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1. INTRODUCTION 

Dynamic models used in robotics and in mechanical 

engineering are continuous-time models that result from 

Newton's law or Lagrange equations. Mechanical systems 

having a double-integrator behavior must be identified while 

they operate in closed loop (Khalil & Dombre 2002) and 

(Gautier et al. 2013). The direct dynamic model (DDM) is 

rarely used because it is usually nonlinear with respect to the 

dynamic parameters (Gautier et al. 2013). The identification 

method makes use of the inverse physical model (IDM) 

which is linear in relation to the dynamic parameters and the 

Least-Squares (LS) method. Good results can be obtained 

provided that an appropriate data filtering is used (Gautier et 

al. 2013). However, it is known that simple LS estimates are 

biased when the system is identified in open or closed loop 

(Van den Hof 1998), (Gilson et al. 2011). 

One interesting approach to consistently identify a system in 

closed loop is the instrumental variable (IV) method (see e.g. 

Young 2011 and the references therein). Interest in IV 

methods has been growing in recent years. While consistency 

is generally secured, the main issue for an IV-based method 

is how should the instrumental variables be chosen to obtain 

optimal accuracy (Söderström & Stoica 1989), (Gilson et al. 

2011). Amongst the different proposed solutions, an iterative 

algorithm where the required prefilter and instruments are 

iteratively adapted is known to be one of the most reliable 

(Young 2011). Although the IV method provides good 

results, the works presented in the previous references are 

theoretical-oriented. This may explain why the IV method 

has not yet well penetrated the fields of robotics (Puthenpura 

& Sinha 1986), (Janot et al. 2014). More recently, the 

identification of continuous-time models has grown in 

popularity in the field of Automatic Control (Garnier et al. 

2007), (Garnier & Wang 2008) and see the recent special 

issue in the International Journal of Control (Garnier & 

Young 2014). 

The aim of this work is twofold. First, it aims at broadcasting 

the benefits of the IV method to practitioners in robotics. 

Secondly, it aims at showing the advantages of using the 

IDM to identify the physical parameters to the System 

Identification community. To do so, the identification of two 

continuous-time dynamic models of a one degree-of-freedom 

(DOF) electromechanical position unit (EMPS) is considered: 

the IDM which is linear in relation to the physical parameters 

and the DDM which is linear with respect to a set of 

parameters that results from a nonlinear combination of the 

physical parameters. Because the EMPS depends on 3 

dynamic parameters only, the interpretation of the 

experimental results is easy. The three identification methods 

compared in this paper are: the LS method which makes use 

of the IDM combined with a tailor-made data prefiltering, an 

IV-based method which makes use of the IDM and the DDM 

presented in (Janot et al. 2014), an IV-based approach which 

makes use of the DDM only. The experimental results show 

that the IV method based on the use of the IDM and the 

DDM seems to be more appropriate than the two others to 

identify the dynamic parameters because it is robust against 

noises and the physical parameters are directly identified 

without requiring the tailor-made data filtering which 

requires some expertise from the practitioner. 
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The paper is organized as follows: Section 

two models considered for the EMPS. Section 

identification method based on the simple LS technique while 

Section 4 presents the two proposed IV-

The experimental results are given in Section 

gives some concluding remarks. 

2. MODELS OF THE ELECTROMECHANICAL SY

2.1 Experimental setup 

The EMPS is a high-precision linear Electro

Positioning System (see Figure 1). It is a standard 

configuration of a drive system for prismatic joint

or machine tools. It is connected to a dSPACE digital control 

system for easy control and data acquisition using 

Simulink software. Its main components are

• A Maxon DC motor equipped with an incremental 

encoder. This DC motor is position-controlled with a PD 

controller. 

• A Star high-precision low-friction bal

positioning unit and a load in translation

All variables and parameters are given in ISO units

load side. 

Fig. 1. EMPS prototype to be identified

2.2  Direct dynamic model 

The direct dynamic model (DDM) of a robot expresses 

acceleration vector as a function of the motor torq

position and velocity vector (Khalil & Dombre 2002)

Newton's law, we have 

, 

where q , ,  are the joint position, velocity and 

acceleration in m, m.s
-1

 and m.s
-2

 respectively

motor force in N, M  is the mass in Kg, F

viscous and Coulomb friction parameters in N/m

respectively. 

The physical parameters M , 
vF  and 

dynamic parameters. In the case of the EMPS

linear with respect to a set of parameters that result from a 

nonlinear combination of the dynamic parameters

( )idm ddmq DDM q,q,τ θ= ,  

where ( )idm idmDDM q,q, q sign qτ τ= − −

( )x1 3  matrix of basis functions of the

T

ddm 1 2 3
θ θ θ θ=  is the ( )x3 1  vector of the 3 

parameters that are nonlinear combination of the 3 

parameters given by 1 1 Mθ = , 

The paper is organized as follows: Section 2 describes the 

Section 3 reviews the 

the simple LS technique while 

-based approaches. 

ection 5 and Section 6 

ELECTROMECHANICAL SYSTEM  

precision linear Electro-Mechanical 

1). It is a standard 

configuration of a drive system for prismatic joint of robots 

nected to a dSPACE digital control 

system for easy control and data acquisition using Matlab and 

Its main components are 

A Maxon DC motor equipped with an incremental 

controlled with a PD 

friction ball screw drive 

load in translation. 

All variables and parameters are given in ISO units on the 

 
. EMPS prototype to be identified 

he direct dynamic model (DDM) of a robot expresses the 

acceleration vector as a function of the motor torque, joint 

(Khalil & Dombre 2002). From 

(1) 

position, velocity and 

respectively, idm  is the 

vF  and 
cF  are the 

viscous and Coulomb friction parameters in N/m.s
-1

 and in N 

cF  are called as 

of the EMPS, the DDM is 

parameters that result from a 

rameters 

(2) 

( )q sign q , is the 

matrix of basis functions of the DDM and 

vector of the 3 

parameters that are nonlinear combination of the 3 dynamic 

, 2 vF Mθ = and 

3 cF Mθ = . 

2.3  Inverse dynamic model 

The inverse dynamic model (IDM) of a robot expresse

as a function of q ,  and   

the case of the EMPS, the IDM i

( )idm v cMq F q F sign qτ = + + , 

Equation (3) is linear in relation to the dynamic parameters,

( )idm idmIDM q,q,qτ θ= , 

where ( )IDM q,q,q q q sign q=

of basis functions of the IDM and

the ( )x3 1  vector of the 3 dynamic parameters.

Because the DDM is usually nonlinear with respect t

dynamic parameters, it is rarely used fo

(Swevers et al. 2007, Gautier et al

2.4. Data acquisition 

Data that are available are the measurements of 

measq  and 
measν  the measurement of the 

denoted as ν . The control signal 

law and is linked to idm  by the following relatio

idm gτν= , 

where gτ  is drive gain of the EMPS.

is usually given by the manufacturers, it can be id

with special tests (Gautier & Briot 

In the case of the EMPS, it has been estimated to

N/V. 

2.5 Control of the EMPS 

Because the EMPS is a system

cannot be identified in open loop. It is position

with a Proportional-Derivative (PD). In (Gautier 

it has been shown that a PD control is enough to id

dynamic parameters because an excellent tracking is

needed. The control signal ν  is given by

( )p v r vK K q q K qν − −= , 

where pK  is the proportional gain and 

gain. With (5), it comes out that 

( )p v r vidm K K qg g K qqτ ττ −= −

The bandwidth of the position loop is 20Hz. This gi

160.18 1/s and 
vK  = 243.45 V/m

2.6 Closed-loop block-diagram 

The closed-loop block-diagram for the

Fig. 2, where p  denotes the differentiation operator

The inverse dynamic model (IDM) of a robot expresses 
idm

 

  (Khalil & Dombre 2002). In 

the case of the EMPS, the IDM is given by 

 (3) 

is linear in relation to the dynamic parameters, 

(4) 

( )IDM q,q,q q q sign q , is the ( )x1 3  matrix 

of basis functions of the IDM and 
T

idm v cM F Fθ = , is  

vector of the 3 dynamic parameters. 

Because the DDM is usually nonlinear with respect to the 

dynamic parameters, it is rarely used for robot identification 

et al. 2013). 

available are the measurements of q  denoted as 

the measurement of the control signal 

. The control signal ν  results from the control 

by the following relation 

(5) 

is drive gain of the EMPS. Though the drive gain 

is usually given by the manufacturers, it can be identified 

Briot 2014). 

it has been estimated to gτ  = 35.15 

Because the EMPS is a system having a pure integrator, it 

loop. It is position-controlled 

Derivative (PD). In (Gautier et al. 2013), 

it has been shown that a PD control is enough to identify the 

dynamic parameters because an excellent tracking is not 

is given by 

(6) 

is the proportional gain and 
vK is the derivative 

, it comes out that idm  is given by 

q .  (7) 

The bandwidth of the position loop is 20Hz. This gives pK  = 

= 243.45 V/m.s
-1

. 

 for the EMPS prototype 

diagram for the EMPS is shown in 

denotes the differentiation operator. 
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Fig. 2. Closed-loop block-diagram for  the EMPS prototype 

The measurement noise of the control signal (resp. position) 

is denoted as wν (resp. qw ). It is assumed that wν  and qw  are 

uncorrelated, serially independent and homoscedastic with a 

bounded variance. Those assumptions are usually valid in 

practice. The EMPS can be modeled as 

( ) ( ) ( ) ( )( )q t G p t d tτ= + , (8) 

where  ( )
1 1

v

G p
p Mp F

=
+

  and  ( ) ( )cd t F sign q= − .  

The Coulomb friction effect is considered as a state-

dependent input disturbance while ( )G p  is considered as the 

linear part of the model. 

3. IDENTIFICATION METHODS BASED ON LEAST-

SQUARES METHOD 

3.1  Usual LS-based identification method of the IDM 

The traditional identification method developed for robots is 

based on the use of the IDM and the simple Least Squares 

(LS) method. However, we face here to a closed-loop 

situation and this requires special treatment, see e.g. (Van den 

Hof 1998). Here, a pragmatic approach based on an efficient 

tailor-made data filtering makes it possible to use the simple 

LS identification methods. 

In (3), q  is estimated with q̂  obtained by filtering 
measq  

through a low-pass filter while  are calculated with a 

central differentiation algorithm of q̂ . Details about the data 

filtering can be found in (Gautier et al. 2013). Hence, the 

actual motor force  differs from idm  by an error 
idme  

because of model mismatch, measurements noises and data 

filtering. Then one has 

( ) idm idm
ˆ ˆˆIDM q,q,q eτ θ= + . (9) 

From 
SN  available samples of the measured signals observed 

at discrete-time instants for tracking exciting trajectories 

( )r r rq ,q ,q , an over-determined system is obtained 

idm idm idm idmy = X +θ ε , (10) 

where 
idmy  is the ( )1SN ×   sampled vector of , 

idmX  the 

( )3SN ×  matrix of ( )ˆ ˆˆIDM q,q,q , 
idmε  is the ( )1SN ×  vector 

of 
idme  error terms and 

SN  is the number of samples. 

 being perturbed by high-frequency disturbances and since 

there is no information in high frequencies because of the 

lowpass filtered data ( )ˆ ˆq̂,q,q , a parallel decimation 

procedure is used to eliminate torque ripples and the samples 

in high frequencies. 

By applying the tailor-made data prefiltering, the filtered 

regression model is assumed to be free of noise so that simple 

LS  can be used to deliver the following estimates 

( )
1

T T

idm LS idm idm idm idm
ˆ = X X X yθ

−

−
. (11) 

The unicity of the LS solution (11)  is ensured if idmX  is a 

column-full-rank matrix i.e. ( )idmrank X 3= . At this step, the 

trajectories ( )r r rq ,q ,q  are assumed to be exciting enough. 

The computation of the standard deviation 
idm j

θ̂
σ and the 

relative standard derivation 
jidm j

ˆ idm
ˆ100

θ
σ θ  for 

jidm
ˆ 0θ ≠  

presented in (Gautier et al. 2013) and (Janot et al. 2014) 

assumes that idmX  is deterministic and are not recalled here. 

3.2 LS-based identification of the DDM 

Similarly,  differs from  by an error 
ddme . Then one has 

( )ddm ddm ddm
ˆ ˆˆq q e DDM q,q, eτ θ= + = + . (12) 

From 
SN  available samples of the measured signals observed 

at discrete-time instants an over-determined system is 

obtained 

ddm ddm ddm ddmy = X +θ ε , (13) 

where 
ddmy  is the ( )1SN ×  vector of , 

ddmX  the ( )3SN ×  

matrix of ( )ˆˆDDM q,q,τ , 
ddmε  is the ( )1SN ×  vector of 

ddme  

error terms. 

A similar tailor-made data prefiltering can be used to make 

the DDM regression model assume to be free of noise so that 

the simple LS method can be used to estimate the DDM 

parameters  

( )
1

T T

ddm LS ddm ddm ddm ddm
ˆ = X X X yθ

−

−
. (14) 

3.3 Main difference between the IDM and the DDM 

Associated to a data prefiltering strategy, the simple linear LS 

method can be used to estimate the parameters of both DDM 

and IDM models. For the practitioner, the question is then: 

shall we use the DDM or the IDM model? 

It must be noticed that the physical parameters of the system 

are directly identified with the IDM. Furthermore, their 

deviation can be calculated with the usual statistical rules (see 

e.g. Davidson & MacKinnon 1993). When using the DDM, 

only ddmθ  which results from nonlinear combination of the 

physical parameters is identified. Hence, the deviations of the 

physical parameters cannot be directly calculated with the 

classical rules of Statistics. 
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Because of this reason, it is recommended to use the IDM to 

identify the parameters of electromechanical systems. 

3.4 Conclusion 

The simple LS-based method was successfully applied on 

several prototypes and industrial robots (see e.g. Swevers et 

al. 2007, Gautier et al. 2013)). However, to provide good 

results, the joint position and control signal measurements 

must be accurate enough at high sampling rate and a tailor-

made data filtering must be well tuned (Gautier et al. 2013) 

and (Janot et al. 2014). This requires some expertise from 

practitioners. The IV method is an interesting alternative to 

LS method to overcome those drawbacks. 

4.  INSTRUMENTAL VARIABLE METHOD 

The IV method consists in introducing an ( )3SN ×  

instrumental matrix denoted as Z . When using the IDM 

(resp. DDM), Z  must be correlated with idmX  (resp. ddmX ) 

and uncorrelated with the error idmε  (resp. ddmε ). Hence, to 

be a valid instrumental matrix, Z  must fulfill the following 

conditions 

( )( )
( )

T

idm

T

idm

rank E Z X 3

E Z 0ε

=

=
,

( )( )
( )

T

ddm

T

ddm

rank E Z X 3

E Z 0ε

=

=
, (15) 

where ( )E  is the expectation operator. 

Assuming that (15) holds, the unbiased IV solutions are given 

by 

( )
1

T T

IV idm idm idm idm idm
ˆ = Z X Z yθ

−

−
, (16) 

( )
1

T T

IV ddm ddm ddm ddm ddm
ˆ = Z X Z yθ

−

−
. (17) 

In the last decade, different IV solutions have been developed 

for closed-loop identification (see e.g. Gilson et al, 2011, 

Young 2011). Though the IV method is an interesting 

alternative to LS method for closed-loop identification of 

continuous-time models, the main issue is the construction of 

the instruments. 

4.1  IV-based identification for the IDM 

Disregarding the noise model, a simple approach consists in 

building Z  from simulated data, which are the outputs of an 

auxiliary model. This auxiliary model is the noise-free model 

of the system (Young 2011). The simulated data provide an 

estimate of the noise-free data. 

For mechanical systems, it has been shown that a valid 

auxiliary model is the DDM (Janot et al. 2014). The 

simulation of the DDM is performed with the IV obtained at 

the previous iteration denoted as it 1

IV idmθ̂ −

−  and assumes the 

same reference trajectory and the same structure of the 

control law for both the actual and simulated robots. At step 

it , the simulated acceleration is given by 

( )1 1 1ˆ ˆ ˆit it it it it it it

S S v S c SM q F q F sign qτ− − −
= − − . (18) 

By integrating (18), the velocity  and position it

Sq  are 

obtained. The simulated force it

Sτ  is calculated as 

. (19) 

The instrumental variable matrix is the IDM built with the 

simulated data 

( ), ,it it it it

idm idm S S SZ X q q q= . (20) 

idmy  and idmX  are built according to (9). At step it , the 

iterative IV estimates are given by 

( )( ) ( )
1

ˆ
T T

it it it

IV idm idm idm idm idmZ X Z yθ
−

−
= . (21) 

The covariance matrix of the IV estimates is calculated as 

explained in (Young 2011). This IV approach is interesting 

because it does not require the use of the tailor-made data 

prefiltering strategy and combines the direct and inverse 

dynamic models. Furthermore, this approach is able to 

identify 60 dynamic parameters of an industrial robot in 3 

iterations as shown in (Janot et al. 2014). 

4.2 IV identification for the DDM 

Similarly, the DDM can be used as the auxiliary model and 

the instrumental matrix is the DDM built with the simulated 

data 

( ), ,it it it it

ddm ddm S S SZ X q qτ= . (22) 

The iterative IV estimates are calculated as 

( )( ) ( )
1

ˆ
T T

it it it

IV ddm ddm ddm ddm ddmZ X Z yθ
−

−
= . (23) 

5.  EXPERIMENTAL RESULTS 

The EMPS is controlled in position with the PD control given 

in Section 2.5. Data are collected with a sampling frequency 

of 1kHz. The resolution of the encoder is 4 000 counts per 

revolution. The iterative IV-based methods are initialized as 

follows: 0ˆ 100M Kg= , ( )0ˆ 0 / /vF N m s=  and 0ˆ 0cF N= . The 

value 0M̂  is a CAD value. 

5.1 Appropriate data filtering 

The cutoff frequency of the Butterworth filter is 60Hz while 

the cutoff frequency of the decimate filter is 40Hz. We keep 

one sample over 10. The cutoff frequencies are tuned 

according to the rules given in (Gautier et al. 2013). 

The LS- and IV-based estimates obtained with the IDM are 

given in Table 1 while the LS- and IV-based estimates 

obtained with the DDM are given in Table 2. The IV method 

with the IDM and the DDM has converged in 3 iterations 

only (see the results given in Table 4 and Table 5). The 

identified values of the physical parameters are regrouped in 

the Table 3. In addition, the relative errors are given Table 1 

and Table 2. 
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When using the IDM and the DDM, the LS estimates stick to 

the IV estimates. Furthermore, the small differences observed 

with the IV estimates are spanned by the IV deviations. 

According to the theory of Hausman (Hausman 1978), the LS 

estimates can be considered as unbiased. The results show 

that the values of the dynamic parameters can be retrieved 

with the values estimated with the DDM (see Table 3). 

However, their deviations cannot be easily calculated. 

Direct measured and model output comparisons have been 

performed for the IV-IDM estimates, see Fig. 3 (a similar 

result is obtained for the DDM and similar results are 

obtained with the LS estimates for both the IDM and DDM). 

The estimated force matches the measured force. Since the 

relative errors are smaller than 10%, the identification results 

are of good quality. 

If the data filtering is appropriate, the IV approach does not 

really improve the LS method. This is mainly due to the very 

accurate data and the data filtering. The matrices 
idmX  and 

ddmX  can be considered as noise-free and they are thus not 

correlated with the errors idmε  and ddmε . 

5.2 Inappropriate data filtering 

The cutoff frequency of the Butterworth filter is 180Hz while 

the cutoff frequency of the decimate filter is 120Hz. We keep 

one sample over 3. 

The LS and IV estimates obtained with the IDM are given in 

Table 6 while the LS and IV estimates obtained with the 

DDM are given in Table 7. The IV method with the IDM and 

the DDM has converged in 3 iterations only. The results are 

similar to those given in Table 4 and Table 5. The identified 

values of the physical parameters are shown in Table 8. In 

addition, the relative errors are given Table 6 and Table 7. 

When an inappropriate data filtering is applied, the LS 

estimates of 
vF  and 

cF  stick to the IV estimates whereas the 

LS estimate of M  does not. Furthermore, the difference with 

the IV estimate is not spanned by the IV deviation. According 

to the theory of Hausman, the LS estimate of M  is biased. 

This outcome was expected and is due to the fact that the 

acceleration is the noisiest signal, which is correlated with the 

error because of the closed-loop control. 

Direct comparisons have been performed. The result obtained 

with the IV estimates for the IDM is similar as the one 

illustrated Fig. 3 (a similar result is obtained for the DDM). 

The result obtained with the LS estimates for the IDM is 

illustrated in Fig. 4. With the IV method, the estimated force 

matches the measured force whereas it does not with the LS 

method. The reconstructed force is noisy because of the 

acceleration in (4). Furthermore, the relative errors are 

smaller than 10% with the IV method whereas they are close 

to 50% with the LS method. Such a relative error is a reason 

for alarm. 

It comes that the IV approach really improves the LS method 

because of its robustness against noises in the observation 

matrix. It is worth noting that we obtain the same result with 

a poor encoder resolution, smaller than 100 counts per 

revolution, associated with an appropriate data filtering. 

Table 1. LS and IV estimates for the IDM model - Appropriate data 

filtering for LS method 

Parameters IDM-LS %
idm j

θ̂
σ  IDM-IV %

idm j
θ̂

σ  

M  100.6 0.4% 100.2 0.5% 

vF  234.9 1.3% 236.9 1.5% 

cF  24.2 1.1% 24.8 1.2% 

îdm idmyε  4.9% 5.2% 

 

Table 2. LS and IV estimates for the DDM model - Appropriate data 

filtering for LS method 

Parameters DDM-LS %
ddm j

θ̂
σ  DDM-IV %

ddm j
θ̂

σ  

1θ  0.01 0.3% 0.01 0.3% 

2θ  2.32 1.4% 2.35 1.5% 

3θ  0.23 1.2% 0.23 1.3% 

ˆ
ddm ddmyε  6.9% 6.9% 

 

Table 3. LS and IV estimates of the dynamic parameters for the 

DDM model - Appropriate data filtering for LS method 

Parameters DDM-LS DDM-IV 

M  100.0 100.0 

vF  232.0 235.0 

cF  23.0 23.0 

 

Table 4. Convergence of the IV estimates for the IDM model 

Parameters 0 1 2 3 

M  100.0 100.0 100.2 100.2 

vF  0.0 236.0 236.9 236.9 

cF  0.0 23.9 24.8 24.8 

îdm idmyε  24.4% 6.1% 5.2% 5.2% 

 

Table 5. Convergence of the IV estimates for the DDM model - 

Appropriate data filtering for LS method 

Parameters 0 1 2 3 

1θ  0.01 0.01 0.01 0.01 

2θ  0.0 2.33 2.35 2.35 

3θ  0.0 0.22 0.23 0.23 

ˆ
ddm ddmyε  21.7% 7.3% 6.9% 6.9% 

 

Table 6. LS and IV estimates the for IDM model - Inappropriate 

data filtering for LS method 

Parameters IDM-LS %
idm j

θ̂
σ  IDM-IV %

idm j
θ̂

σ  

M  54.9 1.0% 100.8 1.1% 

vF  236.9 3.7% 238.1 5.2% 

cF  23.5 3.4% 24.3 4.3% 

îdm idmyε  48.7% 6.6% 
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Table 7. LS and IV estimates for the DDM model - Inappropriate 

data filtering for LS method 

Parameters DDM-LS %
ddm j

θ̂
σ  DDM-IV %

ddm j
θ̂

σ  

1θ  0.02 0.9% 0.01 1.0% 

2θ  4.64 3.5% 2.31 4.1% 

3θ  0.46 2.9% 0.24 3.6% 

ˆ
ddm ddmyε  46.3% 8.1% 

 

Table 8. LS and IV estimates of the dynamic parameters for the 

DDM model - Inappropriate data filtering for LS method 

Parameters DDM-LS DDM-IV 

M  50.0 100.0 

vF  232.0 231.0 

cF  23.0 24.0 

 

 
Fig. 3. Direct comparison with the IDM and IV estimates - zoom 

 

 
Fig. 4. Direct comparison with the IDM and LS estimates - Inappropriate 

data filtering - zoom 

6. CONCLUSION 

In this paper, the direct identification of the physical 

parameters of a one DOF electromechanical system that 

operates in closed loop was presented. Three identification 

methods were experimentally compared: the usual method 

which makes use of the inverse dynamic model and the LS 

method, an IV approach which makes use of the direct and 

inverse dynamic models and another IV approach which 

makes use of the direct dynamic model only. 

The experimental results show that the iterative IV method 

based on the use of the inverse and direct dynamic models 

seems to be more appropriate than the two others to identify 

the dynamic parameters. This method is robust against noises 

because a tailor-made data prefiltering is not required and the 

physical parameters are directly identified. 

Future works concern the use of the IV method for flexible 

robot identification and the study of the robustness of IV 

method against low encoder resolution. 
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