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Institut Fourier, Université Grenoble Alpes
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Abstract

The aim of this work is to deal with effective problems in the Kobayashi and Debarre
conjectures, based on the work by Damian Brotbek and Lionel Darondeau. We first show
that if the line bundle L generates k-jets, the k-th Wronskian ideal sheaf for L is stable.
Then we obtain an effective estimate in the “almost” Nakamaye Theorem for the universal
Grassmannian. Finally we get explicit effective bounds for the Kobayashi and Debarre
conjectures.

1 Introduction

The famous Kobayashi conjecture stated that a general hypersurface in P
n of sufficient large

degree is hyperbolic. In the last 15 years, at least three important techniques were introduced to
study this problem: Siu’s slanted vector fields on higher order jet spaces [7], Demailly’s strongly
of general type for studying Green-Griffiths-Lang conjecture [5] and Brotbek’s construction of
families of hypersurfaces which are deformations of Fermat type [3]. In [3] Brotbek has given
a formula for the degree bound d0, which depends on two constants M and m∞ appearing in
using noetherianity. In this paper we will determine these two constants and hence give the
effective bound by applying Brotbek’s formula directly. Since the problems are more or less
independent, we will extact them from the work by Brotbek and suggest the readers who are
interested in these connections to refer [3]. Nevertheless we will adopt the same notations in [3]
for the reader’s convenience.

For the constant M depending on n, it arises in the Nakamaye theorem: Let X be a Kähler
manifold and L a big and nef line bundle on X. Then the null locus Null(L) of L coincides with
the augmented base locus B+(L). Fix an ample divisor A on X, by noetherian property there
exists a positive integer m0 such that for m ≥ m0 we have Bs(mL − A) = B+(L) = Null(L).
Now we have the following effectivity problem:

Problem 1.1. Can we get an effective bound for m0 which depends on some numerical constants
related to L and A?

∗
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In general, this problem is hard to answer. Fortunately, in order to compute M , we only
need to consider the concrete projective manifold X which is a universal Grassmannian, and
L is the pull back of the tautological line bundle. Our first main result is Theorem 3.1, which
is an “almost” Nakamaye Theorem. Namely although we could not get the effective bound in
the Nakamaye Theorem, we can obtain a bound such that the corresponding base locus is good
enough to ensure the arguments in [3] are still valid. The method can also be used to study the
effective problem for the ampleness of the cotangent bundles of general complete intersections
(ref. [2]).

The constant m∞ appears in the Wronskian ideal sheaf of Demailly-Semple tower. Let L
be an very ample line bundle on the Kähler manifold X, and for any holomorphic sections
s0, . . . , sk ∈ H0(X,L), we have the Wronskian for these sections

W (s0, s1, . . . , sk) ∈ H0(Xk,OXk
(
k(k + 1)

2
)⊗ π∗

0,k(L
k+1)),

where Xk is the k-stage Demailly-Semple tower for the directed variety (X,TX). We set

W(Xk, L) := Span{W (s0, . . . , sn)|s0, . . . , sn ∈ H0(X,L)} ⊂ H0(Xk,OXk
(
k(k + 1)

2
)⊗π∗

0,k(L
k+1)),

to be the sublinear system of H0(Xk,OXk
(k(k+1)

2 )⊗ π∗
0,k(L

k+1)) and w(Xk, L) is denoted to be
the base ideal of the linear system W(Xk, L). By Lemma 2.5 in [3] if L is very ample we have

w(Xk, L) ⊂ w(Xk, L
2) ⊂ . . . ⊂ w(Xk, L

m) ⊂ . . . .

Then the noetherian property shows that this increasing sequence stabilizes for some m0 :=
m∞(Xk, L), and the asymptotic ideal sheaf is denoted by m∞(Xk, L). As was also proved in [3],
m∞(Xk, L) does not depend on the very ample line bundle L and is called asymptotic Wronskian
ideal sheaf, denoted by m∞(Xk). Now we have the following problem:

Problem 1.2. Determine the constant m∞(Xk, L).

We have the following theorem which solves Problem 1.2:

Theorem 1.1. If L separates k-jets at each point of X, then m∞(Xk, L) = 1. In particular, if
L is known to be only very ample, we have m∞(Xk, L) = k.

By Theorem 1.1 we have m∞ = n− 1 if k = n− 1. Hence by the formula in [3] we have the
following effective bound for degree of generic hypersurfaces in P

n which are hyperbolic:

Main Theorem 1. Let X be a projective manifold of dimension n and L is a very ample line
bundle on X. Then a generic hypersurface in |H0(X,Ld)| with d ≥ 3nn(4n − 2) + 4n + 2 is
Kobayashi hyperbolic. In particular, a generic hypersurface in P

n of degree d ≥ 3nn(4n − 2) +
4n+ 2 is Kobayashi hyperbolic.

The technique can also be used to study the effectivity in the Debarre conjecture, and we
have the following result:

Main Theorem 2. Set c0 := x
N+1
2 y. For all d ≥ 2c04

c0+1 + 5, the complete intersection of
general hypersurfaces H1, . . . ,Hc with H1, . . . ,Hc0 in OPN (d) and other Hi any degree, have
ample cotangent bundle.
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2 Asymptotic Wronskian Ideal Sheaf in the Demailly-Semple

Tower

We denote by (Xk, Vk) the Demailly-Semple tower for (X,TX), where X is a complex manifold,
and Dj := P (TXj−1/Xj−2

) (by an abuse of notation, in our context Dj is the divisor in Xk given

by π−1
j,k (Dj)). Let U be an open set with coordinates (z1, . . . , zn) such that π−1

0,k(U) is a trivial

product of U × Rn,k, where Rn,k is the universal rational variety C
nk/Gn [4]. We denote by

gk : π−1
0,k(U) → U ×Rn,k the natural biholomorphism. Then each Di ∩ π−1

0,k(U) is also a trivial
product U ×Ej under the biholomorphism gk, where Ej is a smooth prime divisor in Rn,k. Let
p ∈ U be the point corresponding to the origin in the coordinate (z1, . . . , zn). Therefore, we

have the following biholomorphism qk ◦ gk : π−1
0,k(p) ∩Dj

≈
−→ Ej , where qk : U ×Rn,k → Rn,k is

the projection to the second factor. In the paper, we will make the convention that any germ of
holomorphic curve is defined over p, and we will not distinguish the points in Ej and π−1

0,k(p)∩Dj .
For any germ of holomorphic curve ν(t) with ν(0) = p, its lift to the k − 1-th Demailly-

Semple tower ν[k−1](t) induces a section ν ′[k−1](t) of the line bundle ν∗[k]OXk
(−1). Then by the

definition of the Wronskian, for any f0, . . . , fn ∈ OX,p, W (f0, f1, . . . , fk) can be seen as a section

in H0(Rn,k,ORn,k
(m)) with m = k(k+1)

2 , given by

W (f0, . . . , fk)(ν
′
[k−1](0)

m) =

∣

∣

∣

∣

∣

∣

∣

f0 ◦ ν(t) . . . fk ◦ ν(t)
...

. . .
...

dkf0◦ν(t)
dtk

. . . dkfk◦ν(t)
dtk

∣

∣

∣

∣

∣

∣

∣

t=0

. (2.1)

We set
S := Span{W (f0, . . . , fn)|f0, . . . , fn ∈ OX,p} ⊂ H0(Rn,k,ORn,k

(m)),

and In,k ⊂ ORn,k
is denoted to be the base ideal of the linear system S. By the homogenous

property we have
g∗k ◦ q

∗
kIn,k = w∞(Xk) (2.2)

at π−1
0,k(U), where m∞(Xk) is the asymptotic Wronskian ideal sheaf introduced in Section 1.

Theorem 2.1. Let f0 ∈ mk+1
p , f1, . . . , fk ∈ OX,p, then W (f0, . . . , fk) = 0 as a section in

H0(Rn,k,ORn,k
(m)).

Proof. For any w ∈ Rn,k, by a theorem in [4], there exists a germ of curve ν : (C, 0) → (X, p)
such that ν[k](0) = w and ν ′[k−1](0) 6= 0. Since ν ′[k−1](0) ∈ ORn,k

(−1)|w, then if we can show that

W (f0, . . . , fk)(ν
′
[k−1](0)

m) = 0, by the arbitrariness of w, we will prove the theorem.

Since f0 ∈ mk+1
p , then the multiplicity of f0 ◦ ν(t) at 0 must be no less than k + 1, and thus

(f0◦ν(t))(i)

t is still holomorphic for i = 0, . . . , k. Thus

W (f0, . . . , fk)(ν
′
[k−1](0)

m) = t ·

∣

∣

∣

∣

∣

∣

∣

∣

f0◦ν(t)
t . . . fk ◦ ν(t)
...

. . .
...

1
t ·

dkf0◦ν(t)
dtk

. . . dkfk◦ν(t)
dtk

∣

∣

∣

∣

∣

∣

∣

∣

t=0

= 0.

3



Since the Wronskian operator W : OX,p×. . .×OX,p → H0(Rn,k,ORn,k
(m)) is bilinear, hence

we have

Theorem 1.1bis. If L separates k-jets at each point of X, then m∞(Xk, L) = 1, where
m∞(Xk, L) = 1 is the positive integer defined in Section 1. In particular, if L is known to
be only very ample, we have m∞(Xk, L) = k.

3 Effectivity of “Good” Base Locus for Universal Grassmannian

We denote by V := H0(PN ,OPN (δ)), which is the set of homogenous polynomials of degree δ in
C[z0, . . . , zn], and for any J ⊂ {0, . . . , N}, set

PJ := {[z0, . . . , zN ] ∈ P
N |zj = 0 if j ∈ J}.

Given any ∆ ∈ Grk+1(V) and [z] ∈ P
N we write ∆([z]) = 0 if P (z) = 0 for all P ∈ ∆ ⊂ V . We

then define the family

Y := {(∆, [z]) ∈ Grk+1(V )× P
N |∆([z]) = 0},

and for any J ⊂ {0, . . . , N}, set

YJ := Y ∩ (Grk+1(V )× PJ) ⊂ Y ∩Grk+1(V )× P
N .

Let k + 1 ≥ N , then q1 : Y → Grk+1(V) is a generic finite to one morphism. We also define
q2 : Y → P

N to be the projection on the second factor. Let L be the very ample line bundle on
Grk+1(V ) which is the pull back of O(1) under the Plücker embedding. Then q∗1L |YJ

is a big
and nef line bundle on YJ for any J . For any J ⊂ {0, . . . , N} we denote by pJ : YJ → Grk+1(V ),
and p̂J : YJ → PJ the second projection. Similarly we set

EJ := {y ∈ Y |dimy(p
−1
J (pJ(y))) > 0}

G∞
J := pJ(EJ ) ⊂ Grk+1(V ),

then EJ = Null(q∗1L |YJ
). For J = ∅ we have YJ = Y and denote by E := E∅ and G∞ := G∞

∅ .
By the theorem of Nakamaye we have

Null(q∗1L |YJ
) = B+(q

∗
1L |YJ

).

Since q∗1L ⊗ q∗2OPN (1)|YJ
is an ample line bundle on YJ , by noetherianity there exists mJ ∈ N

such that
EJ = B+(q

∗
1L |YJ

) = Bs(q∗1L
m ⊗ q∗2OPJ

(−1)|YJ
)

for every m ≥ mJ .
From now on we assume that k + 1 = N (since this is enough in Brotbek’s work), and thus

q1 : Y → Grk+1(V) is a generically finite-to-one surjective morphism. First we will work on
J = ∅.
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We first find a smooth rational curve C in Grk+1(V ) of degree 1, which is given by

∆([t0, t1]) := Span(zδ1, z
δ
2 , . . . z

δ
N−1, t0z

δ
N + t1z

δ
0),

where [t0, t1] ∈ P
1. We are going to show that ∆([t0, t1]) : P

1 → Grk+1(V ) is a smooth embedding
from P

1 to Grk+1(V ), and satisfies the degree condition L · C = 1.
Set I := {I = (i0, . . . , iN )||I| = δ}. Then {zI}I∈I is a basis for V , and w(I0,...,Ik) with

I0 < I1 < . . . < Ik is a basis for Λk+1V , where I < J is defined by lexicographical order in I.
Now we set Ji ∈ I to be zJi := zδi for 0 ≤ i ≤ k. Then the curve C̃ defined in P(Λk+1V ) given by
the equations w(I0,...,Ik) = 0 for all (I0, . . . , Ik) 6= (J1, . . . , JN ) and (J0, . . . , JN−1), is of degree 1

with respect to L . C̃ is totally contained in the image of the Plücker embedding of Grk+1(V ),
whose inverse image is C.

Now choose a hyperplane D which is given by {[z0, . . . , zN ]|z0 + zN = 0} in PN . Then we
have

Lemma 3.1. The intersection number of the curve q∗1C and the divisor q∗2D in Y is δN−1.
Moreover, q1∗q

∗
2D ≡ δN−1L , where “ ≡ ” stands for linear equivalent.

Proof. An easy computation shows that q∗1C and q∗2D intersect only at the point Span(zδ1, z
δ
2 , . . . z

δ
N−1,

zδN + (−1)δ+1zδ0)× [1, 0 . . . , 0,−1] ∈ Y with multiplicity δN−1. The first statement follows.
By projection formula we have

q1∗q
∗
2D · C = q1∗(q

∗
2D · q∗1C) = δN−1.

Since Pic(Grk+1(V)) ≈ Z with the generator L , then q1∗q
∗
2D ≡ δN−1L by the fact that L ·C =

1.

We first observe that q∗1q1∗q
∗
2D − q∗2D is an effective divisor of Y , and from Lemma 3.1 we

know that q∗1L
δN−1

⊗ q∗2OPN (−1) is effective. We also have a good control of the base locus as
follows:
Claim:

Bs(q∗1L
m ⊗ q∗2OPN (−1)) ⊂ q−1

1 (G∞) for any m ≥ δN−1.

Proof: Indeed, for any y0 /∈ q−1
1 (G∞), q−1

1 (q1(y0)) is a finite set, and one can choose a hyperplane
D′ ∈ H0(PN ,OPN (1)) such that D′ ∩ q2(q

−1
1 (q1(y0))) = ∅. From the result above we know that

the divisor q∗1q1∗q
∗
2D

′ − q∗2D
′ is effective and lies in the linear system |q∗1L

δN−1
⊗ q∗2OPN (−1)|

of Y . Now we show that y0 /∈ Supp(q∗1q1∗q
∗
2D

′ − q∗2D
′). Indeed, for any ∆ ∈ Grk+1(V ), if we

denote by Int(∆) := {[z] ∈ PN |∆([z]) = 0}, then q2(q
−1
1 (q1(y0))) = Int(∆0), where ∆0 := q1(y0),

hence the condition D′ ∩ q2(q
−1
1 (q1(y0))) = ∅ is equivalent to that Int(∆0) ∩D′ = ∅. However,

for any ∆ ∈ q1(q
−1
2 (D′)), we must have Int(∆) ∩D′ 6= ∅, therefore ∆0 /∈ q1(q

−1
2 (D′)) and thus

y0 /∈ q−1
1 (q1(q

−1
2 (D′))) ⊃ Supp(q∗1q1∗q

∗
2D

′ − q∗2D
′). Thus from the arbitrariness of y0 we have

Bs(q∗1L
δN−1

⊗ q∗2OPN (−1)) ⊂ q−1
1 (G∞).
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Since L is very ample on Grk+1(V ), and q1 is finite to one morphism outside q−1
1 (G∞), we

conclude that for any m ≥ δN−1,

Bs(q∗1L
m ⊗ q∗2OPN (−1)) ⊂ q−1

1 (G∞).

�

Now we work on general J ⊂ {0, . . . , N}. First recall that pJ : YJ → Grk+1(V ), and
p̂J : YJ → PJ the second projection. The method is repeating the arguments above. For
any y0 /∈ p−1

J (G∞
J ), the set p−1

J (pJ(y0)) is a finite one, and thus one can choose a generic
hyperplane D ∈ H0(PN ,OPN (1)) such that D ∩ PJ ∩ p̂J(p

−1
J (pJ(y0))) = ∅, which means that

Int(∆0)∩D∩PJ = ∅, where ∆0 := pJ(y0). However, for any ∆ ∈ pJ(p̂
−1
J (D∩PJ)) we must have

Int(∆) ∩D ∩ PJ 6= ∅, and thus ∆0 /∈ pJ(p̂
−1
J (D ∩ PJ)), a fortiori y0 /∈ p−1

J (pJ(p̂
−1
J (D ∩ PJ))) =

q−1
1 (q1(q

−1
2 (D′))) ∩ YJ . Thus the restriction of the effective divisor q∗1q1∗q

∗
2D − q∗2D to YJ is

well-defined and y0 /∈ q∗1q1∗q
∗
2D − q∗2D|YJ

. From the arbitrariness of y0 we know that the base

locus of the linear system |q∗1L
δN−1

⊗ q∗2OPN (−1)|YJ
| is contained in p−1

J (G∞
J ). Thus by the

same argument we have

Bs(q∗1L
m ⊗ q∗2OPN (−1)|YJ

) ⊂ p−1
J (G∞

J )

for m ≥ δN−1.
In conclusion, we have the following theorem:

Theorem 3.1. For any J ⊂ {0, . . . , N}, and k + 1 = N , we have

Bs(q∗1L
m ⊗ q∗2OPN (−1)|YJ

) ⊂ p−1
J (G∞

J )

for any m ≥ δN−1.

Since p−1
J (G∞

J ) may strictly contain the null locus Null(q∗1L |YJ
) = EJ , Theorem 3.1 does

not imply the Nakamaye Theorem needed in [3]. However, as was pointed out to us by Brotbek,
this theorem is enough to obtain the effective bound appearing in Theorem 3.1 in [3]. Indeed,
his proof is still valid under the weaker condition

Bs(q∗1L
m ⊗ q∗2OPN (−1)|YJ

) ⊂ p−1
J (G∞

J )

for any m ≥ M and any J ⊂ {0, . . . , N}. By Theorem 3.1 we can take the constant M to be
δN−1.

The above theorem can be generalized to the cases for products of Grassmannians. Now set

N = c(k + 1), and denote by Gk+1(δi) := Gk+1

(

|H0
(

P
N ,OPN (δi)

)

|
)

and G :=
∏k+1

i=0 Gk+1(δi)

for simplicity. Set Y to be the universal Grassmannian defined by

Y := {(∆1, . . . ,∆c, z) ∈ G× P
N |∀ i,∆i([z]) = 0}.

Let p1 : Y → G, p2 : Y → P
N and qi : Y → Gk+1(δi) be the canonical projections to each

factor, then p1 is a generically finite to one morphism. Set L to be the tautological ample line
bundle

L := OGk+1(δ1)(1)⊠ . . .⊠OGk+1(δc)(1),
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and
L(a) := OGk+1(δ1)(a1)⊠ . . .⊠OGk+1(δc)(ac)

for any c-tuple of positive integers a = (a1, . . . , ac).
We then define a smooth rational curve Ci in G of degree 1, which is given by

∆([t0, t1]) := Span(zδ11 , zδ1c+1 . . . , z
δ1
kc+1)× Span(zδ22 , zδ2c+2 . . . , z

δ2
kc+2)× . . .

×Span(t1z
δi
i + t2z

δi
0 , zδic+i, . . . , z

δi
kc+i)× . . .

×Span(zδcc , zδc2c, . . . , z
δc
(k+1)c).

where [t0, t1] ∈ P
1. It is easy to check that ∆([t1, t2]) is an smooth embedding from P

1 to G,
and satisfies the degree condition L(a) · Ci = ai for each i. Choose a hyperplane Di which is
given by {[z0, . . . , zN ]|zi + z0 = 0} in P

N . Then we have

Lemma 3.2. The intersection number of the curve p∗1Ci and the divisor p∗2Di in Y is bi :=
∏c

j=1 δ
k+1
j

δi
. Moreover, p1∗p

∗
2OPN (1) ≡ L (b), where b = (b1, . . . , bc).

Proof. It is easy to show that p∗1Ci and p∗2Di intersect only at one point with multiplicity bi.
By projection formula we have

p1∗p
∗
2Di · Ci = p1∗(p

∗
2Di · p

∗
1Ci) = bi.

Since L(a) : a ∈ Z
c ∼
−→ Pic(G) is an isomorphism, then p1∗p

∗
2Di ≡ p1∗p

∗
2OPN (1) ≡ L(b), due to

the fact that L · Ci = 1.

Thus the line bundle p∗1L(b) ⊗ p∗2OPN (−1) is effective, and by the similar arguments in the
Section 3 we also have

Bs(p∗1L(b)⊗ p∗2OPN (−1)) ⊂ G∞,

where G∞ to be the set of points in G such that is fiber of p1 is not a finite set. We run the
same methods above to show that the same estimate also holds for all the stratams YI of Y .

4 The Codimension of the Exceptional Locus

In this section we will give a better estimate for the codimension of the exceptional locus,
appearing in Section 3 of [2]. First we state the following lemma due to Olivier Benoist [1].

Lemma 4.1. Let X ⊂ P
N be a (irreducible) subvariety of dimension n. Let G be the set of all

hypersurfaces of degree δ containing X. Then

codim(G, |OPN (δ)|) ≥

(

n+ δ

δ

)

.

For k + 1 ≥ N and a k + 1-tuple of positive integers δ := (δ0, . . . , δk) with each δi ≥ δ
for some δ, if we denote by Tδ,k+1,N :=

∏k
i=0 |OPN (δi)| and T∞

δ,k+1,N the subvariety of Tδ,k+1,N

parametrizing equations that do not define a 0-dimensional scheme. Then we have

7



Theorem 4.1. With the above notation,

codim(T∞
δ,k+1,N , Tδ,k+1,N) ≥

(

N + δ

δ

)k

· (δ + 1).

In particular, if N varies in 1, . . . , k + 1, then we have a rough uniform estimate

codim
(

T∞
δ,k+1,N , Tδ,k+1,N

)

≥ (δ + 1)k+1. (4.1)

Proof. First we will assume that k+1 = N . For any elements (P1, . . . , PN ) ∈
∏N

i=1 |OPN (δi)|, if
the subscheme defined by P1, . . . , PN fails to be a 0-dimensional subscheme, there exist a unique
1 ≤ i < N − 1 such that the subschemes defined by P1, . . . , Pi and P1, . . . , Pi+1 are both of
codimension i, and these elements form a subvariety of T∞

δ,N,N denoted by Zi. Thus we have a

decomposition T∞
δ,N,N = ∪N−1

i=1 Zi. If we denote by pi :
∏N

j=1 |OPN (δj)| →
∏i

j=1 |OPN (δj)| and

qi :
∏N

j=1 |OPN (δj)| → OPN (δi) the projection map respectively, then the image pi(Zi) is Zariski

dense in
∏i

j=1 |OPN (δj)|. We set Ui to te the Zariski open set in
∏i

j=1 |OPN (δj)| parametrizing
smooth irreducible varieties, and Ui is contained in pi(Zi). Take any Pi := (P1, . . . , Pi) ∈ Ui,
and we have

codim
(

qi+1

(

Zi ∩ p−1
i (Pi)

)

, |OPN (δi+1)|
)

≥

(

δi+1 +N − i

N − i

)

. (4.2)

Indeed, if we denote by Xi the smooth variety of codimension i defined by P1, . . . , Pi, then by
the definition of Zi, Pi+1 must contain Xi. By Lemma 4.1, Pi+1 must be contained in a subvariety
of |OPN (δi+1)| of codimension

(δi+1+N−i
N−i

)

. From (4.2) we conclude that, when pi restricts to Zi,

the generic fiber has codimension more than
(δi+1+N−i

N−i

)

·
∏N

j=i+2

(N+δj
N

)

in
∏N

j=i+1 |OPN (δj)|,
and thus by (4.2) we have

codim
(

Zi,
N
∏

j=1

|OPN (δj)|
)

≥

(

δi+1 +N − i

N − i

)

·
∏

j 6=i+1

(

N + δj
N

)

≥

(

N + δ

δ

)N−1

·

(

δi+1 +N − i

N − i

)

,

and by T∞
δ,N,N = ∪N−1

i=1 Zi we have

codim
(

T∞
δ,N,N , Tδ,N,N

)

≥ min1≤i<N−1

(

N + δ

δ

)N−1

·

(

δi+1 +N − i

N − i

)

≥

(

N + δ

δ

)N−1

· (δ + 1),

here we use the assumptions that δi ≥ δ for any i.
Now we turn to the case k + 1 > N . Set pN : Tδ,k+1,N →

∏N−1
j=0 |OPN (δj)| =: Tδ,N,N be the

projection map, with the fibers
∏k

j=N |OPN (δj)|. Then we can easily find that pN (T∞
δ,k+1,N) ⊂

T∞
δ,N,N , and thus

codim
(

T∞
δ,k+1,N , Tδ,k+1,N

)

≥

(

N + δ

δ

)k

· (δ + 1).
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5 Effectivity in the Kobayashi Conjecture

We still use the notations in [3]. Let X be a projective manifold of dimension n and L a very
ample line bundle on X. First we will give a better estimate for δ. Set δ to be a k + 1-tuple
of the form (δ, . . . , δ). In Lemma 3.8 of [3], in order to avoid the exceptional locus, δ needs to
satisfy the following condition:

codim(CIJ )k+1V
∞
2,J = codim

(

T∞
δ,k+1,#J−1, Tδ,k+1,#J−1

)

> dim(X̂k) = n+ (n− 1)k

for any P
J := {[z] ∈ P

N |zj = 0 for any j /∈ J} with J ⊂ {0, . . . , N}. By [3] we can fix
N = n, k = n − 1. We replace the estimates for codim(CIJ )k+1V

∞
2,J in (34) of [3] by (4.1) in

Theorem 4.1, δ only needs to satisfy

(δ + 1)n ≥ (n− 1)n,

and thus if n ≥ 3, δ ≥ 1 is enough to verify this condition.
In order to control the indeterminacy, from Proposition 3.8 in [3] the condition for δ is

dimX̂k + k < #Ix

for generic x in X. Since for generic x we have #Ix =
(N+δ

δ

)

, then

(k + 1)n <

(

N + δ

δ

)

.

Since we have fixed N = n and k = n− 1, then δ ≥ 3 when n ≥ 2. In conclusion, if n ≥ 3, any
δ ≥ 3 is valid in controling the indeterminacy and avoiding the exceptional locus.

Let Xn−1 be the n− 1-th Demailly-Semple tower for X. By Theorem 1.1 we have

w∞(Xn−1, L) = w(Xn−1, L
n−1),

which implies that m∞ = n − 1. By Theorem 3.1 we can take M := δN−1 = 3n−1, if we fix
δ = 3. Thus by the definition in [3] we have

r(u, v,M,N, k, ǫ, δ) = 3n−1n
(

ǫ+ 3(n− 1)
)

+ 1.

Since R := max{r(u, v,M,N, k, ǫ, δ)|m∞ ≤ ǫ < m∞ + δ}, thus we have

R = 3n−1n(4n− 2) + 1.

and the degree bound should be

d0 := 3nn(4n − 2) + 4n + 2.

Thus we prove the Main Theorem 1.
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6 Effectivity for the Ampleness of the Complete Intersection

Let M be a projective manifold of dimension N and L a very ample line bundle on it. First we
will assume that N = 2c. In order to obtain the effective estimate needed in [2], by arguments
for the universal Grassmannian Y defined by

∏c
i=1G2(δi) in Section 3, we replace Q⊗m(δ) in

Formula (∗2) in [2] by
L(b) := OG2(δ1)(b1)⊠ . . .⊠OG2(δc)(bc),

where bi :=
∏c

i=j δ
2c
j

δi
, then we get the required condition in the Corollary 2.8 in [2]:

2

c
∑

p=1

(ǫp + δp)bp − r < 0. (6.1)

If 2c > N , we can not apply the results in [2] to get the effectivity directly. However, com-
pared to their construction of the morphism from universal families of c complete intersections
to the universal Grassmannian, we can fix 2c+1 general sections ζ0, . . . , ζ2c in the linear system
|L|, where L is a very ample line bundle, in place of their N + 1 sections ζ0, . . . , ζN . Then the
universal Grassmannian is replaced the following one

Y := {(∆1, . . . ,∆c, z) ∈ G2(δ1)× . . .G2(δc)× P
2c|∀ i,∆i([z]) = 0},

which enables us to apply our methods to get the effectivity. Luckily, although we add more
general sections, as the details of the proofs in [2] show, we still have the same estimates for
δ := (δ1, . . . , δc) if we would like to also avoid the indeterminacy locus of the rational map and
the exceptional locus which are the union of the positive dimensional fibers in the universal
Grassmannian (i.e. determine the lower bound for δ as that in Proposition 2.4 and Lemma 2.6
in [2]). Furthermore, in order to avoid the exceptional locus, δ needs to satisfy

dim
(

P(ΩM)
)

< codim(A∞
I ,AI) = codim

(

T∞
δ,2c,#I−1, Tδ,2c,#I−1

)

,

for any P
I := {[z] ∈ P

N |zi = 0 for any i /∈ I} with I ⊂ {0, . . . , 2c}. If we use our estimates for
codimension of the exceptional locus Theorem 4.1 instead, the condition for δ is

N(N − 1) < (min δj + 1)2c,

and thus δj ≥ 1. In conclusion, we have a refined results for the Corollary 2.8 in [2]:

Corollary 6.1. On a N -dimensional smooth projective variety M , equipped with a very ample
line bundle L, for any degrees (d1, . . . , dc) ∈ (N)c satisfying

∃δ(δp≥2), ∃ǫ(ǫp≥1), ∃r > 2c
c
∏

i=1

δ2i + 2
c

∑

i=1

ǫi
∏c

j=1 δ
2
j

δi
, s.t.

dp = δp(r + 1) + ǫp (p = 1, . . . , c),

the complete intersection X := H1 ∩ . . . Hc of general hypersurfaces H1 ∈ |Ld1 |, . . . ,Hc ∈ |Ldc |
has ample cotangent bundle.
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Since any subvariety of a variety with ample cotangent bundle also has ample cotangent
bundle, we only need to deal with the case c0 := x

N+1
2 y. If we take δ1 = . . . = δc0 = 2, then any

d ≥ 2c04
c0+1 + 5 can be decomposed as

d = 2(r + 1) + ǫ

with 1 ≤ ǫ ≤ 2 and r > c04
c0+1, satisfying the conditions in Corollary 6.1. In particular, if M

is taken to be P
N , then we can take L to be OPN (1), and thus for all d ≥ 2c04

c0+1 + 5, the
complete intersection of general hypersurfaces H1, . . . ,Hc with H1, . . . ,Hc0 in OPN (d) and other
Hi any degree have ample cotangent bundle, and we prove the Main Theorem 2.

Remark 6.1. It is worth to mention that in [8] Songyan Xie first gave an effective bound NN2

by using different methods.
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