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Abstract

The functional linear regression model is a common tool to determine the relation-

ship between a scalar outcome and a functional predictor. This paper focuses on the

interpretability of the estimation of the coefficient function of this model. We propose

a Bayesian functional Linear regression with Sparse Step functions (Bliss). The aim

of the method is to provide interpretable estimates: the Bayesian model is based on an

adaptive decomposition of the coefficient function into sparse and simple functions. A

Bayes estimator is constructed with a specific loss function. The method is compared to

its competitors on simulated datasets and is illustrated on a black Périgord truffle dataset.

MSC 2010 subject classifications: Primary 62F15; Secondary 62J05.

Keywords: Bayesian regression, function data, interpretability, parsimony.

1 Introduction

Linear models have been adapted to handle functional predictors and/or functional outcomes,

see Ramsay and Silverman (2005). The scalar-on-function case names the framework where

the outcome y is a simple scalar and the covariate x(t) lies in a functional space, L2(T ) say,

where T is an interval of R. In the linear framework the outcome y is predicted with

ŷ = µ +

∫

T
β(t)x(t) dt, (1)

where µ is the intercept and β(t) the coefficient function. To fit the model, one can assume that

the coefficient function β(t) belongs to a Hilbert space and estimate the coefficients of an ex-

pansion of β(t) on a truncated Hilbert basis, see for instance Cardot et al. (2003), James et al.

(2009) and Zhao et al. (2012). The truncation of the expansion can be data-driven, as in

Cardot et al. (1999), Yuan and Cai (2010) and Zhu et al. (2014), among others. The analysis

can be conducted in Bayesian framework, see Brown et al. (2001), Crainiceanu et al. (2005)

and Goldsmith et al. (2011). For more details on the scalar-on-function methods, we refer

the reader to Reiss et al. (2016).

1

mailto:paul-marie.grollemund@umontpellier.fr
mailto:christophe.abraham@supagro.fr
mailto:meili.baragatti@supagro.fr
mailto:pierre.pudlo@univ-amu.fr


As often in regression issues, we can fit the model either to achieve the best prediction

accuracy, or to recover a model that is interpretable. The latter goal has been rarely tack-

led in the functional regression literature with two notable exceptions (James et al., 2009;

Zhou et al., 2013). Interpretability usually consists in seeking a parsimonious coefficient

function β(t) which has a simple shape and is null on some intervals of T . Searching

for intervals where β(t) is null can be seen as a variable selection procedure. Indeed, if

β(t) = 0 for all t ∈ I , then, conditionally on {x(t), t < I }, the output y is independent of

{x(t), t ∈ I }. This notion of interpretability is of major interest in functional linear regression,

as interpreting the coefficient function can be cumbersome.

The Flirti method of James et al. (2009) obtains an interpretable estimate by focusing

on sparse functions with sparse derivatives. The authors resort to a penalty such as lasso

to recover parsimony. The resulting estimate is associated to an interpretable function

β(t) with sparse derivatives. Nevertheless the Flirti method is difficult to calibrate: its

numerical results depend heavily on tuning parameters. The authors propose to rely on

cross-validation to set these parameters. From our experience, Flirti’s estimate is so sensitive

to the values of the tuning parameters that we can miss the range of good values with

cross-validation. Zhou et al. (2013) propose a two-stage method to estimate the coefficient

function. Preliminarily, β(t) is expanded onto a B-spline basis to reduce the dimension

of the model. The first stage is the estimation of the resulting coefficients using a lasso

method to find the null intervals. Then, the second stage refines the estimation of the null

intervals and estimates the magnitude of β(t) for the rest of the support. Another approach

to obtain parsimony is to rely on Fused lasso (Tibshirani et al., 2005): if we discretize both

the covariate functions and the coefficient function as described in James et al. (2009), the

penalization of Fused lasso induces parsimony in the coefficients.

Throughout the paper we assume that covariates x(t) are functions lying in L2(T ). We

focus on the fixed design regression problem and drop the conditioning on the design from

all notations. We define an interpretable estimate as a step function which is nonnull only

on a few intervals. For the sake of interpretability and parsimony, we resort only to the

simplest functions, namely step functions, although the method could be extended to other

basis functions such as B-splines.

The Bayesian functional linear regression with sparse step functions we proposed provides

good estimates in terms of interpretability. Furthermore, the prior distribution can easily

include some constraints on the coefficient function, such as lying in the set of sparse step

functions and permits the use of prior knowledge from experts if available. And, last but not

least, we can evaluate the uncertainty on the estimate of β(t) with a full Bayesian procedure.

In the present paper, Section 2 describes a hierarchical model and details the construction

of the estimator and its implementation. We also introducea visualization tool of the posterior

distribution of the coefficient function. In Section 3, we compare the Bliss method to its

competitors (James et al., 2009; Tibshirani et al., 2005) on simulated datasets and study its

robustness with respect to hyperparameters. In Section 4, we illustrate the method on a black

Périgord truffle dataset, and conclude with a discussion in Section 5.

2 The Bliss method

We present the hierarchical Bayesian model in Section 2.1 and two Bayes estimates in

Section 2.2. The implementation and visualization details are given in Section 2.3.
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for k = 1, . . . , K

for i = 1, . . . , n

yi

∼ N (ŷi, σ
2)

ŷi = µ+
∑

K

k=1
β∗

k
xi(Ik)

xi(Ik)

=
∫
Ik
xi(t)dt

Ik = [mk ± ℓk]

xi(t)

µ

∼ N (η0, v0 σ
2)

β∗

∼ NK(η, σ
2V )

σ2

σ2 ∼ Γ−1(a, b)

mk

∼ Unif(T )

ℓk

∼ Unif(0, ℓmax)

1

Figure 1: The full Bayesian model. The coefficient function β(t) =
∑K

k=1 β
∗
k
1{t ∈ Ik } defines

both a projection the covariate functions xi (t) onto RK by integrating over each interval Ik
and a prediction ŷi which depends on the vector β∗ = (β∗

1
, . . . , β∗

K
) and the intercept µ.

Hyperparameters of the prior are η0, v0, η,V, a, b, ℓmax and K .

2.1 Model

Assume we have observed n independent replicates y1, . . . , yn of the outcome, explained

with the covariate functions x1(t), . . . xn (t) respectively. The dataset is D = {(yi, xi (t)), i =

1, . . . , n}. We resort to the Gaussian likelihood defined as

yi |µ, β(t), σ2 ind∼ N
(

µ +

∫

T
β(t)xi (t)dt , σ2

)

, i = 1, . . . , n. (2)

For parsimony we seek the coefficient function β(t) in the following sets of sparse step

functions

EK =


K
∑

k=1

β∗k1 {t ∈ Ik } : I1, . . . , IK intervals ⊂ T , β∗1, . . . , β
∗
K ∈ R


(3)

where K is a hyperparameter that counts the number of intervals required to defined the

function. Note that we do not make any assumptions regarding the intervals I1, . . . , IK .

First they do not form a partition of T . As a consequence, a function β(t) in EK is

piecewise constant and null outside the union of the intervals Ik , k = 1, . . . , K which ensures

parsimony and interpretability. Second the intervals I1, . . . , IK can even overlap to ease the
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parametrization of the intervals: we do not have to add constraints on the parametrization to

remove possible overlaps.

Now if we pick a function β(t) ∈ EK with

β(t) =

K
∑

k=1

β∗k1 {t ∈ Ik } , (4)

the integral of the covariate functions xi (t) against β(t) becomes a linear combination of

partial integrals of the covariate functions over the intervals Ik and we predict yi with

ŷi = µ +

K
∑

k=1

β∗k xi (Ik ), where xi (Ik ) =

∫

Ik

xi (t)dt.

Thus, knowing the intervals I1, . . . , IK , we face a multivariate linear model with the usual

Gaussian likelihood.

It remains to set a parametrization on EK and a prior distribution. Each interval Ik is

parametrized with its center mk and its half length ℓk :

Ik = [mk − ℓk,mk + ℓk ] ∩ T . (5)

As a result, when K is fixed, the parameter of the model is

θ = (m1, . . . ,mK , ℓ1, . . . , ℓK, µ, β
∗
1, . . . , β

∗
K , σ

2).

Let ΘK denote the range of the parameter. Note that dim(ΘK ) = 3K + 2. The prior

distribution on ΘK is

µ|σ2 ∼ N
(

η0, v0σ
2
)

,

β∗ |σ2 ∼ NK

(

η, σ2V
)

,

σ2 ∼ Γ−1 (a, b) (6)

mk
i .i .d.∼ Unif (T ) , k = 1, . . . , K,

ℓk
i .i .d.∼ Unif (0, ℓmax) , k = 1, . . . ,K,

where β∗ = (β∗
1
, . . . , β∗

K
). The resulting full Bayesian modelling is given in Figure 1

and depends on hyperparameters which are η0, v0, η,V, a, b, ℓmax and K . Note that the last

hyperparameter drives the number of intervals, thus the dimension of ΘK . We denote by

πK (θ) and πK (θ |D) the prior and the posterior distributions.

2.2 Loss and Bayes estimates

Bayes estimates are obtained by minimizing a loss function integrated with respect to the

posterior distribution, see Robert (2007). With the default quadratic loss, the Bayes estimate

is

β̂L2 (·) ∈ arg min
d( ·)∈L2 (T )

"
(βθ (t) − d (t))2 dt πK (θ |D)dθ (7)

where βθ (t) is coefficient function as parametrized in (4). At least heuristically β̂L2 (·) is the

average of βθ (·) over the posterior distribution πK (θ |D), though the average of functions

taking values in L2(T ) under some probability distribution is hard to define (using either

Bochner or Pettis integrals). In this simple setting we can claim the following (see Appendix

A.1 for the proof).
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Proposition 1. Let ‖ · ‖ be the norm of L2(T ). If
∫

‖ βθ (·)‖ πK (θ |D)dθ < ∞, then the

estimate defined by

β̂L2 (t) =

∫

βθ (t)πK (θ |D)dθ, t ∈ T , (8)

is in L2(T ) and solve the optimization problem (7).

Averages such as (8) belong to the closure of the convex hull of the support EK of the

posterior distribution. We can prove (see Proposition 3 in Appendix A.3) that the convex

hull of EK is the set E = ∪∞
K=1
EK of step functions on T , and the closure of E is L2(T ).

Hence the only guaranty we have on β̂L2 as defined in (8) is that β̂L2 lies in L2(T ), a much

larger space than the set of step functions.

To obtain an estimate lying in the set of step functions, namely E, we can consider the

projection of β̂L2 onto the set EK0
for a suitable value of K0 possibly different to K . However,

due to the topological properties of L2(T ) and EK0
, the projection of β̂L2 onto the set EK0

do not always exist (see Appendix A.3). To address this problem, we introduce a subset

Eε
K0

of EK0
, where ε > 0 is a tuning parameter. Let F ε denote the set of step functions

β(t) ∈ L2(T ) which can be written as

β(t) =
∑

β
†
k
1{t ∈ Jk }

where the intervals Jk ’s are mutually disjoint and each of lengths greater than ε. The set Eε
K0

is now defined as F ε ∩ EK0
. By considering this set, we remove from EK the step functions

which have intervals of very small length, and we can prove the following.

Proposition 2. Let K0 ≥ 1 and ε > 0.

(i) The function d (·) 7→ ‖d (·) − β̂L2 (·)‖2 admits a minimum on Eε
K0

. Thus a projection

of β̂L2 (·) onto this set, defined by

β̂εK0
(·) ∈ arg min

d( ·)∈Eε
K0

‖d (·) − β̂L2 (·)‖2, (9)

always exist.

(ii) The estimate β̂ε
K0

(·) is a true Bayes estimate with loss function

Lε
K0

(

d (·), β(·)) =

‖d (·) − β(·)‖2 =

∫

T (β(t) − d (t))2 dt if β ∈ Eε
K0
,

+∞ otherwise.
(10)

That is to say

β̂εK0
(·) ∈ arg min

d( ·)∈L2 (T )

∫

Lε
K0

(

d (·), βθ (·))πK (θ |D)dθ.

2.3 Implementation

The posterior distribution can be written as

πK (θ |D) ∝
(

σ2
)−

(

a+ n+K+1
2
+1

)

exp

{

− 1

2σ2




y − µ1n − x . (I.) β
∗




2
}

× exp

{

− 1

2σ2

[
2b +

1

v0

(µ − η0)2
+


β∗ − η

2

V −1

]}
(11)
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where ‖ · ‖ is the canonical Euclidean norm, ‖ · ‖2
V −1 is the definite positive quadratic form

of matrix V−1 and x . (I. ) the matrix whose (i, k)-entry is

xi (Ik ) =

∫ mk+ℓk

mk−ℓk
xi (t)dt.

We rely on a Monte Carlo sampler to approximate the posterior and on numerical optimization

to compute the Bayes estimates. As often in hierarchical models, sampling from the posterior

distribution πK (θ |D) can be done with a Gibbs algorithm (see, e.g., Robert and Casella,

2013, Chapter 7). The details of the MCMC algorithm are given in Appendix B.1.

Now let θ(s), s = 1, . . . , N , denote the output of the MCMC sampler after the burn-in

period. Its remains to approximate β̂L2 (·) and β̂ε
K0

(·) based on the MCMC sample. First,

the Monte Carlo approximation of (8) is given by

β̂L2 (t) ≈ 1

N

N
∑

s=1

βθ(s) (t).

And the more interesting Bayes estimate β̂ε
K0

(·) can be computed by minimizing








d (·) − 1

N

N
∑

s=1

βθ(s) (·)








2

over the set Eε
K0

. To this end we run a Simulated Annealing algorithm (Kirkpatrick et al.,

1983), described in Appendix B.2.

We also provide a striking graphical display of the posterior distribution on the set EK
with a heat map. More precisely, the aim is to sketch all marginal posterior distributions

πt
K

(·|D) of β(t) for any value of t ∈ T in one single figure. To this end we introduce the

probability measure Q on T × R defined as follows. Its marginal distribution over T is

uniform, and knowing the value t of the first coordinate, the second coordinate is distributed

according to the posterior distribution of β(t). In other words,

(t, b) ∼ Q ⇐⇒ t ∼ Unif(T ), b|t ∼ πtK (·|D).

We can easily derive an empirical approximation of Q from the MCMC sample {θ(s)} of the

posterior. Indeed, the first marginal distribution of Q, namely Unif(T ) can be approximated

by a regular grid ti , i = 1, . . . ,M. And, for each value of i, set bis = βθ(s) (ti ), s = 1, . . . , N .

The resulting empirical measure is

Q̂ =
1

M N

∑

i=1, ...,M

∑

j=1, ...,N

δ(ti ,bis ),

where δ(t,b) is the Dirac measure at (t, b). The graphical display we propose is representing

Q̂ with a heat map on T × R. Each small area of T × R is thus colored according to its Q̂-

probability. This should be done cautiously as the marginal posterior distribution πt
K

(·|D)

has a point mass at zero: πt
K

(b = 0|D) > 0 by construction of the prior distribution.

The color scale can be any monotone function of the probabilities, in particular non linear

functions to handle the atom at 0. Many examples are provided in Section 3 below, for

instance the first column of plots in Figure 4.
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Figure 2: The simulated coefficient functions. The black (resp. red, green and blue) curve

corresponds to the coefficient function of Shape 1 (resp. 2, 3 and 4).

3 Simulation study

In this section, the performanceof Bliss is evaluated and compared to two competitors: Fused

lasso (Tibshirani et al., 2005) and Flirti (James et al., 2009), using simulated datasets.

3.1 Simulation scheme

First of all, we describe how we generate different datasets to apply the methods. The support

of the covariate curves xi is T = [0, 1], observed on a regular grid (t j ) j=1, ...,p on T , for

a given p. We simulate p-multivariate Gaussian vectors xi , i = 1, . . . , n, corresponding to

the values of curves xi for the observation times (t j ) j . The covariance matrix Σ of these

Gaussian vectors is given by

Σi, j =

√

Σi,iΣ j, j exp
(

−ζ2(ti − t j )
2
)

, for i and j from 1 to p,

where the coefficient ζ tunes the autocorrelation of the xi (t). Four different shapes are

considered for the functional coefficient β, given in Figure 2. The first one is an interpretable

function (Shape 1), the second one is smooth and is null on small intervals of T (Shape 2),

the third one is smooth without null interval (Shape 3), and the last one is nonnull only on

small intervals of T (Shape 4).

• Shape 1: β(t) = 3×1{t ∈ [0.1, 0.3]}+ 4×1{t ∈ [0.45, 0.55]} − 1×1{t ∈ [0.8, 0.95]}.

• Shape 2: β(t) = 5 × e−20(t−0.25)2 − 2 × e−20(t−0.5)2

+ 2 × e−20(t−0.75)2

.

• Shape 3: β(t) = sin(2πt).

• Shape 4: β(t) = 8 × (

2 + e20−100t
+ e100t−20)−1 − 12 × (

2 + e60−100t
+ e100t−60 )−1

.

The outcomes yi are calculated according to (1) with an additional noise following a centred

Gaussian distribution with variance σ2. The value of σ2 is fixed such that the signal to noise
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ratio is equal to a chosen value r. Datasets are simulated for n = 50, µ = 1 and for the

following different values of p, ζ and r:

• p = 100, 200, 500,

• ζ = 1, 1/3, 1/5,

• r = 1, 3, 5.

3.2 Choice of parameters

For this study, we apply Bliss to these different datasets and fix the hyperparameters η0,

v0, η, V , a, b, ℓmax and K so that the prior is weakly informative. The hyperparameter K ,

which is the number of intervals, can be fixed at 10 or 15. A high value of K makes β

less interpretable. On the other hand, if K is too small then the estimate may miss nonnull

intervals. In the following, the default K value is 10. For the others hyperparameters, the

default values are:

• η0 = 0 and v0 = 102,

• η = (0, . . . , 0) and V is a diagonal matrix with diagonal element v = 102 × V̂(y)/ varx
where varx = min j=1, ...,p

(

V̂(x(t j ))
)

and V̂(u) =
∑n

i=1(ui− ū)2/(n−1), for any vector

u of length n.

• a = 0.1, b = 0.1 and

• ℓmax = length(T )/5.

For the Gibbs Sampler, the default iteration number value N is 50000 and the default burn-in

B is 2000. For the Simulated Annealing algorithm, the default iteration number is 100000.

The cooling schedule is deterministic and logarithmic decreasing as prescribed by Bélisle

(1992).

3.3 Quality criterion to compare the different methods

We use several different measures to examine the performance of Bliss and compare it

to competitors. The first one considered is the estimation error with respect to the true

coefficient function β:

Err = ‖ β̂(·) − β(·)‖2 =
∫

T

(

β̂(t) − β(t)
)2

dt.

Note that this measure does not take into account the interpretability of the estimate. Further-

more, three measures depending on false null FN, false nonnull FnN, true null TN and true

nonnull TnN counts are also considered to verify whether the estimate recovers the support

of β(t). An observation time t j is considered as

• a false nonnull if β̂(t j ) , 0 and β(t j ) = 0,

• a false null if β̂(t j ) = 0 and β(t j ) , 0,

8



Table 1: Numerical results of Bliss, Flirti and Fused lasso on the Simulated Datasets.

Estimation Error Correct Classification Rate Dataset

Shape p r ζ Bliss Fused lasso Flirti Bliss Fused lasso Flirti

1

100 5 1 0.597 0.978 3.848 0.760 0.800 0.520 1

200 5 1 0.468 0.845 0.554 0.920 0.795 0.890 2

500 5 1 0.470 0.418 12.606 0.906 0.828 0.644 3

100 3 1 1.783 1.659 1.638 0.710 0.480 0.480 4

100 1 1 2.286 0.990 1.901 0.530 0.640 0.630 5

100 5 1/3 4.795 9.373 4.129 0.450 0.680 0.570 6

100 5 1/5 12.916 12.639 > 106 0.530 0.480 0.490 7

2

100 5 1 0.689 0.781 0.980 0.850 0.520 0.620 8

200 5 1 0.706 26.604 8.474 0.830 0.565 0.535 9

500 5 1 0.601 1.383 1.613 0.790 0.644 0.644 10

100 3 1 0.547 0.346 0.461 0.730 0.800 0.810 11

100 1 1 0.792 1.075 > 106 0.800 0.470 0.450 12

100 5 1/3 1.044 1.175 1.160 0.560 0.490 0.470 13

100 5 1/5 0.988 1.629 2.088 0.730 0.330 0.530 14

3

100 5 1 0.080 0.060 0.078 0.770 0.870 0.960 15

200 5 1 0.070 0.044 0.059 0.680 0.855 0.780 16

500 5 1 0.079 0.035 0.072 0.748 0.910 0.912 17

100 3 1 0.045 0.049 0.056 0.720 0.950 0.770 18

100 1 1 0.344 0.154 0.237 0.540 0.860 0.570 19

100 5 1/3 0.088 0.073 0.085 0.640 0.960 0.960 20

100 5 1/5 0.083 46.578 > 102 0.860 0.290 0.240 21

4

100 5 1 0.205 0.115 0.083 0.870 0.840 0.980 22

200 5 1 0.140 0.172 0.480 0.895 0.890 0.850 23

500 5 1 0.165 0.067 0.076 0.942 0.960 0.964 24

100 3 1 0.202 0.098 0.152 0.800 0.780 0.710 25

100 1 1 0.197 0.089 0.035 0.670 0.970 0.920 26

100 5 1/3 0.277 0.234 0.376 0.580 0.700 0.840 27

100 5 1/5 0.284 0.235 0.346 0.540 0.770 0.840 28

False Null Rate False Nonnull Rate Dataset

Shape p r ζ Bliss Fused lasso Flirti Bliss Fused lasso Flirti

1

100 5 1 0.088 0.203 0.480 0.318 0.195 NaN 1

200 5 1 0.040 0.194 0.170 0.118 0.217 0.000 2

500 5 1 0.040 0.218 0.382 0.145 0.082 0.250 3

100 3 1 0.129 NaN NaN 0.362 0.520 0.520 4

100 1 1 0.432 0.333 0.258 0.492 0.384 0.420 5

100 5 1/3 0.538 0.371 0.344 0.557 0.136 0.464 6

100 5 1/5 0.391 0.500 0.490 0.493 0.611 0.531 7

2

100 5 1 0.045 0.000 0.095 0.232 0.516 0.455 8

200 5 1 0.204 0.437 0.443 0.109 0.416 0.517 9

500 5 1 0.280 0.386 0.346 0.000 0.223 0.370 10

100 3 1 0.181 0.142 0.256 0.339 0.254 0.000 11

100 1 1 0.203 0.000 NaN 0.195 0.540 0.550 12

100 5 1/3 0.351 0.450 0.466 0.492 0.550 0.557 13

100 5 1/5 0.088 0.676 0.454 0.363 0.666 0.583 14

3

100 5 1 0.880 0.846 NaN 0.013 0.022 0.040 15

200 5 1 0.888 0.862 0.909 0.000 0.023 0.025 16

500 5 1 0.910 0.939 1.000 0.010 0.029 0.033 17

100 3 1 0.875 1.000 0.880 0.000 0.040 0.013 18

100 1 1 0.977 0.916 0.933 0.053 0.034 0.018 19

100 5 1/3 0.900 NaN NaN 0.000 0.040 0.040 20

100 5 1/5 0.857 0.971 0.973 0.023 0.068 0.083 21

4

100 5 1 0.000 0.000 0.011 0.448 0.500 0.062 22

200 5 1 0.026 0.112 0.134 0.361 0.071 0.357 23

500 5 1 0.007 0.045 0.041 0.245 0.000 0.000 24

100 3 1 0.000 0.069 0.017 0.555 0.607 0.651 25

100 1 1 0.000 0.034 0.086 0.673 0.000 0.000 26

100 5 1/3 0.000 0.000 0.095 0.724 0.652 0.500 27

100 5 1/5 0.000 0.000 0.160 0.741 0.589 NaN 28

Section 3.1 describes the simulation scheme of the datasets. Section 3.3 describes the criteria: Estimation Error, Correct

Classification Rate, False Null Rate and False Nonnull Rate. The bold font indicates the best result for each criterion and each

dataset.
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Figure 3: Comparison of the ability of Bliss, Flirti and Fused lasso to recover the support

of β(t). Plot (a) (resp. (b) and (c)) gives the results of these methods in terms of Correct

Classification Rate (resp. False Null Rate and False Nonnull Rate), on the different datasets

described in Section 3.1. Each plot is divided into four parts by solid vertical lines; each part

corresponds to a specific shape. Each part is divided into three sections by dashed vertical

lines; where each section allows one parameter to vary. For example, the first section of plot

(a) shows the CCR on Shape 1 where the parameter p varies.

• a true nonnull if β̂(t j ) , 0 and β(t j ) , 0,

• a true null if β̂(t j ) = 0 and β(t j ) = 0.

To handle cases where β(t) is almost always nonnull, we define the pseudo-support as the

intervals where | β(t) | > max
t ∈T

( | β(t) |)/20. The considered measures are

CCR =
T N + TnN

T N + F N + TnN + FnN
, FnN R =

FnN

FnN + TnN
and F N R =

F N

F N + T N
,

which are the correct classification rate, the false nonnull rate and the false null rate respec-

tively.
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3.4 Comparison to competitors

Bliss and its competitors are applied on the datasets described in Section 3.1, and are

compared using the previous accuracy measures. The numerical results regarding the support

are presented in Table 1 and summarized in Figure 3. Some plots of the estimated coefficient

functions are given in Figures 4, 5 6, 7 and 8. All first columns of these figures concern

Bliss, and represent the posterior distributions of the coefficient functions as explained in

Section 2.3. We have superposed two Bayes estimates, namely β̂L2 (t) of Proposition 1 which

is the blue smooth function of t, and β̂ε
K0

(t) of Proposition 2 which is the green step function.

It appears that the numerical results of the three methods have the same order of magni-

tude, see Table 1. Although the three methods may have different accuracy, depending on the

shape of the coefficient function that generated the dataset. For instance, Shape 1 (Figures 4

and 5) and Shape 2 (Figure 6) appear to be well adapted to Bliss while Shape 4 (Figure 8) is

more adapted to Fused lasso and Flirti. This trend is corroborated by the numerical results

of Table 1.

As expected we observe that when the autocorrelation increases the three methods have

difficulties to estimate the coefficient function: either the range of an interval can be shifted

from the true range (see, e.g., Figures 5(b) and 5(d)), or its magnitude can be misestimated

(see, e.g., Figures 5(b) and 5(d)). Moreover, as the noise increases the methods have

difficulties to recover the coefficient function (see, e.g., Figures 5(a) and 5(c)) and it induces

a high variability of the estimators, especially for the Flirti estimate, see, e.g., Figure 6(d).

Note that in this simulation study each method has its own features. For instance, Fused lasso

is quite stable (the only exception being plotted in Figure 7(d)); even when the autocorrelation

is high Fused lasso gives decent estimates. Flirti is rather unstable and the estimates can be

erratic, see, e.g., Figures 4(d), 6(d), 7(d). In Figure 4(c), the Flirti estimate is even a null

function. In contrast Bliss always gives interpretable estimates and enables a representation

of the posterior distribution.

Concerning the behaviour of the methods when the autocorrelation increases,Figures 5(b)

and 5(d) show that the methods can misestimate the range of intervals. Both Figures illustrate

that when the magnitude of a given interval is misestimated, it is counterbalanced with

an artefact on a correlated interval: if β(t) is overestimated on an interval, it is often

underestimated on a neighboring interval. Note that Fused lasso gives a narrow estimate

(Figure 5(d)), which fails to detect the whole range of nonnull intervals. Indeed, only small

parts of the nonnull intervals are selected, which results in an overestimation of the magnitude

of the coefficient function on these intervals.

Concerning the behaviour of the methods when the noise increases, Figures 5(a) 5(c),

6(b) and 6(d) emphasize the difficulty to estimate the coefficient function.

Concerning the interpretability, Figures 6(b), 6(d), 7(a) and 7(c) show that in opposition

to Flirti and Fused lasso estimates, the Bliss estimates are always interpretable in the sense

that Bliss always returns null intervals. Moreover, Bliss enables a representation of the

posterior distribution and of its variance, which supplies a level of credibility of the estimate.

In order to give ideas of power of the estimate, we can contrast results of Figures 5(b) and

7(b) where the posterior variance is high with, e.g., Figure 4(b) where the posterior variance

is much smaller.
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Figure 4: Bliss, Fused lasso and Flirti estimates when the true function β(t) is interpretable

(Datasets 1 and 3 generated from Shape 1). Each row of plots corresponds to a given dataset.

In every plot the dotted line (· · · · · · ) is the coefficient function β(t) used to generate the data.

The first column of plots corresponds to the Bliss method. The set of marginal posterior

distributions of βθ (t) for any t ∈ [0, 1] is displayed by the heat map, see Section 2.3: white

(resp. red) areas correspond to low (resp. high) posterior densities. The green curve is

the Bliss estimate β̂ε
K0

(t) as defined in Proposition 2, and the blue curve is the posterior

expected value β̂L2 (t) of Proposition 1. The second column of plots compares different

estimators: the green line (resp. violet and orange ) is the estimate of Bliss

(resp. Fused lasso and Flirti).
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Figure 5: Bliss, Fused lasso and Flirti estimates when the true function β(t) is interpretable

(Datasets 4 and 6 generated from Shape 1). Same legend as Figure 4.
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Figure 6: Bliss, Fused lasso and Flirti estimates when the true function β(t) is smooth

(Datasets 10 and 12 generated from Shape 2). Same legend as Figure 4.
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Figure 7: Bliss, Fused lasso and Flirti estimates when the true function β(t) is sinusoidal

(Datasets 17 and 21 generated from Shape 3). Same legend as Figure 4.

(a) (b)

0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

2

0.0 0.2 0.4 0.6 0.8 1.0

−
3

−
2

−
1

0
1

2

Figure 8: Bliss, Fused lasso and Flirti estimates when the true function β(t) is smooth and

nonnull on tight intervals (Dataset 22 generated from Shape 4). Same legend as Figure 4.
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Figure 9: Graphical results of Bliss for poor choices of sensitive hyperparameters. The heat

map is a representation of an estimated posterior density of β(t), see Section 2.3. White

(resp. red) areas correspond to low (resp. high) posterior densities. Plots (a) and (b)

illustrate the impact of K . Plot (c) (resp. (d)) illustrates the variability induced by a poor

choice of η0 (resp. η).
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Table 2: Performances of the Bliss estimator with respect to the hyperparameters.
Err CCR FNR FnNR Run

N = 2000 1.026 0.810 0.188 0.191 2

N = 10 000 1.173 0.830 0.222 0.081 3

N = 50 000 ♥ 1.270 0.760 0.266 0.200 1

N = 100 000 1.038 0.730 0.244 0.294 4

K = 3 1.525 0.750 0.309 0.103 5

K = 5 1.427 0.770 0.301 0.037 6

K = 10 ♥ 1.270 0.760 0.266 0.200 1

K = 15 1.057 0.760 0.250 0.227 7

η0 = 0 ♥ 1.270 0.760 0.266 0.200 1

η0 = 10 1.013 0.850 0.206 0.054 8

η0 = 100 1.084 0.680 0.314 0.326 9

η0 = 1000 1.084 0.810 0.054 0.269 10

v0 = 101 1.158 0.840 0.178 0.136 11

v0 = 102 ♥ 1.270 0.760 0.266 0.200 1

v0 = 103 1.211 0.660 0.312 0.365 12

v0 = 104 1.168 0.630 0.307 0.409 13

η = 0 ♥ 1.270 0.760 0.266 0.200 1

η = 10 1.198 0.710 0.317 0.243 14

η = 100 1.514 0.620 0.294 0.424 15

η = 1000 44.864 0.390 0.615 0.606 16

v = 101 0.689 0.770 0.177 0.272 17

v = 102 ♥ 1.270 0.760 0.266 0.200 1

v = 103 2.544 0.740 0.333 0.000 18

v = 104 5.661 0.720 0.333 0.142 19

a and b = 1 0.885 0.880 0.083 0.153 20

a and b = 10−1 ♥ 1.270 0.760 0.266 0.200 1

a and b = 10−2 1.098 0.900 0.137 0.047 21

a and b = 10−4 1.453 0.750 0.320 0.040 22

ℓmax =
��T �� 0.982 0.830 0.127 0.207 23

ℓmax =
��T ��/2 0.655 0.740 0.240 0.280 24

ℓmax =
��T ��/5 ♥ 1.270 0.760 0.266 0.200 1

ℓmax =
��T ��/8 0.784 0.700 0.316 0.275 25

Err stands for the Estimation Error, CCR for Correct Classification Rate, FNR for False Null Rate and

FnNR for False Nonnull Rate. The ♥ symbol indicates the default values.

3.5 Performance of Bliss with respect to its hyperparameters

In this section, performances of the Bliss estimator with respect to the hyperparameters are

studied on Dataset 1. The following values are considered for each hyperparameter:

• η0 and η = 0, 10, 100, 1000 (note that η is a K-vector and here each of its elements has

the same value),

• v0 and v = 101, 102, 103, 104,

• a and b = 1, 10−1, 10−2, 10−4,

• ℓmax =
��T ��, ��T ��/2, ��T ��/5, ��T ��/8 and

• K = 3, 5, 10, 15.
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Additionally we varied the size N of the MCMC sample: N = 2.103, 104, 5.104 and 105. For

each run of this study, only one parameter is modified and the others are chosen by default

as given in Section 3.2.

Table 2 presents numerical results. Bliss is not really sensitive to these parameters, except

for K , η, η0 and v. Variations of the others parameters do not induce significant variations

on the estimation error or on the classification rates.

Concerning the convergence, the results are similar for the different values of N (runs 2,

3, 1, 4). Hence, for this example 2.103 iterations seem enough to achieve convergence.

Concerning the influence of K (runs 5, 6, 1, 7), it appears that this hyperparameter

should be chosen large enough, so that it is larger than the true K . Figures 9(a) and 9(b)

show estimates for K = 3 or K = 15 while the true K is 3. For K = 3 (run 5), one can note

that even if K is the actual K , the estimate does not find the third interval because of its small

magnitude. For K = 15 (run 7), the estimate finds all the intervals and have only one false

null interval. Indeed, intervals I1, . . . , IK can overlap so they gather on the relevant nonnull

intervals.

Concerning the choice of the prior expectation of β∗ (runs 1, 14, 15, 16), we note that a

specified value of η far away from the true value (3, 4,−1) induces a high variability of the

posterior distribution, see Figure 9(c).

Concerning the choice of the prior expectation of µ (runs 1, 8, 9, 10), it appears that as

η0 increases, the quality criteria considered are similar. However, Figure 9(d) shows that the

increase of η0 induces higher variability of the posterior distribution of β(t).

Finally, it appears (runs 17, 1, 18, 19) that large values for v have a negative effect on the

estimation error, but only a small impact on the classification rates.

4 Application to the black Périgord truffle dataset

We apply the Bliss method on a dataset to predict the among of production of black truffles

knowing the rainfall curves. The black Périgord truffle (Tuber Melanosporum Vitt.) is one

of the most famous and valuable edible mushrooms, because of its excellent aromatic and

gustatory qualities. It is the fruiting body of a hypogeous Ascomycete fungus, which grows in

ectomycorrhizal symbiosis with oaks species or hazelnut trees in Mediterranean conditions.

Modern truffle cultivation involves the plantation of orchards with tree seedlings inoculated

with Tuber Melanosporum. The planted orchards could then be viewed as ecosystems

that should be managed in order to favour the formation and the growth of truffles. The

formation begins in late winter with the germination of haploid spores released by mature

ascocarps. Tree roots are then colonised by haploid mycelium to form ectomycorrhizal

symbiotic associations. Induction of the fructification (sexual reproduction) occurs in May

or June (the smallest truffles have been observed in mid-June)). Then the young truffles

grow during summer months and are mature between the middle of November and the

middle of March (harvest season). The production of truffles should then be sensitive to

climatic conditions throughout the entire year (Le Tacon et al., 2014). However, to our

knowledge few studies focus on the influence of rainfall or irrigation during the entire year

(Demerson and Demerson, 2014; Le Tacon et al., 2014). Our objective is then to investigate

the influence of rainfall throughout the entire year on the production of black truffles. Indeed,

knowing this influence could lead to a better management of the orchards, to a better

understanding of the sexual reproduction, and to a better understanding of the effects of
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Figure 10: Covariate curves of the Truffle datsaset. Plot shows the rainfall for each year,

color-coded by their truffle yield.

climate change. Indeed, concerning sexual reproduction Le Tacon et al. (2014, 2016) made

the assumption that climatic conditions could be critical for initiation of sexual reproduction

throughout the development of the mitospores expected to occur in late winter or spring.

And concerning climate change, its consequences on the geographic distribution of truffles

is of interest (see Splivallo et al., 2012 or Büntgen et al., 2011, among others).

The data used have been provided by J. Demerson. They consist of records of rainfall

on an orchard near Uzès (France) between 1985 and 1999, and of the production of black

truffles on this orchard between 1985 and 1999. In practice, to explain the production of the

year n, we will take into account the rainfall between the 1st of January of the year n − 1

and the 31st of March of the year n. Indeed, we want to take into account the whole life

cycle, from the formation of new ectomycorrhizas following acospore germination during the

winter preceding the harvest (year n− 1) to the harvest of the year n. The cumulative rainfall

is measured every 10 days (every decade), hence between the 1st of January of the year n− 1

and the 31st of March of the year n we have the rainfalls associated with 45 decades, see

Figure 10. This dataset can be considered as reliable, as the rainfall records have been made

exactly on the orchard, and the orchard was not irrigated.

Results and biological relevance We run the Bliss method and Figure 11 shows the

estimate of the coefficient function and its posterior distribution.

We observe on this estimate a positive effect of the rainfall in summer of year n−1 (June,

July and August), and this is a well known effect. Büntgen et al. (2012), Demerson and Demerson

(2014) or Le Tacon et al. (2014) all confirm the importance of the negative effect of summer

hydric deficit on truffle production: they found it to be the most important factor influencing

the production. Indeed, in summer the truffles need water to survive the high temperatures

and to grow. Otherwise they can dry out and die.

Next, we find a positive effect of the rainfall in late winter of year n − 1 (from the third

decade of January to the end of March). This was also shown by Demerson and Demerson

(2014) and Le Tacon et al. (2014). Indeed, as explained in Le Tacon et al. (2014), consistent

water availability in late winter could support the formation of new mycorrhizae, thus allowing

19



10 20 30 40

−
0.

02
−

0.
01

0.
00

0.
01

0.
02

Decade

J F M A M J J A S O N D J F M
0

0.17

0.33

0.5

0.66

0.83

1

1.16

1.33

1.49

1.66

1.83

Figure 11: Bliss estimates for the truffle dataset. The green curve is the Bliss estimate of

Proposition 2, and the blue curve is the posterior expected value of Proposition 1. The heat

map is a representation of the estimated posterior density, which is described in Section 2.3.

White (resp. red) areas correspond to low (resp. high) posterior densities.

a new cycle. Moreover, from results obtained by Healy et al. (2013) they made the assumption

that rainfall is critical for the initiation of sexual reproduction throughout development of

mitospores, which is expected to occur in late winter or spring of the year n − 1. This is an

assumption as the occurrence and the initiation of sexual reproduction is largely unknown,

see Murat et al. (2013) or Le Tacon et al. (2016). Our finding of a positive effect of rainfall

in late winter of year n − 1 supports this assumption.

Moreover, we find a negative effect of the rainfall during the harvest (January and first

and second decades of February of the year n). We can assume that excess water during the

harvest season favor pests and truffle rot, especially for truffles close to, or at, the soil surface

(see Olivier et al., 2012, page 109). It is then quite interesting to note that we find a negative

effect of the rainfall in winter during the harvest, and a positive effect of rainfall in winter

the year before the harvest.

We find a negative effect of the rainfall in the beginning of January of the year n − 1

(first and second decade of January). This effect was not found by others, and we did not

have a biological interpretation. We suspect some edge effect or an artefact as explained in

Section 3.4.

Then, we find a positive effect of the rainfall in November and December of the year

n − 1 (second and third decades of November and the first decade of December). This was

also shown by Demerson and Demerson (2014) and Le Tacon et al. (2014). Le Tacon et al.

explained that rainfall in autumn allows the growth of young truffles which have survived the

summer.

In contrary to Demerson and Demerson (2014), we did not find a negative effect of the

rainfall in late April. Demerson and Demerson (2014) made two assumptions about this

effect. The first is that excess water in the soil would reduce the oxygenation of truffle

primordia. The second is that the initiation of sexual reproduction requires a hydric stress,

otherwise the truffle fungus can survive using vegetative propagation of ectomycorrhizas

along the roots and do not need to use sexual reproduction (hence fructification). However,

as noted in Olivier et al. (2012) (page 109), the assumption of a necessary hydric stress for

initiation of sexual reproduction has not been proven yet.
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Furthermore,we did not find a negative effect of the rainfall in September. The assumption

made was that in September the soil temperature is still high, so micro-organisms responsible

for rot are quite active, while a truffle impregnated by water has its respiratory system

perturbed and can not defend itself against these micro-organisms. We did not find a negative

effect of rainfall for these two intervals of time, but it is interesting to look at the posterior

distribution of the coefficient function in Figure 11. Indeed, on these intervals the posterior

probability of a negative coefficient function is non negligible (some negative regions are in

yellow and orange on these intervals). However our interpretable estimate did not detect a

negative effect of rainfall on these intervals, which can be due to a lack of observations, a

lack of power (only 14 years and one orchard are used in this study).

The results obtained by the Bliss method are then biologically relevant: they validate

well known effects, and support recent assumptions concerning the truffle life cycle. Other

assumptions are not validated by our final estimate of the coefficient function, but the estimate

of the posterior distribution gives interesting insights and suggests a lack of power.

5 Conclusion and Discussion

In this paper, we provide a prior distribution and an associated loss function for estimating

an interpretable function coefficient, β(t), of the scalar-on-function linear regression model.

Simulations from the posterior distribution are obtained with a Gibbs Sampler while the

Bayes action is computed with a Simulated Annealing algorithm. A tailored graphical

representation of the posterior distribution enables to visualize posterior credible regions for

β(t) and the intervals of the t-axis where this coefficient function is zero. Such intervals are

of primary interest for the interpretability of the coefficient function. A comparison study

with competitors reveals a good behaviour of our estimate: estimation errors are of the same

magnitude as for competitors while our estimate remains always interpretable. Finally, an

application to a real dataset on the black Périgord truffle validates some recent assumptions

on the truffle life cycle and highlights the usefulness of an interpretable function coefficient

in practice.

Several improvements of our method can be contemplated for future works. First, a

Zellner prior on β∗ (Zellner, 1986), instead of a diagonal matrix for V , would probably be

suitable because of the high autocorrelations of the observed curves xi (t). It may improve

the estimation of the intervals Ik and potentially reduce the artefact discussed in Section 3.4.

This can be done with no additional difficulties.

Second, it would be more realistic to consider an additional term for modelling a non-

interpretable part of β(t). This suggests the following decomposition:

β(t) =

K
∑

k=1

β∗k1{t ∈ Ik } + ξ (t).

If we assume a Gaussian process prior GP(0,Σ) for the function parameter ξ (t), under

mild conditions on xi (t) and the covariance function Σ(t, t ′), the random variable ξ∗
i
=

∫

ξ (t)xi (t)dt have a centered normal distribution with

cov(ξ∗i , ξ
∗
j ) =

"
xi (t)x j (t

′)Σ(t, t ′) dtdt ′.

Then, it is easy to see that, given mi = µ +
∑K

k=1 β
∗
k

xi (Ik ), σ2 and Σ, y = (y1, . . . , yn )′ has

a multivariate normal distribution Nn (m, Σn + σ
2Idn) with m = (m1, . . . ,mn )′ and where
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Σn is the n × n matrix with entries cov(ξ∗
i
, ξ∗

j
). Inference on Σn can be performed using a

standard inverse Wishart prior or by taking into account a particular parametric form for Σ.

Note that this inference can be simplified if the non-interpretable part of β(t) is depending

on i as follows:

β(t) =

K
∑

k=1

β∗k1{t ∈ Ik } + ξi (t). (12)

If we assume that ξi are a priori independent with a GP(0,Σ) distribution, the random

variables ξ∗
i
=

∫

ξi (t)xi (t)dt are independent with a N (0, σ2
i
) distribution where σ2

i
=

Σn (i, i). The model studied in the present paper can be seen as a special case of (12) when

σ2
i

is negligible. In the same spirit, the model could be more realistic with a delay parameter

τi for each observation:

yi =

∫

β(t − τi ) xi (t)dt.

Third, expert opinions should be included in the prior distribution. For instance, it is

now well known that an important rainfall during the summer does increase the truffle yield.

It is then consistent to include such an information in the inferential process. Note that

information of this kind may be vague, qualitative rather then quantitative and it may be not

straightforward to construct an associated prior.

Finally, it would be of practical interest to provide some typical patterns of the whole

curves xi (t) responsible for high (resp. low) yields. This entails to classify the curves in

some clusters and, potentially, to consider individual coefficient functions βi (t), with similar

values within each clusters. Several approaches can be contemplated for such a purpose and

we plan to pursue this direction in future works.

Supplementary Materials

The implementation of the method is available at the following webpage:

http://www.math.univ-montp2.fr/~grollemund/Implementation/BLiSS/.

A Theoretical results

A.1 Proof of Proposition 1

Obviously, β̂L2 (·) minimizes

∫ ∫

T
(βθ (t) − d (t))2 dt πK (θ |D)dθ =

∫

T

∫

(βθ (t) − d (t))2 πK (θ |D)dθ dt
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because it does optimize
∫

(βθ (t) − d (t))2 πK (θ |D)dθ for all t ∈ T . It remains to show that

β̂L2 (·) ∈ L2(T ). We have

‖ β̂L2 (·)‖2 =
∫

T

(∫

βθ (t)πK (θ |D)dθ

)2

dt

=

∫

T

"
βθ (t) βθ′ (t) πK (θ |D)πK (θ′ |D)dθdθ′dt

=

" ∫

T
βθ (t) βθ′ (t)dt πK (θ |D)πK (θ′ |D)dθdθ′

≤
"
‖ βθ (·)‖‖ βθ′ (·)‖ πK (θ |D)πK (θ′ |D)dθdθ′ with Cauchy-Schwarz inequality

≤
(∫

‖ βθ (·)‖πK (θ |D)dθ

)2

And the last integral is finite because of the assumption. Hence β̂L2 (·) is in L2(T ).

A.2 Proof of Proposition 2

First, the norm ‖d (·) − β̂L2 (·)‖ is non negative, hence the set

{
‖d (·) − β̂L2 (·)‖, d (·) ∈ EεK0

}

admits an infimum. Let m denote this infimum. We have to prove that m is actually a minimum

of the above set, namely that there exists a function d (·) ∈ Eε
K0

such that m = ‖d (·)− β̂L2 (·)‖.

To this end, we introduce a minimizing sequence {dn (·)} and we will show that one of

its subsequence admits a limit within Eε
K0

. Let dn (·) be such that

m = inf
{
‖d (·) − β̂L2 (·)‖, d (·) ∈ EεK0

}
≤ ‖dn (·) − β̂L2 (·)‖ ≤ m + 2−n . (13)

The step function dn (·) can be written as

dn (t) =

L
∑

k=1

αk,n1{t ∈ (ak,n, bk,n )}

where the (ak,n, bk,n ), k = 1, . . . , L are non overlapping intervals. Note that their number

L does not depend on n because all dn (·) lie in EK0
for some fixed value of K0, and we can

always choose L = 2K0 − 1. Moreover, because dn (t) is in F ε , we can assume that

bk,n − ak,n ≥ ε, for all k, n. (14)

Now the sequence {a1,n }n has its elements in the compact interval T hence we extract

a subsequence (still denoted {a1,n }n) which converges an element a1,∞ of T . Likewise, by

extracting subsequences 2L times, we can assume that all sequences {a1,n }n ,. . . , {aL,n }n ,

{b1,n }n , . . . , {bL,n }n are convergent, and that

ak,∞ = lim
n→∞

ak,n, bk,∞ = lim
n→∞

bk,n, and bk,∞ − ak,∞ ≥ ε, k = 1, . . . , L
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where the last inequalities come from (14).

The sequence dn (·) is bounded (in L2-norm):

‖dn (·)‖ ≤ ‖ β̂L2 (·)‖ + ‖dn (·) − β̂L2 (·)‖ ≤ R +
√

m + 1

with (13), where R = ‖ β̂L2 (·)‖. Moreover

‖dn (·)‖2 =
L

∑

k=1

α2
k,n

(

bk,n − ak,n

) ≥ ε
L

∑

k=1

α2
k,n .

Hence, each sequence {α1,n }n , . . . , {αL,n }n is bounded. Thus, by further extracting subsub-

sequences, we can assume that, for k = 1, . . . , L,

lim
n→∞
αk,n = αk,∞

Finally, by setting

d∞(·) =
L

∑

k=1

αk,∞1{t ∈ (ak,∞, bk,∞)}

we can easily prove that dn (·) tends to d∞(·) in L2-norm and that d∞(·) ∈ Eε
K0

. And, with

(13)

m = ‖d∞(·) − β̂L2 (·)‖
which concludes the proof.

A.3 Topological properties of EK

Proposition 3. Let K ≥ 1.

(i) The convex hull of EK is E.

(ii) Under the L2(T )-topology, the closure of E is L2(T ).

Proof. The result of (ii) is rather classical, see, e.g., Rudin (1986). The convex hull of EK
contains any step function. Indeed, any step function can be written as a convex combination

of simple a1{t ∈ I }’s which all belongs to EK . Moreover, E is convex because it is a linear

space. Hence claim (i) is proven.

For a given K , the set of functions EK is not suitable to define a projection of β̂L2 (·).
Indeed, let {dn (·)} be a minimizing sequence of the set

{‖d (·) − β̂L2 (·)‖, d (·) ∈ EK (·)}, so

m = inf
{
‖d (·) − β̂L2 (·)‖, d (·) ∈ EK

}
≤ ‖dn (·) − β̂L2 (·)‖ ≤ m + 2−n .

Using that β̂L2 (·) and dn (·) belong to L2 for all n, we have

dn (.) ∈ EK ∩ BL2 (R + m + 1), for all n,

where BL2 (r) is the L2-ball of radius r around the origin. Note that EK ∩ BL2 (R + m + 1)

is not a compact set, for example consider dn (t) =
√

n1{t ∈ [0, 1
n

]}. Hence it is not

possible to extract a subsequence of {dn (·)} which converges to a d∞(·) ∈ EK such that

‖d (·) − β̂L2 (·)‖ = m.
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B Details of the implementations

B.1 Gibbs algorithm and Full conditional distributions

The full conditional distributions for the Gibbs Sampler in Section 2.3 are the following,

β∗ |y, µ, σ2,m, ℓ ∼ NK+1

(

Σβ µβ, σ
2
Σβ

)

,

σ2 |y, µ, β∗,m, ℓ ∼ Γ−1

(

a +
n + K + 1

2
, b +

1

2
SSE +

1

2


β∗ − η

2

V −1

)

,

Π

(

mk |y, µ, β∗, σ2,m−k, ℓ
)

∝ exp
(

−SSE/2σ2
)

Π

(

ℓk |y, µ, β∗, σ2,m, ℓ−k
)

∝ exp
(

−SSE/2σ2
)

where SSE = ‖y − µ1 − x . (I.) β
∗‖2, Σ−1

β
= x . (I.)

T x . (I.) + V−1, µβ = x . (I.)
T
y + V−1η and

x . (I. ) the matrix whose (i, k)-entry is

xi (Ik ) =

∫ mk+ℓk

mk−ℓk
xi (t)dt.

The full conditional distributions for the hyperparameters mk and ℓk are unusual distributions.

As the covariate curves xi are observed on a grid TG = (t j ) j=1, ...,p , we consider that mk

belongs to TG and ℓk is such that mk ± ℓk ∈ TG . Thus, the number of possible values for mk

and ℓk is finite and the full conditional distributions of mk and ℓk are easily computable.

B.2 Simulated Annealing algorithm

We give in this section the details of the Simulated Annealing algorithm we use. Let Θ̃K0
=

⊗K0

K=1

(

K,ΘK

)

where ΘK is the space of all θ = (β∗
1
, . . . , β∗

K
,m1, . . . ,mK , ℓ1, . . . , ℓK ) and

let the function C(d (·)) = 

d (·) − β̂L2 (·)

2
.

Algorithm : Simulated Annealing

• Initialize: a deterministic decreasing schedule of temperature (τi )i=1, ...,NSANN
, a value

of K0 and an initial vector (K(0), θ(0) ) ∈ Θ̃K0
.

• Compute the function β(0) (t) from (K(0), θ(0) ).

• Repeat for i from 1 to NSANN :

• Choose randomly a move from (K(i−1), θ(i−1) ) to (K ′, θ′) among :

1. propose a new β∗
k
′ for an arbitrary k ≤ K(i−1) ,

2. propose a new m′
k

for an arbitrary k ≤ K(i−1) ,

3. propose a new ℓ′
k

for an arbitrary k ≤ K(i−1) ,

4. propose to append a new interval (β∗′,m′, ℓ′) or

5. propose to drop out an interval (β∗
k
,mk, ℓk ) for an arbitrary k ≤ K(i−1) .

• Compute the function β′(t) from the proposal (K ′, θ′).

• Compute the acceptance ratio

α = min

{

1, exp

(

C(β′(·)) − C
(

β(i) (·))

τi

)}

.
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• Draw u from Unif(0, 1).

• If u < α, (K(i), θ(i) ) = (K ′, θ′) (move accepted),

else (K(i), θ(i) ) = (K(i−1), θ(i−1) ) (move rejected).

• Compute the function β(i) (t) from (K(i), θ(i) ).

• Return the iteration (K(i), θ(i) ) minimizing the criteria C(.).

For the schedule of temperature, we use by default a logarithmic schedule (see Bélisle, 1992),

which is given for each iteration i by

Te/ log ((i − 1) + e) , (15)

where Te is a parameter to calibrate and corresponds to the initial temperature. The result

of the Simulated Annealing algorithm is sensitive to the scale of Te and it is quite difficult to

find an a priori suitable value. For example, if the initial temperature is too small, almost all

the proposed moves are rejected during the algorithm. On the opposite, if it is too large, they

are almost all accepted. So, we run few times the algorithm and each time Te is determined

with respect to the previous runs. For instance, if for a run the moves are always rejected or

always accepted, the initial temperature for the next run is accordingly adjusted. Only 2 or 3

runs are sufficient to find a suitable scale of Te.
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