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INTRODUCTION

Dynamic models used in robotics and in mechanical engineering are continuous-time models that result from Newton's law or Lagrange equations. Mechanical systems having a double-integrator behavior must be identified while they operate in closed loop [START_REF] Khalil | Identification and Control of Robots[END_REF] and [START_REF] Gautier | A new closed-loop output error method for parameter identification of robot dynamics[END_REF]. The direct dynamic model (DDM) is rarely used because it is usually nonlinear with respect to the dynamic parameters [START_REF] Gautier | A new closed-loop output error method for parameter identification of robot dynamics[END_REF]. The identification method makes use of the inverse physical model (IDM) which is linear in relation to the dynamic parameters and the Least-Squares (LS) method. Good results can be obtained provided that an appropriate data filtering is used [START_REF] Gautier | A new closed-loop output error method for parameter identification of robot dynamics[END_REF]). However, it is known that simple LS estimates are biased when the system is identified in open or closed loop (Van den Hof 1998), [START_REF] Gilson | Optimal instrumental variable method for closed-loop identification[END_REF].

One interesting approach to consistently identify a system in closed loop is the instrumental variable (IV) method (see e.g. [START_REF] Young | Recursive Estimation and Time-Series Analysis: An Introduction for the Student and Practitioner[END_REF] and the references therein). Interest in IV methods has been growing in recent years. While consistency is generally secured, the main issue for an IV-based method is how should the instrumental variables be chosen to obtain optimal accuracy [START_REF] Söderström | System Identification[END_REF], [START_REF] Gilson | Optimal instrumental variable method for closed-loop identification[END_REF]. Amongst the different proposed solutions, an iterative algorithm where the required prefilter and instruments are iteratively adapted is known to be one of the most reliable [START_REF] Young | Recursive Estimation and Time-Series Analysis: An Introduction for the Student and Practitioner[END_REF]. Although the IV method provides good results, the works presented in the previous references are theoretical-oriented. This may explain why the IV method has not yet well penetrated the fields of robotics [START_REF] Puthenpura | Identification of continuous-time systems using instrumental variables with application to an industrial robot[END_REF], [START_REF] Janot | A generic instrumental variable approach for industrial robots identification[END_REF]. More recently, the identification of continuous-time models has grown in popularity in the field of Automatic Control [START_REF] Garnier | An optimal IV technique for identifying continuous-time transfer function model of multiple input systems[END_REF], (Garnier & Wang 2008) and see the recent special issue in the International Journal of Control [START_REF] Garnier | Special issue on Application of continuous-time model identification and estimation[END_REF].

The aim of this work is twofold. First, it aims at broadcasting the benefits of the IV method to practitioners in robotics. Secondly, it aims at showing the advantages of using the IDM to identify the physical parameters to the System Identification community. To do so, the identification of two continuous-time dynamic models of a one degree-of-freedom (DOF) electromechanical position unit (EMPS) is considered: the IDM which is linear in relation to the physical parameters and the DDM which is linear with respect to a set of parameters that results from a nonlinear combination of the physical parameters. Because the EMPS depends on 3 dynamic parameters only, the interpretation of the experimental results is easy. The three identification methods compared in this paper are: the LS method which makes use of the IDM combined with a tailor-made data prefiltering, an IV-based method which makes use of the IDM and the DDM presented in [START_REF] Janot | A generic instrumental variable approach for industrial robots identification[END_REF], an IV-based approach which makes use of the DDM only. The experimental results show that the IV method based on the use of the IDM and the DDM seems to be more appropriate than the two others to identify the dynamic parameters because it is robust against noises and the physical parameters are directly identified without requiring the tailor-made data filtering which requires some expertise from the practitioner. Keywords: closed-loop identification, robot identification, physical parameters, instrumental variable a ONERA, 2 Avenue Edouard Belin, 31055 Toulouse, France (alexandre.janot@onera.fr and mathieu.brunot@onera.fr) b LGP ENI Tarbes, 47 avenue d'Azereix, BP 1629, 65016 Tarbes, France (francisco.carrillo@enit.fr ) c University of Lorraine, CRAN, UMR 7039, 2 rue Jean Lamour, 54519 Vandoeuvre-les-Nancy Cedex, France d CNRS, CRAN, UMR 7039, France (hugues.garnier@univ-lorraine.fr ) e IFSTTAR,44344 Bouguenais, f University of Nantes, 1 Rue de la Noë,44321 Nantes, Abstract: This paper deals with the identification of physical parameters of a one-degree-of-freedom electromechanical system that operates in closed loop. Two models are considered: the inverse dynamic model which is linear in relation to the physical parameters to be identified and the direct dynamic model which is linear in relation to a nonlinear combination of the physical parameters. Three methods are considered and compared: the traditional method which makes use of the inverse dynamic model, tailormade data prefiltering and the least-squares method, an instrumental variable approach which makes use of the direct and inverse dynamic models and another instrumental variable approach which makes use of the direct dynamic model only. The experimental results show that the instrumental variable method based on the use of the inverse and direct dynamic models seems to be more appropriate than the two others because it is robust against noise and the physical parameters are directly identified. The paper is organized as follows: Section two models considered for the EMPS. Section identification method based on the simple LS technique while Section 4 presents the two proposed IV-The experimental results are given in Section gives some concluding remarks.

Physical parameter identification of a one

MODELS OF THE ELECTROMECHANICAL SY

Experimental setup

The EMPS is a high-precision linear Electro Positioning System (see Figure 1). It is a standard configuration of a drive system for prismatic joint or machine tools. It is connected to a dSPACE digital control system for easy control and data acquisition using Simulink software. Its main components are • A Maxon DC motor equipped with an incremental encoder. This DC motor is position-controlled with a PD controller. • A Star high-precision low-friction bal positioning unit and a load in translation All variables and parameters are given in ISO units load side. 

Direct dynamic model

The direct dynamic model (DDM) of a robot expresses acceleration vector as a function of the motor torq position and velocity vector [START_REF] Khalil | Identification and Control of Robots[END_REF] Newton's law, we have , where q , , are the joint position, velocity and acceleration in m, m.s -1 and m.s -2 respectively motor force in N, M is the mass in Kg, F viscous and Coulomb friction parameters in N/m respectively.

The physical parameters M , v F and dynamic parameters. In the case of the EMPS linear with respect to a set of parameters that result from a nonlinear combination of the dynamic parameters ( )

idm ddm q DDM q,q,τ θ = ,
where ( )

idm idm DDM q,q, q sign q τ τ = - - ( ) x 1 3 matrix of basis functions of the T ddm 1 2 3 θ θ θ θ =
is the ( )

x 3 1 vector of the 3 parameters that are nonlinear combination of the 3 parameters given by

1 1 M θ = ,
The paper is organized as follows: Section 2 describes the Section 3 reviews the the simple LS technique while -based approaches. ection 5 and Section 6 ELECTROMECHANICAL SYSTEM precision linear Electro-Mechanical 1). It is a standard configuration of a drive system for prismatic joint of robots nected to a dSPACE digital control system for easy control and data acquisition using Matlab and Its main components are A Maxon DC motor equipped with an incremental controlled with a PD friction ball screw drive load in translation. All variables and parameters are given in ISO units on the . EMPS prototype to be identified he direct dynamic model (DDM) of a robot expresses the acceleration vector as a function of the motor torque, joint [START_REF] Khalil | Identification and Control of Robots[END_REF]. From .

Inverse dynamic model

The inverse dynamic model (IDM) of a robot expresse as a function of q , and the case of the EMPS, the IDM i ( )

idm v c
Mq F q F sign q 3) is linear in relation to the dynamic parameters, ( )

τ = + + , Equation (
idm idm IDM q,q,q τ θ = ,
where ( ) IDM q,q,q q q sign q = of basis functions of the IDM and the ( )

x 3 1 vector of the 3 dynamic parameters.
Because the DDM is usually nonlinear with respect t dynamic parameters, it is rarely used fo (Swevers et al. 2007, Gautier et al 2.4

. Data acquisition

Data that are available are the measurements of meas q and meas ν the measurement of the denoted as ν . The control signal law and is linked to idm by the following relatio

idm g τ ν = ,
where g τ is drive gain of the EMPS. is usually given by the manufacturers, it can be id with special tests (Gautier & Briot In the case of the EMPS, it has been estimated to N/V.

Control of the EMPS

Because the EMPS is a system cannot be identified in open loop. It is position with a Proportional-Derivative (PD). In (Gautier it has been shown that a PD control is enough to id dynamic parameters because an excellent tracking is needed. The control signal ν is given by ( )

p v r v K K q q K q ν -- = ,
where p K is the proportional gain and gain. With (5), it comes out that ( )

p v r v idm K K q g g K q q τ τ τ - = -
The bandwidth of the position loop is 20Hz. This gi 160.18 1/s and v K = 243.45 V/m

Closed-loop block-diagram

The closed-loop block-diagram for the Fig. 2, where p denotes the differentiation operator

The inverse dynamic model (IDM) of a robot expresses idm [START_REF] Khalil | Identification and Control of Robots[END_REF]. In the case of the EMPS, the IDM is given by ( 3) is linear in relation to the dynamic parameters, (4) ( )

IDM q,q,q q q sign q , is the ( )

x 1 3 matrix of basis functions of the IDM and

T idm v c M F F θ = , is
vector of the 3 dynamic parameters.

Because the DDM is usually nonlinear with respect to the dynamic parameters, it is rarely used for robot identification et al. 2013).

available are the measurements of q denoted as the measurement of the control signal . The control signal ν results from the control by the following relation ( 5) is drive gain of the EMPS. Though the drive gain is usually given by the manufacturers, it can be identified Briot 2014).

it has been estimated to g τ = 35.15

Because the EMPS is a system having a pure integrator, it loop. It is position-controlled Derivative (PD). In [START_REF] Gautier | A new closed-loop output error method for parameter identification of robot dynamics[END_REF], it has been shown that a PD control is enough to identify the dynamic parameters because an excellent tracking is not is given by ( 6)

is the proportional gain and v K is the derivative , it comes out that idm is given by q .

(7)

The bandwidth of the position loop is 20Hz. This gives p K = = 243.45 V/m.s -1 .

for the EMPS prototype diagram for the EMPS is shown in denotes the differentiation operator. The measurement noise of the control signal (resp. position) is denoted as w ν (resp. q w ). It is assumed that w ν and q w are uncorrelated, serially independent and homoscedastic with a bounded variance. Those assumptions are usually valid in practice. The EMPS can be modeled as

( ) ( ) ( ) ( ) ( ) q t G p t d t τ = + , (8) 
where ( )

1 1 v G p p Mp F = + and ( ) ( ) c d t F sign q = - .
The Coulomb friction effect is considered as a statedependent input disturbance while ( ) G p is considered as the linear part of the model.

IDENTIFICATION METHODS BASED ON LEAST-SQUARES METHOD

Usual LS-based identification method of the IDM

The traditional identification method developed for robots is based on the use of the IDM and the simple Least Squares (LS) method. However, we face here to a closed-loop situation and this requires special treatment, see e.g. (Van den Hof 1998). Here, a pragmatic approach based on an efficient tailor-made data filtering makes it possible to use the simple LS identification methods.

In (3), q is estimated with q obtained by filtering meas q through a low-pass filter while are calculated with a central differentiation algorithm of q . Details about the data filtering can be found in [START_REF] Gautier | A new closed-loop output error method for parameter identification of robot dynamics[END_REF]. Hence, the actual motor force differs from idm by an error idm e because of model mismatch, measurements noises and data filtering. Then one has

( ) idm idm ˆÎDM q,q,q e τ θ = + . ( 9 
)
From S N available samples of the measured signals observed at discrete-time instants for tracking exciting trajectories ( ) r r r q ,q ,q , an over-determined system is obtained

idm idm idm idm y = X + θ ε , ( 10 
)
where idm y is the ( )

1 S N × sampled vector of , idm X the ( ) 3 S N × matrix of ( ) ˆÎDM q,q,q , idm ε is the ( ) 1 S N × vector
of idm e error terms and S N is the number of samples.

being perturbed by high-frequency disturbances and since there is no information in high frequencies because of the lowpass filtered data ( ) ˆq,q,q , a parallel decimation procedure is used to eliminate torque ripples and the samples in high frequencies.

By applying the tailor-made data prefiltering, the filtered regression model is assumed to be free of noise so that simple LS can be used to deliver the following estimates ( )

1 T T idm LS idm idm idm idm ˆ= X X X y θ - - . ( 11 
)
The unicity of the LS solution ( 11) is ensured if idm X is a column-full-rank matrix i.e.

( ) idm rank X 3 = . At this step, the trajectories ( ) r r r q ,q ,q are assumed to be exciting enough.

The computation of the standard deviation assumes that idm X is deterministic and are not recalled here.

LS-based identification of the DDM

Similarly, differs from by an error ddm e . Then one has ( )

ddm ddm ddm
ˆq q e DDM q,q, e

τ θ = + = + . ( 12 
)
From S N available samples of the measured signals observed at discrete-time instants an over-determined system is obtained

ddm ddm ddm ddm y = X + θ ε , (13) 
where ddm y is the ( )

1 S N × vector of , ddm X
the ( )

3 S N × matrix of ( ) DDM q,q,τ , ddm ε is the ( ) 1 S N × vector of ddm e
error terms.

A similar tailor-made data prefiltering can be used to make the DDM regression model assume to be free of noise so that the simple LS method can be used to estimate the DDM parameters ( )

1 T T ddm LS ddm ddm ddm ddm ˆ= X X X y θ - - . ( 14 
)

Main difference between the IDM and the DDM

Associated to a data prefiltering strategy, the simple linear LS method can be used to estimate the parameters of both DDM and IDM models. For the practitioner, the question is then: shall we use the DDM or the IDM model?

It must be noticed that the physical parameters of the system are directly identified with the IDM. Furthermore, their deviation can be calculated with the usual statistical rules (see e.g. [START_REF] Davidson | Estimation and Inference in Econometrics[END_REF]. When using the DDM, only ddm θ which results from nonlinear combination of the physical parameters is identified. Hence, the deviations of the physical parameters cannot be directly calculated with the classical rules of Statistics.

Because of this reason, it is recommended to use the IDM to identify the parameters of electromechanical systems.

Conclusion

The simple LS-based method was successfully applied on several prototypes and industrial robots (see e.g. [START_REF] Swevers | Dynamic model identification for industrial robots[END_REF][START_REF] Gautier | A new closed-loop output error method for parameter identification of robot dynamics[END_REF]). However, to provide good results, the joint position and control signal measurements must be accurate enough at high sampling rate and a tailormade data filtering must be well tuned [START_REF] Gautier | A new closed-loop output error method for parameter identification of robot dynamics[END_REF] and [START_REF] Janot | A generic instrumental variable approach for industrial robots identification[END_REF]. This requires some expertise from practitioners. The IV method is an interesting alternative to LS method to overcome those drawbacks.

INSTRUMENTAL VARIABLE METHOD

The IV method consists in introducing an ( )

3 S N ×
instrumental matrix denoted as Z . When using the IDM (resp. DDM), Z must be correlated with idm X (resp. ddm X )

and uncorrelated with the error idm ε (resp. ddm ε ). Hence, to be a valid instrumental matrix, Z must fulfill the following conditions ( ) ( )

( ) T idm T idm rank E Z X 3 E Z 0 ε = = , ( ) ( ) ( ) T ddm T ddm rank E Z X 3 E Z 0 ε = = , (15) 
where ( )

E
is the expectation operator.

Assuming that (15) holds, the unbiased IV solutions are given by ( )

1 T T IV idm idm idm idm idm ˆ= Z X Z y θ - - , (16) 
( )

1 T T IV ddm ddm ddm ddm ddm ˆ= Z X Z y θ - - . ( 17 
)
In the last decade, different IV solutions have been developed for closed-loop identification (see e.g. [START_REF] Gilson | Optimal instrumental variable method for closed-loop identification[END_REF][START_REF] Young | Recursive Estimation and Time-Series Analysis: An Introduction for the Student and Practitioner[END_REF]). Though the IV method is an interesting alternative to LS method for closed-loop identification of continuous-time models, the main issue is the construction of the instruments.

IV-based identification for the IDM

Disregarding the noise model, a simple approach consists in building Z from simulated data, which are the outputs of an auxiliary model. This auxiliary model is the noise-free model of the system [START_REF] Young | Recursive Estimation and Time-Series Analysis: An Introduction for the Student and Practitioner[END_REF]. The simulated data provide an estimate of the noise-free data.

For mechanical systems, it has been shown that a valid auxiliary model is the DDM [START_REF] Janot | A generic instrumental variable approach for industrial robots identification[END_REF]. The simulation of the DDM is performed with the IV obtained at the previous iteration denoted as it 1 IV idm θ --and assumes the same reference trajectory and the same structure of the control law for both the actual and simulated robots. At step it , the simulated acceleration is given by ( )

1 1 1 ˆˆî t it it it it it it S S v S c S M q F q F sign q τ - - - = - - . (18) 
By integrating (18), the velocity and position it S q are obtained. The simulated force it S τ is calculated as

. ( 19 
)
The instrumental variable matrix is the IDM built with the simulated data ( )

, , it it it it idm idm S S S Z X q q q = . ( 20 
)
idm y and idm X are built according to (9). At step it , the iterative IV estimates are given by ( ) (

) ( )

1 ˆT T it it it IV idm idm idm idm idm Z X Z y θ - - = . ( 21 
)
The covariance matrix of the IV estimates is calculated as explained in [START_REF] Young | Recursive Estimation and Time-Series Analysis: An Introduction for the Student and Practitioner[END_REF]. This IV approach is interesting because it does not require the use of the tailor-made data prefiltering strategy and combines the direct and inverse dynamic models. Furthermore, this approach is able to identify 60 dynamic parameters of an industrial robot in 3 iterations as shown in [START_REF] Janot | A generic instrumental variable approach for industrial robots identification[END_REF].

IV identification for the DDM

Similarly, the DDM can be used as the auxiliary model and the instrumental matrix is the DDM built with the simulated data ( )

, , it it it it ddm ddm S S S Z X q q τ = . ( 22 
)
The iterative IV estimates are calculated as

( ) ( ) ( ) 1 ˆT T it it it IV ddm ddm ddm ddm ddm Z X Z y θ - - = . ( 23 
)

EXPERIMENTAL RESULTS

The EMPS is controlled in position with the PD control given in Section 2.5. Data are collected with a sampling frequency of 1kHz. The resolution of the encoder is 4 000 counts per revolution. The iterative IV-based methods are initialized as follows:

0 ˆ100 M Kg = , ( ) 0 ˆ0 / / v F N m s = and 0 ˆ0 c F N = . The value 0 M is a CAD value.

Appropriate data filtering

The cutoff frequency of the Butterworth filter is 60Hz while the cutoff frequency of the decimate filter is 40Hz. We keep one sample over 10. The cutoff frequencies are tuned according to the rules given in [START_REF] Gautier | A new closed-loop output error method for parameter identification of robot dynamics[END_REF].

The LS-and IV-based estimates obtained with the IDM are given in Table 1 while the LS-and IV-based estimates obtained with the DDM are given in Table 2. The IV method with the IDM and the DDM has converged in 3 iterations only (see the results given in Table 4 andTable 5). The identified values of the physical parameters are regrouped in the Table 3. In addition, the relative errors are given Table 1 and Table 2.

When using the IDM and the DDM, the LS estimates stick to the IV estimates. Furthermore, the small differences observed with the IV estimates are spanned by the IV deviations.

According to the theory of Hausman (Hausman 1978), the LS estimates can be considered as unbiased. The results show that the values of the dynamic parameters can be retrieved with the values estimated with the DDM (see Table 3). However, their deviations cannot be easily calculated.

Direct measured and model output comparisons have been performed for the IV-IDM estimates, see Fig. 3 (a similar result is obtained for the DDM and similar results are obtained with the LS estimates for both the IDM and DDM).

The estimated force matches the measured force. Since the relative errors are smaller than 10%, the identification results are of good quality.

If the data filtering is appropriate, the IV approach does not really improve the LS method. This is mainly due to the very accurate data and the data filtering. The matrices idm X and ddm X can be considered as noise-free and they are thus not correlated with the errors idm ε and ddm ε .

Inappropriate data filtering

The cutoff frequency of the Butterworth filter is 180Hz while the cutoff frequency of the decimate filter is 120Hz. We keep one sample over 3.

The LS and IV estimates obtained with the IDM are given in Table 6 while the LS and IV estimates obtained with the DDM are given in Table 7. The IV method with the IDM and the DDM has converged in 3 iterations only. The results are similar to those given in Table 4 andTable 5. The identified values of the physical parameters are shown in Table 8. In addition, the relative errors are given Table 6 andTable 7.

When an inappropriate data filtering is applied, the LS estimates of v F and c F stick to the IV estimates whereas the LS estimate of M does not. Furthermore, the difference with the IV estimate is not spanned by the IV deviation. According to the theory of Hausman, the LS estimate of M is biased.

This outcome was expected and is due to the fact that the acceleration is the noisiest signal, which is correlated with the error because of the closed-loop control. Direct comparisons have been performed. The result obtained with the IV estimates for the IDM is similar as the one illustrated Fig. 3 (a similar result is obtained for the DDM).

The result obtained with the LS estimates for the IDM is illustrated in Fig. 4. With the IV method, the estimated force matches the measured force whereas it does not with the LS method. The reconstructed force is noisy because of the acceleration in (4). Furthermore, the relative errors are smaller than 10% with the IV method whereas they are close to 50% with the LS method. Such a relative error is a reason for alarm.

It comes that the IV approach really improves the LS method because of its robustness against noises in the observation matrix. It is worth noting that we obtain the same result with a poor encoder resolution, smaller than 100 counts per revolution, associated with an appropriate data filtering. In this paper, the direct identification of the physical parameters of a one DOF electromechanical system that operates in closed loop was presented. Three identification methods were experimentally compared: the usual method which makes use of the inverse dynamic model and the LS method, an IV approach which makes use of the direct and inverse dynamic models and another IV approach which makes use of the direct dynamic model only.

The experimental results show that the iterative IV method based on the use of the inverse and direct dynamic models seems to be more appropriate than the two others to identify the dynamic parameters. This method is robust against noises because a tailor-made data prefiltering is not required and the physical parameters are directly identified. Future works concern the use of the IV method for flexible robot identification and the study of the robustness of IV method against low encoder resolution.
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 3 Fig. 3. Direct comparison with the IDM and IV estimates -zoom

Table 1 .

 1 LS and IV estimates for the IDM model -

												Appropriate data
				filtering for LS method
	Parameters	IDM-LS	%	σ	θ	idm j	IDM-IV	%	σ	θ	idm j
	M		100.6	0.4%	100.2	0.5%
	v F		234.9	1.3%	236.9	1.5%
	c F		24.2		1.1%	24.8	1.2%
	ˆidm ε	idm y		4.9%						5.2%
	Table 2. LS and IV estimates for the DDM model -Appropriate data
				filtering for LS method
	Parameters	DDM-LS	%	σ	θ	ddm j	DDM-IV	%	σ	θ	ddm j
	1 θ		0.01	0.3%	0.01	0.3%
	θ	2		2.32	1.4%	2.35	1.5%
	θ	3		0.23	1.2%	0.23	1.3%
	ˆddm ε	y	ddm		6.9%						6.9%
	Table 3. LS and IV estimates of the dynamic parameters for the
	DDM model -Appropriate data filtering for LS method
			Parameters	DDM-LS	DDM-IV
				M		100.0			100.0
				v F		232.0			235.0
				c F		23.0				23.0
	Table 4. Convergence of the IV estimates for the IDM model
		Parameters	0					1	2	3
			M		100.0		100.0	100.2	100.2
			v F		0.0		236.0	236.9	236.9
			c F		0.0		23.9	24.8	24.8
		ˆidm ε	idm y	24.4%		6.1%	5.2%	5.2%

Table 5 .

 5 Convergence of the IV estimates for the DDM model -

		Appropriate data filtering for LS method	
		Parameters	0				1	2	3
		1 θ		0.01			0.01	0.01	0.01
		θ	2		0.0			2.33	2.35	2.35
		θ	3		0.0			0.22	0.23	0.23
		ˆddm ε	y	ddm	21.7%	7.3%	6.9%	6.9%
	Table 6. LS and IV estimates the for IDM model -Inappropriate
				data filtering for LS method	
	Parameters		IDM-LS	%	σ	θ	idm j	IDM-IV	%	σ	θ	idm j
	M			54.9		1.0%	100.8	1.1%
	v F			236.9		3.7%	238.1	5.2%
	c F			23.5		3.4%	24.3	4.3%
	ˆidm ε	idm y			48.7%				6.6%

Table 7 .

 7 LS and IV estimates for the DDM model -Inappropriate data filtering for LS method Parameters DDM-LS %

				σ	θ	ddm j	DDM-IV	%	σ	θ	ddm j
	1 θ	0.02	0.9%	0.01	1.0%
	θ	2	4.64	3.5%	2.31	4.1%
	θ	3	0.46	2.9%	0.24	3.6%
	ˆddm ε	y	ddm	46.3%			8.1%	
	Table 8. LS and IV estimates of the dynamic parameters for the
	DDM model -Inappropriate data filtering for LS method
			Parameters	DDM-LS	DDM-IV