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ABSTRACT

In this paper, we consider the problem of testing impropriety
(i.e., second-order noncircularity) of a complex-valued ran-
dom variable (RV) based on the generalized likelihood ratio
test (GLRT) derived under Gaussian distributions. Asymp-
totic (w.r.t. the data length) distributions of the GLR are given
under the hypothesis that data are proper or improper, and un-
der the true, not necessarily Gaussian distribution of the data.
This enables us to derive in particular the receiver operating
characteristics (ROC) of this test, an issue previously over-
looked. Finally illustrative examples are presented in order to
strengthen the obtained theoretical results.

Index Terms— Generalized likelihood ratio (GLR), re-
ceiver operating characteristics (ROC), asymptotic distribu-
tion of noncircularity coefficients estimate, improper, second-
order noncircular complex random variables.

1. INTRODUCTION

Many papers (see, e.g., [1, 2, 3]) show that significant perfor-
mance gains can be achieved by second-order algorithms ex-
ploiting the statistical information contained in Cx =E(xxT )
(where x is the observation), provided it is non-zero in ad-
dition to that contained in the standard covariance matrix
Rx =E(xxH), but with an additional complexity. Moreover,
some such algorithms (see e.g., [4]) adapted for improper or
second-order noncircular signals, i.e., with non-zero matrices
Cx, fail or suffer of too slow convergence when they are used
for proper or second-order circular signals.

Thus, the question that arises as to how we can classify a
signal as proper or improper. This problem is a binary hypoth-
esis test H0: Cx = O versus H1: Cx 6= O. In practice, the
parameters Rx and Cx are often unknown, thus only the GLR
detector can be employed. Based on independent and identi-
cally distributed Gaussian samples (xk)k=1,...,K , this detec-
tor was introduced independently by Ollila and Koivunen [5]
and Schreier, Scharf and Hanssen [6], its performance was
illustrated by a Monte Carlo simulation only. Formulating
this testing problem in terms of real-valued Gaussian random
vectors, Walden and Rubin-Delanchy [7] derived recently this
GLRT as well. In addition, they presented a theoretic analy-
sis of the null asymptotic distribution of the GLR and several

numerical analysis based on Monte Carlo simulations for the
alternative distribution under the Gaussian distribution of the
signals.

The aim of this paper is to complement the theoretical
asymptotical analysis of [7] by considering the null and alter-
native asymptotic distribution of the GLR derived under the
Gaussian distribution, but used in practice under arbitrary not
necessarily Gaussian distributions. This paper is organized as
follows. In Section 2, the GLRT is recalled for the conve-
nience of the reader. Using the asymptotic distributions of the
noncircularity coefficients given in [8], the asymptotic distri-
bution of the GLR under the hypothesis that data are proper
or improper, and under the true, not necessarily Gaussian dis-
tribution of the data are given in the scalar case, and then ex-
tended to the multidimensional case in Section 3. Due to the
simplicity of the asymptotic distribution of the GLR, an in-
terpretable closed-form expression of the ROC is given in the
scalar case. Finally some illustrative examples are given in
Section 4.

2. GENERALIZED LIKELIHOOD RATIO DECISION
RULE

Assume that (xk)k=1,...K ∈ CN is a realization of K in-
dependent identically zero-mean complex Gaussian dis-
tributed RVs of covariance matrices Rx = E(xxH) and
Cx = E(xxT ). Consider the following binary composite
hypothesis testing problem:

H0 : Cx = O, Rx

H1 : Cx 6= O, Rx.

The GLR replaces the unknown parameters Rx and Cx by
their maximum likelihood (ML) estimates in the likelihood
ratio. It is straightforward to derive its expression which is
given by [5] [6]

L(x,K) def=
p

(
(xk)k=1,...K ; R̂x, Ĉx,H1

)

p
(
(xk)k=1,...K ; R̂x,O,H0

) =
det(R̂x)K

det(R̂x̃)K/2

(1)
with R̂x

def= 1
K

∑K
k=1 xkxH

k and R̂x̃
def= 1

K

∑K
k=1 x̃kx̃H

k

where, x̃k
def= [xT

k ,xH
k ]T . The GLRT decides H1 if

L(x,K) > λ (2)



and otherwise H0. Note that no uniformly most powerful
(UMP) linearly1 invariant test for impropriety exists for N >
1 [7]. In the scalar case N = 1, the GLRT is the UMP linearly
invariant test [7]. It becomes especially simple

L(x,K) = (1− γ̂2
x)−K/2

with γ̂x = | 1
K

∑K
k=1 x2

k|/ 1
K

∑K
k=1 |xk|2 is the ML estimates

[8] of the noncircularity coefficient γx
def= |E(x2

k)|/E|xk|2
and the GLRT decides H1 if

γ̂x > λ′, (3)

which is quite intuitive.

3. ASYMPTOTIC DISTRIBUTION OF GLR

Throughout in the sequel, we consider this GLRT is used for
independent identically zero-mean non necessarily Gaussian
distributed data (xk)k=1,...K . For nonGaussian data, the de-
cision rule (2) is no longer a GLRT. However, it is simple to
implement and generally provides good performance in prac-
tice (see e.g., for the detection of a known signal corrupted by
noncircular interference [9]).

3.1. Scalar complex random variable

In the scalar-valued case, the following result is proved in the
Appendix.

Result 1 Under the respective hypothesis H0 and H1, the fol-
lowing convergences in distribution hold when K →∞

√
Kγ̂x

L→ R(1 +
κx

2
) (4)

√
K(γ̂x − γx) L→ N (0, σ2

γ) if γx < 1, (5)

where R(1 + κx

2 ) and N (0, σ2
γ) denote the Rayleigh distri-

bution with parameter 1 + κx

2 and the zero-mean Gaussian
distribution with variance σ2

γ respectively, with

σ2
γ = 1−2γ2

x+γ4
x+γ2

xκx+
κx

2
+

γ2
x<(κ′x)

2
−2γ2

x<(κ′′x) (6)

if σ2
γ 6= 0, where under H0 and H1, κx, κ′x and κ′′x are the

normalized-like cumulants Cum(xk,xk,x∗k,x∗k)
(E(|xk|2))2 , Cum(xk,xk,xk,xk)

(E(x2
k))2

and Cum(xk,xk,xk,x∗k)

E(|xk|2)E(x2
k)

respectively which are invariant to any
rotation of the distribution of xk.

Remark 1: This theoretical result means in practice that for
K À 1, the estimate γ̂x is approximately Rayleigh (of pa-

rameter 1+ κx
2

K ) or Gaussian N (γx,
σ2

γ

K ) distributed under H0

and H1, respectively. We note that the domain of validity of
1Linear w.r.t. C, which thus includes rotation and scaling, but not widely

linear operation.

this approximation depends on γx and σ2
γ through the rough

relation γx − 2σγ√
K

> 0. Concerning the practical use of this
result, i.e., for PD 6= 1 and PFA 6= 0, we note that the distri-
bution of γ̂x under H0 and H1 must overlap. This is roughly

achieved for γx − 2σγ√
K

<
4
√

1+κx/2√
K

.
Remark 2: In the particular case of rectilinear RVs for which
γx = 1, we have xk = rkeiφ with rk is a real-valued RV and
with φ fixed. Consequently, the noncircularity coefficient γx

is perfectly estimated, i.e., γ̂x = 1. In this case, the detection
problem is singular and for a threshold λ′ close to 1, the prob-
ability of detection PD and false alarm PFA are equal to 1 and
0 respectively.
Remark 3: It is possible that σ2

γ = 0 with γx < 1 (such a sit-
uation is given in [8]). In this case, the sequence K(γ̂x − γx)
converges in distribution [10, Th.B, p.124] to an Hermitian
form zHΩz, where z is a two dimensional zero-mean com-
plex Gaussian RV, whose distribution is defined by the right
hand side of (10), and where our first order analysis does not
allow one to specify the matrix Ω.
Remark 4: We note that for γx close to zero and K À 1,
2 lnL(x,K) = −K ln(1 − γ̂2

x) ≈ Kγ̂2
x. Furthermore for xk

Gaussian distributed, κx = 0. In these cases (4) gives

2 ln L(x,K) L→ χ2
2, under H0.

This convergence in distribution is consistent with the con-
stant false alarm rate (CFAR) detector where the number 2 of
degree of freedom of the chi-square distribution is equal to
the number of real-valued components of cx

def= E(x2
k), given

by the Wilk’s theorem [13, p.132].
Remark 5: For Gaussian distributed data, κx = κ′x = κ′′x =
0 and the variance σ2

γ of the asymptotic distribution of γ̂x

under the hypothesis H1 equal to 1−2γ2
x+γ4

x, is a decreasing
function of γx. Consequently for a fixed PFA, i.e., for fixed
threshold λ′, PD is an increasing function of γx that does not
depend on the power of xk, which is very intuitive.

For an arbitrary, not necessarily Gaussian distribution of
xk, Result 1 allows us to derive

PFA = P (γ̂x > λ′/H0) ≈ Qχ2
2

(
Kλ′2

1 + κx

2

)

PD = P (γ̂x > λ′/H1) ≈ QN

(√
K(λ′ − γx)

σγ

)
,

where Qχ2
2
(.) and QN (.) denote the complementary cumula-

tive distribution functions of the chi-square distribution with
2 degrees of freedom and the zero-mean, unit-variance Gaus-
sian distribution respectively, and where σγ is given by (6).
This gives the following closed form expression of the ROC
of GLR detector (3).

PD ≈ QN




√
(1 + κx

2 )Q−1
χ2

2
(PFA)−√Kγx

σγ


 . (7)



We clearly see from this expression that for fixed PFA, PD is
an increasing function of the data length K and for Gaussian
distributed data, an increasing function of the noncircularity
coefficient γx.

3.2. Multidimensional complex random variable

In the multidimensional case (N > 1), no simple inter-
pretable expression of PFA and PD are available, but the
following result is proved in the Appendix.

Result 2 Under hypothesis H0 and H1, the following con-
vergences in distribution hold when K →∞ for the decision
statistic `(x,K) def= [L(x,K)]−2/K

√
K(l(x,K)− `i)

L→ N (0, σ2
i ), under Hi i = 0, 1, (8)

where `0 = 1 and the expression of `1 < 1 is given in the
Appendix.

Remark 6: Note that Wilk’s theorem [13, p.132] gives

2 lnL(x,K) L→ χ2
N(N+1) under H0,

where the number of degrees of freedom of the chi-squared
distributions is equal to N(N +1) of real-valued independent
parameters in Cx. Furthermore under H1, in the case of Cx is
”close” to O (see a more formal definition in [12, Ch.23.7]),
the analysis of [11, Sec.II] is valid and gives the following
approximation of distribution when K À 1 :

2 ln L(x,K) a∼ χ′2N(N+1)(µ) under H1,

where χ′2N(N+1)(µ) represents a noncentral chi-squared dis-
tribution with N(N + 1) degrees of freedom and noncentral
parameter µ. This parameter is a measure of the discrimina-
tion between the two hypothesis, whose general expression is
given by [11, exp.(4)].

4. ILLUSTRATIVE EXAMPLES

We consider the following MIMO channel (extension of the
example given in [6]) that transmits Q independent equiprob-
able BPSK symbols aq,k ∈ {−1, +1} over an additive noise
channel, that also rotates independently the phase of the trans-
mitted symbols aq,k by φq,k

xk =
Q∑

q=1

σqaq,keiφq,ksq + nk, (9)

where σq and sq are Q unknown amplitudes and steering vec-
tors with unit first component, and where the components
of nk are independent zero-mean complex circular Gaussian
RV of variance σ2

n. Under H0 and H1, we assume that the
phase (φq,k)k=1,..,K,q=1,..,Q are independent and respectively
uniformly distributed on [0, 2π] or Gaussian distributed with

mean φq0 and variance σ2
φq

. So we are interested in classi-
fying this channel as either incoherent or partially coherent,
which is a binary composite hypothesis testing problem. We
easily deduce that

Rx =
Q∑

q=1

σ2
qsqsH

q + σ2
nIQ,

Cx = O,

[
resp.,

Q∑
q=1

σ2
qe2iφq0 e

−2σ2
φq sqsT

q

]

under H0 [resp. H1]. For Q = 1, κx = − 1
(1+ρ−1

x )2
under H0

and γx = e
−2σ2

φ1

1+ρ−1
x

, κx = − 1+e
−4σ2

φ1

(1+ρ−1
x )2

κ′x = e−4σ2
φ1 − 3 and

κ′′x = − 2
1+ρ−1

x
under H1, with a signal to noise ratio (SNR)

of ρx
def= σ2

1/σ2
n.

This model is compared to the Gaussian model obtained
when φq,k does not depend on k and aq,k are independent
zero-mean complex circular or real-valued Gaussian RVs un-
der H0 and H1 respectively. Fig.1 shows the northwest cor-
ner of the ROC curve for the GLRT detector for Q = 1,
K = 100 and ρx = 0.63(−2dB) for BPSK model with a
coherent channel (i.e., σφ1 = 0) and Gaussian model, and
thus associated with the same value of γx = 0.387.
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Fig.1 Asymptotic theoretical and empirical (with 10000 Monte Carlo runs)
ROC curve associated with BPSK and Gaussian model.

We note that the ROC curve is sensitive to the distribution
of the data xk and that the empirical ROC fits the asymptotic
theoretical ROC for the relatively small data length K = 100.

Fig.2 shows the detection performance PD for different
fixed PFA for model (9) as a function of the SNR for two
values of σφ1 .
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Fig.2 PD for different fixed PFA for model (9) as a function of SNR.



We see that the PD for fixed PFA is very sensitive to the
coherence of the channel. When σφ1 increases for a fixed
SNR, the noncircularity coefficient γx decreases and detec-
tion worsens.

5. CONCLUSION

In this paper, we have given the asymptotic distribution of the
GLR for impropriety of complex signals, derived under the
Gaussian distribution, but used under independent and iden-
tically arbitrary non necessarily Gaussian distributions of the
data. Extension of this work to independent non identically
distributed data will enable us to consider in a future contri-
bution, more practical situations such that BPSK signals with
nonnull carrier residues.

6. APPENDIX

Proof of Result 1 Under H1, (5) is directly issued form [8,
Result 3]. Under H0, [8, Result 3] is not valid, but the analy-
sis of [8] applies. The standard central limit2 applied to the in-
dependent identically distributed bidimensional complex RVs(

r̂x

ĉx

)
with r̂x = 1

K

∑K
k=1 |x2

k| and ĉx = 1
K

∑K
k=1 x2

k

yields
√

K

(
r̂x − rx

ĉx − cx

)
L→

NC

((
0
0

)
, σ4

x

(
1+κx 0

0 2+κx

)
, σ4

x

(
1+κx 0

0 0

))
,(10)

where σ2
x

def= E|x2
k|. Then, considering the mapping

(r̂x, ĉx) 7−→ m̂x =
ĉx

r̂x
7−→ γ̂x = |m̂x|,

whose differential of the first step is dm = 1
cdr under H0, the

standard theorem of continuity (see e.g., [10, Th.A, p.122])
on regular functions of asymptotically Gaussian statistics ap-
plies. Consequently, we obtain the following convergence in
distribution to a complex circular zero-mean Gaussian distri-
bution of variance 2(1 + κx

2 )
√

K (m̂x − 0) L→ NC

(
0,

1
σ4

x

σ4
x(2 + κx), 0

)
.

With γ̂2
x = |m̂x|2, convergence in distribution (4) is proved.

Proof of Result 2
With `(x,K) = det[I − (R̂−1

x Ĉx)∗R̂−1
x Ĉx], where

Ĉx
def= 1

K

∑K
k=1 xkxT

k , the proof of Result 2 follows the
same steps that for Result 1. Deriving the asymptotic distri-
bution of `(x,K) under H0 and H1 is based on the following
mapping:

(R̂x, Ĉx) 7−→ Ω̂x = R̂−1
x Ĉx 7−→ Ξ̂x = Ω̂∗

xΩ̂x

7−→ `(x,K) = det[I− Ξ̂x]. (11)

2NC(m,R,C) denotes the Gaussian complex distribution with mean
m, and covariances R and C.

Using the asymptotic Gaussian distribution of (R̂x, Ĉx)
[3] derived from the standard central limit theorem, the
differential3 of the different sub mappings of (11), the
chain rule and standard properties of the vec operator [14,
Ch.2.4], the standard theorem of continuity (see e.g., [10,
p. 122]) on regular functions of asymptotically Gaussian
statistics applies and Result 2 follows, with `0 = 1 and
`1 = det[I− (R−1

x Cx)∗R−1
x Cx] < 1 and where expressions

of σ2
0 and σ2

1 are not given here due to space limitation.

7. REFERENCES

[1] B. Picinbono, P. Chevalier ”Widely Linear Estimation with
Complex Data,” IEEE Trans. Signal Process., vol. 43, no. 8, pp.
2030-2033, August 1995.

[2] P.J. Schreier, L. Scharf and C.T. Mullis, ”Detection and estima-
tion of improper complex random signals,” IEEE Trans. Inform.
Theory, vol. 51, no. 1, pp. 306-312, January 2005.

[3] J.P. Delmas, ”Asymptotically minimum variance second-order
estimation for non-circular signals with application to DOA es-
timation,” IEEE Trans. Signal Process., vol. 52, no. 5, pp. 1235-
1241, May 2004.

[4] H. Abeida, J.P. Delmas, ”MUSIC-like estimation of direction of
arrival for non-circular sources,” IEEE Trans. Signal Process.,
vol. 54, no. 7, pp. 2678-2690, July 2006.

[5] E. Ollila, V. Koivunen, ”Generalized complex elliptical distribu-
tions,” in Proc. 3rd Sensor Array Mutichannel Signal Processing
Workshop, Sitges, Spain, July 2004.

[6] P.J. Schreier, L. Scharf and A. Hanssen, ”A generalized likeli-
hood ratio test for impropriety of complex signals,” IEEE Signal
Process. Letters, vol. 13, no. 7, pp. 433-436, July 2006.

[7] A.T. Walden, P. Rubin-Delanchy, ”On testing for impropriety
of complex-valued Gaussian vectors,” IEEE Trans. Signal Pro-
cess., vol. 57, no. 3, pp. 825-834, March 2009.

[8] J.P. Delmas, H. Abeida, “Asymptotic distribution of circularity
coefficients estimate of complex random variables,” Signal Pro-
cessing (Elsevier), vol. 89, pp. 2311-2698, December 2009.

[9] P. Chevalier, A. Blin, F. Pipon and F. Delaveau, ”GLRT-Based
array receivers to detect a known signal corrupted by noncircular
interferences,” in Proc. EUSIPCO, Poznan, Poland, Sept. 2007.

[10] R.J. Serfling, Approximation Theorems of Mathematical Statis-
tics, John Wiley and Sons, 1980.

[11] S.M. Kay, ”Asymptotically optimal detection in incompletely
characterized non-Gaussian noise,” IEEE Trans. ASSP, vol. 37,
no. 5, pp. 627-633, May 1989.

[12] A. Stuart, J.K. Ord, Advanced Theory of Statistics, fifth edition,
vol.2, Edward Arnold, 1991.

[13] G.A. Young, R.L. Smith, Essentials of Statistical Inference,
Cambridge Series in Statistical and Probabilistic Mathematics,
2005.

[14] J.R. Magnus, H. Neudecker, Matrix differential calculus with
applications in statistics and econometrics, Wiley series in prob-
ability and statistics, revised edition, 1999.

3dΩ = −R−1
x dRxR−1

x Cx + R−1
x dCx, dΞ = dΩ∗xΩx + Ω∗xdΩx

with Ωx = R−1
x Cx and d` = − det[I−Ξ]Tr

[
(I−Ξ)−1dΞ

]
(from [14,

Th.1, p.149]) with Ξ = (R−1
x Cx)∗R−1

x Cx.


