Effectiveness in Kobayashi Conjecture and Nakamaye Theorem for Universal Grassmannian

Ya Deng

To cite this version:

Ya Deng. Effectiveness in Kobayashi Conjecture and Nakamaye Theorem for Universal Grassmannian. 2016. hal-01308628v1

HAL Id: hal-01308628
https://hal.science/hal-01308628v1
Preprint submitted on 28 Apr 2016 (v1), last revised 12 Jun 2016 (v4)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Effectiveness in Kobayashi Conjecture and Nakamaye Theorem for Universal Grassmannian

Ya Deng*
Institut Fourier, Université Grenoble Alpes

April 28, 2016

Abstract

Our main goal in this paper is to give an effective bound for the degree of generic hypersurfaces in \mathbb{P}^{n} which are Kobayashi hyperbolic, based on the recent work of Brotbek [2].

1 Introduction

The famous Kobayashi conjecture stated that a general hypersurface in \mathbb{P}^{n} of sufficient large degree is hyperbolic. Recently there are three methods in studying this problem: Siu's slanted vector fields on higher order jet spaces [5], Demailly's strongly of general type for studying Green-Griffiths-Lang conjecture [4] and Brotbek's construction of families of hypersurfaces which are deformations of Fermat type [2]. In [2] Brotbek has given a formula for the degree bound d_{0}, which depends on two constants $M(n)$ and m_{∞} appearing in using noetherianity. In this paper we will determine these two constants and hence give the effective bound by applying Brotbek's formula directly. Since the problems are more or less independent, we will extact them from the work by Brotbek and suggest the readers who are interested in these connections to refer [2]. Nevertheless we will adopt the same notations in [2] for the reader's convenience.

For the constant $M(n)$ depending on n, it arises in the Nakamaye theorem: Let X be a Kähler manifold and L a big and nef line bundle on X. Then the null loci $\operatorname{Null}(L)$ of L coincides with the augmented base locus $\mathbb{B}_{+}(L)$. Fix an ample divisor A on X, by noetherian property there exists a positive integer m_{0} such that for $m \geq m_{0}$ we have $\operatorname{Bs}(m L-A)=\mathbb{B}_{+}(L)=\operatorname{Null}(L)$. Now we have the following effectiveness problem:

Problem 1.1. Can we get an effective bound for m_{0} which depends on some numerical constants related to L and A ?

In general, this problem is hard to answer. Fortunately, in order to compute $M(n)$, we only need to consider the concrete projective manifold X which is a universal Grassmannian, and

[^0]L is the pull back of the tautological line bundle. Our first main result is Theorem 2.1, and we have the constant $M(n)=n^{n}(n+1)^{n}$. The method can also be used to study the effective problem for the ampleness of the cotangent bundles of general complete intersections (ref. [1]).

The constant m_{∞} appears in the Wronskian ideal sheaf of Demailly-Semple tower. Let L be an very ample line bundle on the Kähler manifold X, and for any holomorphic sections $s_{0}, \ldots, s_{k} \in H^{0}(X, L)$, we have the Wronskian for these sections

$$
\omega\left(s_{0}, s_{1}, \ldots, s_{k}\right) \in H^{0}\left(X_{k}, \mathcal{O}_{X_{k}}\left(\frac{k(k+1)}{2}\right) \otimes \pi_{0, k}^{*}\left(L^{k+1}\right)\right)
$$

where X_{k} is the k-stage Demailly-Semple tower for the directed variety $\left(X, T_{X}\right)$. We set
$\mathbb{W}\left(X_{k}, L\right):=\operatorname{Span}\left\{\omega\left(s_{0}, \ldots, s_{n}\right) \mid s_{0}, \ldots, s_{n} \in H^{0}(X, L)\right\} \subset H^{0}\left(X_{k}, \mathcal{O}_{X_{k}}\left(\frac{k(k+1)}{2}\right) \otimes \pi_{0, k}^{*}\left(L^{k+1}\right)\right)$,
and $\mathfrak{w}\left(X_{k}, L\right)$ is denoted to be the base ideal of the linear system $\mathbb{W}\left(X_{k}, L\right)$. By Lemma 2.5 in [2] if L is very ample we have

$$
\mathfrak{w}\left(X_{k}, L\right) \subset \mathfrak{w}\left(X_{k}, L^{2}\right) \subset \ldots \subset \mathfrak{w}\left(X_{k}, L^{m}\right) \subset \ldots
$$

Then the noetherian property shows that this increasing sequence stabilizes for some $m_{0}:=$ $m_{\infty}\left(X_{k}, L\right)$, and we have the following problem:
Problem 1.2. Determine the constant $m_{\infty}\left(X_{k}, L\right)$.
We have the following theorem which solves Problem 1.2:
Theorem 1.1. If L seperates k-jets at each point of X, then $m_{\infty}\left(X_{k}, L\right)=1$. In particular, if L is known to be only very ample, we have $m_{\infty}\left(X_{k}, L\right)=k$.

By Theorem 1.1 we have $m_{\infty}=n$ if $k=n$. Hence by the formula in [2] we have the following effective bound for degree of generic hypersurfaces in \mathbb{P}^{n} which are hyperbolic:

Main Theorem. Let X be a projective manifold of dimension n and L is a very ample line bundle on X. Then a generic hypersurface in $\left|H^{0}\left(X, L^{d}\right)\right|$ with $d \geq n^{n+1}(n+1)^{n+2}\left(n^{3}+2 n^{2}+\right.$ $2 n-1)+n^{3}+3 n^{2}+3 n$ is Kobayashi hyperbolic. In particular, a generic hypersurface in \mathbb{P}^{n} of degree $d \geq n^{n+1}(n+1)^{n+2}\left(n^{3}+2 n^{2}+2 n-1\right)+n^{3}+3 n^{2}+3 n$ is Kobayashi hyperbolic.

2 Effectiveness in the Nakamaye Theorem for Universal Grassmannian

We denote by $V:=H^{0}\left(\mathbb{P}^{N}, \mathcal{O}_{\mathbb{P}^{N}}(\delta)\right)$, which is the set of homogenous polynomials of degree δ in $\mathbb{C}\left[z_{0}, \ldots, z_{n}\right]$, and for any $J \subset\{0, \ldots, N\}$, set

$$
\mathbb{P}_{J}:=\left\{\left[z_{0}, \ldots, z_{N}\right] \in \mathbb{P}^{N} \mid z_{j}=0 \text { if } j \in J\right\}
$$

Given any $\Delta \in \operatorname{Gr}_{\mathrm{k}+1}(\mathrm{~V})$ and $[z] \in \mathbb{P}^{N}$ we write $\Delta([z])=0$ if $P(z)=0$ for all $P \in \Delta \subset V$. We then define the family

$$
\mathscr{Y}:=\left\{(\Delta,[z]) \in \operatorname{Gr}_{k+1}(V) \times \mathbb{P}^{N} \mid \Delta([z])=0\right\}
$$

and for any $J \subset\{0, \ldots, N\}$, set

$$
\mathscr{Y}_{J}:=\mathscr{Y} \cap\left(\operatorname{Gr}_{k+1}(V) \times \mathbb{P}_{J}\right) \subset \mathscr{Y} \cap \operatorname{Gr}_{k+1}(V) \times \mathbb{P}^{N} .
$$

Let $k+1 \geq N$, then $q_{1}: \mathscr{Y} \rightarrow \operatorname{Gr}_{\mathrm{k}+1}(\mathrm{~V})$ is a generic finite to one morphism. We also define $q_{2}: \mathscr{Y} \rightarrow \mathbb{P}^{N}$ to be the projection on the second factor. Let \mathscr{L} be the very ample line bundle on $\operatorname{Gr}_{k+1}(V)$ which is the pull back of $\mathcal{O}(1)$ under the Plücker embedding. Then $\left.q_{1}^{*} \mathscr{L}\right|_{\mathscr{O}_{J}}$ is a big and nef line bundle on \mathscr{Y}_{J} for any J. For any $J \subset\{0, \ldots, N\}$ we denote by $p_{J}: \mathscr{Y}_{J} \rightarrow \operatorname{Gr}_{k+1}(V)$, and $\hat{p}_{J}: \mathscr{Y}_{J} \rightarrow \mathbb{P}_{J}$ the second projection. Similarly we set

$$
\begin{gathered}
E_{J}:=\left\{y \in \mathscr{Y} \mid \operatorname{dim}_{y}\left(p_{J}^{-1}\left(p_{J}(y)\right)\right)>0\right\} \\
G_{J}^{\infty}:=p_{J}\left(E_{J}\right) \subset \operatorname{Gr}_{k+1}(V),
\end{gathered}
$$

then $E_{J}=\operatorname{Null}\left(\left.\mathrm{q}_{1}^{*} \mathscr{L}\right|_{\mathscr{Y}_{J}}\right)$. For $J=\emptyset$ we have $\mathscr{Y}_{J}=\mathscr{Y}$ and denote by $E:=E_{\emptyset}$ and $G^{\infty}:=G_{\emptyset}^{\infty}$. By the Theorem of Nakamaye we have

$$
\operatorname{Null}\left(\left.q_{1}^{*} \mathscr{L}\right|_{\mathscr{Y}_{J}}\right)=\mathbb{B}_{+}\left(\left.q_{1}^{*} \mathscr{L}\right|_{\mathscr{Y}_{J}}\right) .
$$

By notherierianity there exists $m_{J} \in \mathbb{N}$ such that

$$
E_{J}=\mathbb{B}_{+}\left(\left.q_{1}^{*} \mathscr{L}\right|_{\mathscr{Y}_{J}}\right)=\operatorname{Bs}\left(\left.q_{1}^{*} \mathscr{L}^{m} \otimes q_{2}^{*} \mathcal{O}_{\mathbb{P}_{J}}(-1)\right|_{\mathscr{Y}_{J}}\right)
$$

for every $m \geq m_{J}$. Our goal is to get an effective estimate of m_{J}. From now on we assume that $k+1=N$ (since this is enough in Brotbek's work), and thus $q_{1}: \mathscr{Y} \rightarrow \operatorname{Gr}_{k+1}(\mathrm{~V})$ is an generic finite to one surjective morphism. First we will work on $J=\{0, \ldots, N\}$.

We first find a smooth rational curve C in $\operatorname{Gr}_{k+1}(V)$ of degree 1 , which is given by

$$
\Delta\left(\left[t_{0}, t_{1}\right]\right):=\operatorname{Span}\left(z_{1}^{\delta}, z_{2}^{\delta}, \ldots z_{N-1}^{\delta}, t_{0} z_{N}^{\delta}+t_{1} z_{0}^{\delta}\right),
$$

where $\left[t_{0}, t_{1}\right] \in \mathbb{P}^{1}$. We will show that $\Delta\left(\left[t_{0}, t_{1}\right]\right): \mathbb{P}^{1} \rightarrow \operatorname{Gr}_{k+1}(V)$ is a smooth embedding from \mathbb{P}^{1} to $\operatorname{Gr}_{k+1}(V)$, and satisfies the degree condition $\mathscr{L} \cdot C=1$.

Set $\mathbb{I}:=\left\{I=\left(i_{0}, \ldots, i_{N}\right)| | I \mid=\delta\right\}$. Then $\left\{z^{I}\right\}_{I \in \mathbb{I}}$ is a basis for V, and $w_{\left(I_{0}, \ldots, I_{k}\right)}$ with $I_{0}<I_{1}<\ldots<I_{k}$ is a basis for $\Lambda^{k+1} V$, where $I<J$ is defined by lexicographical order in \mathbb{I}. Now we set $J_{i} \in \mathbb{I}$ to be $z^{J_{i}}:=z_{i}^{\delta}$ for $0 \leq i \leq k$. Then the curve \tilde{C} defined in $\mathbb{P}\left(\Lambda^{k+1} V\right)$ given by the equations $w_{\left(I_{0}, \ldots, I_{k}\right)}=0$ for all $\left(I_{0}, \ldots, I_{k}\right) \neq\left(J_{1}, \ldots, J_{N}\right)$ and $\left(J_{0}, \ldots, J_{N-1}\right)$, is of degree 1 with respect to $\mathscr{L} . \tilde{C}$ is totally contained in the image of the Plücker embedding of $\operatorname{Gr}_{k+1}(V)$, whose inverse image is C.

Now choose a hyperplane D which is given by $\left\{\left[z_{0}, \ldots, z_{N}\right] \mid z_{0}+z_{N}=0\right\}$ in \mathbb{P}^{N}. Then we have
Lemma 2.1. The intersection number of the curve $q_{1}^{*} C$ and the divisor $q_{2}^{*} D$ in \mathscr{Y} is δ^{N-1}. Moreover, $q_{1 *} q_{2}^{*} D \equiv \delta^{N-1} \mathscr{L}$, where " \equiv " stands for linear equivalent.
Proof. An easy computation shows that $q_{1}^{*} C$ and $q_{2}^{*} D$ intersect only at the point $\operatorname{Span}\left(z_{1}^{\delta}, z_{2}^{\delta}, \ldots z_{N-1}^{\delta}, z_{N}^{\delta}+\right.$ $\left.(-1)^{\delta+1} z_{0}^{\delta}\right) \times[1,0 \ldots, 0,-1] \in \mathscr{Y}$ with multiplicity δ^{N-1}. The first statement follows.

By projection formula we have

$$
q_{1 *} q_{2}^{*} D \cdot C=q_{1 *}\left(q_{2}^{*} D \cdot q_{1}^{*} C\right)=\delta^{N-1} .
$$

Since $\operatorname{Pic}\left(\operatorname{Gr}_{\mathrm{k}+1}(\mathrm{~V})\right) \approx \mathbb{Z}$ with the generator \mathscr{L}, then $q_{1 *} q_{2}^{*} D \equiv \delta^{N-1} \mathscr{L}$ by the factor that $\mathscr{L} \cdot C=1$.

Since $q_{1}^{*} q_{1 *} q_{2}^{*} D-q_{2}^{*} D$ is an effective divisor of \mathscr{Y}, from Lemma 2.1 we know that $q_{1}^{*} \mathscr{L}^{\delta^{N-1}} \otimes$ $q_{2}^{*} \mathcal{O}_{\mathbb{P}^{N}}(-1)$ is effective. Moreover, we have

$$
\operatorname{Bs}\left(q_{1}^{*} \mathscr{L}^{\delta^{N-1}} \otimes q_{2}^{*} \mathcal{O}_{\mathbb{P}^{N}}(-1)\right)=E=\mathbb{B}_{+}\left(q_{1}^{*} \mathscr{L}\right) .
$$

Indeed, for any $y_{0} \notin E, q_{1}^{-1}\left(q_{1}\left(y_{0}\right)\right)$ is a finite set, and one can choose a hyperplane $D^{\prime} \in$ $H^{0}\left(\mathbb{P}^{N}, \mathcal{O}_{\mathbb{P}^{N}}(1)\right)$ such that $D^{\prime} \cap q_{2}\left(q_{1}^{-1}\left(q_{1}\left(y_{0}\right)\right)\right)=\emptyset$. From the result above we know that the divisor $q_{1}^{*} q_{1 *} q_{2}^{*} D^{\prime}-q_{2}^{*} D^{\prime}$ is effective and lies in the linear system $\left|q_{1}^{*} \mathscr{L}^{\delta^{N-1}} \otimes q_{2}^{*} \mathcal{O}_{\mathbb{P}^{N}}(-1)\right|$ of \mathscr{Y}. Now we show that $y_{0} \notin \operatorname{Supp}\left(q_{1}^{*} q_{1 *} q_{2}^{*} D^{\prime}-q_{2}^{*} D^{\prime}\right)$. Indeed, for any $\Delta \in \operatorname{Gr}_{k+1}(V)$, if we denote by $\operatorname{Int}(\Delta):=\left\{[z] \in \mathbb{P}_{N} \mid \Delta([z])=0\right\}$, then $q_{2}\left(q_{1}^{-1}\left(q_{1}\left(y_{0}\right)\right)\right)=\operatorname{Int}\left(\Delta_{0}\right)$, where $\Delta_{0}:=q_{1}\left(y_{0}\right)$, hence the condition $D^{\prime} \cap q_{2}\left(q_{1}^{-1}\left(q_{1}\left(y_{0}\right)\right)\right)=\emptyset$ is equivalent to that $\operatorname{Int}\left(\Delta_{0}\right) \cap D^{\prime}=\emptyset$. However, for any $\Delta \in q_{1}\left(q_{2}^{-1}\left(D^{\prime}\right)\right)$, we must have $\operatorname{Int}(\Delta) \cap D^{\prime} \neq \emptyset$, therefore $\Delta_{0} \notin q_{1}\left(q_{2}^{-1}\left(D^{\prime}\right)\right)$ and thus $y_{0} \notin q_{1}^{-1}\left(q_{1}\left(q_{2}^{-1}\left(D^{\prime}\right)\right)\right) \supset \operatorname{Supp}\left(q_{1}^{*} q_{1 *} q_{2}^{*} D^{\prime}-q_{2}^{*} D^{\prime}\right)$.

Thus from the arbitrariness of y_{0} we have

$$
\operatorname{Bs}\left(q_{1}^{*} \mathscr{L}^{\delta^{N-1}} \otimes q_{2}^{*} \mathcal{O}_{\mathbb{P}^{N}}(-1)\right) \subset E .
$$

Since \mathscr{L} is very ample on $\operatorname{Gr}_{k+1}(V)$, we see that for any $m \geq \delta^{N-1}$,

$$
\operatorname{Bs}\left(q_{1}^{*} \mathscr{L}^{m} \otimes q_{2}^{*} \mathcal{O}_{\mathbb{P}^{N}}(-1)\right)=\mathbb{B}_{+}\left(q_{1}^{*} \mathscr{L}\right)
$$

Now we work on general $J \subset\{0, \ldots, N\}$. First recall that $p_{J}: \mathscr{Y}_{J} \rightarrow \operatorname{Gr}_{k+1}(V)$, and $\hat{p}_{J}: \mathscr{Y}_{J} \rightarrow \mathbb{P}_{J}$ the second projection. The method is repeating the arguments above. For any $y_{0} \notin E_{J}$, the set $p_{J}^{-1}\left(p_{J}\left(y_{0}\right)\right)$ is a finite one, and thus one can choose a generic hyperplane $D \in$ $H^{0}\left(\mathbb{P}^{N}, \mathcal{O}_{\mathbb{P}^{N}}(1)\right)$ such that $D \cap \mathbb{P}_{J} \cap \hat{p}_{J}\left(p_{J}^{-1}\left(p_{J}\left(y_{0}\right)\right)\right)=\emptyset$, which means that $\operatorname{Int}\left(\Delta_{0}\right) \cap D \cap \mathbb{P}_{J}=\emptyset$, where $\Delta_{0}:=p_{J}\left(y_{0}\right)$. However, for any $\Delta \in p_{J}\left(\hat{p}_{J}^{-1}\left(D \cap \mathbb{P}_{J}\right)\right)$ we must have $\operatorname{Int}(\Delta) \cap D \cap \mathbb{P}_{J} \neq \emptyset$, and thus $\Delta_{0} \notin p_{J}\left(\hat{p}_{J}^{-1}\left(D \cap \mathbb{P}_{J}\right)\right)$, afortiori $y_{0} \notin p_{J}^{-1}\left(p_{J}\left(\hat{p}_{J}^{-1}\left(D \cap \mathbb{P}_{J}\right)\right)\right)=q_{1}^{-1}\left(q_{1}\left(q_{2}^{-1}\left(D^{\prime}\right)\right)\right) \cap \mathscr{Y}_{J}$. Thus the restriction of the effective divisor $q_{1}^{*} q_{1} q_{2}^{*} D-q_{2}^{*} D$ to \mathscr{Q}_{J} is well-defined and $y_{0} \notin$ $q_{1}^{*} q_{1 *} q_{2}^{*} D-\left.q_{2}^{*} D\right|_{\mathscr{Y}_{J}}$. From the arbitrariness of y_{0} we know that the base locus of the linear system $\left|q_{1}^{*} \mathscr{L}^{\delta^{N-1}} \otimes q_{2}^{*} \mathcal{O}_{\mathbb{P}^{N}}(-1)\right| \mathscr{\mathscr { O }}_{J} \mid$ is contained in E_{J}. Thus we have

$$
\operatorname{Bs}\left(q_{1}^{*} \mathscr{L}^{\delta^{N-1}} \otimes q_{2}^{*} \mathcal{O}_{\mathbb{P}^{N}}(-1) \mid \mathscr{Y}_{J}\right)=E_{J} .
$$

In conclusion, we have the following theorem:
Theorem 2.1. For any $J \subset\{0, \ldots, N\}$, and $k+1=N$, we have

$$
\operatorname{Bs}\left(q_{1}^{*} \mathscr{L}^{m} \otimes q_{2}^{*} \mathcal{O}_{\mathbb{P}^{N}}(-1) \mid \mathscr{\mathscr { Y }}_{J}\right)=\mathbb{B}_{+}\left(\left.q_{1}^{*} \mathscr{L}\right|_{\mathscr{Y}_{J}}\right)
$$

for any $m \geq \delta^{N-1}$.
From [2] we can set $\delta=n(n+1)$ and $N=n+1$, then $M(n):=\delta^{N-1}=n^{n}(n+1)^{n}$.

3 Effectiveness For the Complete Intersection

Pursing the methods in 2 we can give an effective estimate for the ampleness of the cotangent bundles of general complete intersections, based on the results in [1]. This section is an independent part and the readers can skip if they are only interested in the proof of the Main Theorem.

We denote by $\mathbf{G}_{2}(\delta):=\operatorname{Gr}_{2}\left(V_{\delta}\right)$, where $V_{\delta}:=H^{0}\left(\mathbb{P}^{N}, \mathcal{O}_{\mathbb{P}^{N}}(\delta)\right)$, and $\mathbf{G}:=\mathbf{G}_{2}\left(\delta_{1}\right) \times \ldots \mathbf{G}_{2}\left(\delta_{c}\right)$. We set

$$
\mathcal{Y}:=\left\{\left(\Delta_{1}, \ldots, \Delta_{c}, z\right) \in \mathbf{G} \times \mathbb{P}^{N} \mid \forall i, \Delta_{i}([z])=0\right\}
$$

For simplicity we will assume that N is even and $c=\frac{N}{2}$. Let $p_{1}: \mathcal{Y} \rightarrow \mathbf{G}, p_{2}: \mathcal{Y} \rightarrow \mathbb{P}^{N}$ and $q_{i}: \mathcal{Y} \rightarrow \mathbf{G}_{2}\left(\delta_{i}\right)$ be the canonical projections to each factor. We denote by \mathcal{L} the tautological ample line bundle

$$
\mathcal{L}:=\mathcal{O}_{\mathbf{G}_{2}\left(\delta_{1}\right)}(1) \boxtimes \ldots \boxtimes \mathcal{O}_{\mathbf{G}_{2}\left(\delta_{c}\right)}(1)
$$

and

$$
\mathcal{L}(\mathbf{a}):=\mathcal{O}_{\mathbf{G}_{2}\left(\delta_{1}\right)}\left(a_{1}\right) \boxtimes \ldots \boxtimes \mathcal{O}_{\mathbf{G}_{2}\left(\delta_{c}\right)}\left(a_{c}\right)
$$

for any c-tuple of positive integers $\mathbf{a}=\left(a_{1}, \ldots, a_{c}\right)$.
We then define a smooth rational curve C_{i} in \mathbf{G} of degree 1 , which is given by

$$
\begin{aligned}
& \Delta\left(\left[t_{0}, t_{1}\right]\right):=\operatorname{Span}\left(z_{1}^{\delta_{1}}, z_{2}^{\delta_{1}}\right) \times \operatorname{Span}\left(z_{3}^{\delta_{1}}, z_{4}^{\delta_{1}}\right) \times \ldots \\
& \times \operatorname{Span}\left(z_{2 i-1}^{\delta_{i}}, t_{1} z_{2 i}^{\delta_{i}}+t_{2} z_{0}^{\delta_{i}}\right) \times \operatorname{Span}\left(z_{2 i+1}^{\delta_{i+1}}, z_{2 i+2}^{\delta_{i+1}}\right) \times \ldots \\
& \times \operatorname{Span}\left(z_{2 c-1}^{\delta_{c}}, z_{2 c}^{\delta_{c}}\right) .
\end{aligned}
$$

where $\left[t_{0}, t_{1}\right] \in \mathbb{P}^{1}$. It is easy to check that $\Delta\left[t_{1}, t_{2}\right]$ is an smooth embedding from \mathbb{P}^{1} to \mathbf{G}, and satisfies the degree condition $\mathcal{L}(\mathbf{a}) \cdot C_{i}=a_{i}$ for each i. Choose a hyperplane D_{i} which is given by $\left\{\left[z_{0}, \ldots, z_{N}\right] \mid z_{2 i}+z_{0}=0\right\}$ in \mathbb{P}^{N}. Then we have

Lemma 3.1. The intersection number of the curve $p_{1}^{*} C_{i}$ and the divisor $p_{2}^{*} D_{i}$ in \mathcal{Y} is $b_{i}:=$ $\frac{\prod_{j=1}^{c} \delta_{j}^{2}}{\delta_{i}}$. Moreover, $p_{1 *} p_{2}^{*} \mathcal{O}_{\mathbb{P}^{N}}(1) \equiv \mathscr{L}(\mathbf{b})$, where $\mathbf{b}=\left(b_{1}, \ldots, b_{c}\right)$.
Proof. It is easy to show that $p_{1}^{*} C_{i}$ and $p_{2}^{*} D_{i}$ intersect only at one point with multiplicity b_{i}.
By projection formula we have

$$
p_{1 *} p_{2}^{*} D_{i} \cdot C_{i}=p_{1 *}\left(p_{2}^{*} D_{i} \cdot p_{1}^{*} C_{i}\right)=b_{i}
$$

Since $\mathcal{L}(\mathbf{a}): \mathbf{a} \in \mathbb{Z}^{c} \xrightarrow{\sim} \operatorname{Pic}(\mathbf{G})$ is an isomorphism, then $p_{1 *} p_{2}^{*} D_{i} \equiv p_{1 *} p_{2}^{*} \mathcal{O}_{\mathbb{P}^{N}}(1) \equiv \mathcal{L}(\mathbf{b})$, due to the fact that $\mathcal{L} \cdot C_{i}=1$.

Thus the line bundle $\mathcal{L}(\mathbf{b}) \otimes p_{2}^{*} \mathcal{O}_{\mathbb{P}^{N}}(-1)$ is effective, and the similar arguments in the section above we also have

$$
\operatorname{Bs}\left(\mathcal{L}(\mathbf{b}) \otimes p_{2}^{*} \mathcal{O}_{\mathbb{P}^{N}}(-1)\right)=\mathbb{B}_{+}(\mathcal{L})
$$

Hence we can get the effective estimate needed in [1].

4 Wronskian Ideal Sheaf in the Demailly-Semple Tower

We denote by $\left(X_{k}, V_{k}\right)$ the Demailly-Semple tower for $\left(X, T_{X}\right)$, where X is a complex manifold, and $D_{j}:=P\left(T_{X_{j-1} / X_{j-2}}\right)$ (by an abuse of notation, in our context D_{j} is the divisor in X_{k} given by $\left.\pi_{j, k}^{-1}\left(D_{j}\right)\right)$. We would like to build the following parametrizing theorem.

Theorem 4.1. Let U be an open set with coordinates $\left(z_{1}, \ldots, z_{n}\right)$ such that $\pi_{0, n}^{-1}(U)$ is a trivial product of $U \times \mathcal{R}_{n, k}$, where $\mathcal{R}_{n, k}$ is the universal rational homogeneous variety $\mathbb{C}^{n k} / \mathbb{G}_{n}$ [3].If $w \in D_{j} \cap \pi_{0, n}^{-1}(U)$ such that $w \notin D_{i}$ for any other $i \in\{2, \ldots, k\}$. Then there exists an open set $W \subset U \times \mathbb{C}^{(n-1) k-1}$ and a holomorphic family of germs of holomorphic curves $f(t, \mathbf{a})$ with $\mathbf{a} \in W$, such that the lift of these curves to the k-th Demailly-Semple tower $f_{[k]}(0, \mathbf{a})$ gives a biholomorphism between W and an open set in $D_{j} \backslash\left\{\cup_{i \neq j} D_{i}\right\}$ containing w, and $f_{[k]}(t, \mathbf{a})$ is also a local biholomorphism to some open set in $\pi_{0, k}^{-1}(U)$, with $\{t=0\}$ defining the divisor D_{j} locally. The multiplicity of $f(t, \mathbf{a})$ is always 2 at $t=0$.

Proof. Since $X_{1}=P\left(T_{X}\right)$, let $U_{1} \subset \pi_{0,1}(U)$ be the affine coordinate $U \times \mathbb{C}^{n-1}$ such that for $\left(z_{1}, \ldots, z_{n}, t_{2}, \ldots, t_{n}\right) \in U \times \mathbb{C}^{n-1}$, it will corresponds to the point $\left(z_{1}, \ldots, z_{n},\left[\frac{\partial}{\partial z_{1}}+t_{2} \frac{\partial}{\partial z_{2}}+\ldots+\right.\right.$ $\left.t_{n} \frac{\partial}{\partial z_{n}}\right]$) in $P\left(T_{X}\right)$. We denote by $V_{1}:=\pi_{1, k}^{-1}\left(U_{1}\right)$.

To make the theorem look more intuitive, we first prove the theorem for $j=k$. For any $w \in D_{k}$ such that $w \notin D_{j}$ for any $j \in\{2, \ldots, k-1\}$, we can assume that $w \in V_{1}$. Then the following germs of holomorphic curves

$$
\begin{equation*}
f(t, \mathbf{a}):=\mathbf{a}_{0}+\mathbf{a}_{1} t^{2}+\mathbf{a}_{2} t^{4}+\ldots+\mathbf{a}_{k-1} t^{2 k-2}+\mathbf{a}_{k} t^{2 k-1} \tag{4.1}
\end{equation*}
$$

where \mathbf{a}_{i} are n-tuple in \mathbb{C}^{n} satisfying that $\mathbf{a}_{2}^{(1)}=\ldots=\mathbf{a}_{k}^{(1)}=0, \mathbf{a}_{1}^{(1)}=1$ and $\mathbf{a}_{k} \neq(0, \ldots, 0)$, whose lift to the k-th stage of Demailly-Semple tower $f_{[k]}(0, \mathbf{a})$ represents all points in $V_{1} \cap D_{k} \backslash$ $\left\{\cup_{2 \leq j<k} D_{j}\right\}$ when \mathbf{a}_{0} varies in U and $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$ varies in $\mathbb{C}^{(n-1) k}$. Without loss of generality we assume that for the curve $f(t, \mathbf{b})$ such that $f_{[k]}(0, \mathbf{b})=w, \mathbf{b}_{k}^{(2)} \neq 0$. Then we can take an affine coordinate $U \times \mathbb{C}^{(n-1) k}$ for $\pi_{0, k}^{-1}(U)$ containing the point w such that $f_{[k]}(0$, a) corresponds to

$$
\left(\mathbf{a}_{0}, \mathbf{a}_{1}^{(2)}, \ldots, \mathbf{a}_{1}^{(n)}, \ldots, \mathbf{a}_{k-1}^{(2)}, \ldots, \mathbf{a}_{k-1}^{(n)}, 0, \frac{\mathbf{a}_{k}^{(3)}}{\mathbf{a}_{k}^{(2)}}, \ldots, \frac{\mathbf{a}_{k}^{(n)}}{\mathbf{a}_{k}^{(2)}}\right)
$$

in this affine coordinate, where the coordinate 0 corresponds to the divisor D_{k}. Thus if we normalize $\mathbf{a}_{k}^{(2)}=1$ in addition, the map
$f_{[k]}(0, \mathbf{a}):\left(\mathbf{a}_{0}, \mathbf{a}_{1}^{(2)}, \ldots, \mathbf{a}_{1}^{(n)}, \mathbf{a}_{2}^{(2)}, \ldots, \mathbf{a}_{k-1}^{(n)}, \mathbf{a}_{k}^{(3)}, \ldots, \mathbf{a}_{k}^{(n)}\right) \in U \times \mathbb{C}^{(n-1) k-1} \rightarrow V_{12} \cap D_{k} \backslash\left\{\cup_{2 \leq j<k} D_{j}\right\}$
is a biholomorphism. Here V_{12} is the image of the affine coordinate $U \times \mathbb{C}^{(n-1) k}$ above in $\pi_{0, k}^{-1}(U)$.
Since $f_{[k]}^{\prime}(0, \mathbf{b}) \neq 0$, then $f_{[k]}(t, \mathbf{a})$ is a local biholomorphism to V_{1} and $\{t=0\}$ defines the divisor D_{k} locally.

In general, for any $w \in D_{j}$ such that $w \notin D_{i}$ for any other D_{i}, if we assume that $w \in V_{1}$ the following germs of holomorphic curves

$$
\begin{equation*}
f(t, \mathbf{a}):=\mathbf{a}_{0}+\mathbf{a}_{1} t^{2}+\mathbf{a}_{2} t^{4}+\ldots+\mathbf{a}_{j-1} t^{2 j-2}+\mathbf{a}_{j} t^{2 j-1}+\mathbf{a}_{j+1} t^{2 j}+\ldots+\mathbf{a}_{k} t^{k+j-1}, \tag{4.2}
\end{equation*}
$$

with $\mathbf{a}_{2}^{(1)}=\ldots=\mathbf{a}_{k}^{(1)}=0, \mathbf{a}_{1}^{(1)}=1$ and $\mathbf{a}_{j} \neq(0, \ldots, 0)$, whose lift to the k-th stage of DemaillySemple tower $f_{[k]}(0, \mathbf{a})$ represents all points in $V_{1} \cap D_{j} \backslash\left\{\cup_{i \neq j} D_{i}\right\}$ when \mathbf{a}_{0} varies in U and $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$ varies in $\mathbb{C}^{(n-1) k}$. Without loss of generality we also assume that for the curve $f(t, \mathbf{b})$ such that $f_{[k]}(0, \mathbf{b})=w, \mathbf{b}_{j}^{(2)} \neq 0$. Then we can take an affine coordinate $U \times \mathbb{C}^{(n-1) k}$ for $\pi_{0, k}^{-1}(U)$ containing the point w such that $f_{[k]}(0, \mathbf{a})$ corresponds to

$$
\left(\mathbf{a}_{0}, \mathbf{a}_{1}^{(2)}, \ldots, \mathbf{a}_{1}^{(n)}, \ldots, \mathbf{a}_{j-1}^{(2)}, \ldots, \mathbf{a}_{j-1}^{(n)}, 0, \frac{\mathbf{a}_{j}^{(3)}}{\mathbf{a}_{j}^{(2)}}, \ldots, \frac{\mathbf{a}_{j}^{(n)}}{\mathbf{a}_{j}^{(2)}}, P_{j+1}^{(2)}(\mathbf{a}), \ldots, P_{j+1}^{(n)}(\mathbf{a}), \ldots, P_{k}^{(2)}(\mathbf{a}), \ldots, P_{k}^{(n)}(\mathbf{a})\right)
$$

here we have

$$
\left\{\begin{array}{l}
P_{i}^{(2)}=\left(\mathbf{a}_{j}^{(2)}\right)^{i-j} \mathbf{a}_{i-1}^{(2)}+Q_{i}\left(\mathbf{a}_{j}^{(2)}, \ldots, \mathbf{a}_{i-2}^{(2)}\right) \\
P_{i}^{(l)}=\left(\mathbf{a}_{j}^{(2)}\right)^{i-j-1} \mathbf{a}_{i}^{(l)}+S_{i}^{(l)}\left(\mathbf{a}_{j}^{(2)}, \ldots, \mathbf{a}_{i}^{(2)}, \mathbf{a}_{j}^{(l)}, \ldots, \mathbf{a}_{l-1}^{(l)}\right) \text { if } 2<l \leq k
\end{array}\right.
$$

where Q_{i} and $S_{i}^{(l)}$ are both polynomials. Thus we can take $\mathbf{a}_{k}^{(2)}=0$ in addition such that $f_{[k]}\left(0\right.$, a) is a local biholomorphism to $D_{j} \backslash\left\{\cup_{i \neq j} D_{i}\right\}$, and the theorem holds for general j.

Remark 4.1. The existence of the local biholomorphism induced by $f_{[k]}(0, \mathbf{a})$ above can be proved directly by implicit function theorem.

Now we study the Wronskian ideal defined by $W\left(f_{0}, \ldots, f_{k}\right)$, with $f_{0}, \ldots, f_{k} \in \mathcal{O}(U)$. By the definition of the Wronskian, $W\left(f_{0}, \ldots, f_{k}\right) \in H^{0}\left(\pi_{0, k}^{-1}(U), \mathcal{O}_{X_{k}}(m)\right)$, where $m:=\frac{k(k+1)}{2}$. For any holomorphic curve $\nu(t)$ which lies on U, its lift to the k-1-th Demailly-Semple tower $\nu_{[k-1]}(t)$ induces a section $\nu_{[k-1]}^{\prime}(t)$ of the line bundle $\nu_{[k]}^{*} \mathcal{O}_{X_{k}}(-1)$, and thus

$$
W\left(f_{0}, \ldots, f_{k}\right)\left(\nu_{[k-1]}^{\prime}(t)^{m}\right)=\left|\begin{array}{ccc}
f_{0} \circ \nu(t) & \ldots & f_{k} \circ \nu(t) \\
\vdots & \ddots & \vdots \\
\frac{\mathrm{d}^{k} f_{0} \circ \nu(t)}{\mathrm{d} t^{k}} & \ldots & \frac{\mathrm{~d}^{k} f_{n} \circ \nu(t)}{\mathrm{d} t^{k}}
\end{array}\right| .
$$

Recall that $V_{1}:=\pi_{1, k}^{-1}\left(U_{1}\right)$, where $U_{1} \subset \pi_{0,1}(U)$ be the affine coordinate $U \times \mathbb{C}^{n-1}$ corresponds to the points $\left(z_{1}, \ldots, z_{n},\left[\frac{\partial}{\partial z_{1}}+t_{2} \frac{\partial}{\partial z_{2}}+\ldots+t_{n} \frac{\partial}{\partial z_{n}}\right]\right)$ in $P\left(T_{X}\right)$. We have the following result:
Theorem 4.2. When $W\left(1, z_{1}, z_{1}^{2}, \ldots, z_{1}^{k}\right)$ restrict to V_{1} we have

$$
\operatorname{Div}\left(W\left(1, z_{1}, z_{1}^{2}, \ldots, z_{1}^{k}\right)\right)=\sum_{j=2}^{k} \frac{k(k+1)}{2} D_{j} .
$$

Proof. Choose any $w \in P_{k} V^{\mathrm{reg}} \cap V_{1}$ with $\pi_{0, k}(w)=p$, where p is the origin in the local coordinate $\left(z_{1}, \ldots, z_{n}\right)$, then we have a a germ of holomorphic curve

$$
\begin{equation*}
\nu(t, \mathbf{a}):=\mathbf{a}_{1} t+\mathbf{a}_{2} t^{2}+\ldots+\mathbf{a}_{k} t^{k}, \tag{4.3}
\end{equation*}
$$

whose lift to k-th stage $\nu_{[k]}(0, \mathbf{a})$ is equal to w. By the definition of $V_{1}, \mathbf{a}_{1}^{(1)} \neq 0$. Then

$$
W\left(1, z_{1}, z_{1}^{2}, \ldots, z_{1}^{k}\right)\left(\nu_{[k-1]}^{\prime}(0, \mathbf{a})^{m}\right)=C\left(\mathbf{a}_{1}^{(1)}\right)^{k} \neq 0
$$

where C is some non zero constant; hence $\left.W\left(1, z_{1}, z_{1}^{2}, \ldots, z_{1}^{k}\right)\right|_{w} \neq 0$, and we conclude that its zero locus lies on $\cup_{2 \leq j \leq k} D_{j}$.

Choose any $w_{j} \in V_{1} \cap D_{j} \backslash\left\{\cup_{i \neq j} D_{i}\right\}$ still with $\pi_{0, k}(w)=p$, then by Theorem 4.1 there exists an open set $W \subset U \times \mathbb{C}^{(n-1) k-1}$ and a holomorphic family of germs of holomorphic curves $\nu(t, \mathbf{a})$ with $\mathbf{a} \in W$

$$
\begin{equation*}
\nu(t, \mathbf{a}):=\mathbf{a}_{0}+\mathbf{a}_{1} t^{2}+\mathbf{a}_{2} t^{4}+\ldots+\mathbf{a}_{j-1} t^{2 j-2}+\mathbf{a}_{j} t^{2 j-1}+\mathbf{a}_{j+1} t^{2 j}+\ldots+\mathbf{a}_{k} t^{k+j-1} \tag{4.4}
\end{equation*}
$$

such that $\nu_{[k]}(t, \mathbf{a})$ is a local biholomorphism to V_{1}, with $\{t=0\}$ defining the divisor D_{j} locally, and the multiplicity of $\nu(t, \mathbf{a})$ is always 2 at $t=0$. Let $\mathbf{b} \in W$ such that $\nu_{[k]}(0, \mathbf{b})=w$, and by $\pi_{0, k}(w)=p$ we have $\mathbf{b}_{0}=(0, \ldots, 0)$. Since $\mathbf{a}_{1}^{(1)} \neq 0$ for any $a \in W$, we have

$$
W\left(1, z_{1}, z_{1}^{2}, \ldots, z_{1}^{k}\right)\left(\nu_{[k-1]}^{\prime}(t, \mathbf{a})^{m}\right)=\left(\left(\mathbf{a}_{1}^{(1)}\right)^{k}+P(\mathbf{a})\right) \frac{k(k+1)}{2}+o\left(t^{\frac{k(k+1)}{2}}\right),
$$

where $P(\mathbf{a})$ is the polynomial of a with $P(\mathbf{b})=0$. Thus $\operatorname{Ord}_{D_{j}}\left(W\left(1, z_{1}, z_{1}^{2}, \ldots, z_{1}^{k}\right)\right)=\frac{k(k+1)}{2}$. Observe that $X_{k}=P_{k} V^{\mathrm{reg}} \cup D_{2} \cup \ldots \cup D_{k}$, which concludes the proof.

Theorem 4.2 shows that the invertible sheaf $\mathcal{O}\left(\sum_{j=2}^{k}\left(-\frac{k(k+1)}{2} D_{j}\right)\right)$ is contained in \mathfrak{w}_{∞}. Now we will show that \mathfrak{w}_{∞} is also invertible outside the codimension 2 variety $\cup_{2 \leq j<i \leq k} D_{j} \cap D_{i}$.

For any point $w \in D_{j} \backslash \cup_{i \neq j} D_{i}$, without loss of generality we can assume that $w \in V_{1}$ and $p:=\pi_{0, k}(w)$ corresponds to the origin in the local coordinate $\left(z, \ldots, z_{n}\right)$, then by Theorem 4.1 there exists an open set $W \subset U \times \mathbb{C}^{(n-1) k-1}$ and a holomorphic family of germs of holomorphic curves $\nu(t, \mathbf{a})$ with $\mathbf{a} \in W$

$$
\begin{equation*}
\nu(t, \mathbf{a}):=\mathbf{a}_{0}+\mathbf{a}_{1} t^{2}+\mathbf{a}_{2} t^{4}+\ldots+\mathbf{a}_{j-1} t^{2 j-2}+\mathbf{a}_{j} t^{2 j-1}+\mathbf{a}_{j+1} t^{2 j}+\ldots+\mathbf{a}_{k} t^{k+j-1} \tag{4.5}
\end{equation*}
$$

with $\mathbf{a}_{2}^{(1)}=\ldots=\mathbf{a}_{k}^{(1)}=\mathbf{a}_{k}^{(2)}=0, \mathbf{a}_{1}^{(1)}=1$ and $\mathbf{a}_{j}^{(2)} \neq 0$, such that $\nu_{[k]}(t, \mathbf{a})$ is a local biholomorphism to V_{1}, with $\{t=0\}$ defining the divisor D_{j} locally. Let $\mathbf{b} \in W$ such that $\nu_{[k]}(0, \mathbf{b})=w$, then $\mathbf{b}_{0}=0$.

If we define the following Wronskian

$$
W_{j}:= \begin{cases}W\left(1, z_{1}, z_{1}^{2}, \ldots, z_{1}^{\frac{k+j}{2}-1}, z_{2}, z_{2} z_{1}, \ldots, z_{2} z_{1}^{\frac{k-j}{2}}\right), & \text { if } k-j \text { is even; } \tag{4.6}\\ W\left(1, z_{1}, z_{1}^{2}, \ldots, z_{1}^{\frac{k+j-1}{2}}, z_{2}, z_{2} z_{1}, \ldots, z_{2} z_{1}^{\frac{k-j-1}{2}}\right), & \text { if } k-j \text { is odd. }\end{cases}
$$

We find that in both cases we have

$$
W_{j}\left(\nu_{[k-1]}^{\prime}(t, \mathbf{a})^{m}\right)=C\left(\mathbf{a}_{j}^{(2)}\right)^{\left\ulcorner\frac{k-j+1}{2}\right\urcorner} \cdot t^{\frac{k(k+1)}{2}-\frac{(k-j)^{2}}{2}-\frac{3}{2}(k-j)-1}+o\left(t^{\frac{k(k+1)}{2}-\frac{(k-j)^{2}}{2}-\frac{3}{2}(k-j)-1}\right),
$$

where C is some positive constant. Thus at each $w \in D_{j} \backslash \cup_{i \neq j} D_{i}$ the inclusion holds

$$
\mathcal{O}_{X_{k}, w}\left(-\left(\frac{k(k+1)}{2}-\frac{(k-j)^{2}}{2}-\frac{3}{2}(k-j)-1\right) D_{j}\right) \subset \mathfrak{w}_{\infty, w} .
$$

Indeed, by the Puiseux expansion method (ref. [3]) we can prove that $\mathfrak{w}_{\infty, w}=\mathcal{O}_{X_{k}, w}\left(-\left(\frac{k(k+1)}{2}-\right.\right.$ $\left.\left.\frac{(k-j)^{2}}{2}-\frac{3}{2}(k-j)-1\right) D_{j}\right)$ at these singular points.

We put $\tau=t^{2}$, and the curve $t \rightarrow \nu(t, \mathbf{a})$ becomes a Puiseux expansion

$$
\begin{equation*}
\mu(\tau, \mathbf{a}):=\mathbf{a}_{0}+\mathbf{a}_{1} \tau+\mathbf{a}_{2} \tau^{2}+\ldots+\mathbf{a}_{j-1} \tau^{j-1}+\mathbf{a}_{j} \tau^{j-\frac{1}{2}}+\ldots+\mathbf{a}_{k} \tau^{\frac{k+j-1}{2}} \tag{4.7}
\end{equation*}
$$

Hence the derivative $\mu^{(i)}(\tau, \mathbf{a})$ may involve negative powers of τ only when $i \geq j$, and the exponent is always $\geq j-\frac{1}{2}-i$. Take any $f_{0}, f_{1}, \ldots, f_{k} \in \mathcal{O}_{X, p}$, since the Wronskian is an invariant jet differential, from the relation of invariant jet differential we have

$$
\left|\begin{array}{ccc}
f_{0} \circ \nu(t, \mathbf{a}) & \ldots & f_{k} \circ \nu(t, \mathbf{a}) \\
\vdots & \ddots & \vdots \\
\frac{\mathrm{d}^{k} f_{0} \circ \nu(t, \mathbf{a})}{\mathrm{d} t^{k}} & \ldots & \frac{\mathrm{~d}^{k} f_{n} \circ \nu(t, \mathbf{a})}{\mathrm{d} t^{k}}
\end{array}\right|=t^{\frac{k(k+1)}{2}} \cdot\left|\begin{array}{ccc}
f_{0} \circ \mu(\tau, \mathbf{a}) & \ldots & f_{k} \circ \mu(\tau, \mathbf{a}) \\
\vdots & \ddots & \vdots \\
\frac{\mathrm{d}^{k} f_{0} \circ \mu(\tau, \mathbf{a})}{\mathrm{d} \tau^{k}} & \ldots & \frac{\mathrm{~d}^{k} f_{n} \circ \mu(\tau, \mathbf{a})}{\mathrm{d} \tau^{k}}
\end{array}\right|
$$

Since the multiplicity of

$$
\left|\begin{array}{ccc}
f_{0} \circ \mu(\tau, \mathbf{a}) & \ldots & f_{k} \circ \mu(\tau, \mathbf{a}) \\
\vdots & \ddots & \vdots \\
\frac{\mathrm{d}^{k} f_{0} \circ \mu(\tau, \mathbf{a})}{\mathrm{d} \tau^{k}} & \ldots & \frac{\mathrm{~d}^{k} f_{n} \circ \mu(\tau, \mathbf{a})}{\mathrm{d} \tau^{k}}
\end{array}\right|
$$

at $\tau=0$ is no less than that of $W\left(1, \tau, \tau^{2}, \ldots, \tau^{j-1}, \tau^{j-\frac{1}{2}}, \ldots, \tau^{\frac{k+j-1}{2}}\right)=C \tau^{-\frac{(k-j)^{2}+3(k-j)+2}{4}}$, where C is some positive constant. Therefore we have

$$
\operatorname{Ord}_{D_{j}} W\left(f_{0}, \ldots, f_{n}\right)\left(\nu_{[k-1]}^{\prime}(t, \mathbf{a})\right) \geq \frac{k(k+1)}{2}-\frac{(k-j)^{2}}{2}-\frac{3}{2}(k-j)-1,
$$

and this proves as expected that

$$
\mathcal{O}_{X_{k}, w}\left(-\left(\frac{k(k+1)}{2}-\frac{(k-j)^{2}}{2}-\frac{3}{2}(k-j)-1\right) D_{j}\right)=\mathfrak{w}_{\infty, w}
$$

for any $w \in D_{j} \backslash \cup_{i \neq j} D_{i}$. In conclusion, we have
Theorem 4.3. Outside the codimension 2 subvariety $Z:=\cup_{2 \leq j<i \leq k} D_{j} \cap D_{i}$, the ideal sheaf \mathfrak{w}_{∞} is invertible, which is equal to

$$
\mathcal{O}_{X_{k} \backslash Z}\left(\sum_{j=2}^{k}\left(-\frac{k(k+1)-(k-j+1)(k-j+2)}{2} D_{j}\right)\right) .
$$

Moreover, at each point $w \in X_{k} \backslash Z, \mathfrak{w}_{\infty}$ is generated by k-jets $\mathcal{O}_{X, p} / m_{p}^{k+1}$, where $p:=\pi_{0, k}(w)$. In particular, if L is an ample line bundle which seperates k-jets, then $\mathfrak{w}_{\infty}\left(X_{k}, L\right)=\mathfrak{w}\left(X_{k}, L\right)$ at the place $X_{k} \backslash Z$.

Proof. We only need to prove the second part. As is shown above, $W\left(1, z_{i}, z_{i}^{2}, \ldots, z_{i}^{k}\right)_{1 \leq i \leq k}$ generate the ideal \mathfrak{w}_{∞} at all regular points $P_{k} T_{X}^{\mathrm{reg}}$. The Wronskians in the form (4.6) generate the ideal at all points in $X_{k} \backslash Z$, and since the holomorphic functions appearing in these Wronskians are all belong to k-jets, then we prove the theorem.

Now we will change a bit our parametrizing theorem to make the following proof simpler. Let U be an open set with coordinates $\left(z_{1}, \ldots, z_{n}\right)$ such that $\pi_{0, k}^{-1}(U)$ is a trivial product of $U \times \mathcal{R}_{n, k}$, and we denote by $g: \pi_{0, k}^{-1}(U) \rightarrow U \times \mathcal{R}_{n, k}$ the biholomorphism. Then each $D_{i} \cap \pi_{0, k}^{-1}(U)$ also has the form $U \times E_{j}$ under the map g, where E_{j} is a smooth prime divisor in $\mathcal{R}_{n, k}$. Let $p \in U$ be the point corresponding to the origin in the coordinate $\left(z_{1}, \ldots, z_{n}\right)$. Thus the following germs of holomorphic curves

$$
\begin{equation*}
f(t, \mathbf{a}):=\mathbf{a}_{1} t^{2}+\mathbf{a}_{2} t^{4}+\ldots+\mathbf{a}_{j-1} t^{2 j-2}+\mathbf{a}_{j} t^{2 j-1}+\mathbf{a}_{j+1} t^{2 j}+\ldots+\mathbf{a}_{n} t^{k+j-1} \tag{4.8}
\end{equation*}
$$

with \mathbf{a}_{i} the n-tuples in \mathbb{C}^{n} satisfying that $\mathbf{a}_{1} \neq(0, \ldots, 0)$ and $\mathbf{a}_{j} \neq(0, \ldots, 0)$, whose lift to k-th stage $f_{[k]}(0, \mathbf{a})$ represents all points in $\pi_{0, k}^{-1}(p) \cap D_{j} \backslash Z$, which is biholomorphic to $E_{j} \backslash \cup_{i \neq j} E_{i}$ under the map $q_{2} \circ g: \pi_{0, k}^{-1}(U) \rightarrow \mathcal{R}_{n, k}$, where $q_{2}: U \times \mathcal{R}_{n, k} \rightarrow \mathcal{R}_{n, k}$ is the projection to the second factor. Thus as we have done in Theorem 4.1, we can build the parametrizing theorem at any $w \in E_{j} \backslash \cup_{i \neq j} E_{i}$ as follows:
Theorem 4.1bis. For any $w \in E_{j} \backslash \cup_{i \neq j} E_{i}$, then there exists a $\mathbf{b} \in \mathbb{C}^{n k}$ with $\mathbf{b}_{2}^{(l)}=\ldots=$ $\mathbf{b}_{k}^{(l)}=0, \mathbf{b}_{1}^{(l)}=1$ for some $1 \leq l \leq n$, and $\mathbf{b}_{j}^{(i)} \neq 0, \mathbf{b}_{k}^{(i)}=0$ for some $1 \leq i \leq n$, such that $q_{2} \circ g \circ f_{[k]}(0, \mathbf{b})=w$. Meanwhile, there exists an open neighborhood W of \mathbf{b} in $\mathbb{C}^{n(k-1)-1}$ (here we treat \mathbf{b} as variables in $\mathbb{C}^{n(k-1)-1}$ by the conditions for \mathbf{b} above) such that the map $q_{2} \circ g \circ f_{[k]}(0, \mathbf{a}): \mathbf{a} \in W \rightarrow E_{j}$ is a biholomorphism from W to some open set in $E_{j} \backslash \cup_{i \neq j} E_{i}$. Moreover, $q_{2} \circ g \circ f_{[k]}(t, \mathbf{a})$ also a local biholomorphism to some open set in $\mathcal{R}_{n, k}$, with $\{t=0\}$ defining the divisor D_{j} locally.

Thus for any $f_{0}, \ldots, f_{n} \in \mathcal{O}_{X, p}, W\left(f_{0}, f_{1}, \ldots, f_{k}\right)$ can be seen as a section in $H^{0}\left(\mathcal{R}_{n, k}, \mathcal{O}_{\mathcal{R}_{n, k}}(m)\right)$ with $m=\frac{k(k+1)}{2}$. We set

$$
S:=\operatorname{Span}\left\{W\left(f_{0}, \ldots, f_{n}\right) \mid f_{0}, \ldots, f_{n} \in \mathcal{O}_{X, p}\right\} \subset H^{0}\left(\mathcal{R}_{n, k}, \mathcal{O}_{\mathcal{R}_{n, k}}(m)\right)
$$

and $m_{n, k} \subset \mathcal{O}_{\mathcal{R}_{n, k}}$ is denoted to be the base ideal of the linear system S. By the homogenous property we have

$$
\begin{equation*}
g^{*} \circ q_{2}^{*} m_{n, k}=\mathfrak{w}_{\infty} \tag{4.9}
\end{equation*}
$$

at $\pi_{0, k}^{-1}(U)$.
Recall again that $V_{1}:=\pi_{1, k}^{-1}\left(U_{1}\right)$, where $U_{1} \subset \pi_{0,1}(U)$ be the affine coordinate $U \times \mathbb{C}^{n-1}$ corresponds to the points $\left(z_{1}, \ldots, z_{n},\left[\frac{\partial}{\partial z_{1}}+t_{2} \frac{\partial}{\partial z_{2}}+\ldots+t_{n} \frac{\partial}{\partial z_{n}}\right]\right)$ in $P\left(T_{X}\right)$. We will denote by $\tilde{V}_{1} \subset \mathcal{R}_{n, k}$ the open set in $\mathcal{R}_{n, k}$ given by $q_{2} \circ g\left(V_{1}\right)$. Then we have a similar theorem as above:
Theorem 4.4. The ideal $m_{n, k}$ is invertible outside the codimension 2 subvariety $\tilde{Z}:=\cup_{2 \leq j<i \leq k} E_{i} \cap$ E_{j}, which is equal to

$$
\mathcal{O}_{\mathcal{R}_{n, k} \backslash \tilde{Z}}\left(\sum_{j=2}^{k}\left(-\frac{k(k+1)-(k-j+1)(k-j+2)}{2} E_{j}\right)\right)
$$

On the Zariski open set \tilde{V}_{1} in $\mathcal{R}_{n, k}, W\left(1, z_{1}, \ldots, z_{1}^{k}\right) \neq 0$ at all points in $\mathcal{R}_{n, k} \backslash \cup_{2 \leq j \leq k} E_{j}$, and we have

$$
\operatorname{Div}\left(W\left(1, z_{1}, z_{1}^{2}, \ldots, z_{1}^{k}\right)\right)=\sum_{j=2}^{k} \frac{k(k+1)}{2} E_{j}
$$

In particular, the ideal sheaf $\mathcal{O}\left(\sum_{j=2}^{k}\left(-\frac{k(k+1)}{2} E_{j}\right)\right)$ is contained in $m_{n, k}$.
Theorem 4.5. Let $f_{0} \in m_{p}^{k}, f_{1}, \ldots, f_{k} \in \mathcal{O}_{X, p}$. Then on \tilde{V}_{1}, we have

$$
\operatorname{Div}\left(W\left(f_{0}, f_{1}, \ldots, f_{k}\right)\right) \geq \sum_{j=2}^{k} \frac{k(k+1)}{2} E_{j} .
$$

Proof. For any point $w \in \tilde{V}_{1} \cap E_{j} \backslash \cup_{i \neq j} E_{i}$, by Theorem 4.1bis there exists an open set $W \subset$ $\mathbb{C}^{(n-1) k-1}$ and a holomorphic family of germs of holomorphic curves $\nu(t, \mathbf{a})$ with $\mathbf{a} \in W$

$$
\begin{equation*}
\nu(t, \mathbf{a}):=\mathbf{a}_{1} t^{2}+\mathbf{a}_{2} t^{4}+\ldots+\mathbf{a}_{j-1} t^{2 j-2}+\mathbf{a}_{j} t^{2 j-1}+\mathbf{a}_{j+1} t^{2 j}+\ldots+\mathbf{a}_{k} t^{k+j-1} \tag{4.10}
\end{equation*}
$$

with $\mathbf{a}_{2}^{(1)}=\ldots=\mathbf{a}_{k}^{(1)}=\mathbf{a}_{k}^{(i)}=0, \mathbf{a}_{1}^{(1)}=1$ and $\mathbf{a}_{j}^{(i)} \neq 0$ for some $2 \leq i \leq k$, such that $q_{2} \circ g\left(\nu_{[k]}(t, \mathbf{a})\right)$ is a local biholomorphism to an open set in \tilde{V}_{1}, with $\{t=0\}$ defining the divisor E_{j} locally.

We put $\tau=t^{2}$, and the curve $t \rightarrow \nu(t, \mathbf{a})$ becomes a Puiseux expansion

$$
\mu(\tau, \mathbf{a}):=\mathbf{a}_{1} \tau+\mathbf{a}_{2} \tau^{2}+\ldots+\mathbf{a}_{j-1} \tau^{j-1}+\mathbf{a}_{j} \tau^{j-\frac{1}{2}}+\ldots+\mathbf{a}_{k} \tau^{\frac{k+j-1}{2}},
$$

Since $f_{0} \in m_{p}^{k}$, thus the multiplicity of $f_{0} \circ \mu(\tau, \mathbf{a})$ for τ is k. Thus the multiplicity of

$$
\left|\begin{array}{ccc}
f_{0} \circ \mu(\tau, \mathbf{a}) & \ldots & f_{k} \circ \mu(\tau, \mathbf{a}) \\
\vdots & \ddots & \vdots \\
\frac{\mathrm{d}^{k} f_{0} \circ \mu(\tau, \mathbf{a})}{\mathrm{d} \tau^{k}} & \ldots & \frac{\mathrm{~d}^{k} f_{n} \circ \mu(\tau, \mathbf{a})}{\mathrm{d} \tau^{k}}
\end{array}\right|
$$

at $\tau=0$ is no less than that of $W\left(1, \tau, \tau^{2}, \ldots, \tau^{j-1}, \tau^{j-\frac{1}{2}}, \ldots, \tau^{\frac{k+j}{2}-1}, \tau^{k}\right)=C \tau^{\frac{(k-j+1)(k-j)}{4}}$. Thus by the relation
$W\left(f_{0}, \ldots, f_{n}\right)\left(\nu_{[k-1]}^{\prime}(t, \mathbf{a})\right)=\left|\begin{array}{ccc}f_{0} \circ \nu(t, \mathbf{a}) & \ldots & f_{k} \circ \nu(t, \mathbf{a}) \\ \vdots & \ddots & \vdots \\ \frac{\mathrm{d}^{k} f_{0} \nu(t, \mathbf{a})}{\mathrm{d} t^{k}} & \ldots & \frac{\mathrm{~d}^{k} f_{n} \circ \nu(t, \mathbf{a})}{\mathrm{d} t^{k}}\end{array}\right|=t^{\frac{k(k+1)}{2}} .\left|\begin{array}{ccc}f_{0} \circ \mu(\tau, \mathbf{a}) & \ldots & f_{k} \circ \mu(\tau, \mathbf{a}) \\ \vdots & \ddots & \vdots \\ \frac{\mathrm{d}^{k} f_{0} \circ \mu(\tau, \mathbf{a})}{\mathrm{d} \tau^{k}} & \ldots & \frac{\mathrm{~d}^{k} f_{n} \circ \mu(\tau, \mathbf{a})}{\mathrm{d} \tau^{k}}\end{array}\right|$,
which implies

$$
\operatorname{Ord}_{E_{j}} W\left(f_{0}, \ldots, f_{n}\right)\left(\nu_{[k-1]}^{\prime}(t, \mathbf{a})\right) \geq \frac{k(k+1)}{2}
$$

and the theorem is proved.
By Theorem 4.5, for any $f_{0} \in m_{p}^{k}, f_{1}, \ldots, f_{k} \in \mathcal{O}_{X, p}$, on \tilde{V}_{1} we have $\frac{W\left(f_{0}, \ldots, f_{n}\right)}{W\left(1, z_{1}, \ldots, z_{1}^{k}\right)} \in \mathcal{O}\left(\tilde{V}_{1}\right)$, which means that on \tilde{V}_{1} the linear system

$$
S_{1}:=\operatorname{Span}\left\{W\left(f_{0}, \ldots, f_{n}\right) \mid f_{0}, \ldots, f_{n} \in \mathcal{O}_{X, p} / m_{p}^{k+1}\right\} \subset S \subset H^{0}\left(\mathcal{R}_{n, k}, \mathcal{O}_{\mathcal{R}_{n, k}}(m)\right),
$$

is enough to generate $m_{n, k}$. Namley, the base ideal of S_{1} is $m_{n, k}$ on \tilde{V}_{1}. Since we can take other affine coordinates U_{i} for $X_{1}=P\left(T_{X}\right)$, such that $U_{1} \cup \ldots U_{n}=P\left(T_{X}\right)$, and $W\left(1, z_{i}, \ldots, z_{i}^{k}\right)$ plays
the same role in $q_{2} \circ g\left(\pi_{1, k}^{-1}\left(U_{i}\right)\right)$ as $W\left(1, z_{1}, \ldots, z_{1}^{k}\right)$ in $\tilde{V}_{1}:=q_{2} \circ g\left(\pi_{1, k}^{-1}\left(U_{1}\right)\right)$. Then S_{1} generates $m_{n, k}$ at each point in $\mathcal{R}_{n, k}$. Since

$$
\begin{equation*}
g^{*} \circ q_{2}^{*} m_{n, k}=\mathfrak{w}_{\infty} \tag{4.11}
\end{equation*}
$$

at $\pi_{0, k}^{-1}(U)$, then we have the following theorem
Theorem 1.1bis. If L seperates k-jets at each point of X, then $m_{\infty}\left(X_{k}, L\right)=1$, where $m_{\infty}\left(X_{k}, L\right)=1$ is the positive integer defined in Section 1. In particular, if L is known to be only very ample, we have $m_{\infty}\left(X_{k}, L\right)=k$.

5 Effectiveness in the Kobayashi Conjecture

We will use the notations in [2]. Let X be a projective manifold of dimension n and L is a very ample line bundle on X. Then L^{n} separates n jets at each point of X. We now take $N=n+1, k=n, \delta=n(n+1), u=1, v=1$. By Theorem 1.1 we have

$$
\mathfrak{w}_{\infty}\left(X_{n}, L\right)=\mathfrak{w}\left(X_{n}, L^{n}\right),
$$

which implies that $m_{\infty}=n$. By Theorem 2.1 we can take $M=M(n)=(n(n+1))^{n}$. Thus by the definition in [2] we have

$$
r(u, v, M, N, k, \epsilon, \delta)=(n(n+1))^{n}(n+1)\left(\epsilon+n^{2}(n+1)\right)+1 .
$$

Since $R:=\max \left\{r(u, v, M, N, k, \epsilon, \delta) \mid m_{\infty} \leq \epsilon<m_{\infty}+\delta\right\}$, thus we have

$$
R=(n(n+1))^{n}(n+1)\left(n+n(n+1)-1+n^{2}(n+1)\right)+1
$$

and the degree bound should be

$$
d_{0}:=u\left(m_{\infty}+v \delta\right)+(R+k) v \delta=n^{n+1}(n+1)^{n+2}\left(n^{3}+2 n^{2}+2 n-1\right)+n^{3}+3 n^{2}+3 n .
$$

Thus we prove the Main Theorem 1.
Acknowledgements I would like to warmly thank my thesis supervisor Professor JeanPierre Demailly for his very fruitful discussions and suggestions, and also for his patience and disponibility. This research is supported by the China Scholarship Council.

References

[1] Brotbek D, Darondeau L, Complete intersection varieties with ample cotangent bundles. arXiv preprint arXiv:1511.04709.
[2] Brotbek D, On the hyperbolicity of general hypersurfaces, arXiv:1604.00311 [math.AG].
[3] Demailly J P. Algebraic criteria for Kobayashi hyperbolicity and jet differentials. Algebraic geometry (Santa Cruz 1995). Part, 2.
[4] Demailly J P. Proof of the Kobayashi conjecture on the hyperbolicity of very general hypersurfaces. arXiv preprint arXiv:1501.07625, 2015.
[5] Siu Y T. Hyperbolicity of generic high-degree hypersurfaces in complex projective space. Inventiones mathematicae, 2015, 202(3): 1069-1166.
[6] Xie S Y. On the ampleness of the cotangent bundles of complete intersections. arXiv preprint arXiv:1510.06323.

[^0]: *Email address: Ya.Deng@univ-grenoble-alpes.fr

