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Introduction

Consider a standard Brownian motion on R d , (Z s ; s ≥ 0), moving in a non-negative stationary ergodic potential. That is, it is assumed that the potential is of the form V (x, ω) := V 0 (τ x ω), x ∈ R d , ω ∈ Ω where V 0 is a real-valued non-negative random variable not identically zero on a probability space (Ω, F , P) and (τ x ; x ∈ R d ) is a family of measurable maps on (Ω, F , P) which verifies τ x • τ y = τ x+y for all x, y ∈ R d , (x, ω) → τ x ω is measurable on the cartesian product R d × Ω, P is invariant under τ x for all x ∈ R d and is ergodic, that is, if for some A ∈ F , τ x (A) = A for all x ∈ R d then P(A) = 0 or 1.

The quenched path measures are defined by

Q t,ω := 1 S t,ω exp - t 0 V (Z s , ω)ds P 0 , t > 0, ω ∈ Ω (1.1)
where the normalizing constants S t,ω are the quenched survival functions up to time t S t,ω := E 0 exp(-

t 0 V (Z s , ω)ds) , t > 0, ω ∈ Ω. (1.2)
Here P x is the Wiener measure on paths starting from x ∈ R d and E x is the expectation with respect to P x .

In [START_REF] Sznitman | Shape theorem, Lyapounov exponents, and large deviations for Brownian motion in a Poissonian potential[END_REF]Theorem 0.1] (see also [START_REF] Sznitman | Brownian motion, obstacles and random media[END_REF]Section 5.4]), Sznitman proved a quenched large deviation principle for the speed of the Brownian motion in a Poissonian potential constructed from obstacles with compact support. Building on this work, Armstrong and Tran [1, Corollary 2] proved a quenched LDP for a wide class of Hamiltonians with stationary potentials. However, the homogenization techniques used in [START_REF] Armstrong | Stochastic homogenization of viscous Hamilton-Jacobi equations and applications[END_REF] require some regularity of the potential. In particular, the sufficient condition given for the LDP involves a finite moment of the Lipschitz norm of the potential. The goal of this paper is to extend the quenched LDP for the speed of the Brownian motion to stationary random potentials without regularity conditions.

The sufficient conditions for this LDP involve an integrability condition expressed in terms of the Lorentz spaces and the principal eigenvalue of -1 2 ∆ + V . We recall these two notions before stating the LDP.

The Lorentz spaces (see for instance [2, p.634] or [START_REF] Boivin | First passage percolation: the stationary case[END_REF]) which appear in our context are defined as ) is a Banach space and there are positive constants c 1 and c 2 such that for all ε > 0

c 1 f d ≤ f d,1 ≤ c 2 f d+ε where f p p = Ω |f | p dP. (1.3) 
In particular, L d+ε P ⊂ L P (d, 1) ⊂ L d P for all ε > 0.

The principal Dirichlet eigenvalue of -1 2 ∆ + V is defined as

λ V := inf R d 1 2 |∇ϕ| 2 + V ϕ 2 dx; ϕ ∈ C ∞ c (R d ), R d ϕ 2 dx = 1 . (1.4)
By ergodicity, λ V is non-random. It is closely related to the asymptotic behavior of the survival function. Indeed, lim t→∞ -1 t log S t,ω = λ V P -a.s.

(1.5)

A proof is given in [36, section 3.1] for non-negative potentials in the Kato class K loc d . These include the stationary potentials which verify conditions (1.6) and (1.8) below.

Denote the Lebesgue measure on R d by Leb and the expectation with respect to P by E. The Euclidean ball {x ∈ R d ; |x -y| < R} will be denoted by B(y, R) and B(y) := B(y, 1). Theorem 1.1. Let V be a non-negative, stationary and ergodic potential which verifies sup x∈B(0)

V (x, •) ∈ L P (d, 1).

(1.6)

and λ V = inf Ω V 0 . (1.7) 
For d = 1 or 2, suppose moreover that there exist positive constants ρ, ε and a measurable function u : Ω → R d such that P -a.s.

Leb {x ∈ R d ; V (x, ω) > ε} ∩ B(u(ω), ρ) > ε and E(|u(•)| d ) < ∞. (1.8)
Then there is a deterministic, continuous convex rate function I : R d → [0, ∞[ given in (2.10), with level sets {x ∈ R d ; I(x) ≤ c} that are compact for all c ∈ R and such that, P -a.s., for all closed subsets A of R d , lim sup

t→∞ 1 t log Q t,ω (Z t ∈ tA) ≤ -inf x∈A I(x) (1.9)
then for all open subsets O of R d , lim inf

t→∞ 1 t log Q t,ω (Z t ∈ tO) ≥ -inf x∈O I(x).
(1.10)

The expression of the rate function in terms of Lyapunov exponents allows to prove that the change in regime of the Brownian motion with constant drift observed by Sznitman [START_REF] Sznitman | Shape theorem, Lyapounov exponents, and large deviations for Brownian motion in a Poissonian potential[END_REF]Theorem 0.3] in a Poissonian potential associated to obstacles with compact support actually occurs for a large class of measurable potentials. This phase transition was further studied by Flury [START_REF] Flury | Large deviations and phase transition for random walks in random nonnegative potentials[END_REF][START_REF] Flury | A note on the ballistic limit of random motion in a random potential[END_REF] both in the discrete and the continuous settings. Concurrently, also under some regularity conditions on the potential, Ruess [START_REF] Rueß | A variational formula for the Lyapunov exponent of Brownian motion in stationary ergodic potential[END_REF] proved the existence of the Lyapunov exponents for Brownian motion in stationary potentials. It does not seem possible to extend his results by approximating a measurable potential by regular potentials. Especially since Ruess [START_REF] Rueß | Continuity results and estimates for the Lyapunov exponent of Brownian motion in stationary potential[END_REF] gave an example where the Lyapunov exponents are not continuous with respect to the potential.

For random walks in a random potentials there is an extensive literature starting with Varadhan [START_REF] Varadhan | Large deviations for random walks in a random environment[END_REF] who proved both a quenched and an annealed LDP for the speed of a uniformly elliptic random walk. In his thesis, Rosenbluth [START_REF] Rosenbluth | Quenched large deviation for multidimensional random walk in random environment: A variational formula[END_REF] proved a quenched large deviation principle for a large class of random walks on Z d with stationary transition probabilities under an integrability condition similar to condition (2.2). In these works, the quenched rate function is expressed as a variational formula in terms of cocycles.

Intensive work to extend both the class of random walks and the class of potentials for which a LDP holds was undertaken by Rassoul-Agha, Seppäläinen, Yilmaz. Some of these results, which include level-3 LDP can be found in [START_REF] Rassoul-Agha | Large deviations for random walks in a mixing random environment and other (non-Markov) random walks[END_REF], [START_REF] Yilmaz | Quenched large deviations for random walk in a random environment[END_REF], [START_REF] Yilmaz | Equality of averaged and quenched large deviations for random walks in random environments in dimensions four and higher[END_REF], [START_REF] Rassoul | Process-level quenched large deviations for random walk in random environment[END_REF], [START_REF] Rassoul-Agha | Quenched free energy and large deviations for random walks in random potentials[END_REF], [START_REF] Rassoul | Quenched point-to-point free energy for random walks in random potentials[END_REF]. Yilmaz and Zeitouni [START_REF] Yilmaz | Differing averaged and quenched large deviations for random walks in random environments in dimensions two and three[END_REF] studied a class of random walks in a random environment where the annealed and quenched rate functions differ.

Sznitman's method, based on Lyapunov exponents, was also used to obtain a LDP for random walks in a random potential in [START_REF] Martin | Directional decay of the Green's function for a random nonnegative potential on Z d[END_REF][START_REF] Flury | Large deviations and phase transition for random walks in random nonnegative potentials[END_REF]. Mourrat [START_REF] Mourrat | Lyapunov exponents, shape theorems and large deviations for the random walk in random potential[END_REF] considered the simple random walk in an i.i.d. potential taking values in [0; +∞] and showed a LDP without assuming a moment condition on V . See also [START_REF] Thu | Exposants de Lyapunov et potentiel aléatoire[END_REF].

As a guideline for the rest of the paper, we follow [START_REF] Sznitman | Shape theorem, Lyapounov exponents, and large deviations for Brownian motion in a Poissonian potential[END_REF]. Along the way, we provide sufficient conditions for the intermediate results. They are stated in section 2 and the proofs are given in section 3.

The existence of the Lyapunov exponents is shown in Theorem 2.1. for stationary potentials under a weaker integrability condition than (1.6). Then under (1.6), we prove in the shape theorem 2.2 that the convergence is uniform with respect to the direction. The appropriate tool in this context is provided by Björklund's generalization of the shape theorem [START_REF] Björklund | The asymptotic shape theorem for generalized first passage percolation[END_REF].

The main difficulty is in the proof of (1.10) under the additional condition on the principal Dirichlet eigenvalue. We will show how key arguments of [START_REF] Sznitman | Shape theorem, Lyapounov exponents, and large deviations for Brownian motion in a Poissonian potential[END_REF]Section 2] can be done on a linear scale. This will permit the use of the maximal inequality for cocycles [3, Corollary 2] and of a technique introduced in [START_REF] Boivin | First passage percolation: the stationary case[END_REF]. See also [START_REF] Braides | Homogenization of surface and length energies for spin systems[END_REF] for an application in a different context.

In the last section, we will verify the sufficient conditions for the LDP for long-range Poissonian potentials. These we considered in a previous version of this paper. They are of the form

V (x, ω) = j W (x -ω j ), x ∈ R d , (1.11) 
where

ω = (ω j ; j ∈ N) is a Poisson cloud in R d , d ≥ 1 and W (x) = |x| -γ ∧ 1 with γ > d.
Moreover, for these potentials, it is possible to show that I(x) > 0 for x ∈ R d \ {0}.

Potentials constructed in section 4.1 from a Boolean model also verify the sufficient conditions of the LDP. We end the last section with the presentation a model introduced by Ruess [START_REF] Rueß | Continuity results and estimates for the Lyapunov exponent of Brownian motion in stationary potential[END_REF] which does not have decorrelation properties but still verifies a large deviation principle. For a random variable X and for

Notations

A ∈ F , let E[X, A] := E(X1 A ).
The constants, whose value may vary from line to line, are denoted by c or C. Some are numbered for subsequent reference.

Main Results

In this section, the existence of Lyapunov exponents of a Brownian motion in a stationary potential and the shape theorem will be proved under appropriate moment conditions. Then we will show how Sznitman's method leads to a large deviation principle.

Recently, Ruess [START_REF] Rueß | A variational formula for the Lyapunov exponent of Brownian motion in stationary ergodic potential[END_REF] considered Brownian motion in a stationary potential. Inspired by Schröder [START_REF] Schroeder | Green's functions for the Schrödinger operator with periodic potential[END_REF], he showed the existence of Lyapunov exponents for a large class of potentials and he expressed them in terms of a variational formula. However, the existence of Lyapunov exponents by itself follows from the subadditive theorem under much weaker assumptions on the potential.

For x, y ∈ R d and ω ∈ Ω, define e(x, y, ω) := E x [exp(-

H(y) 0 V (Z s , ω)ds), H(y) < ∞]
a(x, y, ω) :=log e(x, y, ω).

The measurability of e(x, y, ω) can be verified by standard arguments. It rests on the hypothesis that (x, ω) → τ x ω is measurable on R d ×Ω. Moreover, under the condition E[ sup

x∈B(0) V (x, •)] < ∞,
the potential V locally belongs to the Kato class K loc d and the probabilities e(x, y, ω) are strictly positive. (cf. [36, sections 1.2 and 5.2]).

We introduce the Green measure relative to the potential V :

G(x, A, ω) := E x ∞ 0 1 A (Z t ) exp(- t 0 V (Z s , ω)ds)dt (2.1)
where x ∈ R d , ω ∈ Ω and A is a Borel subset of R d . G can be interpreted as the expected occupation time measure of Brownian motion killed at rate V (•, ω). We define g(x, y, ω) as the density function relative to the Green measure and we call it the Green function. The existence of g is proved in [36, (2.2.3)].

We show in the next theorem that the Green function as well as the probabilities e(x, y, ω) have exponential decay rates which are called Lyapunov exponents. Theorem 2.2 shows that, under a stronger moment condition, the convergence to the Lyapunov exponents is uniform with respect to the directions.

Theorem 2.1 (Existence of Lyapunov exponents). Let V be a non-negative, stationary and ergodic potential which verifies

E[ sup x∈B(0) V (x, •)] < ∞. (2.2) 
For d = 1, 2, assume moreover that (1.8) holds.

Then there is a non-random semi-norm α(•) on R d such that P-a.s. and in

L 1 P , for all x ∈ R d lim r→∞ 1 r a(0, rx, ω) = lim r→∞ 1 r E[a(0, rx, ω)] = inf r>0 1 r E[a(0, rx, ω)] = α(x). (2.3) 
α is called the quenched Lyapunov exponent.

a(0, x, ω) can be replaced bylog g(0, x, ω) in (2.3).

Björklund [START_REF] Björklund | The asymptotic shape theorem for generalized first passage percolation[END_REF] extended to a very general context the shape theorem proved in [START_REF] Cox | Some limit theorems for percolation processes with necessary and sufficient conditions[END_REF] for first-passage percolation with independent passage times and in [START_REF] Boivin | First passage percolation: the stationary case[END_REF] for stationary passage times. This theorem can be applied in our framework.

Theorem 2.2 (Shape theorem). Let V be a non-negative, stationary and ergodic potential which verifies (1.6) and (1.8).

Then P -a.s., as

x → ∞, x ∈ R d , 1 |x| |a(0, x, ω) -α(x)| → 0 (2.4)
a(0, x, ω) can be replaced bylog g(0, x, ω) in (2.4).

For the proof of theorems 2.1 and 2.2, we need to define Theorem 2.2 is first proved for d(0, x, ω). Then lemma 2.3 and lemma 2.4 allows to replace d(0, x, ω) by a(0, x, ω) orlog g(0, x, ω) in equation (2.4).

d(x, y, ω) := max -inf B(x) log e(•, y, ω), -inf B(y) log e(x, •, ω) , x, y ∈ R d , ω ∈ Ω. ( 2 
We first give estimates to compare the quantities a(x, y, ω),log g(x, y, ω) to d(x, y, ω).

Define F 0 (ω) := log + ( B(0)×B(0)
g(x, y, ω)dxdy) + sup

B(0) V (•, ω), ω ∈ Ω and let F (x, ω) := F 0 (τ x ω).
The proof of the following lemma can be found in [START_REF] Sznitman | Brownian motion, obstacles and random media[END_REF]Proposition 5.2.2]. The proof is very general as it requires only basic notions of potential theory.

Lemma 2.3. Let V be a non-negative, stationary and ergodic potential which verifies condition (2.2) and (1.8).

Then there exists a positive constant C such that for x, y ∈ R d , |x -y| > 4, P -a.s.

max(|d(x, y, ω) + log g(x, y, ω)|, |d(x, y, ω) -a(x, y, ω)|) ≤ C(1 + F (x, ω) + F (y, ω)).
Lemma 2.4. Let V be a non-negative, stationary and ergodic potential.

(i) If (2.
2), and (1.8) when d = 1 or 2, hold, then for all x ∈ Z d , P -a.s., [START_REF] Broise | Réarrangement, inégalités maximales et théorèmes ergodiques fractionnaires[END_REF], and (1.8) when d = 1 or 2, hold, then P -a.s.,

lim k→∞ F (kx, ω) k = lim k→∞ E F (kx, ω) k = 0. (2.6) (ii) If (1.
lim x→∞,x∈Z d F (x, ω) |x| = 0. (2.7)
The rate function of large deviation principle will be given in terms of the Lyapunov exponents α λ (x) associated with the potential λ + V where λ ≥ -V where V := inf Ω V . The essential properties of α λ are gathered in the next lemma. The upper bound (2.8) should be compared with [36, (5.2.31)] and with [44, (65)] for a random walk in a random potential.

Note that, as in [44, section 6], the results will be stated in terms of V as it highlights the role of the principal eigenvalue λ V and it facilitates the comparison with the results from stochastic homogenization.

Lemma 2.5. Let V be a non-negative, stationary and ergodic potential which verifies (1.6) and (1.8).

Then (λ, x) → α λ (x) is a continuous function on [-V , ∞[×R d , for x ∈ R d , λ → α λ (x) is a concave increasing function on [-V , ∞[, for all x ∈ R d and λ ≥ -V , 2(λ + V )|x| ≤ α λ (x) ≤ |x| 2 λ + λ d + E sup B(0) V (2.8)
and for all x = 0,

α ′ λ (x) -→ 0 as λ → ∞. (2.9)
In [36, Proposition 2.9], the lower bound for the Lyapunov exponents has the form

α λ (x) ≥ max( 2(λ + V ), C)|x|, x ∈ R d
for some positive constant C. In particular this implies the non-degeneracy of α 0 (•). But the proof requires specific properties of Poissonian potentials. This lower bound is proved for some long-range potentials in [22, (2.87)].

The rate function of the LDP will be given by

I(x) := sup λ≥-V (α λ (x) -λ) -V , x ∈ R d . (2.10)
Bounds on the rate function are easily obtained from the estimates on the Lyapunov exponents given in (2.8). When combined with the convexity properties of the Lyapunov exponents, we obtain the following properties of the rate function. See also [START_REF] Sznitman | Brownian motion, obstacles and random media[END_REF]Lemma 5.4.1].

Lemma 2.6. Let V be a non-negative, stationary and ergodic potential which verifies (1.6) and (1.8).

Then for all x ∈ R d ,

|x| 2 2 ≤ I(x) ≤ |x| 2 2 + λ d + E sup B(0) V and I : R d → [0, ∞[ is a non-negative convex continuous function such that the sets {x ∈ R d ; I(x) ≤ c} are compact for all c ∈ R.
Armstrong and Tran [START_REF] Armstrong | Stochastic homogenization of viscous Hamilton-Jacobi equations and applications[END_REF] obtained a large deviation principle for a diffusion in a stationary convex Hamiltonian with some regularity and under a weak coercivity condition. In the particular case of a Brownian motion in a random potential, the Hamiltonian is given by

H(p, y) := 1 2 p 2 -V (y, ω), p, y ∈ R d . (2.11) 
Although it does not appear explicitly in [START_REF] Sznitman | Brownian motion, obstacles and random media[END_REF], a central object in stochastic homogenization is the effective Hamiltonian H which appears in the homogenized problem. It is a non-random, continuous and convex function from R d to R. It also verifies, see [1, section 6],

H(0) = min p∈R d H(p) = -λ V .
(2.12)

The rate function of the LDP principle is given in [1, Corollary 2] by,

I AT (x) := L(x) + H(0), x ∈ R d , where L is Legendre-Fenchel transform of H, that is L(x) := sup p∈R d (p • x -H(p)).
Note that the estimates on H(p) given in [1, Lemma 3.1] lead to estimates on the rate function. Therefore, as in lemma 2.6, the rate function of a wide class of Hamiltonians is a non-random convex and continuous function with compact level sets.

In [1, (3.2)], the non-random functions m µ (x), which are analogous to the Lyapunov exponents, are also expressed in terms of H as m µ (x) = sup

p {p • x; H(p) ≤ µ} with the convention that sup ∅ = -∞.
Then to see that, under the condition (1.7), the rate function I AT coincide with the rate function given in (2.10), one can proceed as in [1, section 1.3] : For x ∈ R d , by (2.12),

L(x) := sup p∈R d (p • x -H(p)) = sup µ≥H(0) sup p∈R d {p • x -H(p); H(p) ≤ µ} = sup µ≥H(0) sup p∈R d {p • x -µ; H(p) ≤ µ} = sup µ≥H(0) {m µ (x) -µ}.
With a "gauge theorem" [9, chap 4], one could also give an analogue of H * by describing λ V in terms of the existence of a solution of ∆ 2 u -V u + λu = 0 in the appropriate Sobolev space for an increasing sequence of domains.

Proofs

Proof of lemma 2.4

For d ≥ 3, there is a positive constant C such that P a.s. for all x = y, g(x, y, ω) ≤ C|x -y| 2-d . Hence For d = 1 or 2, assume that condition (1.8) is verified for some positive numbers ρ, ε and for

B(0)×B(0) g(x, y, ω)dxdy ≤ B(0)×B(0) C|x -y| 2-d dxdy < ∞. Fix x ∈ R d . Put X k (ω) := sup B(kx) V (•, ω). By condition (2.2), (X k ; k ≥ 0) is
u : Ω → R d such that E|u| < ∞.
Consider D := B(0, |u| + 2ρ + 1). Construct two increasing sequences of stopping times with respect to the natural right continuous filtration (F t ) on C(R + , R d ). These stopping times describe the successive times of return to B(0) and exit times from D of the Brownian motion

R 1 := inf{t ≥ 0 : Z t ∈ B(0)}, T 1 := inf{t ≥ R 1 , Z t / ∈ D} and by induction for n ≥ 1, R n+1 = R 1 • θ Tn + T n , T n+1 = T 1 • θ Rn + R n where θ t , t ≥ 0 is the canonical shift on C(R + , R d ).
Since the Brownian motion is recurrent when d = 1 or 2, the stopping times are a.s. finite and

0 ≤ R 1 < T 1 < R 2 < T 2 < • • • < R n < T n • • • and R n , T n ↑ ∞ . We now have for x ∈ R d , B(0) g(x, y, ω)dy = ∞ 0 E x [1 B(0) (Z t ) exp(- t 0 V (Z s )ds)]dt = E x [ ∞ 0 1 B(0) (Z t ) exp(- t 0 V (Z s )ds)dt] = E x [ i≥1 Ti Ri 1 B(0) (Z t ) exp(- t 0 V (Z s )ds)dt] ≤ ∞ i=1 E x [exp(- Ri 0 V (Z s )ds) Ti Ri 1 B(0) (Z t )dt] = ∞ i=1 E x exp(- Ri 0 V (Z s )ds)E ZR i [ T1 0 1 B(0) (Z t )dt]
by the strong Markov property,

≤ sup x∈B(0) E x (T D ) ∞ i=1 E x [exp(- Ri 0 V (Z s )ds)] ≤ C(|u| + 2ρ + 1) 2 ∞ i=1 E x [exp(- Ri 0 V (Z s )ds)]. (3.13)
Now, for i ≥ 1, by the strong Markov property and by induction, for all x ∈ B(0), Note that a lower bound on the heat kernel in a region of R d as the one obtained from [36, Lemma 2.1] (or more generally [START_REF] Davies | Heat kernels and spectral theory[END_REF]Theorem 3.3.5]) is enough to deduce that given ρ > 0 there is η = η(ρ) > 0 such that for all measurable A ⊂ B(0, ρ) and for all x ∈ B(0, ρ)

E x [exp(- Ri+1 0 V (Z s )ds)] ≤ E x [exp(- Ri 0 V (Z s )ds)E ZR i [exp(- TD 0 V (Z s )ds)]] ≤ E x [exp(- Ri 0 V (Z s )ds)] • c(ω) ≤ c(ω) i (3.
E x [ T B(0,2ρ) 0 1 A (Z s )ds] > η Leb(A). (3.16) Now let A := {V (•, ω) > ε} ∩ B(u, ρ) and let Y := T B(0,2ρ) 0 1 A (Z s )ds.
Then by (3.16), (1.8) and by Cauchy-Schwarz, there is a constant C > 0 such that for all x ∈ B(u, ρ),

εη ≤ E x (Y ) ≤ E(Y ; Y > εη/2) + εη/2 ≤ (E x (Y 2 )P x (Y > εη/2)) 1/2 + εη/2.
Hence for all x ∈ B(u, ρ),

P x T B(0,2ρ) 0 1 A (Z s )ds > εη/2 > εη 2 2 1 E x (Y 2 ) > C ρ 4 εη 2 2 .
(3.17)

Moreover, by the tubular estimate [36, p. 198], there is a positive constant C such that for all t > 0 and x ∈ B(0),

P x sup 0<s<t |Z s -(x 1 + s t (u -x 1 ))| < ρ ≥ C exp -λ d t ρ 2 - 1 2t |u -x 1 | 2 ≥ C exp -λ d t ρ 2 - 1 t (|u| 2 + 1) . (3.18)
Recall here that λ d is the principal Dirichlet eigenvalue of -1 2 ∆ in the unit disk. Hence, by

taking t = |u| + 1 in (3.18), P x [T D > H B(u,ρ) ] ≥ P x sup 0<s<t |Z s -(x + s t (u -x))| < ρ ≥ C exp -(1 + λ d ρ 2 )(|u| + 1) . (3.19)
Then by (3.17), (3.19) and by the strong Markov property, for all x ∈ B(0)

P x TD 0 1 A (Z s )ds > ηε/2 ≥ P x T D > H B(u,ρ) , P ZH B(u,ρ) T B(u,2ρ) 0 1 A (Z s )ds > ηε/2 > C exp -(1 + λ d ρ 2 )(|u| + 1) εη 2ρ 2 2 := p 0 (u). (3.20)
This provides the following upper bound for c(ω) defined in (3.15).

c(ω) = sup x∈B(0) E x [exp(- TD 0 V (Z s )ds)] ≤ sup x∈B(0) E x [exp(-ε TD 0 1 A (Z s )ds)]
≤ exp(-ηε 2 /4)p 0 (u) + 1p 0 (u) = 1p 0 (u)(1e -ηε 2 /4 ).

Then by (3.13) and (3.14), for all x ∈ B(0),

B(0) g(x, y, ω)dy ≤ C(|u| + 2ρ + 1) 2 ∞ i=1 E x [exp(- Ri 0 V (Z s )ds)] ≤ C(|u| + 2ρ + 1) 2 1 1 -c(ω) . (3.21) 
Therefore by (3.20) and (3.21), Proof of theorem 2.1 For a fixed x ∈ R d \{0}, consider X s,r := d(sx, rx, ω), 0 ≤ s ≤ r where d was defined in (2.5). We have that (i) X s,r ≤ X s,u + X u,r for all 0 ≤ s ≤ u ≤ r.

log + B(0)×B(0) g(x, y, ω)dxdy ≤ C[1 + log + |u| -log(1 -c(ω))] ≤ C[1 + log + |u| -log p 0 (u)] ≤ C[1 + log + |u| + |u|]. ( 3 
(ii) X s,r • τ ux = X s+u,r+u for all u ≥ 0.

Let X [0,1] := sup{X s,r ; 0 ≤ s < r ≤ 1}. The next step is to show that

(iii) E[X [0,1] ] < ∞. Let z ∈ R d with |z -x| > 1.
Then for ω ∈ Ω and t > 0, we have that

e(z, x, ω) = E z [exp(- H(x) 0 V (Z s , ω)ds), H(x) < ∞] ≥ E z [exp(- t 0 V (Z s , ω)ds), sup 0≤s≤t |Z s -(z + s t (x -z)| < 1] ≥ P z sup 0≤s≤t |Z s -(z + s t (x -z)|) < 1 exp -t sup y∈C1(z,x) V (y, ω) (3.23) 
where

C ρ (z, x) := {y ∈ R d ; inf 0≤s≤1 |y -(z + s(x -z))| < ρ}.
By the tubular estimate [36, p. 198], there exists a positive constant C such that for all t > 0 and ρ > 0, V (y, ω).

P z sup 0≤s≤t |Z s -(z + s t (x -z))| < ρ ≥ C exp -t λ d ρ 2 - |x -z| 2 2t . ( 3 
(3.25)

Hence, E(X [0,1] ) ≤ C 0 (|x| + 2) + E[ sup y∈C2(0,x)
V (y, ω)] which is finite by (2.2).

By the continuous parameter subadditive theorem (see [START_REF] Krengel | Ergodic theorems[END_REF]Theorem 1.5.6]) and since we assumed that the dynamical system is ergodic, there exists a constant α(x) such that P -a.s. 

lim r→∞ 1 r d(0, rx, ω) = lim r→∞ 1 r E[d(0, rx, ω)] = inf r>0 1 r E[d(0, rx, ω)] = α(x). ( 3 
|d(0, x, ω) -α(x)| |x| ≤ |d(0, x, ω) -d(0, x, ω)| |x| + |d(0, x, ω) -α(x)| |x| + |α(x) -α(x)| |x| ≤ |d(x, x, ω)| |x| • |x| |x| + |d(0, x, ω) -α(x)| |x| • |x| |x| + α(x -x) |x| (3.28)
Consider successively the terms on the right hand side of (3.28) above. As in (3.25), for all By using (2.7) and lemma 2.3, d(0, x) can be replaced by a(0, x) orlog g(0, x) in (3.29).

x ∈ R d , d(x, x, ω) ≤ C 0 (|x -x| + 1) + sup y∈C2(x,x) V (y, ω) ≤ C 0 ( √ d + 1) + sup B(x, √ d+3) V (•, ω) := Y (x). Since (Y (x), x ∈ Z d )

Proof of lemma 2.5

The lower bound of (2.8) is proved as in [36, Proposition 2.9]. Let

V := V -V . Then for x ∈ R d , |x| > 1, e λ (0, x, ω) ≤ E 0 exp(-(λ + V )H(x)) exp(- H(x) 0 V (Z s , ω)ds), H(x) < ∞ ≤ exp(-2(λ + V )|x|)
since for a one-dimensional Brownian motion, for λ ≥ 0 and y ∈ R, E 0 [exp(-λH(y))] = exp(-√ 2λ|y|).

To prove the upper bound of (2.8), note that for λ ≥ -V , t > 0 and |y| > 1, e λ (0, y, ω) = E 0 exp(-

H(y) 0 (λ + V (Z s , ω))ds), H(y) < ∞ = E 0 exp(- H(y) 0 (λ + V + V (Z s , ω))ds), H(y) < ∞ ≥ P 0 [ sup 0≤s≤t |Z s - s t y| < 1] exp(-λt -V t - t 0 h( s t y, ω)ds)
where h(z, ω) := sup

B(z) V (•, ω), z ∈ R d .
Then by the tubular estimate [36, p.198] and by the stationarity of V ,

-E log e λ (0, y, ω) ≤ -log P 0 [ sup 0≤s≤t |Z s - s t y| < 1] + (λ + V )t + t 0 Eh( s t y, ω)ds ≤ C 0 + λ d t + |y| 2 2t + (λ + V )t + tEh(0, •) = C 0 + (λ d + λ + E[sup B(0) V ])t + |y| 2 2t .
Let y = nx and t = n|x|

2(λ + λ d + E[sup B(0) V ] to obtain (2.8). Since λ → α λ (x) is a concave function on [-V , ∞[ for λ > -V , α ′ λ (x) -≤ α λ (x) -α -V (x) λ ≤ α λ (x) λ .
And by (2.8), α λ (x)/λ → 0 as λ → ∞. (2.9) follows.

3.1. Proof of the upper estimate (1.9). We follow the arguments of [36, (4.6) of Theorem 5.4.2]. See also [44, (69) of Theorem 19].

First assume that A is a compact subset of R d . For each t > 0, it is possible to choose n t points x 1 , x 2 , . . . , x nt in A such that n t grows at most polynomially in t and tA ⊂ B t := ∪ nt k=1 B(x k ). By definitions of S t,ω and Q t,ω , P -a.s. for all λ ≥ 0,

exp(-λt)S t,ω Q t,ω (Z t ∈ tA) = exp(-λt -V t)E 0 [exp(- t 0 (V -V )(Z s , ω)ds), Z t ∈ tA] ≤ exp(-λt -V t) nt k=1 E 0 [exp(- t 0 (V -V )(Z s , ω)ds), Z t ∈ B(x k )] = exp(-V t) nt k=1 E 0 [exp(- t 0 (λ + V -V )(Z s , ω)ds), Z t ∈ B(x k )] ≤ exp(-V t) nt k=1 E 0 [exp(- H(x k ) 0 (λ + V -V )(Z s , ω)ds), H(x k ) < ∞] since λ + V -V ≥ 0 = exp(-V t) nt k=1 e λ-V (0, x k , ω) ≤ exp(-V t)n t max 1≤k≤nt e λ-V (0, x k , ω).
Therefore for all λ ≥ 0, by Theorem 2.2, (1.5) and under the assumption that λ

V = V , -λ -λ V + lim sup t→∞ 1 t log Q t,ω (Z t ∈ tA) ≤ -V -inf A α λ-V (x), P -a.s. Hence lim sup t→∞ 1 t log Q t,ω (Z t ∈ tA) ≤ -sup λ≥0 inf x∈A (α λ-V (x) -λ). (3.30) 
To complete the proof, it remains to interchange the sup and the inf in (3.30). This is done by a classical argument (see for example [START_REF] Donsker | Asymptotic evaluation of certain Wiener integrals for large time[END_REF] or [36, p. 250]). It does not require additional properties of the potential. Neither does the proof of the general case when A is a closed subset of R d as can be seen from [36, p. 250].

Proof of the lower estimate (1.10).

The following lemmas will be needed. By [6, proposition 3], if h 0 (•) ∈ L P (d, 1) then, P -a.s., h(x, ω)

:= h 0 (τ x ω) is locally in L R d (d, 1
), the Lorentz space over R d with respect to the Lebesgue measure, (see also [3, pp. 31-32]). This in turn implies that P -a.s., the function Mh(y, ω) defined by

Mh(y, ω) := 1 σ(S(y)) S(y) dσ(ξ) [0,ξ,y] h,
where σ(•) denotes the Lebesgue (area) measure on the unit sphere of R d , is continuous on R d . Note that σ(S(y)) does not depend on y ∈ R d \ {0}.

Then the arguments given in the proof of [START_REF] Boivin | The ergodic theorem for additive cocycles of Z d or R d . Ergodic Theory Dynam[END_REF]Theorem 7] apply to Mh(y, ω). They lead to the following maximal inequality.

Lemma 3.1. Let h 0 ∈ L P (d, 1). Then there is a positive constant c 3 such that for m > 0,

P sup |y|>1 1 |y| Mh(y, ω) > m < c 3 m -d h 0 d d,1
where h(x, ω) := h 0 (τ x ω). 

H(0) 0 U (Z s )ds), H(0) ≤ t ≥c 4 exp -λ d t -c 5 |y| 2 t - t |y| [y,ξ,0] M 2
where M 2 (z) := sup

x∈B(z,2) U (x).
Proof. It is possible to generalize the argument used in the proof of (2.8) to any broken line [y, ξ, 0] by combining the tubular estimates [36, p.198] with the strong Markov property as follows.

Let z ∈ S(y) be such that

z/|z| = ξ. Let M R (z) := sup x∈B(z,R) U (x), R > 0. Then E y exp(- H(0) 0 U (Z s )ds), H(0) ≤ 2t ≥ P y [ sup 0≤s≤t |Z s -y + s t (y -z)| < 1] exp - t 0 M 1 y - s t (y -z) ds × inf z ′ ∈B(z) P z ′ [ sup 0≤s≤t |Z s -z ′ + s t z ′ | < 1] exp - t 0 M 2 z - s t z ds ≥ C exp -λ d t - 1 2t |y -z| 2 - t 0 M 2 (y - s t (y -z))ds × inf z ′ ∈B(z) C exp -λ d t - 1 2t |z ′ | 2 - t 0 M 2 (z - s t z)ds ≥ C exp -2λ d t - 1 2t (|y -z| 2 + |z ′ | 2 ) - t |y -z| [y,z] M 2 - t |z| [z,0] M 2 ≥ C exp -2λ d t - C ′ t |y| 2 - t |z| [y,ξ,0] M 2
since M R ≥ 0 and by using the inequalities

1 2 ≤ |y| 2 ≤ |z| = |z -y| ≤ |y| and |z ′ -z| ≤ 1. Lemma 3.3. Let A be an event such that P(A) > 1 -ε for some ε ∈]0, 1/2[. Let v ∈ R d \ {0}.
Then P -a.s. for all δ > 2ε 1 -2ε and for all sufficiently large t, there is s ∈]t, (1 + δ)t[ such that

τ sv ω ∈ A.
Proof. By the ergodic theorem, a.s. and for all t sufficiently large,

1 -2ε < P(A) -ε ≤ 1 (1 + δ)t (1+δ)t 0 1 A (τ sv ω)ds ≤ 1 1 + δ + 1 (1 + δ)t (1+δ)t t 1 A (τ sv ω)ds Hence if (1 -2ε)(1 + δ) -1 > 0 then (1+δ)t t 1 A (τ sv ω)ds > 0.
The principal Dirichlet eigenvalue of -

1 2 ∆ + V in the ball B(0, R), R > 0, is defined as λ V,ω (B(0, R)) := inf R d 1 2 |∇ϕ| 2 + V ϕ 2 dx; ϕ ∈ C ∞ c (B(0, R)), R d ϕ 2 dx = 1 . (3.31)
From definitions (1.4) and (3.31), it is clear that

λ V,ω (B(0, R)) ↓ λ V (R d ) a.s. as R → ∞. (3.32)
Similarly to (1.5), λ V,ω (B(0, R)) is related to the survival time in B(0, R). We will need the following version of [36, (3.1.17)] where an inf

z∈B(0)
appears. The argument does not require a

Harnack-type inequality.

Lemma 3.4. Let V be a non-negative, stationary and ergodic potential which verifies (1.6) and (1.8). Then P -a.s. for all R > 2, lim inf

t 1 t log inf z∈B(0) E z exp(- t 0 V (Z s , ω)ds), T B(0,R) > t ≥ -λ V,ω (B(0, R)).
Proof. Note that a stationary ergodic potential V which verifies (2.2) and (1.8), also belongs to K loc d and proceed as in [36, 

section 3.1]. Fix R > 0. For η > 0, let ϕ ∈ C ∞ c (B(0, R)), ϕ ≥ 0, be such that λ V,ω (B(0, R)) ≤ R d 1 2 |∇ϕ| 2 + V ϕ 2 dx ≤ λ V,ω (B(0, R)) + η.
Let r R (t, x, y, ω) be the transition density of the Brownian motion in the potential V (•, ω) -V killed when exiting B(0, R). Then for z ∈ B(0, R), exp(-t(λ V,ω (B(0, R)) + η)) ≤ ϕ(x)e -tV r R (t, x, y)ϕ(y)dxdy, by Jensen's inequality,

≤ e V ϕ(x)e -(t+1)V r R (1, z, x) inf supp ϕ r R (1, z, •) r R (t, x, y)ϕ(y)dxdy ≤ ϕ 2 ∞ inf supp ϕ r R (1, z, •) e V E z exp(- t+1 0 V (Z s , ω)ds), T B(0,R) > t + 1 ≤ ϕ 2 ∞ sup z∈B(0) inf supp ϕ r R (1, z, •) e V inf z∈B(0) E z exp(- t+1 0 V (Z s , ω)ds), T B(0,R) > t + 1 .
And the result follows.

A close examination of the proof of the following key lemma from [START_REF] Sznitman | Shape theorem, Lyapounov exponents, and large deviations for Brownian motion in a Poissonian potential[END_REF] or [START_REF] Sznitman | Brownian motion, obstacles and random media[END_REF], shows that it holds for stationary potentials under the moment condition (2.2).

For v ∈ R d \ {0}, 0 < s 1 < s 2 < ∞, 0 ≤ m ≤ n, define S m,n,v,s1 := H(nv) • θ (n-m)s1 + (n -m)s 1 , A m,n,v,s1,s2 := {S m,n,v,s1 < (n -m)s 2 }
where θ t , t ≥ 0 is the canonical shift on C(R + , R d ). Note that S m,n,v,s1 is a stopping time and A m,n,v,s1,s2 is the event that Z

• enters B(nv) in the time interval [(n -m)s 1 , (n -m)s 2 ]. Consider b λ (m, n, v, s 1 , s 2 , ω) := -inf z∈B(mv) log E z exp - Sm,n,v,s 1 0 (λ + V )(Z s , ω)ds , A m,n,v,s1,s2 .
The strong Markov property implies that {b λ (m, n, v, s 1 , s 2 , ω)} m≥0,n≥0 is a subadditive sequence. A calculation similar to (3.25) shows that Eb λ (0, 1, v, s 1 , s 2 ) < ∞. 

v ∈ R d , v = 0, λ > 0, 0 < s 1 < s 2 < ∞, lim n→∞ b λ (0, n, v, s 1 , s 2 , ω) n = lim n→∞ E b λ (0, n, v, s 1 , s 2 , ω) n := κ λ (v, s 1 , s 2 ) ∈ [0, ∞) (3.33) Moreover, if λ > 0 and ]s 1 , s 2 [∩[α ′ λ (v) + , α ′ λ (v) -] = ∅ then κ λ (v, s 1 , s 2 ) ≤ α λ (v). (3.34) 
Here α ′ λ (v) + , α ′ λ (v) -are respectively the right and left derivatives of α λ (v). To prove (3.34), use (2.9) and proceed as in [START_REF] Sznitman | Brownian motion, obstacles and random media[END_REF]Lemma 5.4.3]. (3.33) follows from Kingman's subadditive ergodic theorem.

Note that for all 0 ≤ s 1 < s 2 < ∞ and λ > 0,

κ λ (v, s 1 , s 2 ) ≥ α λ (v).
Proof of (1.10) Let V := V -V and denote the corresponding Lyapunov exponents by α λ (x). Then α λ (x) = α λ-V (x) and under the assumption that λ V = V , we have that

λ V = 0. (3.35) 
Since for any open set

O ⊂ R d , S t,ω Q t,ω (Z t ∈ tO) = exp(-V t)E 0 [exp(- t 0 (V -V )(Z s , ω)ds), Z t ∈ tO]
and by the continuity of I(•), to obtain (1.10), it is sufficient to show that for all v ∈ Q d \ {0} and r > 0, lim inf

t→∞ 1 t log E 0 exp(- t 0 V (Z s , ω)ds), Z t ∈ tB(v, r) ≥ -I(v) P -a.s.
where

I(v) = sup λ≥0 ( α λ (v) -λ) as in (2.10).
We will need the following events. For positive numbers t 0 , R, ε, let A 1 (t 0 , R, ε) be the event for all t > t 0 ,

1 t log inf z∈B(0) E z exp(- t 0 V (Z s , ω)ds), t < T B(0,R) > -λ V -ε
and for m > 0, let A 2 (m) := for all y, |y| > 1, there is a broken line [0, ξ, y] from 0 to y with ξ ∈ S(y) and such that

[0,ξ,y] M 2 < m|y| where M 2 (x, ω) := sup B(x,2) V (•, ω) for x ∈ R d .
Finally, let Ω ′ be the event of probability 1 where (3.33) holds.

For the moment, assume that for some positive numbers ε ′ ∈]0, 1/4[, t 0 , R, ε and m,

P (A 1 (t 0 , R, ε) ∩ A 2 (m) ∩ Ω ′ ) > 1 -ε ′ . (3.36) Let ω ∈ A 1 (t 0 , R, ε) ∩ A 2 (m) ∩ Ω ′ . If 4ε ′ < δ < r then δ > 2ε ′ /(1 -2ε ′ )
and by lemma 3.3, for all t sufficiently large there is

y t ∈ R d such that 3 < |[t]v -y t | < δt|v| and τ yt ω ∈ A 1 (t 0 , R, ε) ∩ A 2 (m). (3.37) 
Moreover, let 0 < s 1 < s 2 < 1 and λ > 0 be such that ]

s 1 , s 2 [∩[ α ′ λ (v) + , α ′ λ (v) -] = ∅. Then for η ∈]0, 1 -s 1 [
and for all t sufficiently large so that R + δt < rt, E 0 exp(-

t 0 V (Z s , ω)ds), Z t ∈ tB(v, r) ≥ E 0 exp(- S 0,[t],v,s 1 0 V (Z s , ω)ds), A 0,[t],v,s1,s2 × inf y∈B([t]v) E y exp(- H(yt) 0 V (Z s , ω)ds), H(y t ) ≤ ηt × inf z∈B(yt) E z exp(- (1-s1)t 0 V (Z s , ω)ds), T B(yt,R) > (1 -s 1 )t . (3.38) By lemma 3.5, since ω ∈ Ω ′ and S 0,[t],v,s1 ≥ [t]s 1 , lim inf 1 t log E 0 exp(- S 0,[t],v,s 1 0 V (Z s , ω)ds),A 0,[t],v,s1,s2 ≥ -κ λ (v) + λs 1 ≥ -α λ (v) + λs 1 . (3.39) 
By lemma 3.2 and since τ yt ω ∈ A 2 (m), for some

ξ ∈ S([t]v -y t ), inf y∈B([t]v)
E y exp(-

H(yt) 0 V (Z s , ω)ds), H(y t ) ≤ ηt ≥ c 4 exp[-λ d ηt - c 5 ηt |[t]v -y t | 2 - ηt |[t]v -y t | yt+[[t]v-yt,ξ,0] M 2 ] ≥ c 4 exp[-λ d ηt - c 5 ηt |[t]v -y t | 2 -ηtm] Hence lim inf 1 t log inf y∈B([t]v)
E y exp(-

H(yt) 0 V (Z s , ω)ds), H(y t ) ≤ ηt ≥ 0 -λ d η -c 6 δ 2 η |v| 2 -ηm. (3.40) 
For the third term, since τ yt ω ∈ A 1 (t 0 , R, ε), by (3.35), whenever (1s 1 )t > t 0 , log inf

z∈B(yt) E z exp(- T B(y t ,R) 0 V (Z s , ω)ds), T B(yt,R) > (1 -s 1 )t ≥ -(1 -s 1 )(λ V + ε)t = -(1 -s 1 )tε. ( 3.41) 
Putting together equations (3.38) -(3.41), we find that on

A 1 (t 0 , R, ε) ∩ A 2 (m) ∩ Ω ′ , lim inf t 1 t log E 0 exp(- t 0 V (Z s , ω)ds), Z t ∈ tB(v, r) ≥ -α λ (v) + λs 1 -λ d η -c 6 δ 2 η |v| 2 -ηm -(1 -s 1 )ε. ( 3.42) 
The proof will now be completed by contradiction. Assume that for some v ∈ Q d \ {0} and for some positive numbers r, ε 0 and ε 1 , on an event of probability greater than ε 0

lim inf 1 t log E 0 exp(- t 0 V (Z s , ω)ds), Z t ∈ tB(v, r) < -I(v) -ε 1 . (3.43) 
Set

ε ′ = ε ′ (m) := 2c 3 m -d h 0 d d,1 , η = η(m) := ε 1 20m and δ = δ(m) := 5ε ′ . (3.44)
Then for all m positive, ηm < ε 1 /10 and 4ε ′ < δ. Now, choose m sufficiently large so that

ε ′ < min{1/4, ε 0 }, η < min{ε 1 /10λ d , 1 -s 1 }, δ < r and c 6 δ 2 η v 2 < ε 1 /10. (3.45)
Furthermore, choose ε < ε 1 /10. By (3.32) and by lemma 3.4, take t 0 , R > 0 large enough so that

P (A 1 (t 0 , R, ε)) > 1 -ε ′ /2
and note that by lemma 3.1, for the choice of m made in (3.45), 

P (A 2 (m)) > 1 -ε ′ /2.

Hence (3.36) holds and for

ω ∈ A 1 (t 0 , R, ε) ∩ A 2 (m) ∩ Ω ′ ,
t 0 V (Z s , ω)ds), Z t ∈ tB(v, r) > -α λ (v) + λs 1 -ε 1 /2. (3.46)
To complete the proof, consider two cases according to the value of α ′ λ=0 (v) + . Case 1 : α ′ λ=0 (v) + < 1. Then α ′ λ (v) + < 1 for all λ > 0. Hence, I(v) = α 0 (v). For λ > 0 sufficiently small, (3.46) leads to lim inf 1 t log E 0 exp(-

t 0 V (Z s , ω)ds), Z t ∈ tB(v, r) ≥ -I(v) -3ε 1 /4
in contradiction with (3.43).

Case 2 :

α ′ λ=0 (v) + ≥ 1. As in [36], let λ ∞ (v) := inf{λ ∈ Q; λ > 0 and α ′ λ (v) + < 1}. Then λ ∞ > 0 and α ′ λ∞ (v) + ≤ 1 ≤ α ′ λ∞ (v) - since we assumed that α ′ λ=0 (v) + ≥ 1 and by concavity of α • (v). If α ′ λ∞ (v) + < 1, there are values of s 1 < s 2 < 1 such that for s 1 < 1 sufficiently close to 1, ]s 1 , s 2 [∩[ α ′ λ∞ (v) + , α ′ λ∞ (v) -] = ∅ and λ ∞ s 1 > λ ∞ -ε 1 /5. Then by (3.46), lim inf 1 t log E 0 exp(- t 0 V (Z s , ω)ds), Z t ∈ tB(v, r) ≥ -I(v) -3ε 1 /5
in contradiction with (3.43).

If α ′ λ∞ (v) + = 1. Then α ′ λ (v) + < 1 for all λ > λ ∞ and α ′ λ (v) + ↑ 1 as λ ↓ λ ∞ . Therefore, there are values of s 1 < s 2 < 1 and λ > λ ∞ such that if s 1 is sufficiently close to 1 and λ is sufficiently close to

λ ∞ , then ]s 1 , s 2 [∩[ α ′ λ (v) + , α ′ λ (v) -] = ∅ and by (3.46), lim inf 1 t log E 0 exp(- t 0 V (Z s , ω)ds), Z t ∈ tB(v, r) ≥ -I(v) -3ε 1 /5
in contradiction with (3.43).

3.3.

Application to the Brownian motion with constant drift. From the LDP for the speed of Brownian motion, Varadhan's lemma, one can obtain a LDP for Brownian motion in a random potential with a constant drift as in [START_REF] Sznitman | Brownian motion, obstacles and random media[END_REF]Theorem 4.7] by verifying the additional condition (2.1.9) of [START_REF] Deuschel | Large deviations, volume 137 of Pure and Applied Mathematics[END_REF]. But since an upper gaussian estimate suffices, it is also verified for a stationary potential. This in turn leads to the observation of a transition from a sub-ballistic to a ballistic regime according to the strength of the drift. A similar phenomenon is proved for the random walk in a random potential in [START_REF] Flury | Large deviations and phase transition for random walks in random nonnegative potentials[END_REF]Theorem B (a)] and in [START_REF] Mourrat | Lyapunov exponents, shape theorems and large deviations for the random walk in random potential[END_REF]Remark 1.11].

For h ∈ R d , the quenched path measures of the Brownian motion in the random potential V with drift h is given by

Q h t,ω (A) := 1 S h t,ω E 0 exp(h • Z t - t 0 V (Z s )ds), A , t > 0.
where

S h t,ω = E 0 exp(h • Z t - t 0 V (Z s )ds) .
The transition from a sub-ballistic to a ballistic regime appears clearly when described by the dual norm α * λ (y) := sup

x =0

x • y α λ (x) for y ∈ R d and λ ≥ -V .

Proposition 3.6. Let V be a non-negative, stationary and ergodic potential which verifies conditions (1.6) 

(h) = 1.
The proof of [START_REF] Sznitman | Brownian motion, obstacles and random media[END_REF]Theorem 5.4.7] (see also [14, section 5]) holds with minor modifications.

In particular, note that to justify that α * λ (h) → 0 as λ → ∞, the inequality (2.8), α λ (x) ≥ 2(λ + V )|x|, suffices.

Examples.

In this section, we present some examples of potentials which verify the sufficient conditions of Theorem 1.1.

4.1.

A Poissonian potential: Lacoin's potential. In this section, we show that the potentials introduced by Lacoin in [START_REF] Lacoin | Superdiffusivity for Brownian motion in a Poissonian potential with long range correlation: I: Lower bound on the volume exponent[END_REF], [START_REF] Lacoin | Superdiffusivity for Brownian motion in a Poissonian potential with long range correlation II: Upper bound on the volume exponent[END_REF] verify the conditions of Theorem 1.1.

Their interest stems from the fact that the relations verified by their scaling exponents differ substantially from those established by Wüthrich [START_REF] Wüthrich | Fluctuation results for Brownian motion in a Poissonian potential[END_REF][START_REF] Wüthrich | Scaling identity for crossing Brownian motion in a Poissonian potential[END_REF][START_REF] Wüthrich | Superdiffusive behavior of two-dimensional Brownian motion in a Poissonian potential[END_REF] for a potential of the form (1.11) where W has compact support. These potentials are constructed from a Poisson Boolean model. Let Ω :

= {ω = (ω i , r i ) i≥0 , ω i ∈ R d , r i ≥ 1} be a Poisson point process in R d × [0, ∞[, d ≥ 1,
whose intensity measure is given by Leb ×ν where ν is a probability measure on [0, ∞[ which depends on a parameter δ > 0 and is defined by

ν([r, ∞[) = r -δ , r ≥ 1. (4.1) Note that each Poisson cloud ω ∈ Ω is a locally finite subset of R d × [0, ∞[. Index (ω i , r i ) so that (|ω i |, i ≥ 1
) is an increasing sequence. See [23, section 1.4] for an alternative description of this model and [START_REF] Gouéré | Subcritical regimes in the Poisson Boolean model of continuum percolation[END_REF] for results on the percolative properties of the balls B(ω i , r i ).

Given γ > 0, Lacoin's potential V :

R d × Ω -→ [0, ∞[ is defined by V (x, ω) := ∞ i=1 r -γ i 1 B(ωi,ri) (x).
The behavior of this model depends on the positive parameters δ and γ. For γ + δ > d, the potential is finite a.s. and the survival functions are strictly positive. Additional basic properties of this potential are gathered in the following lemma taken from [START_REF] Thu | Exposants de Lyapunov et potentiel aléatoire[END_REF].

Proposition 4.1. P -a.s. V (x, ω) is finite for every x ∈ R d if and only if γ + δ -d > 0. In this case, E[V (0)] = L d δ γ + δ -d , Var[V (0)] = L d δ 2γ + δ -d and for all R > 0, s ∈ R, E exp s ∞ i=1 r -γ i 1 {|ωi|≤ri+R} = exp ∞ 1 δL d (r + R) d r -δ-1 (e sr -γ -1)dr (4.2)
is finite and there are positive constants c 7 (d, δ, γ), c 8 (d, δ, γ) such that for all x ∈ R d , |x| > 1,

c 7 |x| d-δ-2γ ≤ Cov(V (0), V (x)) ≤ c 8 |x| d-δ-2γ . (4.3)
Moreover, the potential is ergodic.

In order to show that Lacoin's potential verifies the conditions of Theorem Then there is a constant C = C(γ, δ, d) such that for all ε > 0, for all R 0 > 1 and R > Cε -1/(γ+δ-d) ∨ 2R 0 ,

P   sup y∈B(0,R0) ωj / ∈B(0,R) r -γ j 1 B(ωj ,rj) (y) > ε   ≤ exp(-2εR γ ). (4.4) Note that (Leb ×ν)(B(0, t) × [1, 2]) = |y|<t 2 1 δr -δ-1 dydr = (1 -2 -δ )L d t d . Then P(|u| > t) = P(no points of the Poisson cloud are in B(0, t) × [1, 2]) = e -(1-2 -δ )L d t d .
Therefore E(|u| d ) < ∞. Conditions (1.6) and (1.8) are verified.

Then by Theorem 2.1, the Lyapunov exponents α(x) exist. Moreover, α is a norm. Indeed,

V (x, ω) = ∞ i=1 r -γ i 1 B(ωi,ri) (x) ≥ i;(ωi,ri)∈R d ×[1,2] 2 -γ 1 B(ωi,2) (x)
which is a Poissonian potential constructed from a non-negative bounded measurable function with compact support. Then by [36, Theorem 5.2.5], the associated Lyapunov exponents α 1 (x) is a norm. And since α(x) ≥ α 1 (x), α is also a norm.

To verify (1.7), we use lemma 4.2.

We now prove (4.7). For

x ∈ R d and R > 1, write V (x) = V 1 (x) + V 2 (x) where V 1 (x) = ωj∈B(0,2R) r -γ j 1 B(ωj ,rj) (x) and V 2 (x) = ωj / ∈B(0,2R) r -γ j 1 B(ωj,rj ) (x).
For ε > 0, let R be large enough so that (4.4) holds. Then by the independence property of the Poisson point process,

P( sup x∈B(0,R) V (x) < ε) > P( sup x∈B(0,R) V 1 (x) < ε/2, sup x∈B(0,R) V 2 (x) < ε/2) = P( sup x∈B(0,R) V 1 (x) < ε/2)P( sup x∈B(0,R) V 2 (x) < ε/2) > exp(-CR d )(1 -exp(-εR γ )).
The last inequality follows from lemma 4.2 and the fact that V 1 (x) = 0 if no points of the Poisson cloud are in B(0, 2R) × [1, ∞[. Hence, for all ε > 0 and for all R large enough,

P( sup x∈B(0,R) V (x) < ε) > 0. ( 4.8) 
Let (ε ℓ ; ℓ ∈ N) be a sequence of positive numbers such that ε ℓ → 0 as ℓ → ∞. Then there is a sequence R ℓ → ∞ such that for all ℓ ∈ N, P( sup

x∈B(0,R ℓ ) V (x) < ε ℓ ) > 0.
By ergodicity, P -a.s. for each ℓ there is

z ℓ = z ℓ (ω) ∈ R d such that sup x∈B(z ℓ ,R ℓ ) V (x) < ε ℓ .
Then V = 0 and (see [36, Section 3.1]), P -a.s. for all ℓ ∈ N,

λ V ≤ λ V (B(z ℓ , R ℓ )) = inf{ B(z ℓ ,R ℓ ) [ 1 2 |∇u| 2 + V u 2 ]dx, B(z ℓ ,R ℓ ) u 2 dx = 1} ≤ CR -2 ℓ + ε ℓ .
Let ℓ → ∞ to conclude. and by Pastur [START_REF] Pastur | The behavior of certain Wiener integrals as t → ∞ and the density of states of Schrödinger equations with random potential[END_REF] and Fukushima [START_REF] Fukushima | Second order asymptotics for Brownian motion in a heavy tailed Poissonian potential[END_REF] for d < γ < d + 2. The case where γ = d + 2 is considered by Ôkura [START_REF] Ôkura | An asymptotic property of a certain Brownian motion expectation for large time[END_REF] and Chen and Kulik [START_REF] Chen | Quenched asymptotics for Brownian motion of renormalized Poisson potential and for the related parabolic Anderson models[END_REF][START_REF] Chen | Brownian motion and parabolic Anderson model in a renormalized Poisson potential[END_REF] worked on the case γ ≤ d.

The potential is ergodic since it is constructed from a Poisson point process (see for instance [START_REF] Meester | Continuum percolation[END_REF]Proposition 2.6]).

Proof. Note that P -a.s. sup Then by comparison with a Poissonian potential constructed from W with compact support, the general argument given in [36, pp. 234-236] shows that α is actually a norm

To verify that λ V = V = 0, it is possible to proceed as in section 4.1 with the appropriate version of lemma 4.2 given below.

Lemma 4.5. Assume that γ > d.

Then there is a positive constant C = C(γ, d) such that for all ε > 0, for all r > 1 and R > Cε For these potentials, conditions (1.6) and (1.8) are verified. It is also clear from (1.4) that λ V = m. Hence, λ V = m = V . Therefore the shape theorem 2.2 and the LDP given in Theorem 1.1 hold for this family of potentials. The regularity of the potential, as defined in [START_REF] Rueß | A variational formula for the Lyapunov exponent of Brownian motion in stationary ergodic potential[END_REF], is not needed for these results. However, for regularized versions of the potentials, [START_REF] Rueß | A variational formula for the Lyapunov exponent of Brownian motion in stationary ergodic potential[END_REF] gave a variational expression for quenched free energy.
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 1 L P (d, 1) = {f : (Ω, F ) → (R, B(R)) is measurable and ||f || d,1 < ∞} where f d,1 = * (s)s (1/d)-1 ds and f * : [0, 1] → R + is the non-increasing right continuous function which has the same distribution as |f |. Note that L P (d, 1

.

  For y ∈ R d and R > 0, the Euclidean norm of y is denoted by |y| and B(y, R) is the Euclidean ball {x ∈ R d ; |x -y| < R}. B(y) stands for the unit ball B(y, 1) and H(y) = inf{t ≥ 0 : Z t ∈ B(y)} is the hitting time of B(y), the closure of B(y). For an open set D ⊂ R d , T D := inf{t ≥ 0, Z t / ∈ D} and C ∞ c (D) is the space of infinitely differentiable functions with compact support in D. For x ∈ R d , [x] is the element of Z d closest to x, with some fixed rule for ties. The Lebesgue measure on R d is denoted by Leb and the volume of the unit ball of R d by L d . The principal Dirichlet eigenvalue of -1 2 ∆ in the unit disk is denoted by λ d .

  a stationary sequence of non-negative random variables with finite expectation. Then by Borel-Cantelli lemma, Pa.s., lim k→∞ X k k = 0. It follows that condition (2.6) is verified for d ≥ 3.

  14) where c(ω) := sup x∈B(0) E x [exp(-TD 0 V (Z s )ds)]. (3.15)

. 22 )

 22 Since E(log + |u|) ≤ E(|u|) < ∞, the lemma follows for d = 1, 2.

( 2 . 7 )

 27 follows from(3.22) and the fact that if X(x), x ∈ Z d are identically distributed with E(|X(0)| d ) < ∞, then lim |x|→∞ X(x)/|x| = 0, P -a.s. by Borel-Cantelli lemma.

. 24 )

 24 Set t = |x -z|. Then by (3.23) and (3.24), there is a positive constant C 0 such that log e(z, x, ω) ≤ C 0 (|x -z| ∨ 1) + sup y∈C1(z,x) V (y, ω) and, d(z, x) ≤ C 0 (|x -z| + 2) + sup y∈C2(z,x)

. 26 ) 2

 262 It is easy to check that α(•) is a semi-norm on R d . By lemmas 2.3 and 2.4, one can replace d(0, x, ω) by either one of a(0, x, ω),log g(0, x, ω) in(3.26).Proof of Theorem 2.By stationarity of the potential and by translation invariance of Brownian motion, d(x, y, τz ω) = d(x + z, y + z, ω) for z, y, z ∈ R d , ω ∈ Ω. Moreover, by [36, Lemma 5.2.1], d(•, •, ω) is a.s. a distance on R d . Under the integrability condition (1.6), it follows from (3.25) that d(0, x, ω) is in L P (d, 1) for all x ∈ Z d . Hence the conditions of the shape theorem [2, Theorem 1.2] are verified. Therefore, there exists a semi-norm L on R d such that lim |x|→∞,x∈Z d d(0, x, ω) -L(x) 2.1, α(x) = L(x) for all x ∈ Z d and consequently, for all x ∈ R d . For x ∈ R d , denote by x the nearest neighbor point in Z d of x (with some rule to break ties). Then, |x -x| < √ d and for all x ∈ R d \ B(0),

  are identically distributed and in L d P , by Borel-Cantelli lemma, -a.s. So the first term of (3.28) converges a.s. to 0. From (3.27) and from (2.8) respectively, the second and third terms converge to 0 a.s. Hence, P -a.s., lim |x|→∞,x∈R d 1 |x| |d(0, x, ω)α(x)| = 0 (3.29)

1 0f 1 0f

 11 Denote by [x, y], the line segment between the vertices x, y of R d . For y ∈ R d \{0}, let Π(y) be the hyperplane orthogonal to y which contains y/2 and let S(y) := {ξ ∈ R d ; ξ = z/|z| for some z ∈ Π(y) with |z| < |y|}. For ξ ∈ S(y), denote by [y, ξ, 0], the broken line from y to 0 consisting of the line segments [y, z] and [z, 0] where z ∈ Π(y) is such that ξ = z/|z|. The path integral of a measurable function f : R d → R along the broken line [y, ξ, 0] is denoted by [y,ξ,0] f := (y + r(zy))|z|dr + (rz)|z|dr.

Lemma 3 . 2 .

 32 Let U : R d → [0, ∞[ be a measurable function. Then there are positive constants c 4 and c 5 such that for y ∈ R d , |y| > 1, t > 0 and ξ ∈ S(y), E y exp(-

Lemma 3 . 5 (

 35 [START_REF] Sznitman | Shape theorem, Lyapounov exponents, and large deviations for Brownian motion in a Poissonian potential[END_REF],Lemma 5.4.3). Let V be a non-negative, stationary and ergodic potential which verifies(1.6) and(1.8). Then for
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 244 A Poissonian potential with polynomial tail. Let V be a potential of the formV (x, ω) = j W (xω j )where ω = (ω j ) is a Poisson point process on R d , d ≥ 1 with intensity given by Lebesgue measure and W : R d → [0, ∞[ is a measurable function, not negligible and which verifies for γ > d and for some positive constant c 9 ,W (x) ≤ c 9 (|x| -γ ∧ 1) for all x ∈ R d .Then conditions (1.6), (1.7) and (1.8) are verified and the Lyapunov exponents α(•) is a norm.For γ > d, the survival functions are strictly positive. Precise estimates of the asymptotic behavior of the annealed survival function were obtained by Donsker and Varadhan for γ > d + 2

x∈[- 1 , 1

 11 ] d V (x, •) ≤ c 9 j W (ω j ) where W (x) := 1 (|x|≤1+ √ d) + (1 + √ d) γ |x| -γ 1 (|x|>1+ √ d) , x ∈ R d . Hence for θ > 0, R d (exp(θ W (x)) -1)dx < |x| -γ dx < ∞.Then by Campbell's theorem for all θ ∈ R, E[exp(θ supx∈[-1,1] d V (x))] < ∞.This condition also appears as Assumption 2 in[START_REF] Fukushima | From the Lifshitz tail to the quenched survival asymptotics in the trapping problem[END_REF]. In particular, supx∈[-1,1] dV has finite moments of all order and condition (1.6) holds.Since W is not negligible, there are ε > 0 and ρ > 0 such that Leb({W > ε}∩B(0, ρ)) > ε.Then condition (1.8) of Theorem 2.2 is verified with u(ω) := ω 1 where ω = (ω i ) i≥1 is an enumeration of the points of the Poisson cloud so that|ω i | ≤ |ω i+1 |, i ≥ 1. Indeed, E(|ω 1 | d ) = d ∞ 0 t d-1 P(|ω 1 | > t)dt = d ∞ 0 t d-1 P( no points of the Poisson cloud are in B(0, t))dt = d ∞ 0 t d-1 exp(-L d t d )dt = d/L d < ∞. And Leb({V (•, ω) > ε} ∩ B(u, ρ)) ≥ Leb({W (•ω 1 ) > ε} ∩ B(ω 1 , ρ)) > ε.Therefore, for γ > d, by Theorem 2.2, there is a non-random semi-norm α(•) on R d , such that lim |x|→∞ 1 |x| |a(0, x, ω)α(x)| = 0 P -a.s.
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 12143 (γ-d) ∨ 2r,|yω j | -γ > ε   ≤ exp(-4εR γ ). (4.1)Remark. Note that, by Campbell's theorem, for |x| > 2,Cov(V (0), V (x)) = R d W (u)W (xu)du ≤ C R d (|u| -γ ∧ 1)(|x -u| -γ ∧ 1)du ≤ C B(0) |x -u| -γ du + C B(0) c |u| -γ |x -u| -γ 1 {|u|<|x-u|} du < C|x| -γ + C B(0) c {|u|<|x-u|} du < C|x| -γ . Moreover, if there is a positive constant c 10 such that W (x) ≥ c 10 (|x| -γ ∧ 1) for all x ∈ R d then Cov(V (0), V (x)) > C B(0)|x -u| -γ du > C|x| -γ . Ruess' potential. Ruess[START_REF] Rueß | A variational formula for the Lyapunov exponent of Brownian motion in stationary ergodic potential[END_REF] gave an example of a two-dimensional Brownian motion in a stationary potential constructed from a planar Poissonian tessellation. A line in the plane is parametrized by its distance to the origin, denoted by ρ, and the angle θ ∈ [0, π[ formed by the line and the horizontal axis. Take ρ ∈ R with the convention that ρ > 0 if the line intersects the horizontal axis on the positive side and ρ ≤ 0 otherwise. Then consider a Poisson point process on R × [0, π[ with intensity measure given by ν Leb ×µ where ν > 0 and µ is the uniform measure on [0, π[. Fix m, M ∈ [0, ∞[, m < M and R ∈]0, ∞[. Then the potential V (x, ω) = m if x is at a distance less than R of one of the lines of the environment and V (x, ω) = M otherwise.

  1.1, we first prove a weak independence property similar to [16, Lemma 6]. The method previously used in [22, Lemma 2.6] lead to a weaker result.

Lemma 4.2. Assume that γ + δd > 0.

Proof. Let R > 2R 0 > R 0 > 1. Then for all y ∈ B(0, R 0 ) and ω j / ∈ B(0, R),

Hence sup y∈B(0,R0) ωj / ∈B(0,R)

Moreover, by Campbell's theorem, for all s > 0, log E[exp(s ωj / ∈B(0,R)

Then by Markov's inequality, (4.5) and (4.6) with s = 4R γ , there exists

We are now ready to verify the hypothesis of Theorem 1.1. Proof.

To check that all moments of sup x∈B(0)

V (x, •) are finite, note that sup

and by (4.2),

(since e r -γ -1 < 2r -γ when r is large enough and γ + δd > 0).

Then for ω ∈ Ω, set u = u(ω) := ω i such that 1 ≤ r i < 2 and if there exist j < i :

In other words, u(ω) = ω i where (ω i , r i ) is the point of the Poisson cloud in the set R d × [1, 2] with |ω i | minimum. If we choose ǫ = 2 -γ and ρ = 1, then for all x ∈ B(u, ρ), we have that