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Abstract

In this paper, we analyze the optimal (blockwise) subcarrier allocation schemes in single-carrier frequency division
multiple access (SC-FDMA) uplink systems without channel state information at the transmitter side. The presence of
the discrete Fourier transform (DFT) in SC-FDMA/orthogonal frequency division multiple access OFDMA systems
induces correlation between subcarriers which degrades the transmission performance, and thus, only some of the
possible subcarrier allocation schemes achieve better performance. We propose as a performance metric a novel
sum-correlation metric which is shown to exhibit interesting properties and a close link with the outage probability.
We provide the set of optimal block-sizes achieving the maximum diversity and minimizing the inter-carrier
sum-correlation function. We derive the analytical closed-form expression of the largest optimal block-size as a
function of the system’s parameters: number of subcarriers, number of users, and the cyclic prefix length. The
minimum value of sum-correlation depends only on the number of subcarriers, number of users and on the variance
of the channel impulse response. Moreover, we observe numerically a close strong connection between the
proposed metric and diversity: the optimal block-size is also optimal in terms of outage probability. Also, when the
considered system undergoes carrier frequency offset (CFO), we observe the robustness of the proposed blockwise
allocation policy to the CFO effects. Numerical Monte Carlo simulations which validate our analysis are illustrated.

Keywords: SC-FDMA/OFDMA; Subcarriers allocation; Channel frequency diversity; Cyclic prefix induced; Correlation;
Carrier frequency offsets

1 Introduction
Due to its simplicity and flexibility to subcarrier alloca-
tion policies, single-carrier frequency division multiple
access (SC-FDMA) has been proposed as the uplink trans-
mission scheme for wireless standard of 4G technology
such as 3GPP long-term evolution (LTE) [1-3]. SC-FDMA
is a technique with similar performance and essentially
the same general structure as an orthogonal frequency
division multiple access (OFDMA) system. A remarkable
advantage of SC-FDMA over OFDMA is that the signal
has lower peak-to-average power ratio (PAPR) that guar-
antees the transmit power efficiency at the mobile termi-
nal level [4]. However, similarly to OFDMA, SC-FDMA
shows sensitivity to small values of carrier frequency off-
sets (CFOs) generated by the frequency misalignment
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between the mobile users’ oscillators and the base sta-
tion [5-7]. CFO is responsible for the loss of orthogonality
among subcarriers by producing a shift of the received
signals causing inter-carrier interferences (ICI).
In this work, we show that the SC-FDMA uplink sys-

tems without CFO and with imposed independent sub-
carriers attain the same channel diversity gain for any
subcarrier allocation scheme. However, due to the dis-
crete Fourier transform (DFT) of the channel, correlation
between the subcarriers is induced, and thus, a degra-
dation of the transmission performance occurs. There-
fore, there exist some allocation schemes that are able
to achieve an increased diversity gain when choosing the
appropriate subcarrier allocation block-size.
In the uplink SC-FDMA transmissions, users spread

their information across the set of available subcarriers.
Subcarrier allocation techniques are used to split the avail-
able bandwidth between the users. In the case in which no
channel state information (CSI) is available at the trans-
mitter side, the most popular allocation scheme is the
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blockwise allocation in [8]. In this blockwise allocation
scheme, subsets of adjacent subcarriers, called blocks, are
allocated to each user, (see Figures 1, 2, and 3). In partic-
ular, we call mono-block allocation the scheme with the
maximum block-size given by the ratio between the num-
ber of subcarriers and the number of users, illustrated in
Figure 1. The interleaved allocation scheme is a special
case in which subcarriers are uniformly spaced at a dis-
tance equal to the number of users (block-size b is equal
to one), as shown in Figure 3. The interleaved allocation
is usually considered to benefit from frequency diversity
(IEEE 802.16) [9]. However, robustness to CFO can be
improved by choosing large block-sizes since they better
combat the ICI. In the case of full CSI, an optimal block-
size has been proposed for OFDMA systems in [10] as
a good balance between the frequency diversity gain and
robustness against CFO. In this paper, we study the opti-
mal block-size allocation schemes, in the case of an uplink
SC-FDMA without CSI.
To the best of our knowledge, the closest works to ours

are references [11,12]. A subcarrier allocation scheme
with respect to the user’s outage probability has been pro-
posed in [11] for OFDMA/SC-FDMA systems with and
without CFO. In particular, the authors of [11] propose a
semi-interleaved subcarrier allocation scheme capable of
achieving the diversity gain with minimum CFO interfer-
ence. However, the authors analyze only the case in which
every user in the system transmits one symbol spread
to all subcarriers, and as a consequence, their diversity
results are restricted to the considered model and with a
low data rate. We point out that our main contributions
with respect to [11] consist in the following: we consider
a more general model; we analyze all possible subcarrier
allocation block-sizes; and we find the analytical expres-
sions of the optimal blockwise allocation schemes that
achievemaximum diversity. Moreover, we provide an ana-
lytical expression of the correlation between subcarriers
and we analyze its effects on the system transmission’s
performance.
More precisely, in this work, we propose a new alloca-

tion policy based on the minimization of the correlation

between subcarriers. In particular, in order to optimize
the block-size subcarrier allocation, we propose a new
performance metric, i.e., the sum-correlation function
that we define as the sum of correlations of each subcarrier
with respect to the others in the same allocation scheme.
The introduction of the sum-correlation function as a per-
formance metric is motivated by the fact that the corre-
lation generated by the DFT implies that some allocation
schemes achieve a higher diversity gain than others. The
interest of the proposed approach is due to the fact that
it allows us to find the exact expression of the block-sizes
that achieve a higher diversity gain. It turns out that the
minimum sum-correlation is achieved by block-size allo-
cation policies that lie in a set composed of all block-sizes
that are inferior or equal to a given threshold depending
explicitly on the system’s parameters: the number of sub-
carriers, the number of users, and the cyclic prefix length.
Furthermore, we find the minimum value of the sum-
correlation function. This value guarantees to achieve the
maximum diversity gain, and what is more remarkable, it
depends only on the number of subcarriers, number of
users, and the variance of the channel impulse response.
We also provide interesting properties of the individual
sum-correlation terms: the auto-correlation term (i.e., the
correlation between the subcarrier of reference and itself )
depends on the length of cyclic prefix; the correlations
between the subcarrier of reference and the ones that are
spaced from it of a distance equal to a multiple of the
ratio between the number of subcarriers, and the cyclic
prefixes are equal to zero. The most interesting property
of the proposed sum-correlation function is the close link
to the outage probability and thus to the diversity gain.
Numerically, we observe that the maximum diversity or
the minimum outage allocation coincides with the one
minimizing our sum-correlation function.
Moreover, we observe that when the SC-FDMA system

undergoes CFO, we have the robustness to CFO for practi-
cal values of CFO. This means that when the CFO goes to
zero, the CFO sum-correlation can be approximated with
the sum-correlation defined in the case without CFO. This
analysis has been done similarly to [12] in which coded

Figure 1Mono-block allocation scheme. Block-size b = 8, Np = 16 subcarriers, and Nu = 2 users (subcarriers allocated to user u1 denoted by
arrow markers and to user u2 by diamond markers).
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Figure 2 Blockwise allocation scheme. Block-size b = 4, Np = 16 subcarriers, Nu = 2 users (subcarriers allocated to user u1 denoted by arrow
markers and to user u2 by diamond markers).

OFDMA systems are analyzed. Uncoded OFDMA cannot
exploit the frequency diversity of the channel; therefore,
the use of channel coding with OFDMA in [12] reduces
the errors resulting from the multipath fading environ-
ment recovering the diversity gain. Coding is not needed
in SC-FDMA since it can be interpreted as a linearly
precoded OFDMA system [4].
We underline that, with respect to [12] in which the

results have been briefly announced, in this paper: 1) we
provide a deeper and a more detailed theoretical analysis;
2) we consider a new performance metric, not identical
to the one analyzed in [12], which takes into account the
length of the channel impulse response Lh ≤ L and a gen-
eral power delay profile which allow us to generalize our
previous results in both cases, with and without CFO; 3)
novel simulation results are presented in order to validate
these new results.
The difficulty of our analytical study is related to the

discrete feasible set of allocation block-sizes and also
to the objective function (i.e., the sum-correlation func-
tion we propose) which is closely linked with the outage
probability whose minimization is still an open issue in
most non-trivial cases [13]. However, we provide exten-
sive numerical Monte Carlo simulations that validate our
analysis and all of our claims.
The sequel of our paper is organized as follows. In

Section 2, we present the analytical model of the SC-
FDMA system without CFO. In Section 3, we define a

novel sum-correlation function and its properties; more-
over, we find the optimal block-sizes for a subcarrier
allocation scheme minimizing the subcarrier correlation
function and we show the numerical results that val-
idate our analysis. We present the SC-FDMA system
with CFO in Section 4. We define the corresponding
sum-correlation function and we observe its robustness
against CFO. Numerical results that validate this analy-
sis are also presented. At last, in Section 5 we conclude
the paper.

2 Systemmodel without CFO
We consider a SC-FDMA uplink system where Nu mobile
users communicate with a base station (BS) or access
point. In the case in which the system is not affected by
CFOs, the users are synchronized to the BS in time and
frequency domains. No CSI is available at the transmitter
side. The total bandwidth B is divided into Np subcarriers
and we denote by M = �Np

Nu
� (where �x� is the inte-

ger part of x) the number of subcarriers per user. Notice
that we choose Np as an integer power of two in order
to optimize the DFT processing. To provide a fair alloca-
tion of the spectrum among the users (fair in the sense
that the number of allocated subcarriers is the same for
all users), notice that the number of not-allocated carri-
ers is Np − NuM < Nu << Np which is a negligible
fraction of the total available spectrum. Without loss of

Figure 3 Interleaved allocation scheme. Block-size b = 1, Np = 16 subcarriers, Nu = 2 users (subcarriers allocated to user u1 denoted by arrow
markers and to user u2 by diamond markers).
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generality and also to avoid complex notationsa, we will
assume in the following that Nu is also a power of two and
thatM = Np

Nu
.

The signal at the input of the receiver DFT was
expressed in [10] as follows:

⎛⎜⎜⎜⎜⎜⎜⎝

yNp−1
...
y0
...

y−L

⎞⎟⎟⎟⎟⎟⎟⎠ =
Nu∑
u=1

⎛⎜⎜⎜⎜⎜⎜⎝
h(u)
0 · · · h(u)

Lh−1
0

. . . . . .
0

h(u)
0 · · · h(u)

Lh−1

⎞⎟⎟⎟⎟⎟⎟⎠

×

⎛⎜⎜⎜⎜⎜⎜⎜⎝

a(u)
Np−1
...

a(u)
0
...

a(u)
−L

⎞⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎝

nNp−1
...
n0
...

n−L

⎞⎟⎟⎟⎟⎟⎟⎠

(1)

where L is the length of the cyclic prefix. The vector h(u) =[
h(u)
0 , . . . , h(u)

Lh−1

]
is the channel impulse response whose

dimension Lh is lower than or equal to L. The elements
a(u)

k are the symbols at the output of the inverse discrete
Fourier transform (IDTF) given by

a(u) =

⎛⎜⎜⎝
a(u)
Np−1
...

a(u)
0

⎞⎟⎟⎠ = F−1�(u)

b x(u) (2)

with F−1 the Np-size inverse DFT matrix, x(u) = FNP
Nu

x̃(u)

where FNP
Nu

is the Np
Nu

-size DFT matrix, and x̃(u) is the
vector of the M-ary symbols transmitted by user u. The
vector x̃(u) does not have a particular structure, contrary
to [11] where it is assumed to be equal to 1 Np

Nu ×1x̃ which
means that one symbol is spread to all subcarriers. The
symbol �

(u)

b is the Np × Np
Nu

subcarrier allocation matrix
with only one element equal to 1 in each column which
occurs at rows that represent the carriers allocated to
user u according to the considered block-size b ∈ β ={
1, . . . , Np

Nu

}
. The set β is composed of all divisors of Np

Nu
,

this guarantees a fully utilized spectrum. The SC-FDMA
can be viewed as a pre-coded version of OFDMA since the
Np
Nu

-size DFT matrix does not affect the channel diversity.
Discarding in the signal at the input of the receiver DFT

the L components corresponding to the cyclic prefix and
rearranging the terms, we get

⎛⎜⎝ yNp−1
...
y0

⎞⎟⎠
︸ ︷︷ ︸

y

=
Nu∑
u=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h(u)
0 · · · h(u)

Lh−1 0
. . . . . .

h(u)
Lh−1

h(u)
Lh−1 0
...

. . . . . .
h(u)
1 · · · h(u)

Lh−1 h(u)
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

h(u)
circ

×

⎛⎜⎜⎝
a(u)
Np−1
...

a(u)
0

⎞⎟⎟⎠+
⎛⎜⎝ nNp−1

...
n0

⎞⎟⎠

(3)

where h(u)
circ is aNp×Np circulant matrix. Denoting r = Fy,

we have found that the received signal at the BS after the
Np-size DFT is given by:

r =
Nu∑
u=1

Fh(u)
circF

−1�(u)

b x(u) + Fn

=
Nu∑
u=1

H(u)�
(u)

b x(u) + ñ (4)

whereH(u) = F h(u)
circF

−1 is the diagonal channel matrix of
user u with the diagonal (k, k)-entry given by

H(u)

k = 1√
Np

Lh−1∑
m=0

h(u)
m e−j2πmk/Np , (5)

and ñ = Fn is theNp×1 additive Gaussian noise with vari-
ance σ 2

n I. Therefore, over each subcarrier k = 0, . . . ,Np −
1, we have

rk =
Nu∑
u=1

1√
Np

Lh−1∑
m=0

h(u)
m e−j2πmk/Np�

(u)

k,k x
(u)

k + nk .

Note then that H(u) is diagonal thanks to the assump-
tion on the channel impulse response length being shorter
than the cyclic prefix [10]. However, the diagonal entries
(5) are correlated with each other.

3 Minimization of the subcarriers sum-correlation
Frequency diversity occurs in OFDMA systems by send-
ing multiple replicas of the transmitted signal at different
carrier frequencies. The idea behind diversity is to pro-
vide independent replicas of the same transmitted signal
at the receiver and appropriately process them to make
the detection more reliable. Different copies of the sig-
nal should be transmitted in different frequency bands, a
condition which guarantees their independence. The sub-
channels given in (5) are correlated and no more than a
Lh-order frequency diversity gain can be possible since
there are only Lh independent channel coefficients, i.e.,
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h(u)
0 , . . . , h(u)

Lh−1, [14]. Intuitively, we can imagine that there
are Lh groups of

Np
Lh frequencies which are ‘identical’. Each

user retrieves the maximal diversity if it has at least Lh
blocks of size b which implies b ≤ Np

LhNu
. Therefore, users

can achieve full diversity when the block-size is within the
coherent bandwidth Np

LhNu
.

In this work, we propose an original approach to find the
block-size that guarantees the maximum diversity. This
approach is based on the minimization of the subchan-
nels/subcarrier sum-correlation function.
In the sequel, we define a measure of correlation

between subcarriers, that we call sum-correlation func-
tion, and we derive its properties. Moreover, we find
the set of optimal block-sizes b∗ ∈ β which minimizes
this correlation in order to minimize the effects that it
produces.

3.1 Properties of the sum-correlation function
Assuming that the channel impulse responses are inde-
pendent but distributed accordingly to the complex
Gaussian distribution CN (0, σ (u)2

h ) [14], we define for
each user the sum of correlations of each subcarrier with
respect to the others in the same allocation scheme as
follows:

�u,m(b) =
∑
cu∈Cu

E

[
H(u)
m H(u)∗

cu

]
= E

[
|H(u)

m |2
]

+
∑
cu∈Cu
cu �=m

E

[
H(u)
m H(u)∗

cu

]

= σ
(u)2
h
Np

Lh + σ
(u)2
h
Np

∑
cu∈Cu

sin
[

πLh
Np

(m − cu)
]

sin
[

π
Np

(m − cu)
]

× e−π j (Lh−1)
Np (m−cu) (6)

wherem ∈ Cu is the reference subcarrier and

Cu =
⋃

k∈
{
1,2,3,..., NpbNu

} {(k − 1)bNu+(u − 1)b + i, ∀i ∈{1, . . . , b}}.

(7)

The set Cu is composed of all indices of subcarriers allo-
cated to user u given a block-size b allocation scheme.

The ratio Np
bNu

represents the number of blocks that can
be allocated to each user given a block-size b. We con-
sider, therefore, that the total Np subcarriers are divided
into Np

bNu
large-blocks that contain bNu subcarriers corre-

sponding to theNu blocks, one for each user, of size b. The
set Cu is the union of indices of subcarriers allocated to
user u in all these large-blocks. Inside of the large-block of
index k, the indices of the b subcarriers allocated to user
u are (k − 1)bNu + (u − 1)b + i, ∀i ∈ {1, . . . , b}, where
(k−1)bNu corresponds to the previous k−1 large-blocks
and (u − 1)b corresponds to the previous allocated users
(1, 2, . . . ,u − 1), see Figure 4. The function �u,m(b) is the
sum of the correlations between subcarriers that are in the
same allocation scheme.
Considering the subcarriers m and cu in Cu, we denote

the distance between them by

d := m − cu
= (k

′ − k
′′
)bNu + i

′ − i
′′

(8)

with k′ , k′′ ∈
{
1, 2, 3, . . . , Np

bNu

}
and i′ , i′′ ∈ {1, . . . , b}. We

define the function

f (d) �

⎧⎪⎨⎪⎩
Lh if d = 0
sin
[
π

Lh
Np d

]
sin
[

π
Np d

] e−π j (Lh−1)
Np d otherwise . (9)

The next result guarantees that the function f (d) is
independent of the user index.

Proposition 1. Given the parameters Np, Nu, and Lh,
the value f (d) of the function in (9) for any d = m − cu in
(8) is independent of the user index u.

Proof: The dependence of f on the user index u is
expressed by the term (m − cu), representing the distance
between two subcarriers in the same allocation scheme,
where m, cu ∈ Cu. If m and cu are in two different blocks
there exist two indices k′ and k′′ in

{
1, 2, 3, . . . , Np

bNu

}
such

that

m = (k
′ − 1)bNu + (u − 1)b + i

′
(10)

cu = (k
′′ − 1)bNu + (u − 1)b + i

′′
(11)

Figure 4 Set of subcarriers. The totalNp subcarriers are divided into
Np
bNu

large blocks. The kth large block contains bNu subcarriers, which are
divided into Nu block of size b, one for each user.
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with i′ and i′′ in {1, . . . , b}. Therefore, the distance

m − cu =
(
k

′ − k
′′)

bNu + i
′ − i

′′
(12)

does not depend on the user index u. If m and cu are in
the same block, k′ = k′′ and the same reasoning holds.
This guarantees the independence of the function f (d) on
the particular user u. �

The independence between f (d) and user index u comes
from the fact that given a block-size b, the set of distances
between subcarriers are the same for all users.
We observe that the function f (d) has the following

circularity property.

Proposition 2 (Circularity of f(d)). Given Np the num-
ber of subcarriers and for any distance d between subcarri-
ers given in (8), we have

f (d + Np) = f (d). (13)

Proof: From (9),

f
(
d + Np

) =
sin

[
π

Lh
Np

(d + Np)
]

sin
[

π
Np

(d + Np)
] e−π j (Lh−1)

Np (d+Np)

= ejπ
Lh
Np dejπLh − e−jπ Lh

Np de−jπLh

ejπ
1
Np dejπ − e−jπ 1

Np de−jπ

e−jπ Lh
Np de−jπLh

e−jπ 1
Np de−jπ

= 1 − e−j2π Lh
Np de−j2πLh

1 − e−j2π 1
Np de−j2π

= ejπ
Lh
Np d − e−jπ Lh

Np d

ejπ
1
Np d − e−jπ 1

Np d
e−jπ (Lh−1)

Np d

=
sin

[
π

Lh
Np

d
]

sin
[

π
Np

d
] e−π j (Lh−1)

Np d

= f (d).

�

We consider the following sum-correlation metric:

�(b) =
Nu∑
u=1

∑
m∈Cu

�u,m(b). (14)

Thanks to Proposition 1 and Proposition 2, it can be
expressed as follows:

�(b) =
Nu∑
u=1

|Cu|
σ

(u)2
h
Np

⎛⎝∑
d∈Db

f (d)

⎞⎠ (15)

=
Nu∑
u=1

Np
Nu

σ
(u)2
h
Np

⎛⎜⎜⎝Lh +
∑
d∈Db
d �=0

f (d)

⎞⎟⎟⎠ (16)

where

Db =
{
d = kbNu + i, i ∈ {0, . . . , b − 1}
k ∈

{
0, . . . ,

(
Np
bNu

− 1
)} }

.

(17)

Given a subcarrier of reference, without loss of general-
ity, the setDb represents the set of the distancesb between
the subcarrier of reference and all the other subcarriers in
the same allocation scheme (the k factor represents here
the distance between the large-blocks). This definition is
consistent since the function f (d) has the circularity prop-
erty with respect toNp. This means that it does not matter
which subcarrier of reference we consider. Therefore, the
sum-correlation function defined in (15) is independent
on the reference subcarrier. This guarantees that the next
results hold for each user in the system.
We observe that there is no correlation between the sub-

carrier of reference and other carriers which are spaced
from it at a distance equal to a multiple of Np

Lh . It is obvious
from the definition of the function f (d) that it is equal to
zero when the distance d is a multiple of the ratio Np

Lh :

f
(
r
Np
Lh

)
= 0, ∀r ∈ N

∗. (18)

This is what we observe in Figure 5, in which we plot the
absolute value of the function

∣∣∣f (d)

∣∣∣, with m = 1, Np =
32, Nu = 2 and Lh = 4. We observe that this function is
equal to zero for all the multiples of Np

Lh = 8.
We have seen that the function f (d) equals zero for all

multiples of Np
Lh and that the distance d can be expressed

in function of the block-size b (see (8) and (17)). In the
following, we provide the expression of the block-size b
such that d = Np

Lh .

Proposition 3. Given a fixed distance d = Np
Lh between

subcarriers, the corresponding block-size is equal to b =
Np

LhNu
.

Proof: Notice that, given our allocation policy in
Figure 4, not all the distances can be achieved for any pos-
sible block-size. We consider an arbitrary distance d inDb
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∣
∣
∣, withm = 1,Np = 32,Nu = 2, and

Lh = 4. In this case, NpLh = 8.

and we are interested to find the block-size that ensures
d = Np

Lh :

d = kbNu + i with i ∈ {0, . . . , b − 1} ,
and k ∈

{
0, . . . ,

Np
bNu

− 1
}

= r
Np
Lh

with r ≤ 1.

First, we analyze the case when b ≥ Np
Lh . In this case, we

observe that the condition d = Np
Lh is satisfied if k = 0

and i = Np
Lh . This means that for all b ≥ Np

Lh there are two
subcarriers in the same block such that their distance is
Np
Lh . More interesting is the case when b <

Np
Lh . From the

fact that i ∈ {0, . . . , b − 1} and b <
Np
Lh , in order to have

the distance d = Np
Lh , we have just to consider the case

i = 0. Then, it is obvious that we have d equal to Np
Lh when

bNu = Np
Lh . This means that the block-size is b = Np

LhNu
. �

3.2 Novel blockwise allocation scheme
In the next Theorem, we give the set of optimal block-sizes
that minimize the sum-correlation function �(b). This set
is given by β∗ =

{
1, ..., Np

NuL ,
Np

NuLh

}
⊆ β .

Theorem 1. We consider our uplink system with Np sub-
carriers, Nu users and a channel impulse response length
Lh. Given β∗ �

{
1, . . . , Np

NuL ,
Np

NuLh

}
, we have

1. The elements in the set β∗ minimize the
sum-correlation function �(b):

β∗ = argmin
b∈β

�(b) (19)

2. The optimal value of the sum-correlation function
depends only on the system parameters.

�(b∗) =
Nu∑
u=1

σ
(u)2
h

Np
N2
u
, ∀b∗ ∈ β∗. (20)

Proof: The proof is given in the Appendix 5. �

Proposition 4. In the case without CSI, assuming that
Lh is not known at the transmitter side, we propose to use
β∗ restricted to

{
1, . . . , Np

NuL

}
.

Proof: We observe that
{
1, . . . , Np

NuL

}
is included in{

1, . . . , Np
NuL , . . . ,

Np
NuLh

}
. Intuitively, this means that, in a

more realistic scenario in which only the knowledge of L
and not of the channel length Lh is available, we can still
provide the subset of optimal block-sizes.�

We observe that, in the case without CSI, the minimum
value of the sum-correlation function depends only on
the number of subcarriers, number of users, and the vari-
ance of the channel impulse response and that the largest
optimal block-size is given by

b∗
max = Np

NuL
, (21)

which is a function of system’s parameters: number of
subcarriers, number of users, and cyclic prefix length.
In a more general scenario in which the channel length

is different for each user, i.e., L(u)

h �= Lh, the optimal
block-size maximizing the sum-correlation function is a
difficult problem and an open issue. However, in a real-
istic scenario in which these parameters L(u)

h are not
known, the system planner would assume the worse case
scenario and approximate them with the length of the
cyclic prefix L. Since the length of the cyclic prefix L is
bigger, the chosen block-length is suboptimal and given
by (21).

3.3 Numerical results: diversity and sum-correlation
In this section, the aim is to highlight the close rela-
tionship between diversity gain, outage probability and
the sum-correlation function. We define the outage
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probability of the system under consideration as the max-
imum of the outage probabilities of the users:

Pout = max
1≤u≤Nu

P(u)
out (22)

where P(u)
out = Pr

{
C(u)

b < R
}
with R is a fixed target trans-

mission rate and C(u)

b is the instantaneous mutual infor-
mation of the user u defined in the following. We consider
the transmitted symbols in (2) distributed accordingly to
the Gaussian distribution such that E

[
x(u)x(u)H] = I. The

user instantaneous achievable spectral efficiency assum-
ing single-user decoding at the BS [15] in the case without
CFO is as follows:

C(u)

b = Nu
B

log2 det

⎡⎢⎢⎣I + H(u)�
(u)

b H(u)†

×

⎛⎜⎜⎝Iσ 2
n +

Nu∑
v=1
v�=u

H(v)�(v)
b H(v)†

⎞⎟⎟⎠
−1⎤⎥⎥⎦

= Nu
B

∑
m∈Cu

log2
(
1 + 1

σ 2
n

|H(u)
m |2

)
. (23)

An explicit analytical relation between the sum-
correlation function and the outage probability is still an
open problem. The major issue is the fact that the dis-
tribution of the mutual information is very complex and
closed-form expressions for the outage probability are not
available in general. For example, Emre Telatar’s conjec-
ture on the optimal covariance matrix minimizing the
outage probability in the single-user MIMO channels [13]
is yet to be proven. We propose a new metric, the sum-
correlation function, and show by simulations that there is
an underlying relation between the sum-correlation func-
tion and the outage probability. Indeed, it is intuitive that,
in SC-FDMA systems, correlation among the subcarriers
decreases the diversity gain and, thus, the transmission
reliability decreases [16,17]. This explains that the out-
age probability increases when the correlation among
subcarriers is increasing. This connection has been val-
idated via extensive numerical simulations. The interest
behind this connection is that the sum-correlation func-
tion has a closed-form expression allowing us to perform a
rigorous analysis and to find the blockwise subcarrier allo-
cationminimizing the sum-correlation which is consistent
with the optimal blockwise subcarrier allocationminimiz-
ing the outage probability. The following results illustrate
numerically this connection.

3.3.1 Uncorrelated subcarriers
We consider the case of a SC-FDMA systemwith indepen-
dent subcarriers. Since the subcarriers are independent
the correlation between them is zero, which means that
the sum-correlation �(b) is equal to zero for any block-
size b. In the next simulation, we observe that we obtain
the same performance in terms of the outage probabil-
ity regardless of the particular allocation scheme and the
block-size, see Figure 6. Although this scenario is unreal-
istic from a practical standpoint, it is important to notice
that, in this case, there are no privileged block-sizes to
achieve better diversity gain.
In Figure 6, we plot the outage probability in the

SC-FDMA system with independent subcarriers (sub-
channels) generated by complex Gaussian distribution
with respect to SNR for the scenarioNp = 64,Nu = 2, and
fixed rate R = 1 bits/s/Hz. In particular, in this case with
independent subcarriers, we consider the matrix H(u) in
(4) to be diagonal with entries H(u)

k i.i.d ∼ CN (0, σ 2).
It is clear that for any block-size (hence, for any subcar-
rier allocation scheme) we obtain the same performance
in terms of outage probability. Therefore, there are not any
privileged block-size allocations to achieve better diver-
sity gain. This motivates and strengthens our observation
that the subcarrier correlation has a direct impact on the
outage probability.

3.3.2 Correlated subcarriers
In this section, we consider a more interesting and real-
istic SC-FDMA system given in (4). For simplicity and

1 2 4 8
10

−3

10
−2

10
−1

10
0

SNR(dB)

P
ou

t

b=1
b=2
b=4
b=8
b=16
b=32

Figure 6 Outage probability for a SC-FDMAwith independent
channels withNp = 64 andNu = 2.
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lack of space-related reasons, the simulations presented
here have been done for the particular case L = Lh.
Numerous other simulations were performed in the gen-
eral case Lh ≤ L, which confirm the theoretical result of
Theorem 1.
In Figure 7, we have plotted with respect to the block-

size b, the sum-correlation function�(b) in the SC-FDMA
system without CFO for the scenario Nu = 4, L = 4 and
σ 2(1) = 0.25, σ 2(2) = 0.5, σ 2(3) = 0.125, σ 2(4) = 0.3.
The illustrated markers represent the values of the func-
tion �(b) for the given choice of the parameters of the
system. We observe that the minimal values of �(b) are
obtained for the block-sizes b∗ ∈ β∗ = {1, 2, 4}. In particu-
lar, ∀ b∗ ∈ β∗ = {1, 2, 4} we have �(b∗) = ∑Nu

u=1
σ

(u)2
h Np
N2
u

=
4.7.
In Figure 8, we use Binary Phase Shift Keying (BPSK)

modulation in the following scenario: Np = 64, Nu = 2,
L = 8, and σ

(1)2
h = σ

(2)2
h . We observe that the opti-

mal block-sizes are in β∗ = {1, 2, 4} (but here, we just
plot the smallest and the biggest values) for the BER
which confirms that these block-sizes optimize also the
sum-correlation function we have proposed.
In Figure 9, we use BPSK modulation, Np = 64, Nu = 2,

L = 4, and σ
(2)2
h = 2σ (1)2

h . The optimal block-sizes are
given in the set β∗ = {1, 2, 4, 8}.
In Figure 10, we use BPSK modulation in the following

scenario: Np = 128, Nu = 2, and L = 8. In this case,
we consider an exponential power delay profile which
means that σ

(u)2
h = e−τ/L∑L−1

τ=0 e−τ/L with τ ∈ {0, 1, . . . , L − 1}.
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Figure 7 Function �(b)withNp = 64,Nu = 4, L = 4, and
σ 2(1) = 0.25, σ 2(2) = 0.5, σ 2(3) = 0.125, σ 2(4) = 0.3. For any
b∗ ∈β∗ ={1, 2, 4}, we have �(b∗) = (0.25 + 0.5 + 0.125 + 0.3) 64

42
= 4.7.
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Figure 8 Bit error rate for a SC-FDMA systemwithout CFO for the
scenarioNp = 64,Nu = 2, and L = 8, and σ

(1)2
h = σ

(2)2
h . The

optimal block-sizes are b∗ ∈ β∗ = {1, 2, 4}.

The theoretical results are confirmed since the optimal
block-sizes are in β∗ = {1, 2, 4, 8}.
In Figure 11, we evaluate the outage probability Pout

in the SC-FDMA system without CFO for the scenario
Nu = 4, L = 4, and R = 1 bits/s/Hz. We observe
that the optimal block-sizes are the ones that corre-
spond to the outage probabilities which have a higher
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Figure 9 Bit error rate for a SC-FDMA systemwithout CFO for the
scenarioNp = 64,Nu = 2, L = 4, and σ

(2)2
h = 2σ (1)2

h . The optimal
block-sizes are b∗ ∈ β∗ = {1, 2, 4, 8}.
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Figure 10 Bit error rate for a SC-FDMA systemwithout CFO for
the scenarioNp = 128,Nu = 2, L = 8, and exponential power
delay profile. The optimal block-sizes are b∗ ∈ β∗ = {1, 2, 4, 8}.

decreasing rate as a function of the SNR. We see that
the curves with b∗ ∈ β∗ = {1, 2, 4} (in this case
b∗
max = 64

4×4 = 4) are overlapped and they repre-
sent the lower outage probability. These block-sizes are
the same that minimize the sum-correlation function
(see Figure 7).
In Figure 12, we plot the outage probability for the SC-

FDMA system without CFO for the scenario Np = 64,
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Figure 11 Outage probability for a SC-FDMA systemwithout
CFO withNp = 64,Nu = 4, and L = 4. The optimal block-sizes are
b∗ ∈ β∗ = {1, 2, 4}.
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Figure 12 Outage probability for a SC-FDMA systemwithout
CFO withNp = 64,Nu = 2, and L = 4. The optimal block-sizes are
b∗ ∈ β∗ = {1, 2, 4, 8}.

Nu = 2, L = 4, and R = 1 bits/s/Hz so that b∗
max = 64

2×4 =
8. In this case in which the subcarriers are correlated, we
observe that the curves with b∗ ∈ β∗ = {1, 2, 4, 8} have a
higher diversity.
Many others simulations, changing the values of the

parameters (in particular, Np and L), have been per-
formed, and similar observations were made. Moreover,
we have done simulations choosing the following as a
performance metric:

P̃out,b = 1 −
Nu∏
u=1

(
1 − P(u)

out,b

)
. (24)

The same observation can be made with this outage
metric.

4 Robustness to CFO
In this section, we analyze the case of SC-FDMA systems
with CFO and the effect of CFO on the optimal block-size.
We define the sum-correlation function and we show its
robustness to CFO.
We start by describing in details the system model.

4.1 Systemmodel
If the system undergoes CFOs, the signal at the input of
the receiver DFT is given in (25), and it was introduced in
[10],
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⎛⎜⎜⎜⎜⎜⎜⎜⎝

yNp−1
...
y0
...

y−L

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

Nu∑
u=1

⎛⎜⎜⎜⎜⎜⎜⎝
h(u)
0 · · · h(u)

L−1
0

. . . . . .
0

h(u)
0 · · · h(u)

L−1

⎞⎟⎟⎟⎟⎟⎟⎠

×

⎛⎜⎜⎜⎜⎜⎜⎝
δ
(u)
(Np+L−1)

0
. . .

0
δ
(u)
0

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

a(u)
Np−1
...

a(u)
0
...

a(u)
−L

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎜⎝

nNp−1
...
n0
...

n−L

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(25)

The diagonal elements δ
(u)

k are the frequency shift coef-

ficients given by δ
(u)

k = e
j2πkδf (u)

c T
Np , k ∈ {

0, . . . ,Np+
L − 1}, where δf (u)

c
Np

is the normalized CFO of user u.
By discarding the cyclic prefix symbols and rearranging

the terms in (25), we have

⎛⎜⎝ yNp−1
...
y0

⎞⎟⎠ =
Nu∑
u=1

h(u)
circ

⎛⎜⎜⎜⎜⎜⎜⎝
δ
(u)
(Np+L−1)

0
. . .

0
δ
(u)
L

⎞⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

δ(u)

×

⎛⎜⎜⎝
a(u)
Np−1
...

a(u)
0

⎞⎟⎟⎠+
⎛⎜⎝ nNp−1

...
n0

⎞⎟⎠ .

(26)

The received signal at the BS after the DFT is

rCFO =
Nu∑
u=1

H(u)�(u)�
(u)

b x(u) + n̂, (27)

where theNp ×Np matrix �(u) = Fδ(u)F−1 represents the
effect of CFO on the interference among subcarriers. In
particular, we have the (l, k) element of �(u):

	
(u)


,k = 1
Np

Np−1∑
i=0

ej2π iδf /Npe−j2π i(
−k)/Np

= 1
Np

sin
(
π(δf + k − 
)

)
sin

(
π
Np

(δf + k − 
)
)eπ j(1− 1

Np

)
(δf+k−
).(28)

In the sequel, we denote H̃(u) � H(u)�(u), which is no
longer a diagonal matrix.

4.2 Diversity versus CFO in subcarrier allocation
We consider the following inter-carrier correlation func-
tion:

�CFO
u,m (b, δf ) �

∑
cu∈Cu

E

[
H(u)
m 	m,m [1, . . . , 1] H̃(u)†

cu

]
=

∑
cu∈Cu

∑
k∈Cu

E

[
H(u)
m H(u)∗

cu

]
	m,m	∗

cu ,k

=
∑
k∈Cu

E

[∣∣∣H(u)
m

∣∣∣2]	m,m	∗
m,k

+
∑
cu∈Cu
cu �=m

∑
k∈Cu

E

[
H(u)
m H(u)∗

cu

]
	m,m	∗

cu ,k

= E

[∣∣∣H(u)
m

∣∣∣2] ∣∣∣	m,m

∣∣∣2+∑
k∈Cu
k �=m

E

[∣∣∣H(u)
m

∣∣∣2]	m,m	∗
m,k+

+
∑
cu∈Cu
cu �=m

E

[
H(u)
m H(u)∗

cu

]
	m,m	∗

cu ,cu

+
∑
cu∈Cu
cu �=m

∑
k∈Cu
k �=cu

E

[
H(u)
m H(u)∗

cu

]
	m,m	∗

cu ,k

= σ
(u)2
h

Lh
Np

[
1
N2
p

sin2(πδf )
sin2( π

Np
δf )

+
∑
k∈Cu
k �=m

1
N2
p
e−π j

(
1− 1

Np

)
(k−m) sin(πδf )

sin( π
Np

δf )

× sin(π(δf + k − m))

sin( π
Np

(δf + k − m))

]
+

+ σ
(u)2
h
Np

∑
cu∈Cu
cu �=m

e−π j (Lh−1)
Np (m−cu)

sin
[
π

Lh
Np

(m − cu)
]

sin
[

π
Np

(m − cu)
] ×

×

⎡⎢⎢⎣ 1
N2
p

sin2(πδf )
sin2( π

Np
δf )

+
∑
k∈Cu
k �=cu

1
N2
p
e−π j

(
1− 1

Np

)
(k−cu)

× sin(πδf )
sin( π

Np
δf )

sin(π(δf + k − cu))
sin( π

Np
(δf + k − cu))

⎤⎥⎥⎦
(29)

wherem ∈ Cu is the reference subcarrier, δf represents the
CFO of user u, and H̃(u)

cu =
(
H(u)
cu 	cu,1, . . . ,H

(u)
cu 	cu,Np

)
represents the cu-th row of the matrix H̃(u).
We define the sum-correlation metric as follows:

�CFO(b, δf ) =
Nu∑
u=1

∑
m∈Cu

�CFO
u,m (b, δf ). (30)

In the following, we provide an approximation of the
correlation function �CFO

m,u (b, δf ) in which the dependance
on the CFO values δf is taken into account. In particular,
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we consider the second order Taylor approximation of
�CFO
m,u (b, δf ) when δf → 0

�CFO
m,u (b, δf ) ≈ �CFO

m,u (b, 0) + d�CFO
m,u

dδf
(b, 0)δf

+1
2
d2�CFO

m,u
d(δf )2

(b, 0)(δf )2.

(31)

This first term �CFO
m,u (b, 0) is given by

�CFO
u,m (b, 0) = σ

(u)2
h

Lh
Np

⎡⎢⎢⎣ 1
N2
p
N2
p + 1

N2
p

∑
k∈Cu
k �=m

e−π j
(
1− 1

Np

)
(k−m)Np ×0

⎤⎥⎥⎦+

+ σ
(u)2
h
Np

∑
cu∈Cu
cu �=m

e−π j (Lh−1)
Np (m−cu)

sin
[
π

Lh
Np

(m − cu)
]

sin
[

π
Np

(m − cu)
] ×

×

⎡⎢⎢⎣ 1
N2
p
N2
p + 1

N2
p

∑
k∈Cu
k �=cu

e−π j
(
1− 1

Np

)
(k−cu)Np × 0

⎤⎥⎥⎦
= σ

(u)2
h

Lh
Np

+ σ
(u)2
h
Np

∑
cu∈Cu
cu �=m

e−π j (Lh−1)
Np (m−cu)

sin
[
π

Lh
Np

(m − cu)
]

sin
[

π
Np

(m − cu)
] .

(32)

Indeed, this expression corresponds exactly to �m,u(b),
i.e., the sum-correlation function in the case without CFO
in (6).
The first derivative of �CFO

m,u (b, δf ) with respect to δf
computed in (b, 0) is

d�CFO
m,u

dδf
(b, 0) = σ

(u)2
h

Lh
Np

⎡⎢⎢⎣∑
k∈Cu
k �=m

1
N2
p
e−π j

(
1− 1

Np

)
(k−m)

×πNpcos(π(k − m))

sin( π
Np

(k − m))

⎤⎥⎥⎦+

+ σ
(u)2
h
Np

∑
cu∈Cu
cu �=m

e−π j (Lh−1)
Np (m−cu)

sin
[
π

Lh
Np

(m − cu)
]

sin
[

π
Np

(m − cu)
] ×

×

⎡⎢⎢⎣∑
k∈Cu
k �=cu

1
N2
p
e−π j

(
1− 1

Np

)
(k−cu) πNpcos(π(k − cu))

sin( π
Np

(k − cu))

⎤⎥⎥⎦
(33)

The second derivative of �CFO
m,u (b, δf ) computed in

(b, 0) is

1
2
d2�CFO

m,u
d(δf )2

(b, 0) = 1
2
σ

(u)2
h

Lh
Np

⎡⎢⎢⎣2π2(1 − N2
p )

N2
p

− 1
N2
p

∑
k∈Cu
k �=m

e−π j
(
1− 1

Np

)
(k−m)

×
2π2cos

(
π
Np

(k − m)
)

sin2
(

π
Np

(k − m)
)

⎤⎥⎥⎦+

+ 1
2

σ
(u)2
h
Np

∑
cu∈Cu
cu �=m

e−π j (Lh−1)
Np (m−cu)

×
sin

[
π

Lh
Np

(m − cu)
]

sin
[

π
Np

(m − cu)
] ×

×

⎡⎢⎢⎣ 2π2(1 − N2
p )

N2
p

− 1
N2
p

∑
k∈Cu
k �=cu

e−π j
(
1− 1

Np

)
(k−cu)

×
2π2cos

(
π
Np

(k − cu)
)

sin2
(

π
Np

(k − cu)
)

⎤⎦
(34)

Therefore, we have

�CFO
m,u (b, δf ) ≈ σ

(u)2
h
Np

Lh + σ
(u)2
h
Np

∑
cu∈Cu

sin
[
πLh
Np

(m − cu)
]

sin
[

π
Np

(m − cu)
] × e−π j (Lh−1)

Np (m−cu)+

+

⎧⎪⎪⎨⎪⎪⎩σ
(u)2
h

Lh
Np

⎡⎢⎢⎣∑
k∈Cu
k �=m

1
Np

e−π j
(
1− 1

Np

)
(k−m) cos(π(k − m))

sin( π
Np

(k − m))

⎤⎥⎥⎦+

+ σ
(u)2
h
Np

∑
cu∈Cu
cu �=m

e−π j (Lh−1)
Np (m−cu)

sin
[
π

Lh
Np

(m − cu)
]

sin
[

π
Np

(m − cu)
] ×

×

⎡⎢⎢⎣∑
k∈Cu
k �=cu

1
Np

e−π j
(
1− 1

Np

)
(k−cu) cos(π(k − cu))

sin( π
Np

(k − cu))

⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭πδf

+

⎧⎪⎪⎨⎪⎪⎩σ
(u)2
h

Lh
Np

⎡⎢⎢⎣ (1 − N2
p )

N2
p

− 1
N2
p

∑
k∈Cu
k �=m

e−π j
(
1− 1

Np

)
(k−m)

×
cos

(
π
Np

(k − m)
)

sin2
(

π
Np

(k − m)
)
⎤⎦+

+ σ
(u)2
h
Np

∑
cu∈Cu
cu �=m

e−π j (Lh−1)
Np (m−cu)

sin
[
π

Lh
Np

(m − cu)
]

sin
[

π
Np

(m − cu)
] ×

×

⎡⎢⎢⎣ (1 − N2
p )

N2
p

− 1
N2
p

∑
k∈Cu
k �=cu

e−π j
(
1− 1

Np

)
(k−cu)

×
cos

(
π
Np

(k − cu)
)

sin2
(

π
Np

(k − cu)
)
⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭π2(δf )2.

(35)
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We observe in the above approximation the presence of
the predominant term represented by the sum-correlation
�m,u(b) without CFO and the first and the second deriva-
tives of�CFO

m,u (b, δf )which aremultiplied by the CFO value
δf and δf 2, respectively. This last terms may result in a
different solution for the optimal block-size or block-sizes
that optimize the sum-correlation function than the solu-
tion for the case with no CFO. We observe that the first
and the second derivatives represent a complex function
that implicitly depends on b. Finding the optimal block-
size or block-sizes in an analytical manner, as done in the
case with no CFO, seems very difficult if at all possible and
is left for future investigation.
When the system undergoes CFO, the carrier corre-

lation and CFO affect the system performance simulta-
neously. We have proposed in [12] the largest optimal
block-size b∗

max as the unique optimal block-size: Since
CFO yields a diversity loss, in the presence of moder-
ate values of CFO, the optimal block-size allocation is
b∗
max . We have found that the optimal block-sizes that

achievemaximum diversity are the ones that minimize the
correlation between subcarriers. Moreover, larger block-
sizes are preferable to combat the effect of ICI. Also,
since b∗

max is the largest block-size between the ones
minimizing the correlation, it is also the one that min-
imizes the negative effects caused by the presence of
CFO. Therefore, b∗

max represents a good tradeoff between
diversity and CFO. Moreover, the observation is vali-
dated also by numerical simulations illustrated in the next
subsection.

4.3 Numerical results: CFO impact
In Figure 13, we plot the correlation �CFO(b, δf ) for the
scenario: Np = 64, Nu = 2, Lh = 8, and σ

(1)2
h =

0.25, σ
(2)2
h = 0.5. The considered CFO values are δf ∈

{0.1, 0.2, 0.3, 0.4}. We observe that b∗
max = 4 is the block-

size that achieves the minimum value of the correlation
function �CFO(b, δf ), validating our conjectured optimal
block-size.
In the next two simulations, we use BPSK modulation

andNp = 128,Nu = 2, and L = 8. Figure 14 illustrates the
bit error rate (BER) curves for a SC-FDMA system with
CFO independently and uniformly generated for each
user in [0, 0.03]. We observe that for these low CFOs we
have the optimal block-sizes given by β∗ = {1, 2, 4, 8}.
Figure 15 illustrates the BER curves for a SC-FDMA sys-
tem with CFO independently and uniformly generated for
each user in [0, 0.1]. We observe that, in this case, we have
a unique optimal block-size given by β∗

max = 8. This val-
idates our observations, i.e., when the CFO’s values are
increasing, the best tradeoff between diversity and CFO is
represented by the largest block-size of our proposed set
b∗
max.
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Figure 13 The correlation function �CFO(b, δf ) as function of b
for the scenario:Np = 64,Nu = 2, Lh = 8, and σ

(1)2
h = 0.25,

σ
(2)2
h = 0.5, δf ∈ {0.1, 0.2, 0.3, 0.4}. The optimal block-size

minimizing the correlation function is b∗
max = Np

LNu
= 4.

In Figure 16, we use BPSK modulation in the following
scenario: Np = 64, Nu = 2, and L = 4. We consider the
same model proposed in [11] where one symbol is spread
over all subcarriers. The CFO is independently and uni-
formly generated for each user in [0, 0.1]. We observe that
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Figure 14 Bit error rate for a SC-FDMA systemwith CFO for the
scenarioNp = 128,Nu = 2, and L = 8. The CFO of each user is
independently uniformly generated in [0, 0.03]. The optimal
block-sizes are b∗ ∈ β∗ = {1, 2, 4, 8}.
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Figure 15 Bit error rate for a SC-FDMA systemwith CFO for the
scenarioNp = 128,Nu = 2, and L = 8. The CFO of each user is
independently uniformly generated in [0, 0.1]. The optimal block-sizes
is b∗

max = 8.

the optimal block-sizes are in β∗ = {1, 2, 4, 8} for the BER
which confirms that our analysis is valid for the model
proposed in [11].
In Figure 17, we use BPSK, Np = 64, Nu = 2, and

L = 8 and an exponential power delay profile. The CFO
is independently and uniformly generated for each user
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Figure 16 Bit error rate for a SC-FDMA systemwith CFO for the
scenarioNp = 64,Nu = 2, and L = 4. The CFO is independently
and uniformly generated for each user in [0, 0.1]. The optimal
block-sizes are b∗ ∈ β∗ = {1, 2, 4, 8}.
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Figure 17 Bit error rate for a SC-FDMA systemwith CFO for the
scenarioNp = 64,Nu = 2, and L = 8. The CFO is independently
and uniformly generated for each user in [0, 0.05]. The optimal
block-sizes are b∗ ∈ β∗ = {1, 2, 4}.

in [0, 0.05]. The set of optimal block-sizes given by β∗ =
{1, 2, 4} as shown in the figure.
For different and larger CFO values, as considered in

[18], we notice that an error floor is obtained due to the
effect of CFO interference. Thus, in such cases, optimiz-
ing the block-size is not very relevant as all possibilities
obtain such poor results in terms of BER.
In the next simulation, we consider the following sce-

nario: Np = 64, Nu = 4, and L = 8. In the Figure 18, we
plot the outage probability of an SC-FDMA system with
CFO (marker lines) against the outage probability of the
SC-FDMA system without CFO (dashed lines). The CFO
for each user is independently uniformly generated in δf ∈
[0, 0.01], and the rate R is taken equal to 1bits/s/Hz. We
can see that the curves in the CFO case fit very well the
outage probability curves without CFO. In particular, they
appear in a decreasing order of block-size. This validates
our analytical analysis on the approximation of the CFO
sum-correlation function to the case without CFO when
the CFO goes to zero. Moreover, we observe that in the
two cases we have the same optimal block-sizes set, given
by β∗ = {1, 2}.

5 Conclusions
In this work, we have provided the analytical expression
of the set of optimal sizes of subcarrier blocks for SC-
FDMA uplink systems without CFO and without channel
state information. These optimal block-sizes allow us to
minimize the sum-correlation between subcarriers and to
achieve maximum diversity gain. We have also provided
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Figure 18 Outage probability for a SC-FDMA systemwith and
without CFO. Outage probability for a SC-FDMA system without CFO
(appearing in decreasing order of block-size from up to down) and
with CFO (marker lines) for the scenarioNp = 64,Nu = 4, and L = 8.
The CFO of each user is independently uniformly generated in
[0, 0.01]. The optimal block-sizes are b∗ ∈ β∗ = {1, 2}.

the analytical expression of the sum-correlation between
subcarriers induced by SC-FDMA/OFDMA. Moreover,
we have found an explicit expression of the largest optimal
block-size which minimizes the sum-correlation function
depending on the system’s parameters: number of subcar-
riers, number of users, and the cyclic prefix length. Inter-
esting properties of this novel sum-correlation function
are also presented.
It turns out that the minimal sum-correlation value

depends only on the number of subcarriers, number of
users, and the variance of the channel impulse response.
We validate via numerical simulations that the set of opti-
mal block-sizes achieving maximum diversity minimizes
the outage probability in the case without CFO.
Also, in the case where the system undergoes CFO, we

consider a sum-correlation function which is robust to
CFO. Robustness is induced by the fact that when the CFO
goes to zero, the CFO sum-correlation can be well approx-
imated by the sum-correlation function defined in the
case without CFO. Therefore, we propose b∗

max = Np
LhNu

a good tradeoff between diversity and CFO since it rep-
resents the unique optimal block-size that achieves max-
imum diversity. All these results and observations have
been validated via extensive Monte Carlo simulations.

Endnotes
aIf we do not take this assumption into account, we

would have to use Ñp = MNu instead of Np to denote the

actual allocated number of carriers and �Np
Nu

� instead of
Np
Nu

as the number of carriers per user.
bHere we use the word “distance” as synonym of

difference and not for Euclidean distance.

Appendix
Proof of Theorem 1
Proof: From the definition of the setDb, we can write the
function �(b) as follows:

�(b) =
Nu∑
u=1

Np
Nu

σ
(u)2
h Np

∑
d∈Db

f (d)

=
Nu∑
u=1

σ
(u)2
h
Nu

b−1∑
i=0

Np
bNu −1∑
k=0

f (kbNu + i)

=
Nu∑
u=1

σ
(u)2
h
Nu

⎛⎜⎝
Np
bNu −1∑
k=0

f (kbNu) +
b−1∑
i=1

Np
bNu −1∑
k=0

f (kbNu + i)

⎞⎟⎠

=
Nu∑
u=1

σ
(u)2
h
Nu

⎛⎜⎝Lh +
Np
bNu −1∑
k=1

f (kbNu) +
b−1∑
i=1

Np
bNu −1∑
k=0

f (kbNu + i)

⎞⎟⎠ .

(36)

First of all, we analyze the term:
∑b−1

i=1
∑ Np

bNu −1
k=0 f (kbNu+i)

and, in particular, its ith term

Np
bNu −1∑
k=0

f (kbNu + i) =

=
Np
bNu −1∑
k=0

sin
(
π

Lh
Np

(kbNu + i)
)

sin
(

π
Np

(kbNu + i)
) e−jπ (Lh−1)

Np (kbNu+i)

=
Np
bNu −1∑
k=0

1 − e−j2π Lh
Np kbNue−j2π Lh

Np i

1 − e−j2π 1
Np kbNue−j2π 1

Np i

=
Np
bNu −1∑
k=0

1 − (
αizk

)Lh
1 − αizk

(37)

with αi := e−j2π 1
Np i and z := e−j2π 1

Np bNu . Using the
decomposition of a geometric series of radius αizk , we
further obtain

Np
bNu −1∑
k=0

f (kbNu + i) =
Np
bNu −1∑
k=0

⎡⎣Lh−1∑

=0

(
αizk

)


⎤⎦
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and, inverting the two sums, we have

Np
bNu −1∑
k=0

f (kbNu + i) =
Lh−1∑

=0

α

i

Np
bNu −1∑
k=0

(
z

)k

= Np
bNu

+
Lh−1∑

=1

Np
bNu −1∑
k=0

α

i (z


)k .

(38)

Now, we look at the term
∑ Np

bNu −1
k=1 f (kbNu) in

Equation (36) and observe that, by using the same
reasoning, we can write

Np
bNu −1∑
k=1

f (kbNu) = Np
bNu

− 1 +
Lh−1∑

=1

Np
bNu −1∑
k=1

(z
)k . (39)

In what follows, we consider two different cases:
(a) The case in which z
 �= 1. In this case, we observe that
∀
 ∈ {1, 2, . . . , L − 1}

Np
bNu −1∑
k=0

α

i (z


)k = α

i
1 − z

Np
bNu

1 − z


= α

i

1 − e−j2π


1 − e−j2π 1
Np bNu


= 0 if z
 �= 1. (40)

and

Np
bNu −1∑
k=1

(z
)k =
Np
bNu −1∑
k=0

(z
)k − 1

= −1. (41)

Therefore, using Equations (38), (39), (40), and (41),
Equation (36) becomes

�(b) =
Nu∑
u=1

σ
(u)2
h
Nu

[
Lh + Np

bNu
− 1 − (Lh − 1) + (b − 1)

Np
bNu

]

=
Nu∑
u=1

σ
(u)2
h
Nu

[
b
Np
bNu

]

=
Nu∑
u=1

σ
(u)2
h

Np
N2
u
.

(42)

(b) The case in which z
 = 1. We observe that if there
exists an integer 
 in {1, 2, . . . , Lh − 1} such that z
 = 1,
then we have

Np
bNu −1∑
k=0

α
(z
)k =
Np
bNu −1∑
k=0

α
(1)k

= α
 Np
bNu

�= 0. (43)

and
Np
bNu −1∑
k=1

(z
)k = Np
bNu

− 1

�= −1. (44)

Therefore, from the definition of z = e−j2π 1
Np bNu , we have

that z
 = 1 when nu
Np

∈ Z
+. Without loss of generality, we

look at the smallest integer in Z
+, and we see that

bNu
Np


 = 1 ⇔ 
 = Np
bNu

. (45)

Hence, since 
 ∈ {1, 2, . . . , Lh − 1} we have that
Np
bNu

< Lh (46)

which is equivalent to b >
Np
LNu

. Therefore, when b >
Np

LhNu
, we can have at least one sum of the form

Np
bNu −1∑
k=0

α
(z
)k > 0

(and
∑ Np

bNu −1
k=1 (z
)k > −1). From Equations (38), (39), and

(42), we can conclude that

�(b) >

Nu∑
u=1

σ
(u)2
h

Np
N2
u
, ∀b >

Np
LhNu

. (47)

To conclude our proof, from the analysis of cases (a) and
(b), we can state the following result:

�m(1) = · · · = �m

( Np
LhNu

)
=

Nu∑
u=1

σ
(u)2
h

Np
N2
u

(48)

and

�m(b) > �m

( Np
LhNu

)
(49)

for all b >
Np

LhNu
. �
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