsistent RT moment ordering between compatibility conditions in the Simon task, but
not in the Eriksen (see Figs. 5B and 7B). Moreover, compatibility and color saturation combined addi-
tively in the two conflict tasks. In the next section, we provide a final test of the SSP and the DSTP by
fitting them to the RT distributions and accuracy data of the previous experiments. This test is more
powerful than the RT mean and SD approach taken so far, and should provide a detailed picture of the
relative strengths and deficiencies of the models. We also fit an alternative version of the SSP, pro-
posed post hoc by White, Ratcliff, et al. (2011). This model features a lack of attentional shrinking
in the compatible condition, and was motivated by the empirical finding that subjects tend to mini-
mize attentional effort whenever possible. When the perceptual intensity of the target and flankers
is similar, as in a standard Eriksen task, each item provides the same quantity of evidence. There is
no real advantage of shrinking attention on the target in compatible trials, and a lack of shrinking does



Fig. 7. Standard deviation (SD) of response time (RT) versus mean RT across the 12 experimental conditions from Experiment 2.
Circles represent compatible conditions, stars represent incompatible conditions. Chroma levels are symbolized by gray
shading. (A) Each subplot displays data from 1 of the 12 participants. Best fit lines (dashed lines) and Pearson’s r coefficient
correlations are also shown. (B) Data averaged across subjects. Dashed lines are constructed using the best-fitting parameters of
the more parsimonious linear mixed effects model. Their equation is provided in the inset.
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not alter the model’s behavior (the constant drift rate in compatible trials would remain unchanged).
This is not true when the perceptual intensity of the target and flankers is manipulated independently.
In the original SSP, if ptar < pfl, the drift rate in compatible trials would become time-varying and would
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progressively converge toward ptar. However, a lack of attentional shrinking would always induce a
constant drift rate, partly determined by pfl. There are two interesting properties of this alternative
SSP model. First, simulations reveal a pattern that resembles our empirical findings: the incompatible
mapping lowers the intercept of Wagenmakers–Brown’s law but does not affect its slope (see Appen-
dix D). Second, the model can potentially predict an inversion of RT moments between compatibility
conditions. Consider a scheme where the perceptual input of the irrelevant stimulus attribute pirrel

4 is
lower than that of the relevant attribute prel. This is plausible in the Simon task, because the location of
the stimulus is not perceptually relevant, and should provide less evidence compared to the color. In
compatible trials, the constant drift rate would be partly determined by pirrel. The shrinking of attention
in incompatible trials would cause the drift rate to converge toward prel and become progressively stron-
ger compared to that of compatible trials. This scheme leads to a reduction of RT variability for incom-
patible trials and thus to an inconsistent RT moment ordering between compatibility conditions. For the
sake of completeness, we also fit an alternative version of the DSTP with no late selection in compatible
trials.
4. Model fitting

4.1. Method

Time-varying diffusion models were tested against group data from the previous Eriksen and
Simon experiments. Probabilities and RT quantiles (.1, .3, .5, .7, .9) for correct and error responses
for each condition were averaged across subjects. The .1 quantile represents the distribution’s leading
edge, and the .9 quantile represents its tail. Only the median quantile (central tendency) was used for
35%, 45%, 60%, and 80% chroma levels in the compatible condition because the number of error
responses was low (see Table 1). The SSP, DSTP, and the two alternative model versions were simu-
lated as random walks (see Section 2), and were fitted to data using a SIMPLEX routine that minimizes
the G2 likelihood ratio statistic (Ratcliff & Smith, 2004):
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The outer summation i extends over the six chroma levels within each of the two compatibility con-
ditions. ni is the averaged number of valid trials per condition. The variable X represents the number of
bins bounded by RT quantiles for each distribution pair of correct and error responses. We set X = 8 (6
bins for correct responses and 2 bins for errors) for 35–80% chroma levels in the compatible condition
and X = 12 otherwise. pij and pij are respectively the observed and predicted proportions of responses
in bin j of condition i. In this way, the model has to account for RT distribution shapes and choice prob-
abilities simultaneously. 80,000 trials were simulated for each condition and each SIMPLEX iteration.
In line with previous work (e.g., Hübner et al., 2010; Smith & Ratcliff, 2009), the G2 statistic was con-
sidered as a measure of relative fit quality, and was completed by a BIC that penalizes models accord-
ing to their number of free parameters m:
BIC ¼ G2 þm log
X12

i¼1

ni
The goodness of fit of the models can also be appreciated graphically in Figs. 8 and 9, where
observed and predicted quantile probability functions (QPFs; Ratcliff, 2001) are superimposed. QPFs
are constructed by aligning RT quantiles (y-axis) on the corresponding response type proportion
(x-axis). For example, if the probability of a correct response in a given experimental condition is
p(c), the RT distributions of correct and error responses will be respectively aligned on p(c) and
1 � p(c). Observed QPFs from the previous experiments reveal that color desaturation increases the
e the subscripts denoting targets and flankers (tar, fl) are now replaced by relevant and irrelevant stimulus attributes (rel,
allow for more generality.



Fig. 8. Quantile probability functions (QPFs) for compatible and incompatible conditions across chroma levels, Experiment 1.
Behavioral data are shown with circular markers. Chroma levels are symbolized by gray shading. Solid lines are fits of the
different time-varying diffusion models illustrated in different panels.
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mean, SD, and skew of RT distributions, as classically observed when stimulus discriminability is
manipulated (e.g., Ratcliff & Smith, 2004). The effect of S–R compatibility is also consistent with pre-
vious work (e.g., White, Ratcliff, et al., 2011), with faster errors than correct responses for incompatible
trials only. In Appendix E, we provide an alternative representation of the data and model predictions
as CAFs. Although the models were not fitted to the CAFs (but rather to the QPFs), those functions rep-
resent the evolution of accuracy as a function of RT quantile, and may provide useful qualitative infor-
mation about potential misfits that may not be directly obvious by inspecting QPFs (for a similar
approach, see White, Brown, et al., 2011).

The architecture of the SSP for the Simon task is identical to that of the Eriksen, except that the
Gaussian spotlight centers on the relevant color feature of the stimulus. The color region is defined
as 1 unit wide, and the remaining attention is allocated to the irrelevant spatial feature. Alternative
versions of the SSP and DSTP are respectively characterized by a lack of attentional shrinking and a
lack of late stimulus selection in compatible trials only.



Fig. 9. Quantile probability functions (QPFs) for compatible and incompatible conditions across chroma levels, Experiment 2.
Behavioral data are shown with circular markers. Chroma levels are symbolized by gray shading. Solid lines are fits of the
different time-varying diffusion models illustrated in different panels.
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80,000 Trials per experimental condition and fit cycle were simulated. Different starting points
were used to ensure that the SIMPLEX gradient descent does not reach a local minimum in the
parameter space. No parameter was allowed to vary between compatibility conditions. Boundary
separations were fixed across chroma levels due to the randomized design of the experiments. The
non-decision time Ter and the drift rate for the response selection process in phase two urs2 in the
DSTP were also fixed since variations of these parameters do not necessarily lead to Wagenmakers–
Brown’s law (see Wagenmakers & Brown, 2007 and Section 2.2). To account for the experimental
manipulation, parameters related to the perception/identification of the relevant stimulus attribute
(prel

5 in the SSP, lrel and lss in the DSTP) were allowed to vary across chroma levels. A model variant
5 prel was further constrained to be equal to pirrel at 80% chroma in the Eriksen task. At this color saturation level, target and
flankers are similar, and provide the same quantity of sensory evidence.
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of the SSP in which the spotlight shrinking rate rd was allowed to vary was also fitted to data. Because rd

variations were very small and had a negligible impact on the fit quality (see Appendix F), rd was fixed.

4.2. Model fits: Eriksen task

Best-fitting parameters and fit statistics of the models are summarized in Table 4. Parameters are
evolving as expected across chroma levels. The performance of the models can be graphically appre-
ciated in Fig. 8. Original versions of the SSP and DSTP capture the main patterns of the data. However,
the SSP overestimates the skew (i.e., tail quantile) of RT distributions for correct responses as chroma
lessens. By contrast, the DSTP captures fairly well the variations of RT distribution shape for correct
and error responses across conditions, although predicted errors are too fast for the lowest chroma
Table 4
Model parameters and fit statistics for Experiment 1 (Eriksen task).

Chroma levels (%)

80 60 45 35 25 15

SSP
a 0.100
Ter 0.256
prel 0.340 0.306 0.301 0.279 0.220 0.155
pirrel 0.340
sda 1.114
rd 0.013
G2 = 167.9
BIC = 245.4

Alternative SSP
a 0.102
Ter 0.256
prel 0.333 0.324 0.290 0.266 0.192 0.091
pirrel 0.333
sda 1.148
rd 0.014
G2 = 182.1
BIC = 259.5

DSTP
a 0.113
c 0.178
Ter 0.241
lrel 0.201 0.196 0.170 0.134 0.104 0.065
lirrel 0.086
lss 0.350 0.353 0.340 0.339 0.290 0.198
lrs2 1.833
G2 = 62.1
BIC = 193.7

Alternative DSTP
a 0.107
c 0.192
Ter 0.255
lrel 0.236 0.215 0.189 0.180 0.103 0.089
lirrel 0.115
lss 0.405 0.383 0.373 0.370 0.327 0.242
lrs2 1.851
G2 = 165.1
BIC = 296.7

Note. a = boundary separation for the response selection process; Ter = non-decision time; prel = perceptual input of the relevant
stimulus attribute; pirrel = perceptual input of the irrelevant stimulus attribute; sda = spotlight width; rd = spotlight shrinking
rate; lrel = component rate for the relevant stimulus attribute; lirrel = component rate for the irrelevant stimulus attribute;
c = boundary separation for the target identification process; lss = drift rate for the target identification process; lrs2 = drift rate
for response selection in phase 2.
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level in the compatible condition (see Appendix E, for additional model analyses based on CAFs). Con-
sequently, the DSTP provides a superior goodness-of-fit compared to the SSP, quantified by lower G2

values. The BIC also favors the DSTP, despite a higher flexibility (17 free parameters for the DSTP
against 10 for the SSP).

Focusing on mean RT for correct responses reveals an interesting phenomenon. Fig. 10 shows the
predicted Wagenmakers–Brown’s laws from best-fitting models. As can be seen, the compatibility
effect predicted by the SSP increases monotonically from 41 ms (80% chroma) to 54 ms (15% chroma),
and the compatibility factor affects both the slope and the intercept of Wagenmakers–Brown’s law,
consistent with our initial simulation of the model (see Section 2.1). However, the compatibility effect
predicted by the DSTP remains relatively constant across chroma levels (80% chroma: 41 ms; 60%:
40 ms; 45%: 40 ms; 35%: 38 ms; 25%: 41 ms: 15%: 42 ms), and the compatibility factor lowers the
intercept of Wagenmakers–Brown’s law, without affecting its slope. While this pattern is in perfect
agreement with the empirical data, it is at odds with our initial simulation (see Section 2.2). There
are two main differences between the set of parameters used in Section 2.2 and that obtained from
fitting the DSTP to data. (i) Our initial simulation of the DSTP was based on fits reported by White,
Ratcliff, et al. (2011, Experiment 1) for a standard Eriksen task. Those fits indicate a very high drift rate
for the stimulus identification process lss (1.045) and a lower drift rate for the response selection pro-
cess in phase two lrs2 (0.414). However, the fits of the DSTP reported by Hübner and collaborators
(Hübner & Töbel, 2012; Hübner et al., 2010) consistently show the reversed pattern,6 i.e. lower drift
rates for lss (range 0.2913–0.5343) compared to lrs2 (range 1.016–1.9799). This indicates a tradeoff
between the two parameters, and the model seems to balance the first and second phases of response
selection (i.e., slower first phase requires faster second phase). Our fits fall in the range of values reported
by Hübner and collaborators. A lower drift rate for lss compared to lrs2 appears more plausible because
stimulus identification (lss) is theoretically constrained by the physical properties of the stimulus while
lrs2 is not: lrs2 is driven by the selected target (red or blue), and incorporates a strong manifestation of
top-down control. (ii) In our initial simulation of the DSTP, lss decreased from 1.045 to 0.445 while best-
fitting values have a much smaller range (from 0.333 at 80% chroma to 0.198 at 15% chroma; see Table 4).
Because the compatibility factor only affects the first phase of response selection, a higher variation of lss

leaves more time for interference to increase before the second phase of response selection arises. The
combined influence of (i) and (ii) explains the different predictions of the DSTP.

Alternative versions of the SSP and the DSTP produced worse fit statistics compared to original
ones. Removing the late selection process of the DSTP in the compatible condition strongly increases
the skew of predicted RT distributions for correct responses. The alternative SSP underestimates the
range of accuracy values in the compatible condition. The lack of attentional shrinking makes the drift
rate partly determined by the flankers which remain at maximal intensity. This property prevents the
model from capturing the augmentation of error rate when chroma decreases.
4.3. Model fits: Simon task

Parameters that yielded the best fit to the Simon data evolve across chroma levels in a similar man-
ner compared to those of the Eriksen (Table 5). As shown in Fig. 9, several misfits are apparent. Most
importantly, the models do not capture the inversion of RT moments between compatibility condi-
tions for each chroma level (Fig. 10). Obviously, the attempt to capture this statistical peculiarity
has created collateral distortions. The DSTP predicts a Simon effect on mean RT that is too small
and errors that are too fast in the compatible condition. The SSP predicts errors that are too fast in
all conditions. An inspection of the CAFs (see Appendix E) reveals a surprising failure of the DSTP to
explain accuracy dynamics across conditions. CAF shapes are better predicted by the SSP.

Alternative model versions are penalized by the same problems highlighted in the Eriksen task, and
do not provide a better fit quality compared to original versions (indicated by higher G2 and BIC sta-
tistics). The alternative DSTP overestimates the skew of RT distributions in the compatible condition
6 Hübner and Töbel (2012, Experiment 1) replicated White, Ratcliff, et al.’s (2011, Experiment 1) results and reported
lss = 0.4437 and lrs2 = 1.9799.



Fig. 10. Wagenmakers–Brown’s laws predicted by best-fitting diffusion models to the data of Experiment 1 (upper panel A) and
Experiment 2 (lower panel B). Circles represent compatible conditions, stars represent incompatible conditions. Chroma levels
are symbolized by gray shading. Also shown are lines of best fit independently for each compatibility mapping (dashed lines).
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Table 5
Model parameters and fit statistics for Experiment 2 (Simon task).

Chroma levels (%)

80 60 45 35 25 15

SSP
a 0.096
Ter 0.245
prel 0.338 0.347 0.330 0.288 0.237 0.167
pirrel 0.295
sda 1.099
rd 0.015
G2 = 171.9
BIC = 258.8

Alternative SSP
a 0.094
Ter 0.245
prel 0.352 0.376 0.335 0.291 0.219 0.142
pirrel 0.287
sda 1.082
rd 0.015
G2 = 183.1
BIC = 269.9

DSTP
a 0.114
c 0.168
Ter 0.220
lrel 0.168 0.167 0.176 0.136 0.115 0.077
lirrel 0.011
lss 0.361 0.366 0.344 0.298 0.244 0.196
lrs2 1.871
G2 = 129.2
BIC = 263.4

Alternative DSTP
a 0.102
c 0.187
Ter 0.235
lrel 0.252 0.258 0.224 0.219 0.189 0.140
lirrel 0.007
lss 0.357 0.369 0.344 0.239 0.214 0.160
lrs2 1.921
G2 = 226.1
BIC = 360.3

Note. a = boundary separation for the response selection process; Ter = non-decision time; prel = perceptual input of the relevant
stimulus attribute; pirrel = perceptual input of the irrelevant stimulus attribute; sda = spotlight width; rd = spotlight shrinking
rate; lrel = component rate for the relevant stimulus attribute; lirrel = component rate for the irrelevant stimulus attribute;
c = boundary separation for the target identification process; lss = drift rate for the target identification process; lrs2 = drift rate
for response selection in phase 2.
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and generates a reversed Simon effect on mean RT. The alternative SSP underestimates the range of
accuracy values in the compatible condition, and the model predicts an inversion of RT moments
between compatibility conditions only for the higher chroma values. In conclusion, none of the models
evaluated are able to fit the Simon data.
5. General discussion

5.1. A common theoretical framework for different conflict tasks

On the basis of conceptual (e.g., Hommel, 2011; Kornblum et al., 1990) and statistical (Pratte et al.,
2010; Speckman, Rouder, Morey, & Pratte, 2008) differences, it has long been argued that different
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conflict tasks are likely to involve different components of processing. By concurrently investigating
Piéron and Wagenmakers–Brown laws in Eriksen (Experiment 1) and Simon (Experiment 2) tasks,
both at experimental and computational levels, we adopted a novel strategy to gain insight into deci-
sion-making in a conflicting environment. Our data identify strong processing similarities between
tasks through three key findings. In both tasks, we found that (i) Piéron’s law holds for each S–R com-
patibility condition. (ii) Compatibility and color saturation combine additively, as revealed by Bayes-
ian hypothesis testing. (iii) Wagenmakers–Brown’s law holds for color saturation, but is broken by the
compatibility factor: the incompatible mapping lowers the intercept of the linear law while leaving its
slope constant. Altogether, those results provide evidence for a common model base between Eriksen
and Simon tasks (see Burle, Spieser, Servant, & Hasbroucq, 2014, for electromyographic evidence sup-
porting a similar conclusion). The recent findings of Stafford et al. (2011) suggest that the Stroop task
may also belong to this common framework.7

The violation of Wagenmakers–Brown’s law by the compatibility factor strongly deviates from
optimal predictions of a standard DDM. As an alternative account, we explored a new generation of
diffusion models that incorporate selective attention mechanisms. Simulations of the SSP and the
DSTP showed that the violation of Wagenmakers–Brown’s law by the compatibility factor was indeed
predicted. The violation appears to be induced by an attention-driven improvement of the quality of
sensory evidence over time (i.e., a progressive suppression of the irrelevant stimulus attribute influ-
ence), regardless whether attentional selectivity operates in a continuous or discrete manner. This
dynamic results in a time-varying evidence accumulation process underlying decision-making under
conflict.

5.2. A discrete improvement of attentional selectivity better explains processing in the Eriksen task

A further test of the DSTP and the SSP was carried out by fitting them to the RT distributions and
accuracy data of our two experiments. So far, the models have only been tested against data from Erik-
sen tasks, and it has proven difficult to determine the superiority of one model over another due to
substantial mimicry, despite different theoretical assumptions (Hübner & Töbel, 2012; White,
Ratcliff, et al., 2011). In this respect, the data from our Eriksen task appears particularly constraining
and challenging: the models have to explain the variations of accuracy and the shape of RT distribu-
tions over the six color saturation levels and the two flanker compatibility conditions. Moreover, they
must do this with fixed decision boundaries, only parameters related to the perception/identification
of the target being free to vary across chroma levels. Comparative fits reveal a numerical advantage of
the DSTP over the SSP. The DSTP fits all aspects of the Eriksen data reasonably well. The SSP has the
problem that it overestimates the skew of RT distributions for correct responses as chroma decreases,
whatever the compatibility mapping. This overestimation is more pronounced in the incompatible
condition, and the model predicts a super-additive interaction between compatibility and chroma.
The SSP also fails to capture qualitative patterns of the CAFs across conditions. These failures could
be due to any component of the model. In particular, we treated non-decision time, moment-to-
moment noise and between-trial variability in drift rate as fixed parameters in the fits reported here,
but those parameters could be plausibly affected by chroma. Relaxing any of these constraints may
virtually improve the fit quality of the SSP. Alternatively, the failures of the model may be rooted in
its general single-stage assumption. Because stimulus identification and response selection are
embodied in a single decision process, the drift rate is always constrained by the physical properties
of the stimulus, even late in the course of processing (the drift rate converges toward the perceptual
input of the target). By contrast, the DSTP assumes that stimulus identification and response selection
are two separate and parallel processes. When a stimulus is identified, response selection takes
another drift rate (lrs2) unconstrained by the physical properties of the stimulus, and driven exclu-
sively by the selected stimulus. This second and more efficient process allows the model to capture
the shape of observed RT distributions for correct responses across conditions.8 As a consequence,
7 Stafford et al. (2011) did not explore Wagenmakers–Brown’s law. We hypothesize that finding (iii) also holds in their Stroop
data set.

8 Indeed, removing the late selection stage strongly increases the skew of predicted RT distributions for correct responses.
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the DSTP explains the pattern of results regarding psychological laws and additive effects between
experimental factors. The latter finding deserves consideration.

Additive effects between a S–R compatibility factor and variables that affect perceptual processing
have consistently been observed (for reviews, see Sanders, 1980, 1990). S–R compatibility effects have
been shown to combine additively with target duration (Simon & Berbaum, 1990), target eccentricity
(Hommel, 1993, Experiment 1), and target quality (e.g., Acosta & Simon, 1976; Everett, Hochhaus, &
Brown, 1985; Frowein & Sanders, 1978; Sanders, 1977; Shwartz, Pomerantz, & Egeth, 1977; Simon,
1982; Simon & Pouraghabagher, 1978; Stoffels, Van der Molen, & Keuss, 1985; van Duren &
Sanders, 1988; but see Hommel, 1993, Experiments 2–5; Stanovich & Pachella, 1977). Target quality
has been manipulated along various dimensions such as signal-background luminance contrast, sound
bursts intensity levels, or visual noise. Hence, our results and those of Stafford et al. (2011) cannot be
due to a peculiarity of color saturation.9

Simulations of the DSTP performed in the present work show that the model is able to generate
different outcomes (additivity/super-additivity between color saturation and compatibility, linear/
curvilinear relationship between the mean and SD of RT distributions) under seemingly plausible
parametric variations. Moreover, they highlight a tradeoff between the first and second phase of
response selection. The model appears so flexible that it may be difficult to falsify. However, the DSTP
fails to explain the Simon data, showing that it is indeed falsifiable.

5.3. A failure to account for the Simon data

The results of our experiments suggest a common model framework for different conflict tasks.
This finding appears problematic for the SSP because the model was specifically designed to account
for spatial attention dynamics in the Eriksen task, although White, Ratcliff, et al. (2011) hypothesized
that the spotlight component may also center on a more abstract attentional space. On the contrary,
Hübner et al. (2010) formalized the DSTP in a sufficiently abstract way to ‘‘potentially serve as a
framework for interpreting distributional effects in a large range of conflict paradigms’’ (p. 760). How-
ever, neither the DSTP nor the SSP explain processing in the Simon task, because the models are unable
to predict an inversion of RT moments between compatibility conditions (i.e., the incompatible con-
dition is associated with the largest mean and the smallest SD of RT) characteristic of the task (e.g.,
Burle et al., 2002; Pratte et al., 2010; Schwarz & Miller, 2012). This statistical peculiarity suggests
an important parametric variation between Eriksen and Simon tasks. An inversion of RT moments
may be generated by a rate of evidence accumulation that becomes progressively higher for the
incompatible compared to the compatible condition. The reason for such a counter-intuitive scheme
is unclear. We explored alternative versions of the SSP and the DSTP with a lack of attentional selec-
tion in compatible trials. Those models, motivated by a preservation of attentional effort principle
(White, Ratcliff, et al., 2011), implement the above drift rate scheme. However, their fit quality in
Eriksen and Simon tasks was numerically inferior compared to standard model versions. Therefore,
the SSP and the DSTP appear incomplete.

Because the DSTP captures qualitative and quantitative aspects of the Eriksen data that the SSP can-
not, its architecture may represent a better foundation for a unified framework. This conclusion should
be tempered by two caveats. First, as mentioned in the previous section, relaxing some parameter con-
straints may lead to different model performances. Second, analysis of the CAFs in the Simon task
reveals an important failure of the DSTP to account for accuracy dynamics across conditions, and
the model appears to generate qualitatively wrong predictions. The SSP provides a superior fit. These
observations deserve further investigations.

On the one hand, the need for at least one additional parameter seems to weaken the DSTP frame-
work. The model components would sum to eight, which further increases the risk of parameter
9 Following the additive factor method (Sternberg, 1969), Sternberg (2013) recently argued that the additivity observed by
Stafford et al. (2011) is consistent with two serially arranged stages, and a selective influence of color saturation and compatibility
on those stages. However, such model does not predict Wagenmakers–Brown’s law but instead a linearity between the mean and
variance of RT distributions (Townsend & Ashby, 1983), although the two alternatives may not always be easy to dissociate.
Furthermore, we do not see how a serial stage model could predict the very fast errors triggered by the irrelevant stimulus
attribute in incompatible trials (see CAFs, Appendix E).
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tradeoffs. On the other hand, this cost may be necessary to capture the types of nuance that are hall-
marks of decision-making in conflicting situations. Currently, the DSTP is a formal implementation of
qualitative dual-route models (e.g., Kornblum et al., 1990) in the context of selective attention
(Hübner et al., 2010). To explain the particular distributional data of the Simon task, Ridderinkhof
(2002) refined dual-route models by hypothesizing a response-based inhibitory mechanism that takes
time to build. Alternatively, Hommel (1993) proposed that irrelevant location-based activations spon-
taneously decay over time. Testing these hypotheses are beyond the scope of the present paper, but
they should be considered in future extensions of the model. Importantly, any proposed theory should
provide a principled account of the parametric variations observed between the different conflict
tasks.
6. Conclusion

The present work introduced a novel strategy to provide additional insight into decision-making in
conflicting situations. The concurrent investigation of Piéron and Wagenmakers–Brown’s laws in
Eriksen and Simon tasks highlighted several important constraints for RT models and strongly sug-
gested a common model framework for the two tasks. Recent extensions of the DDM that incorporate
selective attention mechanisms represent a promising approach toward the achievement of this goal.
Detailed analyses revealed that a discrete improvement of attentional selectivity, as implemented
through the DSTP, better explains processing in the Eriksen task compared to a continuous-
improvement SSP. However, the DSTP fails to capture a statistical peculiarity of the Simon data and
requires further development. Our results set the groundwork for an integrative diffusion model of
decision-making in conflicting environments.
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Appendix A

In the SSP, the target’s region is defined as 1 unit wide, with the Gaussian distribution centered on it. Assuming that the
Gaussian distribution is centered on 0, the quantity of attention allocated to the target is defined as:
atarðtÞ ¼
Z 0:5

�0:5
Nð0; sdaðtÞÞ
where sdaðtÞ ¼ sdað0Þ- rtðtÞ
For a 3-items Eriksen display (1 target and 2 flankers), the quantity of attention allocated to the flankers is:
aflðtÞ ¼ 1� atarðtÞ
The attentional shrinking mechanism stops when sda(t) = 0.001, to prevent the width of the Gaussian from becoming negative.
Appendix B

We provide an additional simulation of the DSTP, identical to that performed in Section 2.2, except that the drift rate of the
response selection process in phase two (lrs2) increases from 0.414 to 0.49 as target intensity decreases. Fig. B.1 shows the
resulting predictions. The relationship between the mean and SD of RT distributions for each compatibility condition is
curvilinear.



Fig. B.1. Predictions from the DSTP model for the Wagenmakers–Brown (left panel) and the log-transformed Piéron (right
panel) laws, under the hypothesis that the drift rate for the response selection process in phase two increases when the
perceptual intensity of the target decreases. Circles represent compatible conditions, stars represent incompatible conditions.
Perceptual input levels of the target are symbolized by gray shading. Also shown are lines of best fit for each compatibility
mapping (dashed lines). Left panel: SD of DT versus mean DT (both in milliseconds). Right panel: chronometric functions
displayed in a log–log space.
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Appendix C

In the main text, model selection was achieved using a BIC index and p-values were computed using Markov chain Monte
Carlo (MCMC) sampling. The more parsimonious models were random intercept models. Although widely used in the literature,
recent simulation studies have argued that random intercept models can have a catastrophically high Type I error rate, regard-
less of how p-values are computed from them (Barr et al., 2013; Schielzeth & Forstmeier, 2009). Therefore, the effect of RT mean
and S–R compatibility may have been overestimated. Barr and colleagues recommended to include the maximal random effects
structure justified by the design to avoid this problem. In our case, the maximal random effects structure would incorporate
by-subject random slopes and intercepts with respect to our experimental factors. Unfortunately, those complex models have
random correlation parameters, and deriving p-values from MCMC sampling is not possible in these particular cases. We thus
Fig. C.1. Standard deviation (SD) of response time (RT) versus mean RT across the 12 experimental conditions from Experiment
1 (left panel) and Experiment 2 (right panel). Data are averaged across subjects. Circles represent compatible conditions, stars
represent incompatible conditions. Chroma levels are symbolized by gray shading. Dashed lines are constructed using the best-
fitting parameters of a linear mixed effects model incorporating a full random effect structure. Their equation is provided in the
inset.
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performed likelihood-ratio tests to assess fixed effects (for technical details and validation of this statistical assessment, see Barr
et al., 2013).

C.1. Eriksen task

We found effects of mean RT and S–R compatibility on the SD of RT distributions, v2(1) = 60.8, p < .001 and v2(1) = 14.3,
p < .001 respectively (likelihood ratio tests). Moreover, the interaction between the two factors was not significant,
v2(1) = 1.1, p = .3. The best-fitting parameters for the fixed effects were similar to those obtained with the original method
(see Fig. C.1, left panel).

C.2. Simon task

The results were similar to those obtained in the Eriksen task. We found effects of mean RT (v2(1) = 57.2, p < .001), S–R com-
patibility (v2(1) = 24.8, p < .001,and no interaction between the 2 factors (v2(1) = 0).The best-fitting parameters for the fixed
effects were again similar to those obtained with the original method (Fig. C.1, right panel).

Appendix D

Alternative versions of the SSP and DSTP are respectively characterized by a lack of attentional shrinking and a lack of late
stimulus selection in compatible trials. As the original versions, the models predict Piéron and Wagenmakers–Brown laws for
each compatibility condition (Fig. D.1). Note a peculiarity of the alternative SSP is its prediction that the compatibility factor
lowers the intercept of Wagenmakers–Brown’s law but does not affect its slope.
A B

DC

Fig. D.1. Predictions from the alternative SSP (A, B) and alternative DSTP (C, D) diffusion models for the Wagenmakers–Brown
(left panels) and the log-transformed Piéron (right panels) laws when the perceptual intensity of the target decreases while that
of the irrelevant stimulus attribute remains maximal. Circles represent compatible conditions, stars represent incompatible
conditions. Perceptual input levels of the target are symbolized by gray shading. Also shown are lines of best fit for each
compatibility mapping (dashed lines). Left panels: SD of DT versus mean DT (both in milliseconds). Right panels: chronometric
functions displayed in a log–log space.



Fig. E.1. Observed and predicted conditional accuracy functions across experimental conditions, Experiment 1.
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Fig. E.2. Observed and predicted conditional accuracy functions across experimental conditions, Experiment 2.
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Table F.1
Model parameters and fit statistics for Experiment 1 (Eriksen task).

Chroma levels (%)

80 60 45 35 25 15

SSP
a 0.100
Ter 0.256
prel 0.340 0.337 0.302 0.279 0.223 0.143
pirrel 0.340
sda 1.114
rd 0.0151 0.0128 0.0140 0.0131 0.0134 0.0138
G2 = 162.1
BIC = 261.1

Note. a = boundary separation for the response selection process; Ter = non-decision time; prel = perceptual input of the relevant
stimulus attribute; pirrel = perceptual input of the irrelevant stimulus attribute; sda = spotlight width; rd = spotlight shrinking
rate.
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Appendix E

Fig. E.1 (Eriksen task) and Fig. E.2 (Simon task) display an alternative representation of the data and predictions from best-
fitting models as CAFs. For each experimental condition, RT were rank-ordered and partitioned in 7 bins of equal size. The CAFs
were constructed by plotting the proportion of correct responses in each bin against the average RT in the corresponding bin.
Seven bins were chosen to provide a detailed representation of the dynamic of accuracy. The observed CAFs show the typical dip
of accuracy for faster RT bins in the incompatible condition (e.g., Gratton et al., 1988). The proportion of these fast errors
increases as chroma decreases.

The following analysis of predictions from best-fitting models is qualitative, because the models were not fitted to the CAFs
(but rather to the QPFs). In the Eriksen task, for each chroma level, the SSP overestimates the proportion of very fast errors in the
incompatible condition and predicts an improvement of accuracy that is too fast. The DSTP better captures the shape of the CAFs
across conditions. These observations are consistent with the recent findings of Hübner and Töbel (2012). The SSP also predicts
that responses in compatible and incompatible conditions converge toward the same accuracy rate as RT increases, because
their drift rates converge toward the same value (equal to the perceptual input of the relevant stimulus attribute prel) as atten-
tion shrinks. However, the observed CAFs for 15% and 25% chroma levels show that accuracy is higher for compatible than
incompatible trials, even for the slowest responses. The DSTP and the alternative version of the SSP do not predict such a con-
vergence of the CAFs for 15% and 25% chroma levels, and better capture this aspect of the data.

Contrary to the Eriksen task, the SSP provides a superior fit than the DSTP in all conditions of the Simon. The DSTP has the
serious problem that it predicts similar CAF dynamics for compatible and incompatible mappings. Both models, however, are
unable to explain a peculiarity of the data: for each chroma level, the CAFs systematically cross in the medium range of RT laten-
cies, leading to the counter-intuitive finding that accuracy rate becomes progressively higher in the incompatible compared to
the compatible condition. The alternative SSP is able to predict this pattern, but only for the higher chroma levels. We suspect
that the inversion of RT moments and the crossing of the CAFs between compatibility conditions are underpinned by the same
mechanism, namely a rate of evidence accumulation that becomes progressively higher in the incompatible compared to the
compatible condition.
Appendix F

Table F.1 shows the best fitting parameters and fit statistics of the SSP to the Eriksen data when the perceptual input of the
relevant stimulus attribute prel and the spotlight shrinking rate parameter rd are allowed to vary across chroma levels. Analysis
of rd variations reveals that it is slightly more difficult to focus on a target that has a lower color saturation compared to the
flankers. However, the variations are very small, and do not significantly improve the fit quality.
References

Acosta, E., & Simon, J. R. (1976). The effect of irrelevant Information on the stages of processing. Journal of Motor Behavior, 8,
181–187. http://dx.doi.org/10.1080/00222895.1976.10735070.

Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items.
Journal of Memory and Language, 59, 390–412. http://dx.doi.org/10.1016/j.jml.2007.12.005.

Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it
maximal. Journal of Memory and Language, 68(3), 255–278. http://dx.doi.org/10.1016/j.jml.2012.11.001.

Bates, D. M., Maechler, M., & Bolker, B. (2012). lmer4: Linear mixed-effects models using S4 classes. R package (version 0.999999-0).

http://dx.doi.org/10.1080/00222895.1976.10735070
http://dx.doi.org/10.1016/j.jml.2007.12.005
http://dx.doi.org/10.1016/j.jml.2012.11.001


M. Servant et al. / Cognitive Psychology 72 (2014) 162–195 193
Bogacz, R., Brown, E., Moehlis, J., Holmes, P., & Cohen, J. D. (2006). The physics of optimal decision making: A formal analysis of
models of performance in two-alternative forced-choice tasks. Psychological Review, 113, 700–765.

Bonnet, C. (1992). Psychophysical scaling within an information processing approach? Behavioral and Brain Sciences, 15,
560–561.

Burle, B., Spieser, L., Servant, M., & Hasbroucq, T. (2014). Distributional reaction time properties in the Eriksen task: Marked
differences or hidden similarities with the Simon task? Psychonomic Bulletin & Review. http://dx.doi.org/10.3758/s13423-
013-0561-6.

Burle, B., Possamai, C. A., Vidal, F., Bonnet, M., & Hasbroucq, T. (2002). Executive control in the Simon effect: An
electromyographic and distributional analysis. Psychological Research Psychologische Forschung, 66, 324–336. http://
dx.doi.org/10.1007/s00426-002-0105-6.

Chocholle, R. (1940). Variation des temps de réaction auditifs en fonction de l’intensité à diverses fréquences. Année
Psychologique, 41, 65–124. http://dx.doi.org/10.3406/psy.1940.5877.

Churchland, A. K., Kiani, R., & Shadlen, M. N. (2008). Decision-making with multiple alternatives. Nature Neuroscience, 11,
693–702.

Commission Internationale de l’Eclairage (1976). ISO 11664-4:2008(E)/CIE S 014-4/E:2007: Joint ISO/CIE Standard: Colorimetry—
Part 4: CIE 1976 L*a*b* Colour Space.

Davranche, K., Hall, B., & McMorris, T. (2009). Effect of acute exercise on cognitive control required during an Eriksen flanker
task. Journal of Sport and Exercise Psychology, 31, 628–639.

Diederich, A., & Busemeyer, J. R. (2003). Simple matrix methods for analyzing diffusion models of choice probability, choice
response time, and simple response time. Journal of Mathematical Psychology, 47, 304–322. http://dx.doi.org/10.1016/S0022-
2496(03)00003-8.

Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task.
Perception & Psychophysics, 16, 143–149. http://dx.doi.org/10.3758/BF03203267.

Eriksen, C. W., & St James, J. D. (1986). Visual attention within and around the field of focal attention: A zoom lens model.
Perception & Psychophysics, 40, 225–240.

Everett, B. L., Hochhaus, L., & Brown, J. R. (1985). Letter-naming as a function of intensity, degradation, S–R compatibility, and
practice. Perception & Psychophysics, 37, 467–470.

Frowein, H. W., & Sanders, A. F. (1978). Effects of visual stimulus degradation, S–R compatibility, and foreperiod duration on
choice reaction time and movement time. Bulletin of the Psychonomic Society, 12(2), 106–108. http://dx.doi.org/10.3758/
BF03329641.

Gratton, G., Coles, M. G., Sirevaag, E. J., Eriksen, C. W., & Donchin, E. (1988). Pre- and poststimulus activation of response
channels: A psychophysiological analysis. Journal of Experimental Psychology: Human Perception and Performance, 14,
331–344.

Greenhouse, S., & Geisser, S. (1959). On methods in the analysis of profile data. Psychometrika, 24, 95–112.
Hasbroucq, T., Possamai, C. A., Bonnet, M., & Vidal, F. (1999). Effect of the irrelevant location of the response signal on choice

reaction time: An electromyographic study in humans. Psychophysiology, 36, 522–526.
Hommel, B. (1993). The relationship between stimulus processing and response selection in the Simon task: Evidence for a

temporal overlap. Psychological Research Psychologische Forschung, 55, 280–290. http://dx.doi.org/10.1007/BF00419688.
Hommel, B. (2011). The Simon effect as tool and heuristic. Acta Psychologica, 136, 189–202.
Hübner, R., Steinhauser, M., & Lehle, C. (2010). A dual-stage two-phase model of selective attention. Psychological Review, 117,

759–784.
Hübner, R., & Töbel, L. (2012). Does attentional selectivity in the flanker task improve discretely or gradually? Frontiers in

Psychology, 3, 1–11. http://dx.doi.org/10.3389/fpsyg.2012.00434.
Jeffreys, H. (1961). Theory of probability. Oxford, England: Oxford University Press.
Kornblum, S., Hasbroucq, T., & Osman, A. (1990). Dimensional overlap: Cognitive basis for stimulus–response compatibility – A

model and taxonomy. Psychological Review, 97, 253–270.
Laming, D. R. J. (1968). Information theory of choice reaction time. New York: Wiley.
Leite, F. P., & Ratcliff, R. (2010). Modeling reaction time and accuracy of multiple-alternative decisions. Attention, Perception, &

Psychophysics, 72, 246–273.
Luce, R. D. (1986). Response times. New York: Oxford University Press.
Morey, R. D., & Rouder, J. N. (2012). BayesFactor. R package (version 0.9.5).
Nelder, J. A., & Mead, R. (1965). A Simplex method for function minimization. The Computer Journal, 7, 308–313. http://

dx.doi.org/10.1093/comjnl/7.4.308.
Palmer, J., Huk, A. C., & Shadlen, M. N. (2005). The effect of stimulus strength on the speed and accuracy of a perceptual decision.

Journal of Vision, 5, 376–404.
Peirce, J. W. (2007). PsychoPy—Psychophysics software in Python. Journal of Neuroscience Methods, 162, 8–13. http://dx.doi.org/

10.1016/j.jneumeth.2006.11.017.
Piéron, H. (1913). Recherches sur les lois de variation des temps de latence sensorielle en fonction des intensités excitatrices.

Année Psychologique, 22, 17–96. http://dx.doi.org/10.3406/psy.1913.4294.
Pinheiro, J. C., & Bates, D. M. (2000). Mixed-effects models in S and S-PLUS. New York: Springer.
Pins, D., & Bonnet, C. (1996). On the relation between stimulus intensity and processing time: Pieron’s law and choice reaction

time. Perception & Psychophysics, 58, 390–400.
Pratte, M. S., Rouder, J. N., Morey, R. D., & Feng, C. (2010). Exploring the differences in distributional properties between Stroop

and Simon effects using delta plots. Attention, Perception, & Psychophysics, 72, 2013–2025.
Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85, 59–108.
Ratcliff, R. (1980). A note on modeling accumulation of information when the rate of accumulation changes over time. Journal of

Mathematical Psychology, 21, 178–184.
Ratcliff, R. (2001). Diffusion and random walks models. International encyclopedia of the social and behavioral sciences (Vol. 6,

pp. 3668–3673). Oxford, England: Elsevier.

http://refhub.elsevier.com/S0010-0285(14)00026-7/h0025
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0025
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0030
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0030
http://dx.doi.org/10.3758/s13423-013-0561-6
http://dx.doi.org/10.3758/s13423-013-0561-6
http://dx.doi.org/10.1007/s00426-002-0105-6
http://dx.doi.org/10.1007/s00426-002-0105-6
http://dx.doi.org/10.3406/psy.1940.5877
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0050
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0050
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0060
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0060
http://dx.doi.org/10.1016/S0022-2496(03)00003-8
http://dx.doi.org/10.1016/S0022-2496(03)00003-8
http://dx.doi.org/10.3758/BF03203267
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0075
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0075
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0080
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0080
http://dx.doi.org/10.3758/BF03329641
http://dx.doi.org/10.3758/BF03329641
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0120
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0120
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0120
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0090
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0095
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0095
http://dx.doi.org/10.1007/BF00419688
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0105
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0110
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0110
http://dx.doi.org/10.3389/fpsyg.2012.00434
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0125
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0130
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0130
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0135
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0140
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0140
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0145
http://dx.doi.org/10.1093/comjnl/7.4.308
http://dx.doi.org/10.1093/comjnl/7.4.308
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0160
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0160
http://dx.doi.org/10.1016/j.jneumeth.2006.11.017
http://dx.doi.org/10.1016/j.jneumeth.2006.11.017
http://dx.doi.org/10.3406/psy.1913.4294
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0175
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0180
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0180
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0185
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0185
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0190
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0195
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0195
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0465
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0465


194 M. Servant et al. / Cognitive Psychology 72 (2014) 162–195
Ratcliff, R., & McKoon, G. (2008). The diffusion decision model: Theory and data for two-choice decision tasks. Neural
Computation, 20, 873–922. http://dx.doi.org/10.1162/neco.2008.12-06-420.

Ratcliff, R., & Rouder, J. N. (1998). Modeling response times for two-choice decisions. Psychological Science, 9, 347–356. http://
dx.doi.org/10.1111/1467-9280.00067.

Ratcliff, R., & Smith, P. L. (2004). A comparison of sequential sampling models for two-choice reaction time. Psychological Review,
111, 333–367.

Ratcliff, R., & Tuerlinckx, F. (2002). Estimating parameters of the diffusion model: Approaches to dealing with contaminant
reaction times and parameter variability. Psychonomic Bulletin & Review, 9, 438–481.

Resulaj, A., Kiani, R., Wolpert, D. M., & Shadlen, M. N. (2009). Changes of mind in decision-making. Nature, 461, 263–266.
Ridderinkhof, K. R. (2002). Activation and suppression in conflict tasks: Empirical clarification through distributional analyses.

In W. Prinz & B. Hommel (Eds.), Common mechanisms in perception and action. Attention and performance (pp. 494–519).
Oxford: Oxford University Press.

Ridderinkhof, K. R., Scheres, A., Oosterlaan, J., & Sergeant, J. A. (2005). Delta plots in the study of individual differences: New
tools reveal response inhibition deficits in AD/Hd that are eliminated by methylphenidate treatment. Journal of Abnormal
Psychology, 114, 197–215.

Rösler, F., & Finger, T. (1993). A psychophysiological analysis of response-channel activation and outcome states in Eriksen’s
noise-compatibility task. Psychological Research Psychologische Forschung, 55, 20–28.

Rouder, J. N., Morey, R. D., Speckman, P. L., & Province, J. M. (2012). Default Bayes factors for ANOVA designs. Journal of
Mathematical Psychology, 56, 356–374. http://dx.doi.org/10.1016/j.jmp.2012.08.001.

Sanders, A. F. (1990). Some issues and trends in the debate on discrete vs. continuous processing of information. Acta
Psychologica, 74, 123–167.

Sanders, A. F. (1977). Structural and functional aspects of the reaction process. In S. Dornic (Ed.), Attention and performance 6
(pp. 3–25). Hillsdale, NJ: Erlbaum.

Sanders, A. F. (1980). Stage analysis of reaction processes. In G. E. Stelmach & J. Q. Requin (Eds.), Tutorials in motor behavior
(pp. 331–354). Amsterdam: North-Holland.

Schielzeth, H., & Forstmeier, W. (2009). Conclusions beyond support: Overconfident estimates in mixed models. Behavioral
Ecology, 20, 416–420. http://dx.doi.org/10.1093/beheco/arn145.

Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461–464.
Schwarz, W., & Miller, J. (2012). Response time models of delta plots with negative-going slopes. Psychonomic Bulletin & Review,

19, 555–574. http://dx.doi.org/10.3758/s13423-012-0254-6.
Shwartz, S. P., Pomerantz, J. R., & Egeth, H. E. (1977). State and process limitations in information processing: An additive factors

analysis. Journal of Experimental Psychology: Human Perception and Performance, 3, 402–410.
Simon, J. R. (1982). Effect of an auditory stimulus on the processing of a visual stimulus under single- and dual-tasks conditions.

Acta Psychologica, 51, 61–73. http://dx.doi.org/10.1016/0001-6918(82)90019-1.
Simon, J. R., & Berbaum, K. (1990). Effect of conflicting cues on information processing: The ‘Stroop effect’ vs. the ‘Simon effect’.

Acta Psychologica, 73, 159–170.
Simon, J. R., & Pouraghabagher, A. R. (1978). The effect of aging on the stages of processing in a choice reaction time task. Journal

of Gerontology, 33, 553–561.
Simon, J. R., & Small, A. M. Jr., (1969). Processing auditory information: Interference from an irrelevant cue. Journal of Applied

Psychology, 53, 433–435.
Smith, P. L., & Ratcliff, R. (2009). An integrated theory of attention and decision making in visual signal detection. Psychological

Review, 116, 283–317.
Speckman, P. L., Rouder, J. N., Morey, R. D., & Pratte, M. S. (2008). Delta plots and coherent distribution ordering. American

Statistician, 62, 262–266.
Stafford, T., Ingram, L., & Gurney, K. N. (2011). Pieron’s Law holds during Stroop conflict: Insights into the architecture of

decision making. Cognitive Science, 35, 1553–1566. http://dx.doi.org/10.1111/j.1551-6709.2011.01195.x.
Stanovich, K. E., & Pachella, R. G. (1977). Encoding, stimulus–response compatibility, and stages of processing. Journal of

Experimental Psychology: Human Perception and Performance, 3, 411–421.
Sternberg, S. (1969). The discovery of processing stages: Extensions of Donders’ method. Acta Psychologica, 30, 276–315. http://

dx.doi.org/10.1016/0001-6918(69)90055-9.
Sternberg, S. (2013). The meaning of additive reaction-time effects: Some misconceptions. Frontiers in Psychology, 4. http://

dx.doi.org/10.3389/fpsyg.2013.00744.
Stoffels, E. J., Van der Molen, M. W., & Keuss, P. J. (1985). Intersensory facilitation and inhibition: Immediate arousal and location

effects of auditory noise on visual choice reaction time. Acta Psychologica, 58, 45–62.
Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643–662. http://

dx.doi.org/10.1037/h0054651.
Townsend, J. T., & Ashby, F. G. (1983). Stochastic modeling of elementary psychological processes. London: Cambridge University

Press.
van Casteren, M., & Davis, M. H. (2006). Mix, a program for pseudorandomization. Behavioral Research Methods, 38, 584–589.
van Duren, L. L., & Sanders, A. F. (1988). On the robustness of the additive factors stage structure in blocked and mixed choice

reaction designs. Acta Psychologica, 69, 83–94. doi:0001-6918.
van Maanen, L., Grasman, R. P., Forstmann, B. U., & Wagenmakers, E. J. (2012). Pieron’s law and optimal behavior in perceptual

decision-making. Frontiers in Neuroscience, 5, 143. http://dx.doi.org/10.3389/fnins.2011.00143.
Wagenmakers, E.-J., & Brown, S. (2007). On the linear relation between the mean and the standard deviation of a response time

distribution. Psychological Review, 114, 830–841. http://dx.doi.org/10.1037/0033-295X.114.3.830.
Wald, A. (1947). Sequential analysis. New York: Wiley.
Wald, A., & Wolfowitz, J. (1948). Optimum character of the sequential probability ratio test. Annals of Mathematical Statistics, 19,

326–339.
White, C. N., Brown, S., & Ratcliff, R. (2011). A test of Bayesian observer models of processing in the Eriksen flanker task. Journal

of Experimental Psychology: Human Perception and Performance, 38, 489–497. http://dx.doi.org/10.1037/a0026065.

http://dx.doi.org/10.1162/neco.2008.12-06-420
http://dx.doi.org/10.1111/1467-9280.00067
http://dx.doi.org/10.1111/1467-9280.00067
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0215
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0215
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0220
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0220
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0225
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0480
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0480
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0480
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0235
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0235
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0235
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0245
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0245
http://dx.doi.org/10.1016/j.jmp.2012.08.001
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0260
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0260
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0250
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0250
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0255
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0255
http://dx.doi.org/10.1093/beheco/arn145
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0270
http://dx.doi.org/10.3758/s13423-012-0254-6
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0280
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0280
http://dx.doi.org/10.1016/0001-6918(82)90019-1
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0290
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0290
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0295
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0295
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0300
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0300
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0305
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0305
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0310
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0310
http://dx.doi.org/10.1111/j.1551-6709.2011.01195.x
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0315
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0315
http://dx.doi.org/10.1016/0001-6918(69)90055-9
http://dx.doi.org/10.1016/0001-6918(69)90055-9
http://dx.doi.org/10.3389/fpsyg.2013.00744
http://dx.doi.org/10.3389/fpsyg.2013.00744
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0335
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0335
http://dx.doi.org/10.1037/h0054651
http://dx.doi.org/10.1037/h0054651
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0345
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0345
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0350
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0525
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0525
http://dx.doi.org/10.3389/fnins.2011.00143
http://dx.doi.org/10.1037/0033-295X.114.3.830
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0370
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0375
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0375
http://dx.doi.org/10.1037/a0026065


M. Servant et al. / Cognitive Psychology 72 (2014) 162–195 195
White, C. N., Ratcliff, R., & Starns, J. J. (2011). Diffusion models of the flanker task: Discrete versus gradual attentional selection.
Cognitive Psychology, 63, 210–238.

Winer, B. J. (1971). Statistical principles in experimental design: Design and analysis of factorial experiments. New York: McGraw-
Hill.

Wylie, S. A., Claassen, D. O., Huizenga, H. M., Schewel, K. D., Ridderinkhof, K. R., Bashore, T. R., et al (2012). Dopamine agonists
and the suppression of impulsive motor actions in Parkinson disease. Journal of Cognitive Neuroscience, 24, 1709–1724.
http://dx.doi.org/10.1162/jocn_a_00241.

Wylie, S. A., Ridderinkhof, K. R., Bashore, T. R., & van den Wildenberg, W. P. (2010). The effect of Parkinson’s disease on the
dynamics of on-line and proactive cognitive control during action selection. Journal of Cognitive Neuroscience, 22,
2058–2073. http://dx.doi.org/10.1162/jocn.2009.21326.

http://refhub.elsevier.com/S0010-0285(14)00026-7/h0385
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0385
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0390
http://refhub.elsevier.com/S0010-0285(14)00026-7/h0390
http://dx.doi.org/10.1162/jocn_a_00241
http://dx.doi.org/10.1162/jocn.2009.21326

	Conflict tasks and the diffusion framework: Insight in model constraints based  on psychological laws
	1 Introduction
	1.1 The drift diffusion model: basic architecture and mathematical properties
	1.2 Conflict paradigms
	1.3 Modeling decision-making in conflicting situations with diffusion processes
	1.4 Piéron and Wagenmakers–Brown laws as a window on decision-making mechanisms

	2 Model simulations
	2.1 SSP predictions
	2.2 DSTP predictions
	2.3 Discussion

	3 Experiments
	3.1 Experiment 1: Eriksen task
	3.1.1 Method
	3.1.1.1 Participants
	3.1.1.2 Stimuli and apparatus
	3.1.1.3 Procedure
	3.1.1.4 Power function fitting procedure
	3.1.1.5 Data analyses

	3.1.2 Results
	3.1.2.1 RTs and accuracy
	3.1.2.2 Piéron’s law
	3.1.2.3 Wagenmakers–Brown’s law

	3.1.3 Discussion

	3.2 Experiment 2: Simon task
	3.2.1 Method
	3.2.1.1 Participants
	3.2.1.2 Stimuli and apparatus
	3.2.1.3 Procedure

	3.2.2 Results
	3.2.2.1 RTs and accuracy
	3.2.2.2 Piéron’s law
	3.2.2.3 Wagenmakers–Brown’s law

	3.2.3 Discussion


	4 Model fitting
	4.1 Method
	4.2 Model fits: Eriksen task
	4.3 Model fits: Simon task

	5 General discussion
	5.1 A common theoretical framework for different conflict tasks
	5.2 A discrete improvement of attentional selectivity better explains processing in the Eriksen task
	5.3 A failure to account for the Simon data

	6 Conclusion
	Acknowledgments
	Appendix A
	Appendix B
	Appendix C
	C.1 Eriksen task
	C.2 Simon task

	Appendix D
	Appendix E
	Appendix F
	References


