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Abstract—In this work, a game-theoretic analysis of a video
exchange application in which two users exchange their video
streams over a satellite channel using Quality of Experience
(QoE) driven rate adaptation is studied. In such an interaction,
users aim at maximizing the Quality of Service (QoS) and QoE
of their received video while minimizing their individual cost
incurred by their video transmission, which is modeled as a
repeated game. Given the payoff model of the users, it is shown
that adaptive video exchange between selfish autonomous nodes
for a deterministic time will not be sustained. However, if video
is exchanged over an unlimited or indeterminate period, the
nodes have an incentive to cooperate and exchange video streams
with QoE-driven rate adaptation based on the trust they build
among themselves. Our simulation results show that a tradeoff
exists between the QoS and the QoE of the perceived video.
Furthermore, it is shown that the expected interaction length has
a high impact on such tradeoff.

I. INTRODUCTION

With the recent growth in demands of satellite services
like video applications based services, there has been a lot
of research to find mechanisms for efficient use of limited
resources in satellite communications. Such mechanisms in-
clude the design of transmission rate adaptation schemes to
utilize and adapt to the dynamic satellite environment [1], [2].
These rate adaptation schemes are designed on the basis of
various factors like satisfaction of the end users’ demands,
optimization of resource utilization etc.. However, due to the
limited and expensive resources in satellite communications,
there is competition among the terrestrial user nodes over ex-
isting resources, and therefore an important factor influencing
the performance of rate adaptation schemes is the competitive
behavior among these nodes. It is needed to design the schemes
with an in-depth analysis of such behavior.

Game theoretical framework allows us to capture this
competitive behavior under the light of natural satellite en-
vironment limitations. The use of game theoretical framework
to study the problems in satellite networks has been mostly
focussed on resource allocation among the nodes (e.g.. [3],
[4]). However, the game theoretical analysis of interaction be-
tween two nodes employing complex rate adaptation strategies
has been quite limited and focussed upon single shot games
[5], [6]. Therefore, in this paper, we study a video exchange
application over the satellite channels among two nodes using
game theoretical tools, in particular, under the light of repeated
games framework. Our contributions can be summarized as
follows:

First, with the help of repeated games’ framework, we
identify the best performing QoE-driven rate adaptation strate-
gies for adaptive video transmission in different satellite net-
works. We show that our framework is similar to the repeated
prisoners dilemma [7] and that the adaptive video exchange
between selfish autonomous nodes for a limited time will
not be sustained. However, if video is exchanged over an
unlimited period of time, the nodes have an incentive to
cooperate and exchange video stream with QoE-driven rate
adaptation based on the trust they build among themselves.
The details of the proofs are omitted because of the lack of
space. They follow in the similar lines as [8] in which the
authors studied the interaction among two agents engaged in
a competitive privacy interaction in an information-theoretic
distributed source coding scenario.

Second, with the help of numerical simulations, we illus-
trate that the speed of rate adaptation used by the nodes is influ-
enced by two factors: the expected satellite channel conditions
and the expected length of interaction between the terrestrial
user nodes in the repeated game framework. Our simulations
show that as the expected length of interaction increases, the
speed of rate adaptation to the channel conditions increases
thus providing better QoS. Good channel conditions require a
smaller length of interaction to achieve faster adaptation rates
as compared to bad channel conditions. It turns out that these
two factors also imply a tradeoff between QoS and QoE. This
tradeoff is analyzed in details via numerical results.

This paper is organized as follows: in section II, we de-
scribe the system model and QoE-driven rate adaptation model.
In section III, we describe the game theoretical approach
applied to the adaptive video exchange between the users. The
numerical simulations and analysis is presented in section IV,
followed by the conclusions in section V.

II. SYSTEM MODEL AND QOE-DRIVEN RATE
ADAPTATION

In this section, we describe the system model and the
QoE-driven rate adaptation scheme used. We also define the
performance metrics which will be considered in the analysis
further.

A. System Model

1) Network Topology: Our focus is on a scenario in which
two terrestrial nodes want to exchange their videos via a
satellite relay. Such scenarios model situations like video



Fig. 1: Network Topology. The nodes A and B exchange
information via R. The arrows indicate the links with positive
channel capacity.

streaming between two parties across geographically separated
areas. The node A (or B) transmits the video packets to the
satellite and the satellite forwards these packets to node B (or
A) as shown in figure 1. The wireless channel between any
two nodes has variable capacity to transmit packets across
the nodes depending on various factors like environmental
conditions (rain, cloud, etc.), congestion due to other users, etc.
We model channel links between the nodes to have a certain
throughput capacity which varies with time. The throughput
capacity is the maximum number of packets that can be
transmitted between any node k and node l at time t and is
denoted by Rkl(t). It is measured in packets per time slot
(pps). As shown in figure 1, RAB = 0 for all t. Throughout
this paper, for simplicity, at any time instant t, all links are
assumed to have equal throughput capacities Rc(t), that is,
Rkl(t) = Rc(t), ∀kl ∈ {AR,BR,RA,RB}. Each time instant
is described by t = n∆, where n ∈ Z+ and ∆ is the time
interval size, i.e., a precision parameter. We will therefore,
refer to instantaneous quantities using the integer value n.
We also assume that the satellite node simply forwards the
packet without any on-board processing. Therefore, Rc(n) is
the instantaneous end to end throughput capacity of the satellite
channel between A and B and vice versa.

2) Channel Model: We model the satellite channel using
a 2-state Markov channel model as described in [9]. The
two-state markov chain model is shown in figure 2. The
’good’ channel state corresponds to the channel being in good
conditions, like line of sight situations, clear weather s etc.. The
’bad’ channel state refers to channel being in bad conditions for
example in situations when there is obstruction to transmission
across the channel like clouds, rains etc. The markov chain
model in figure 2 shows the state diagram for transition from
one state to another. The probability of the channel to move
from good state to bad and vice versa is pGB and pBG
respectively. Consequently, the probability to remain in good
and bad state are pGG = 1− pGB and pBB = 1− pBG. From
this model, the probability of the channel to be in bad state
pB and probability of channel to be in good state pG is given
by

pB =
pGB

pGB + pBG
(1)

pG =
pBG

pGB + pBG
(2)

We define that in good state the channel has a throughput
capacity of R1 whereas in bad state it has R2, such that R1 >

Fig. 2: Two State Markov Model for Satellite Channel

R2. Therefore, at any time instant t = n∆,

Rc(n) =

{
R1 good state

R2 bad state
(3)

In this paper, we assume that the channel coherence time is
given by Tc = c∆ slots where c ∈ Z+. This means that given
the channel is in a state, the channel state will not vary for at
least c∆ slots. This assumption is reasonable as the satellite
channel conditions, which are influenced by the environment,
usually take time to vary. Another assumption is that each
video stream exchange lasts for T = N∆ slots and T � Tc.
Note that for better accuracy of channel model, this analysis
can also be extended for the three-state Markov channel model
[10].

3) Cross-layer Design Model: The video content is trans-
mitted using UDP (User Datagram Protocol) over RTP (Real-
Time Transport Protocol). The source node is equipped with a
codec responsible for compression of the video content. The
output rate of the codec can be reconfigured to deliver a target
bit-rate. Therefore, at the source node, the output rate can be
adjusted as desired. This output rate from any node k ∈ {A,B}
at time t = n∆ is denoted by rk(n) and it is measured in
packets per time slot. The packets are further passed down
to the network layer maintaining coherence with standard
protocol stack. The rate of transmission of video payload
is adapted to the network conditions by optimization of the
QoE perceived at the end-user. With the use of Real Time
Control Protocol (RTCP) signaling, the source node collects
the feedback information about the Round Trip Time (RTT)
from the destination. The RTCP feedback signaling provides
the source node with information to re-configure the codec rate
to suit the target needs.

4) Buffer and Delay Model: Each of the source nodes (A
and B) maintains a transmission buffer of size Bc packets.
The number of packets stored in transmission buffer at time
t = n∆ is given by B(n). The buffer is maintained using a
First In First Out (FIFO) queue. Let the source node k transmit
the packets at time t = n∆ at the rate rk(n). The source
node is unaware of the channel link capacity Rc(n). Assume
that the buffer is initially empty. If rk(n) < Rc(n), all the
packets are transmitted through the channel with rate rk(n).
If rk(n) > Rc(n), then packets are transmitted with a rate of
Rc(n) through the channel link. From the remaining rk(n)−
Rc(n) packets per time slot, B(n) ≤ Bc packets are stored in
the empty space in the transmission buffer, while the remaining



 

n (transmission slot)
 

R
a
te

Channel Capacity

Transmitter rate

∆0 T

β

p(n)

T
c

R1

R2

Fig. 3: Illustration of Rate adaptation curve. The red line
indicates the rate rk(n). The blue line indicates the channel
capacity. Angle α remains constant for all time n, whereas
period p(n) depends on channel capacity. It is assumed that
T >> Tc.

packets are lost. In the next time slot, the packets stored in the
buffer are transmitted through the channel. These packets face
a delay in reaching the destination. The same process as above
is applied to rest of the new packets to be transmitted, but now
the effective channel capacity is Rc(n)−B(n− 1).

Using the above system model, we will now describe the
Quality of Experience-driven rate adaptation model which is
used in the rest of the paper. Furthermore, we describe the
pertinent performance metrics derived using [11] which take
into account the applicability of the system model.

B. QoE-driven Rate Adaptation and Performance Metrics

The cross layer rate adaptation model shows the framework
to optimize the output codec rate of a source node with
feedback from the network in the form of RTCP signals. We
will focus on the rate adaptation based on optimizing Quality
of Experience of the video obtained by the end-user. The QoE
of the end user can be quantified using different metrics in
spatial domain like SSIM (structural symmetry) and temporal
domain like flow continuity. In this work, we focus on using
flow continuity of the end-user video as a measure of the QoE
in the time domain. This is done in order to ensure that the end-
user is able to view the video without any freezing. The rate
is adapted to the channel conditions as follows. The source
begins the transmission at a certain initial rate. The rate is
increased with time, as long as the source observes no delay.
However, as soon as the source observes a delay, it reduces
the rate to its initial value. The process is again repeated. This
adaptation is shown in figure 3. Mathematically, any source
k begins the transmission at rate rk(1) = β < Rc(1), where
β ∈ R+ . With each RTCP received, the rate is updated by

rk(n, αk) =

{
β + δrk(n, αk) if no delay observed
β if delay observed

(4)

where the increment in rate is

δrk(n, αk) = [αk(n mod p(n))∆]2

such that ∆ is the time interval size, αk ∈ (0, tan(π/2)) is the
slope of the rate adaptation curve and p(n) is the time period
of the waveform in figure 3 given by

p(n) =

⌈√
Rc(n)− β
αk∆

⌉
+ 1

Note that this rate adaptation is done at the source node k,
and it is adapted according to the delay statistics observed at
node l 6= k. Henceforth, we denote any node other than k
as −k. Note that the increment in rate can be modeled using
different functions like logarithmic function, linear function or
exponential function etc. In this paper, we have assumed an
squared function to model the rate increment having a slow
start followed by a rapid growth. Such a function models rate
adaptation in different protocols like TCP variants which are
slow start [12], [2].

We now describe the performance metrics which will be
used to analyze the performance of the scheme.

1) Quality of Service Metric: The network utility is defined
as the ratio of the network capacity utilized to transmit packets
to a node and the total network capacity provided by the
network. The number of packets obtained at node k depends
on the rate of transmission at the other node r−k(n, α−k).
However, the packets obtained at the node k cannot exceed the
instantaneous channel capacity. Therefore, the instantaneous
network utility at time t = n∆ is given by

µ(Rc, r−k, n, α−k) =
min(Rc(n), r−k(n, α−k))

Rc(n)

where Rc(n) is given by (3) and r−k(n, α−k) is given by (4).
We define the averaged network utility from n = 0 to n = N
in providing the video to node k as the Quality of Service at
node k and it is given by

fQoSk (α−k) =
1

N

{
N∑
n=0

µ(Rc(n), r−k(n, α−k))

}
(5)

It can be seen that the QoS of node k depends on the rate
adapted by the other node and consequently on α−k.

2) Quality of Experience Metric: The flow continuity is
defined as the probability of the delay in the network not to
exceed the threshold delay. The delay in the network leads to
video packets arriving at the end user in more than expected
time, leading to a visible freezing of the displayed video
and degrading the quality of experience. In this paper, flow
continuity is chosen as the QoE metric which is a simplified
choice for the analysis. Assuming the threshold delay to be
0 (allowing no freezing of video), we notice in the buffer
and delay model described in section II-A4 that the delay is
observed at the node k when the rate r−k exceeds the channel
capacity. Let us define a delay counter function ϕ(.) which
determines if there is an instantaneous delay in the network or
not. It takes the instantaneous rate and the channel capacity as
the input and generates 0 if there is no delay or 1 if there is
a delay in the network. It is defined as

ϕ(r(n, α), R) = max(0, sgn(r(n, α)−R))



where

sgn(r(n, α)−R) =


−1, if r(n, α) < R

0, if r(n, α) = R

1, if r(n, α) > R

Therefore, we can write the total number of events when the
delay occurs as

N∑
n=0

ϕ((r−k(n, α−k), Rc(n))

We define the Quality of Experience metric as the average flow
continuity of the network and it is given by

fQoEk (α−k) = 1−

{∑N
n=0 ϕ(Rc(n), r−k(n, α−k))

N

}
(6)

We note that the flow continuity at k is a function of the rate
adaptation gradient at the other node α−k.

3) Cost: In order to transmit packets, the sender node k
incurs a cost of transmission due to the power usage, hardware
requirements etc. This cost is dependent on not only the
magnitude of resources used for transmission but also on the
gradient of increment in the rate. This is because the higher
the gradient in rate increment, the more is the difference
between two consecutive instantaneous rates. This asserts a
higher energy demand on the resources to make a sharper
change in the rate leading to higher cost. In order to model
this cost of transmission, for simplicity, we use a logarithmic
function of the rate adaptation slope or α given by

fCOSTk (αk) = log2(1 + arctan(αk)) (7)

Note here that the cost of transmission incurred at the node k
is determined by the rate adaptation gradient used by the node
k.

With these metrics, in the next section, we will define the
utility function given by

w1f
QoS
k (α−k) + w2f

QoE
k (α−k)− w3f

COST
k (αk)

where wi ∈ Z and it will be optimized further in the game-
theoretical analysis.

III. GAME THEORETICAL ANALYSIS FOR ADAPTIVE
SATELLITE VIDEO TRANSMISSION

It can be seen from section II-A that the quality of the video
obtained by a node, say A, depends on the rate of transmission
of node B and vice versa. Additionally, in order to transmit the
video packets to node A, node B incurs a cost and vice versa.
Therefore, for two selfish nodes A and B, there is a conflict of
interest as both nodes want to incur minimum cost (affecting
the video quality of other user) and also obtain good quality
of video themselves (affected by the rate of transmission by
other user). Therefore, there is an interaction arising naturally
among the two nodes which is modeled using game theory.

We assume that each of this interaction occurs for a video
stream exchange lasting for T = N∆ slots, which means
that each video stream exchange session lasts for at least T
slots. We will now study the model of the game when the

two nodes exchange video stream only once (lasting for T
slots). In the subsequent sections, we will consider how this
interaction varies if the nodes exchange the video streams
repeatedly where each exchange lasts for T slots.

A. One-Shot Game Analysis

We define a one-shot non-cooperative game by the follow-
ing tuple:

GO ={P, {Ak}k∈P , {uk}k∈P} (8)

where P refers to the set of players which selfishly maximize
their own payoffs given by uk by choosing their actions from
the action set Ak for every k ∈ P . With the QoE-driven rate
adaptation model to exchange video, we define the following
component sets of the game tuple GO:

Players Set P: The set of players is given by P = {A,B}
which are the two nodes A and B that exchange the video
packets.

Action Set Ak: The set of actions that can be taken by
the player k, where k ∈ {A,B}, is given by Ak =

[
0, λπ2

]
and λ ∈ (0, 1). The action chosen by k-th player from Ak
is denoted by αk. Hence the player can choose the gradient
of rate adaptation as its action in order to maximize its own
benefits. The factor λ ensures that the gradient is always α < π

2
to prevent infinite increase in rate.

Utility uk: The utility, or payoff function of the k-th user
is defined as follows

uk(αk, α−k) =

w1f
QoS
k (α−k) + w2f

QoE
k (α−k)− w3f

COST
k (αk) (9)

The utility of the k−th player is a function of the action αk
taken by the node k and the action α−k taken by the other
node. The components of utility function are as follows: the
utility is a joint measure of the quality of video experienced by
the node k and the cost incurred in the transmission of video
to the other node. The video quality at node k is affected by
the throughput and the flow-continuity given by fQOSk (α−k)

and fQOEk (α−k) , using (5) and (6) respectively, which are
both determined by the action of the other node α−k. Since
the node k wants to maximize its quality of video perceived,
the utility is directly proportional to both throughput and flow
continuity. However, the node k incurs a cost fCOSTk (αk),
given by (7), to transmit video to the other node, which is
inversely proportional to its utility. Finally the weight wi ∈
(0, 1) assigns the appropriate dimensions to different factors
such that

∑3
i=1 wi = 1.

Consider the scenario when the two players interact only
once for T slots to exchange the video streams. This leads
to the one shot game GO in (8). Before the players begin to
exchange, they decide their actions, i.e. at which gradient they
will transmit during the next T slots. The Nash Equilibrium
(NE) of a non-cooperative game G is defined as a set of actions
of the players (α∗k, α

∗
−k), from which no player has an incentive

to deviate unilaterally. Hence, the selfish rational players are
expected to play the action at NE irrespective of the other
players action.



In the one-shot game, when the players cannot build trust
with each other, they selfishly choose the action to maximize
their utility. Node k can maximize its utility by minimizing
the cost given by (7) at αk = 0. The node k has no control
over the action taken by the other user, therefore, the part of
its utility affected by the other user’s action, i.e., its QoS and
QoE, cannot be controlled. Given that the strictly dominant
strategy for each user is not to cooperate, the following result
follows [7]:

Lemma 1. The unique Nash Equilibrium of one-
shot QoE-driven adaptive video exchange game
GO ={P, {Ak}k∈P , {uk}k∈P} is given by (α∗1, α

∗
2) = (0, 0).

The intuition is that no selfish end user would be willing
to incur a cost to send the video when there is no guarantee
of receiving any video in return.

B. Repeated Game Analysis

We will now present how the results of the interaction
between the two players vary when the video exchange (of T
slots each) takes place repeatedly. A repeated game, in which
the game GO defined in (8) is played repeatedly, is defined
using the following tuple:

GR = {P, {Sk}k∈P , {vk}k∈P , TR} (10)

The set P refers to the set of players, given by the set of nodes
{A,B}.

The set Sk is the strategy set of user k. The strategy set
is different from the action set in (8) because it describes
the actions taken by the player k based on the history of
the play and on the actions at each instant. More precisely,
let the actions taken by the players in the τ−th stage be
a(τ) = (a

(τ)
1 , a

(τ)
2 ). Then the history of the game at the end of

stage t ≥ 1 is given by h(t+1) = (a(1)a(2) . . . a(t)). The set of
all possible histories up to t is given by H(t) = {Ak×A−k}t
where Ak is the action set in (8) given by [0, λπ2 ]. The strategy
of a player k is sk = (s

(1)
k , s

(2)
k ..., s

(T )
k ) ∈ Sk and maps each

possible history to an action, as s(t)k : H(t) → Ak such that
s
(t)
k (h(t)) = a

(t)
k .

The long term utility for the repeated game is a discounted
utility function vk such that for a strategy profile s = (s1, s2),
is the weighted sum of the stage utilities obtained by user k
following the strategy s, such that the user discounts the future
payoffs by a discount factor δ. It is given by

vk(s) =
(1− δ)

(1− δT )

T∑
t=1

δt−1uk(a(t)) (11)

where a(t) is the action profile at stage t induced by strategy
s (i.e. s(t)k (h(t)) = a

(t)
k ∀ k), discount factor δ ∈ (0, 1) and uk

is the one-stage payoff function defined in (9).

The parameter TR > 1, refers to the number of times the
interaction takes place.

Before we discuss the outcome of the repeated game
GR, we briefly describe the concept of sub-game perfect
equilibrium for repeated games [13]. In coherence with the NE
of one-shot game, the NE of repeated game is a strategy profile

from which no player gains by unilaterally deviating. However,
there are some strategy profiles, which are not expected to
occur due to rational behavior of the players. Hence the NE
region can be narrowed down to define a subgame perfect
Equilibrium region, as a subset of NE. A subgame is a game
from stage t onwards having a history h(t), and is denoted by
GR(h(t)). The strategies and payoffs used for the sub-game are
the functions of possible histories that are consistent with h(t).
A subgame perfect equilibrium (SPE) is defined as a strategy
profile s∗ = (s1, s2) such that for all h(t) ∈ H(t), the strategy
s∗ | h(t) is a NE for any subgame GR(h(t)).

Consider the scenario when the two players begin their
video exchange. Both players are aware of the fact that the
transmission is going to be repeated for TR > 1 and hence
they play the game GR in (10). Before the players begin the
transmission, they decide their strategy i.e., at what gradient
they both should adapt their rates. This decision depends on
the perception of the players of whether TR is finite or infinite.

1) Finite Horizon Repeated Game: In this case, the two
players exchange the video streams with each other (each
exchange lasting for T slots) repeatedly but a finite number
of times given by TR < ∞. In such a case, the players
are aware that the they will interact only for a limited time.
Similarly to the repeated prisonners’ dilemma, let us consider
the last stage of the game, when it is played TR-th time. The
players are aware that they interact for the last time. They have
no incentive to transmit the video for the other player while
incurring a cost themselves, when there is no guarantee that
the other player will transmit the video or not. Hence, their
optimal strategy is s(TR),∗

k = 0. Now, when the players play
the game at time TR − 1, given that in stage TR they will
not transmit, there is no incentive to transmit at stage TR− 1.
Therefore, s(TR−1),∗

k = 0. Using this principle, the following
lemma can be deduced:

Lemma 2. The unique sub-game perfect equilibrium of the
video exchange game between two nodes, defined by GR =
{P, {Sk}k∈P , {vk}k∈P , T}, where T < ∞ and is known to
both nodes is given by

s
(t),∗
k = 0, ∀k ∈ P, ∀t ∈ {1, 2 . . . T}

Given that the players are aware of the number of times the
video exchange will occur, they act selfishly at each stage
of the game in order to maximize their payoffs. There is no
incentive in building trust in this case.

2) Infinite Horizon Repeated Game: In this case, the
players will interact and exchange the video streams (lasting
for T slots), but such interaction lasts for an infinite time
TR. In other words, the players are not aware of how many
times they will exchange the video with the other user. The
reason why cooperation (i.e., any strategy apart from (0, 0))
is not sustainable in finite horizon games is that the players
know precisely when the interaction ends. However, in infinite
horizon repeated games, the players in the game GR do not
know precisely when the game will end, or equivalently,
TR → +∞. We will now describe some of the achievable SPE
for such games. Note that the overall achievable SPE region
for the infinite horizon repeated games is an open problem and
not known in general [7], [13]. We will consider two of such
achievable SPE.



In an infinite horizon repeated game, when the players
begin to interact, they decide their strategy based on the
information that the interaction will last for an infinite amount
of time. One possible SPE for such games is given by the non-
cooperative strategy at each stage of the game (give by (0, 0)).
We will focus here on more interesting SPE in which non-
trivial cooperation can be achieved. The intuition for existence
of other SPE is similar to the infinite time horizon prisoner’s
dilemma [7]. At any stage of the game, the pay-off in (9) has
two components: (i) the component controlled by the opposite
player’s action which increases the utility, but the player k
has no control over it (ii) the component influenced by the
player’s own action which decreases the utility. The player
has no control over the first component, but in long term, it
can build trust with the other player to influence the other
player’s decision and thereby both players can obtain a long
term sustainable utility which is higher than utility achieved
by the (0, 0). We focus on such an action profile to evaluate
the long term sustainability of the action profile whose utility
is better than the one-shot NE for both players and are given
by

u1(α∗1, α
∗
2) > u1(0, 0)

u2(α∗1, α
∗
2) > u2(0, 0) (12)

In the following lemma, we identify the SPE which can achieve
non-trivial outcomes due to the trust built among the players.

Lemma 3. In an infinite-horizon repeated game GR =
{P, {Sk}k∈P , {vk}k∈P ,+∞}, and with an agreement profile
(α∗1, α

∗
2) satisfying (12), if the discount factor is bounded by

1 > δ > δmin(α∗1, α
∗
2) (13)

where δmin(α∗1, α
∗
2) is given by (14) on the next page, then

the following strategy is an SPE: “A node k transmits with
gradient α∗k at the first stage and continues to adapt the rate
with this gradient as long as the other player adapts its rate at
least by α∗−k. If any player has ever defected, then the players
transmit at α = 0 for the rest of the interaction.”

The proof of the above can be derived in a similar way as in
[8] using the one-step deviation principle. The discount factor
can be seen as the perception of the players of the probability
for the game not to end at every stage of the game. If the
players perceive the probability of the game not to stop above
certain limits, there can be a non-trivial SPE. In other words,
if the probability of the game not to stop is large enough, the
players would rather prefer to develop trust and obtain better
payoffs than minimize their one-shot costs. We also note here,
that only those points which satisfy (12) are sustainable thereby
ensuring that the players agree upon the points which offer
them incentive over one-shot NE.

IV. NUMERICAL RESULTS AND ANALYSIS

We will now present simulation results to identify how the
satellite channel conditions modify the outcome of the infinite
horizon repeated game. We assume that if the channel is in
good state then R1 = 350 kbps and if the channel is in bad
state, then R2 = 200 kbps. The channel coherence time is
Tc = 20s whereas the length of time for which each video
exchange lasts is T = 20000s. The other variables are fixed
as β = 150 kbps, ∆ = 1, w1 = w2 = 0.45 and w3 = 0.1.
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Fig. 4: Achievable region increases as channel conditions
improve and there is a higher probability of channel to be
in good conditions

A. Effect of Channel Conditions on Game Outcome

We consider the scenario where two nodes exchange video
repeatedly for an undefined horizon of time. We identify the
action profiles (rate gradients), apart from (0, 0), which the
players agree to transmit at given in Lemma 3. Given our
varying channel model, the probability of channel to be in
good state (pg) also affects the achievable agreement points.
In figure 4, we plot the achievable agreement region based
on varying channel conditions. We assume δ → 1 which
implies the probability of game to stop approaches 0. When
pg tends to 1, there is a high probability that channel is in a
good condition. This leads to a higher probability that payoff
obtained by the players at action profiles farther away from
(0, 0) exceeds payoff obtained at (0, 0) and such action profiles
are achievable based on channel conditions (12). However,
when channel conditions are bad and pg tends to 0, the
magnitude of payoff at action profiles farther away from (0, 0)
is not high enough to exceed payoff at (0, 0). Hence, a smaller
agreement region is achievable in bad channel conditions than
in good channel conditions. This implies that the players will
adapt to the channel conditions faster, with a higher gradient,
when the conditions are good, thereby utilizing the available
resources more efficiently. However, in bad channel conditions,
the players will not agree to faster adaptation to the channel
conditions. Hence, bad channel conditions force the players to
be cautious and the available resources remain under-utilized.

Also note, the curve has spikes periodically due to the
non uniform variation of utility function. The utility function
uk(αk, α−k) varies uniformly with αk because duk(αk,α−k)

dαk

is monotonously decreasing for increasing αk. This implies
that increasing the user’s own gradient simply incurs more
cost to the user and hence decreases its own payoff. However,
the utility function does not vary monotonously with α−k.
As α−k increases, the flow continuity decreases due to more
instances of rate exceeding the channel capacity (explained in
detail in next subsections). In addition, as α−k increases, the
quality of service increases for smaller values of α−k, when
there are not many instances of rate exceeding the channel



δmin(α∗1, α
∗
2) = max

k∈P

w3[fCOSTk (α∗k)− fCOSTk (0)]

w1[fQoSk (0)− fQoSk (α∗−k)] + w2[fQoEk (0)− fQoEk (α∗−k)]
(14)

action of user 1 : α
1
 (in radians)

a
c
ti

o
n

 o
f 

u
s
e
r 

2
 :

 α
2
 (

in
 r

a
d

ia
n

s
)

Minimal Discount factor 

 

 

0.2 0.4 0.6 0.8 1 1.2 1.4

0.2

0.4

0.6

0.8

1

1.2

1.4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Non−Sustainable
Agreements

(a) Probability of channel in good state = 1
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(b) Probability of channel in good state = 0.5
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Fig. 5: Variation in minimal discount factor within achievable region for various channel conditions

capacity. However, when such instances increase at high values
of α−k, the quality of service decreases with increasing α−k.
Therefore, due to the culmination of these two effects, the
agreement point region does not show monotonous behavior.
In fact, the derivative of utility function with action profile
of other user is a complex trigonometric function which is
periodic in nature leading to the shape of the curve being
similar to periodic function.

B. Effect of Channel Conditions on Minimal Discount Factor

Now, we will show how the minimal discount factor nec-
essary to achieve any point varies based on different channel
conditions. More precisely, we show how high should be the
probability for game to continue for the players to agree on a
specific gradient in a given channel condition. In figure 5, we
plot the minimal discount factors necessary to achieve different
action profiles within the achievable region which is based on
channel conditions. As the achievable region decreases from
good channel in figure 5a to bad channel in figure 5c, the
discount factor necessary to sustain an action profile also varies
proportionally. This fact can be observed more closely in figure
6 in which we consider that the players agree on the symmetric
action profiles (or equal gradients). It can be seen (in figure 6)
that, as the channel conditions improve and pg varies from 0
to 1, a lower probability of game to continue is needed for any
action profile to be achievable. This implies that even when
the probability of game to continue is low, the players have a
high incentive in transmitting at a higher gradient to achieve a
high utility because the channel condition is good. It can also
be observed that the players will transmit at a higher gradient
of α = 0.7 only in good channel conditions. For players to
agree on a lower gradient like α = 0.4, there should be a high
probability of game to continue in bad channel conditions, but
in good channel conditions, this gradient can be achieved even
with low probability of game to continue. Therefore, the rate
of adaptation to channel by the players depends on the channel
conditions as well as their perception of the game to continue.

C. Achievable QoS and QoE Tradeoff in Satellite Channel

We will now show the variation in the observed QoS and
QoE at the user level based on the satellite channel conditions
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as well as the discount factor. Assuming that the players agree
to only symmetric action profiles which are pareto optimal,
in figure 7 and figure 8, we show the variation in QoS and
QoE, observed when the game is played under varying channel
conditions and minimal discount factor.

In figure 7, it can be seen that the overall QoS improves
as the channel conditions improve. This is due to a higher
number of packets transmitted when the channel has higher
average throughput capacity. The channel conditions are not
very crucial in obtaining the flow continuity or QoE, as seen
in figure 8. This is because QoE depends on the probability
of rate to exceed the channel capacity leading to delays. It is
independent of the magnitude of the channel capacity.

Figure 7 also shows that as the discount factor increases,
the QoS increases. However, in case of QoE, in figure 8, as the
discount factor increases, the QoE decreases. As the discount
factor increases, the probability of the game to continue also
increases which allows the players to agree on higher rate
adaptation gradients. This causes a higher number of packets
to be transmitted per unit time which improves the overall
QoS. However, at higher gradients, there is a higher chance
of the rate to exceed the channel capacity, which leads to
higher chances of delay and freezing of video resulting in
lower QoE. Therefore, there exists a tradeoff between QoS
and QoE depending on the length of the interaction between
the players.

We now observe the joint effect of the two factors on QoS
and QoE. As we saw in previous results, for a good channel
higher adaptation gradients are achievable. This leads to higher
QoS and lower QoE that are the extreme points in figure 7 and
figure 8. However, in bad channel conditions lower adaptation
gradients are achieved. This leads to lower QoS due to low
throughput but higher QoE due to low probability of delay.
Hence, depending on the perception of the user of the channel
conditions and the length of interaction, the QoS and QoE are
achievable. Overall, such effect of such factors can be used to
potentially refine the rate adaptation algorithms.

V. CONCLUSIONS

In this paper, we have analyzed a QoE-driven adaptive
video exchange between two selfish users (nodes) across a
satellite channel and analyzed it using game theoretical tools.
With the use of these tools, not only the selfish and realistic
behavior of the users has been modeled but the expected
outcomes of such an interaction have been predicted. It has
been shown that the speed at which the users adapt the
transmission rate to the channel conditions is influenced by the
two fold effect of expected length of interaction between the
users and the expected channel conditions. Consequently, the
best strategies are chosen by the users based on available pa-
rameters which affects the QoS and QoE of the video achieved.
It turns out that a tradeoff exists between the achieved QoS
and QoE based on the expected length of interaction among
the users. This work can be further explored to exploit more
complicated satellite systems under the framework of repeated
games.
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