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Abstract: Satellite and airborne optical sensors are increasingly used by scientists, and 
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policy makers, and managers for studying and managing forests, agriculture crops, and urban 

areas. Their data acquired with given instrumental specifications (spectral resolution, 

viewing direction, sensor field-of-view, etc.) and for a specific experimental configuration 

(surface and atmosphere conditions, sun direction, etc.) are commonly translated into 

qualitative and quantitative Earth surface parameters. However, atmosphere properties and 

Earth surface 3D architecture often confound their interpretation. Radiative transfer models 

capable of simulating the Earth and atmosphere complexity are, therefore, ideal tools for 

linking remotely sensed data to the surface parameters. Still, many existing models are 

oversimplifying the Earth-atmosphere system interactions and their parameterization of 

sensor specifications is often neglected or poorly considered. The Discrete Anisotropic 

Radiative Transfer (DART) model is one of the most comprehensive physically based 3D 

models simulating the Earth-atmosphere radiation interaction from visible to thermal 

infrared wavelengths. It has been developed since 1992. It models optical signals at the 

entrance of imaging radiometers and laser scanners on board of satellites and airplanes, as 

well as the 3D radiative budget, of urban and natural landscapes for any experimental 

configuration and instrumental specification. It is freely distributed for research and teaching 

activities. This paper presents DART physical bases and its latest functionality for simulating 

imaging spectroscopy of natural and urban landscapes with atmosphere, including the 

perspective projection of airborne acquisitions and LIght Detection And Ranging (LIDAR) 

waveform and photon counting signals. 

Keywords: radiative transfer; DART 5 model; imaging spectroscopy; spectroradiometer; 

LIDAR; camera projection 

 

1. Background 

Remote sensing (RS) observations facilitate global studies of the land surface and biophysical 

properties of vegetation (e.g., leaf biomass, soil moisture). In this study, we are addressing Imaging 

Spectroscopy (IS) and LIght Detection and Ranging (LIDAR) RS techniques that are mapping the Earth 

landscapes from the visible to the thermal infrared spectral domains (between 0.3 μm and 50 µm). 

Imaging spectroradiometers measure fluxes (radiance) as two-dimensional (2D) arrays (images). 

Radiance fluxes can be transformed into landscape reflectance  (ratio of reflected and incident 

radiation) of visible (VIS) and near infrared (NIR) wavelengths, and into landscape brightness 

temperature TB in the case of thermal infrared (TIR) acquisitions. Satellite IS sensors acquire Top Of 

Atmosphere (TOA) data, a combination of scattering and absorption from the Earth surface and 

atmosphere, whereas airborne RS observations are typically considered as Bottom Of Atmosphere 

(BOA) if acquired right above the Earth surface. LIDAR sensors use a laser beam as a photon source 

and measure the travel time between the laser pulse emission and its reflected return to calculate the 

range (distance) to the objects encountered by the emitted pulse. The combination of range 

measurements with knowledge of platform location and attitude provides a three-dimensional (3D) 

representation of the observed landscape.  
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Empirical relationships, such as the correlation of RS and field-measured data (e.g., Leaf Area 

Index—LAI), were one of the first methods used for RS data interpretation. A typical example is the 
estimation of LAI from the Normalized Difference Vegetation Index, defined as NDVI ൌ ౌି౨ౚ

ౌା౨ౚ
 [1]. 

Although simple, fast and straightforward, these methods are site and sensor specific, and thus 

insufficiently robust and universally inapplicable. Increasing demand for more universal satellite data 

products for landscape characteristics has spurred advances in theoretical understanding and modeling 

of IS and LIDAR signals of 3D landscapes for various experimental and instrumental configurations 

(radiometric accuracy, spatial/spectral/temporal resolutions, etc.). IS signals correspond essentially to 

the bi-directional reflectance factor (BRF) and brightness temperature function (BTF). Instrumental 

configuration is given by sensor technical specifications, including: field-of-view (FOV),  

full-width-at-half-maximum (FWHM), spectral sampling, and viewing geometry. Experimental 

configuration corresponds to:  

(1) The date of acquisition (sun angular position),  

(2) Landscape geometrical configuration and optical properties  

(3) Atmospheric parameters (gas and aerosol density profiles, scattering phase functions and single 

scattering albedo).  

It must be noted that improvement of recent RT models requires, in general, advancement in 

representation of landscapes, as their 3D complexity (i.e., topography, distribution of trees and  

buildings, etc.) greatly affects optical observations. Three most frequent types of BRF simulating models, 

ordered according to their increasing complexity, are: semi-empirical, geometrical optical and radiative  

transfer models.  

1.1. Semi-Empirical Models 

These models are widely used for their analytical nature and use of only a few input parameters. They 

do not attempt to describe the biophysical parameters and processes that shape BRF, but they provide a 

mathematical description of observed patterns in BRF datasets. They rely on simplified physical 

principles of geometrical optical (GO) models and RT theory. For example, linear kernel driven (LiK) 

models [2–4] calculate BRF as the sum of an isotropic term and anisotropic functions (kernels) that 

characterize volume and surface scattering. For example, MODIS, POLDER, MSG/SEVIRI, AVHRR, 

VEGETATION land surface BRF/albedo products are mainly generated using LiK models to invert the 

BRF parameters of multi-angular bidirectional reflectance in clear skies [5]. Another example is the 

Rahman-Pinty-Verstraete (RPV) model [6], and its latter inversion accelerating versions: the Modified 

RPV (MRPV) [7] and EMRPV [8] models. These models are widely used for their analytical nature and 

use of only few input parameters.  

1.2. Geometric Optical Reflectance Models  

Geometric optical (GO) models simulate the BRF of objects on the Earth surface as a function of their 

physical dimensions and structure. For instance, they consider forest stands as a combination of 

approximated geometrical shapes of tree crowns with corresponding shadows and background forest 

floor material [9], each of them with predefined surface optical properties that integrate implicitly the 
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volume light scattering. Modeling is based on the computation of scene fractions of sunlit canopy, sunlit 

background, and shadows, which is a potential source of modeling inaccuracy. Therefore, GO models 

perform better in simulations of “open” landscapes (e.g., sparse forest stands). Li and Stralher [10] 

developed one of the first GO models. More recent 4-scale model [11] simulates tree crowns as discrete 

geometrical objects: cone and cylinder for conifers, and spheroid for deciduous trees. Individual leaves in 

deciduous canopies and shoots in conifer canopies, defined with a given angular distribution, populate 

branches with a single inclination angle. This model uses a geometrical multiple scattering scheme with view 

factors [12]. The 5-Scale model [13] is an extension of 4-Scale that includes the LIBERTY model [14], 

which simulates needle-leaf optical properties.  

1.3. Radiative Transfer Models  

Radiative transfer (RT) models, also called physical RT models, simulate the propagation of radiation 

through Earth systems and the RS acquisitions using physically described mechanisms. They rely on an 

RT equation, which relates the change in radiation along a ray path due to local absorption, scattering 

and thermal emission. Since these models work with realistic representations of Earth landscapes, they 

can be robust and accurate. Generally speaking, simulation of BOA and TOA BRF and BTF involves 

RT of four components:  

(1) Soil (e.g., Hapke model [15]) 

(2) Foliar element (e.g., PROSPECT model [16]) 

(3) Canopy (e.g., SAIL model [17])  

(4) Atmosphere (e.g., MODTRAN [18] or 6S [19] models).  

Some models, such as the Discrete Anisotropic Radiative Transfer (DART) model [20], directly 

simulate the Earth-atmosphere interactions using inputs from soil and leaf RT models. Multiple 

scattering and consequently energy conservation is the usual major source of inaccuracies of these 

models, because, conversely to first order scattering, it has no simple analytical form.  

The solutions of RT models are based on the following four mathematical methods: (i) N-flux,  

(ii) radiosity, (iii) Successive Orders of Scattering, and (iv) Monte Carlo. In case of N-flux method, the 

radiation is propagated along N number of discrete ordinates (directions), which correspond to N RT 

equations. For example, the SAIL model [17] uses four differential equations corresponding to four 

directional fluxes within a horizontally homogeneous landscape: one sun flux, two isotropic upward and 

downward fluxes and one flux along a sensor viewing direction. However, a more detailed consideration 

of the RT anisotropy can require a much larger number of fluxes (e.g., more than 100) [21]. Contrary to the 

N-flux method that computes the volumetric radiation balance in the 3D space, the radiosity method [22] is 

based on the radiation balance equation of a finite number N of discrete scatterers, which requires 

computation of the view factors between all N elements. It is, therefore, based on inversion of a NxN 

matrix, which is time consuming if N is too large, e.g., in case of complex landscape elements such as 

trees. The Successive Orders of Scattering (SOS) method is one of the oldest and conceptually simplest 

solutions of the multiple scattering. It uses an iterative calculation of successive orders of scattering, where 

the total radiance vector is expressed as a sum of contributions from photons scattered a number of times 

ranging from 0 to a pre-defined maximum number. An example is the SOSVRT model [23] that simulates 
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polarized RT in vertically inhomogeneous plane-parallel media. The Monte Carlo (MC) method involves 

simulation of the chain of scattering events incurred by a photon in its path from the source to the receiver 

or to its absorber. An advantage of this technique is explicit computation of only single scattering 

properties [24]. On the other hand, it requires long computational time, which is a strong technical 

limiting constraint. Well-known examples of MC models are Drat [25], FLIGHT [26] or Raytran [27].  

Finally, RT models work with landscapes that are simulated as homogeneous or heterogeneous 

scenes. Homogeneous scenes are represented as a superposition of horizontally homogeneous layers of 

turbid medium (i.e., random distribution of infinitely small planar elements). The very first RT models 

used this approach to model general trends such as the evolution of crop BRF/BTF in relation to 

phenological LAI changes. The approach of homogeneous turbid layers is, however, insufficient for 

description of complex landscape architectures. The heterogeneous landscapes are being simulated in 

two following ways (or their combination): (i) discretization of the spatial variable into a 3D set of spatial 

nodes called voxels [28,29] that contain turbid medium, and/or (ii) representation of each individual 

landscape element with triangular facets as geometrical primitives.  

The objective of this paper is to present the latest advances in DART (DART 5 version) modeling of 

airborne and satellite IS as well as LIDAR data of architecturally complex natural and urban landscapes. 

After introducing the physical theory, we present recent development in DART modeling of IS and LIDAR 

acquisitions. Finally, an ability to simulate airborne image acquisitions with the projective perspective and 

also a fusion of modeled IS with LIDAR data are demonstrated as new model functionalities. 

2. DART Theoretical Background and Functions 

DART is a three-dimensional (3D) model computing radiation propagation through the entire  

Earth-atmosphere system in the entire optical domain from visible to thermal infrared parts of the 

electromagnetic spectrum (EMS) [30,31]. As shown in Figure 1, it simulates 3D radiative budget and 

reflected radiation of urban and natural landscapes as acquired by imaging radiometers and LIDAR 

scanners aboard of space and airborne platforms. The DART model, developed in the CESBIO Laboratory 

since 1992, can work with any 3D experimental landscape configuration (atmosphere, terrain 

geomorphology, forest stands, agricultural crops, angular solar illumination of any day, Earth-atmosphere 

curvature, etc.) and instrument specifications (spatial and spectral resolutions, sensor viewing directions, 

platform altitude, etc.). DART forward simulations of vegetation reflectance were successfully verified by 

real measurements [32] and also cross-compared against a number of independently designed 3D reflectance 

models (e.g., FLIGHT [26], Sprint [33], Raytran [27]) in the context of the RAdiation transfer Model 

Intercomparison (RAMI) experiment [34–38]. To date, DART has been successfully employed in various 

scientific applications, including development of inversion techniques for airborne and satellite 

reflectance images [39,40], design of satellite sensors (e.g., NASA DESDynl, CNES Pleiades, CNES 

LIDAR mission project [41]), impact studies of canopy structure on satellite image texture [42] and 

reflectance [32], modeling of 3D distribution of photosynthesis and primary production rates in vegetation 

canopies [43], investigation of influence of Norway spruce forest structure and woody elements on 

canopy reflectance [44], design of a new chlorophyll estimating vegetation index for a conifer forest 

canopy [45], and studies of tropical forest texture [46–48], among others.  
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Figure 1. DART cell matrix of the Earth/Atmosphere system. The atmosphere has three 

vertical levels: upper (i.e., just layers), mid (i.e., cells of any size) and lower atmosphere (i.e., 

same cell size as the land surface). Land surface elements are simulated as the juxtaposition 

of facets and turbid cells. 

DART creates and manages 3D landscapes independently from the RT modeling (e.g., visible and 

thermal infrared IS, LIDAR, radiative budget). This multi-sensor functionality allows users to simulate 

several sensors with the sample landscape. Major scene elements are: trees, grass and crop canopies, 

urban features, and water bodies. A DART simulated tree is made of a trunk, optionally with branches 

created with solid facets, and crown foliage simulated as a set of turbid cells, with specific vertical and 

horizontal distributions of leaf volume density. Its crown shape is predefined as ellipsoidal, conical, 

trapezoidal, or others. Trees of several species with different geometric and optical properties can be 

exactly or randomly located within the simulated scene of any user-defined size. Grass and crops are 

simulated as turbid media that can be located anywhere in space. Urban objects (houses, roads, etc.) 

contain solid walls and a roof built from facets. Finally, water bodies (rivers, lakes, etc.) are simulated 

as facets of appropriate optical properties. Specific 3D transformations and optical properties can be 

assigned to each landscape object. Additionally, DART can use external libraries (Figure 2) to import, 

and to some extent edit (e.g., translation, homothetic and rotation transformations) landscape elements, 

digital elevation models (DEM) and digital surface models (DSM) produced by other software or 

measured in field. Importantly, the imported and DART-created landscape objects can be combined to 

simulate Earth scenes of varying complexity. The optical properties of each landscape element and the 

geometry and optical properties of the atmosphere are specified and stored in SQL databases. 
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a)  b)  c)  d)  e)  f)  

Figure 2. Examples of natural and artificial 3D objects imported by DART, simulated using 

triangular facets: (a) wheat plant, (b) corn plant, (c) rice canopy, (d) sunflower plant,  

(e) cherry tree and (f) airplane. 

DART landscapes, hereafter called “scenes”, are constructed with a dual approach as an array of 3D 

cells (voxels) where each scene element, with any geometry, is created as a set of cells that contains 

turbid media and/or facets (triangles and parallelograms). Turbid medium is a statistical representation 

of a matter, such as fluids (air, soot, water, etc.) and vegetation foliage or small-sized woody elements. 

A fluid turbid medium is a volume of homogeneously distributed particles that are defined by their 

density (particles/m3), cross section (m2/particle), single scattering albedo, and scattering phase function. 

Turbid vegetation medium is a volume of leaf elements that are simulated as infinitely small flat surfaces 

that are defined by their orientation, i.e., Leaf Angle Distribution (LAD; sr−1), volume density (m2/m3), 

and optical properties of Lambertian and/or specular nature. Finally, a facet is a surface element that is 

defined by its orientation in space, area and optical properties (Lambertian, Hapke, RPV and other 

reflectance functions with a specular component, and also isotropic and direct transmittance). It is used 

to build virtual houses, plant leaves, tree trunks or branches. Vegetation canopies can, therefore, be 

simulated as assemblies of turbid medium voxels or geometrical primitives built from facets or 

combination of both.  

Atmospheric cells were introduced into DART in order to simulate attenuation effects for satellite  

at-sensor radiance and also to model the influence of atmosphere on the radiative budget of Earth 

surfaces. The atmosphere can be treated as an interface above the simulated Earth scene or as  

a light-propagating medium above and within the simulated Earth scene, with cell sizes inversely 

proportional with the particle density. These cells are characterized by their gas and aerosols contents and 

spectral properties (i.e., phase functions, vertical profiles, extinction coefficients, spherical albedo, etc.). 

These quantities can be predefined manually or taken from an atmospheric database. DART contains a 

database that stores the properties of major atmospheric gases and aerosol parameters for wavelengths 

between 0.3 m and 50 m [18]. In addition, external databases can be imported, for instance from the 

AErosol RObotic NETwork (AERONET) or the European Centre for Medium-Range Weather Forecasts 

(ECMWF). Atmospheric RT modeling includes the Earth-atmosphere radiative coupling (i.e., radiation 

that is emitted and/or scattered by the Earth can be backscattered by the atmosphere towards the Earth). It 

can be simulated for any spectral band within the optical domain from the ultraviolet up to the thermal 

infrared part of electromagnetic spectrum. The Earth-atmosphere coupling was successfully  

cross-compared [49,50] with simulations of the MODTRAN atmosphere RT model [18].  

A basic DART simulation procedure is carried out with four processing modules: (i) Direction,  

(ii) Phase, (iii) Maket, and (iv) Dart (Figure 3). The Direction module computes discrete directions of 
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light propagation with radiation being propagated along N discrete directions n with an angular sector 

width n (sr). Any number of N discrete directions (n, n) can be specified with any n angular 

distribution and for any n solid angle range, as for example for oversampling angular regions with an 

anisotropic radiative behavior such as the hop spot configuration [51]. The discrete directions are 

calculated automatically or adapted to any user specified configuration. They include a set of U directions 

that sample the 4 space (∑ ୳

୳ୀଵ ൌ 4) and V directions (v, v) that are called fictive directions 

because fluxes along these directions do not contribute to fluxes along any other direction where N = U + V. 

Importantly, in addition to these discrete directions, DART can also track radiation along any direction in 

the 4 space, for example for simulating airborne acquisitions and LIDAR signals. These so-called flexible 

directions are not pre-defined. Their number depends on the number of emitting and scattering elements 

towards the sensor. Depending on the scene dimensions, the number of flexible directions can exceed 106.  

Optical properties for all non-flexible discrete directions are pre-computed with the Phase module. It 

computes the scattering phase functions of all scene and atmosphere elements depending on their 

geometry and optical properties. For example, the phase functions of vegetation depend on the actual 

leaf reflectance and transmittance and the plant specific LAD. 

The Maket module builds the spatial arrangement of landscape elements within a simulated scene. 

Scene features are created and/or imported as 3D objects with specified optical properties. Importantly, 

scene cell dimensions (x, y, z) define the output spatial sampling, and cell dimensions in DART can 

be varied within the same scene in order to optimize the final resolution.  

Finally, the Dart module computes radiation propagation and interactions for any experimental and 

instrumental configuration using one of the two computational approaches: (i) Ray tracking and  

(ii) Ray-Carlo. Ray tracking simulates radiative budget and images of optical airborne and satellite 

radiometers. For that, it tracks iteratively radiation fluxes W(r, n) along N discrete directions (n), and 

one flexible flux, at any location r [20,21]. These fluxes are defined by three components: their total 

intensity, the radiation unrelated to leaf biochemistry and the polarization degree associated to first order 

scattering. The values of these components depend on thermal emission and/or scattering, which in turn 

depend on local temperature and optical properties of intercepted surfaces or volumetric scattering 

elements. A scattering event at iteration i gives rise to N fluxes, and the event is repeated in latter 

iterations. The fraction of W(r, i) that is scattered along a given j direction is defined by the local 

scattering phase function P(i j), with i being a non-fictive discrete direction, or a set of discrete 

directions, and j being a direction that can be discrete, fictive and flexible.  

The second modeling approach simulates terrestrial, airborne, and satellite LIDAR signals from 

waveforms and photon counting RS instruments. It combines two methods that are described in the 

LIDAR section. Using Monte Carlo and ray tracking techniques [52–54], the Ray-Carlo method tracks 

radiometric quantities corresponding to photons with specific weights, which are for simplicity reasons 

called just photons. During a scattering event, the so-called Box method determines the discrete direction 

of photon scattering using the same scattering functions as the Ray tracking approach. Simultaneously a 

photon with a very small weight is tracked to the LIDAR sensor. Ray tracking can additionally simulate 

solar noise that is present in a LIDAR signal.  
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Figure 3. Scheme illustrating DART model architecture: four processing modules (Direction, 

Phase, Maket, Dart) and input data (landscape, sensor, atmosphere) are controlled through a GUI 

or pre-programmed scripts. The Sequence module can launch multiple DART simulations 

simultaneously on multiple processor cores producing effectively several RT products.  

Apart from the four basic modules, the following supportive tools are integrated in DART distribution 

to facilitate quick and easy simulations and subsequent analysis of simulated results:  

- Calculation of foliar reflectance and transmittance properties with the PROSPECT leaf RT model [16], 

using leaf biochemical properties (i.e., total chlorophyll content, carotenoid content, equivalent 

water thickness and leaf mass per area) and leaf mesophyll structural parameter. 

- Computation of scene spectra and broadband image data (reflectance, temperature brightness, and 

radiance), using a sensor specific spectral response function for either a single DART simulation 

with N spectral bands, or for a sequence of N single spectral band simulations.  

- Importation of raster land cover maps for creating 3D landscapes that contain land cover units, 

possibly with 3D turbid media as vegetation or fluid (air pollution, low altitude cloud cover, etc.).  

- Importation or creation of Digital Elevation Models (DEM). DEMs can be created as a raster  

re-sampled to the DART spatial resolution or imported either from external raster image file or as 

a triangulated irregular network (TIN) object.  

- Automatic initiation of a sequence of Q simulations with the Sequence module. Any parameter 

(LAI, spectral band, date, etc.) A1, …, AM can take N1, …, NM values, respectively, with any variable 

grouping (Q  ∏ N୧

୧ୀଵ ). Outcomes are stored in a Look-Up Table (LUT) database for further 

display and analysis. It is worth noting that a single ray tracking simulation with N bands is much 

faster than the corresponding N mono-band simulations (e.g., 50 times faster if N > 103).  

- The simulated 3D radiative budget can be extracted and displayed over any modeled 3D object 

and also as images of vertical and horizontal layers of a given 3D scene.  

- The transformation from facets to turbid medium objects converts 3D plant objects (trees) 

composed of many facets (> 106) into a turbid vegetation medium that keeps the original 3D 

foliage density and LAD distribution. This method remediates constraints limiting RT simulations 
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with many vegetation objects (e.g., forest) that lead to too large computational times and computer 

memory requirements. 

- The creation of 3D objects by using volumes with pre-defined shapes that can be filled with various 

3D objects (triangles, discs, etc.). This functionality allows a quick test of simple hypotheses, as 

for instance the influence of vegetation leaf shape and size in turbid media simulations.  

- The transformation of LIDAR multi-pulse outputs into industrial Sorted Pulse Data (SPD) format 

[55]. Implementation of the SPDlib software allows users to create, display, and analyze their own 

LIDAR point clouds [56].  

- Display tools for visualization and quick analysis of spectral images and LIDAR waveform and 

photon counting outputs, etc.  

While the basic DART modules are programmed in C++ language (~400,000 lines of code), most 

external tools are written in Python language. In addition, a Graphic User Interface (GUI), programmed in 

Java language, allows users to manage model inputs (RT approach, scene geometry, view direction, etc.), 

to specify required output products (BRF, radiative budget, etc.), display results, and run the external 

scripts. A strong feature of DART is acceleration of RT modeling using multithreaded computation, 

allowing use of a specified number of processor cores simultaneously, which results in a near linear 

scaling of the processing time. 

3. Ray Tracking Approach for Modeling Spectroradiometer Acquisitions  

Ray tracking in heterogeneous 3D landscapes [20] and atmosphere [50] is based on exact kernel and 

discrete ordinate methods with an iterative and convergent approach. Radiation intercepted by scene 

elements at iteration i is scattered during the following iteration i + 1. The iterative process stops when 

the relative difference in scene exitance between two consecutive iterations is less than a specified 

threshold. In addition, any ray is discontinued if its angular power (W ⋅ srିଵ) is smaller than the scene 

mean angular power that is scattered at first iteration, multiplied by a user specified coefficient.  

The ray tracking approach has three simulation modes: reflectance (R), temperature (T), and 

combined (R + T). The R mode allows simulating the shortwave optical domain using the sun as the 

primary source of radiation and the atmosphere as the secondary source. Landscape and atmosphere 

thermal emissions are neglected. The opposite is true in the (T) mode, where the solar radiation is 

neglected. Finally, all radiation sources are combined in (R + T) mode, which is particularly useful for 

simulating RS signals in the spectral domain of 3–4 µm. Dependence of thermal emission on temperature 

and wavelength is modeled with Planck’s law, while the Boltzmann’s law can be used when simulating 

radiation budget over the whole electromagnetic spectrum.  

The finite DART simulation can be conducted over three landscape arrangements: an infinite 

repetitive landscape with repetitive topography, an infinite repetitive landscape with continuous 

topography, and a spatially isolated scene, each of them managing exiting rays differently. A ray  

{A - A1} that exits the flat infinite repetitive scene at point A1 re-enters the scene through the symmetric 

point B1 along the same direction (Figure 4). The path ray {A - A1 - B1 - A2 - B2 - …- C} is, therefore, 

equivalent to the path {A - C'}. In a similar fashion, a ray {A - A1} that exits the infinite repetitive scene 

with continuous topography at point A1 re-enters the scene under the same direction through the point B1, 

which is vertically shifted by the distance equal to the ground altitude offset between the exit and re-entry 
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sides of the scene. In case of an isolated scene, a ray that exits the scene is dismissed; i.e., it does not re-enter 

the scene.  

  

Figure 4. Simulation of a flat infinite repetitive landscape. 

The Earth-atmosphere RT is simulated in five consecutive stages (Figure 5) [50]:  

- Stage 1 is tracking the sun radiation and the atmosphere thermal emission through the atmosphere. 

It calculates radiance transfer functions per cell and per discrete direction from the mid/high 

atmosphere interlayer to the sensor, TOA and BOA levels. This stage gives the downward BOA 

radiance LBOA(), upward TOA radiance LTOA() and also upward Lsensor() and downward 

Lsensor() radiance at sensor altitude.  

- Stage 2 is tracking within the landscape the downward BOA radiance LBOA(), originating from the 

stage 1, and the landscape thermal emission. This stage provides the landscape radiation budget, 

albedo, and upward BOA radiance LBOA(), before the Earth-atmosphere radiative coupling. 

- Stage 3 is tracking the BOA upward radiance LBOA(), obtained during stage 2, through the 

atmosphere back to the landscape. Radiance transfer functions of stage 3 provide the downward BOA 

radiance LBOA(), which is extrapolated in order to consider the multiple successive  

Earth-atmosphere interactions.  

- Stage 4 is tracking downward BOA radiance LBOA(), resulting from stage 3, within the 

landscape. It uses a single iteration with an extrapolation for considering all scattering orders 

within the Earth scene. This stage results in landscape radiation budget and upward BOA  

radiance LBOA().  

- Stage 5 applies the stage 3 radiance transfer functions to the upward BOA radiance of stage 4. The 

resulting radiance is added to the atmosphere radiance, which is calculated within the first stage, to 

produce the radiance at sensor (Lsensor()) and TOA (LTOA()) levels.  

The entire RT procedure results in the following two types of products: 

(1) Images at three altitude levels: BOA, TOA and anywhere between BOA and TOA. They can be 

camera and/or scanner images with projective and/or orthographic projection, as well as ortho-

projected images that allow superimposing the landscape map and images simulated for various 

viewing directions.  
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(2) 3D radiative budget: distribution of radiation that is intercepted, absorbed, scattered and thermally 

emitted. It is useful for studying the energy budget and functioning of natural and urban surfaces.  
 

 

Figure 5. Five stages of the DART algorithm that models RT of the Earth-atmosphere system. 

Finally, scattering and emission of a DART cell corresponds to surface and volume interactions. It is 

modeled using a sub-division of each cell into D3 sub-cells, resulting in six D2 cell sub-faces. This 

approach improves greatly the spatial sampling, resulting in shorter computational time, and requires 

less computer memory than using cells with a dimension divided by D, which is very beneficial for 

simulating scenes with dense turbid cells and large scene elements.  

3.1. Surface Interactions with Facets  

A ray of light incident on a facet (Figure 6a) interacts with its front side but not with its rear side. 

Thus, depending on the type of object, any surface can be simulated using only top facets or using top 

and bottom facets with opposite normal vectors, and optionally with different optical properties. Any 

facet is characterized by a direct transmittance Tdir along its normal direction n, a Lambertian 

transmittance Tdiff, and a reflectance R with Tdiff + R 1. R can be isotropic (Lambertian) or anisotropic. Direct 

transmittance along s is equal to [Tdir]1/|s.n|. For an incident irradiance E along n, scattered exitance is 

equal to E ⋅ ሺ1 െ Tୢ ୧୰ሻ ⋅ R  and transmitted diffuse exitance is equal to E ⋅ ሺ1 െ Tୢ ୧୰ሻ ⋅ Tୢ ୧ .Surface 

reflectance anisotropy can be described by parametric functions (e.g., Hapke [15], RPV [6]), with a 

specular component, defined by a surface refraction index, an angular width and a multiplicative factor.  

The point Mint that represents light interception by a facet is modeled as a centroid of all interceptions 

on that facet. It is calculated per DART constructed sub-cell, among the D3 sub-cells, which is improving 

spatial sampling, particularly if facets have large dimensions compared to cell dimensions. Storing the 

intercepted radiation for every direction is computationally expensive, especially for large landscapes 

with many cells. Thus, a simplifying mechanism storing intercepted radiation per ray incident angular 

sector sect,k, where sect,k is a set of neighboring discrete directions that sample the 4 space of 

directions (k·sect,k = 4), was adopted [57,58]. Scattering at an iteration i is then computed from energy 
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locally intercepted within incident angular sectors sect,k at iteration i – 1. Although, one can define as 

many angular sectors as discrete directions, ten sectors are sufficient to obtain very accurate results, with 

relative errors smaller than 10−3 [30]. Facets belonging to the same cell can intercept rays scattered and 

emitted by other facets. Rays exiting the cell through the same cell sub-face are grouped per discrete 

direction (Figure 6b), reducing the number of rays to track and consequently decreasing total 

computational time.  

Facet thermal emission is simulated according to Planck’s or Boltzmann’s law, using the 

corresponding facet temperature and optical properties [59]. 

a)
 
b)

 

Figure 6. Facet scattering. (a) Single facet with an incident flux Winc(s). It produces 

reflection Wrefl(n) and direct Wtrans,dir(s) and diffuse Wtrans,dif(m) transmission.  

(b) Interaction of two facets in cell with 27 sub-cells (only nine are illustrated in 2D figure). 

Each facet has a single scattering point per sub-cell, with an intercepted radiation per incident 

angular sector.  

3.2. Volume Interactions within Turbid Vegetation and Fluid Cells 

When a ray crosses a turbid cell, two interception points Mint are computed along its path within the 

cell (Figure 7a). The first point is computed for upward scattering and the second one for downward 

scattering. As several rays cross each cell, possibly through the same sub-face, two simplifying steps are 

adopted. First, Mint is calculated per incident cell sub-face s, through which the rays entered the cell, in 

order to improve spatial sampling, particularly in presence of scenes with large cells. Second, similarly 

to facet interactions, the intercepted radiation is calculated per incident angular sector sect,k. The first 

order scattering is computed at each iteration using the intercepted radiation that corresponds to the 

incident ray that entered the cell through one or several sub-faces. Thus, intercepted vector sources 

Wint(s, sect,k) are stored per sub-face s and per incident angular sector sect,k. Then, we have:  

Wint(s, sect,k) = s·Wint(s, s), with s  sect,k. The first order scattering of the direct solar flux can be 

computed exactly, because the sun direction is considered as a sector. Within cell multiple scattering 

(Figure 7b) is analytically modeled [20]. Similarly to the case of facets, rays exiting the same cell sub-face 

in the same direction are grouped together in order to reduce computational time (Figure 7c).  

Cell thermal emission is simulated with Planck’s or Boltzmann’s law and a temperature-independent 

factor that depends on the cell optical properties and directional extinction coefficient. In order to reduce 

the RT computation time, this factor is pre-computed as a volume integral in a specified spatial sampling, 

per cell sub-face, discrete direction and type of turbid medium [59].  
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(a) (b) (c) 

Figure 7. Turbid cell volume scattering: (a) two 1st order interception points per incident ray 

with associated first order scattered rays, and their second order interception points (red), (b) 

analytically computed within-cell second order scattering, and (c) first order interception points, 

which are grouped per incident angular sector and per cell sub-face crossed by the incident rays. 

Rays exiting the cell are grouped per exiting cell sub-face and per discrete direction.  

The spatial resolution of DART images is equal to the cell size (x, y) divided by a user-defined 

factor  that sets a spatial oversampling. It is applied during the image creation procedure when upward 

fluxes are stored into an image array with (x/, y/) pixel sizes. These images can be  

re-sampled to the pixel-size of any RS sensor by a DART module or by any digital image processing 

software. Their radiometric accuracy is usually better than if being simulated with a cell size equal to 

the sensor pixel size. Figure 8 shows DART nadir and oblique images of the citrus orchard site simulated 

within the RAMI IV experiment [38]. The tree crowns were simulated as a juxtaposition of turbid cells 

that were transformed into turbid medium from original facet based trees. Cell size of 20 cm was small 

enough to keep a very good description of 3D tree crown architecture. Its combination with  = 2, allows 

observation of shadows casted by tree trunks and branches. The simulation with facet-based trees gave very 

similar reflectance values, however they needed longer computation times [58]. DART can also simulate 

images of urban scenes. As an example, an example of St. Sernin Basilica (Toulouse, France), with urban 

elements and trees modeled as combination of facets and turbid medium, is shown in Section 5.  

a)  b)  

Figure 8. DART simulated RGB composite of satellite image in natural colors for a virtual 

tree formation displayed in: (a) nadir, and (b) oblique view. 

Winc(s) 

Wtrans,dir(s) 
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The possibility to simulate time series of images acquired by a geostationary satellite was recently 

introduced into DART in the frame of a Centre National d’Etudes Spatiales (CNES, France) project 

preparing a future high spatial resolution geostationary satellite. The aim was to design a tool that 

calculates the time interval, for any date and for any region on the Earth, during which the useful radiance 

Lu,TOA that originates from the Earth surface is reliable, while considering the expected sensor relative 

accuracy (~3%), sensor signal-to-noise ratio, atmosphere, local topography, etc. Lu,TOA is the difference 

between TOA radiance and radiance Latm due to the atmosphere only. Four typical African landscapes 

(grass savannah, tree savannah, tropical forest, desert), with varying parameters such as spatial 

resolution, signal-to-noise ratio and elevation were considered. Simulations used local atmosphere 

conditions from the AERONET network and ECMWF database. Three specific DART features were 

used: (i) RT modeling through a spherical atmosphere, (ii) automatic computation of satellite view 

direction for each Earth coordinates, and (iii) automatic calculation of sun direction for any date, satellite 

and scene coordinates, etc. Figure 9 illustrates the capacity of DART to simulate geostationary satellite 

radiance images above Africa at Latitude 0° N, Longitude 17° E and altitude of 36,000 km. In this 

example, the Earth surface was simulated as Lambertian, with a bare ground reflectance “brown to dark 

gravelly loam” obtained from the USDA Soil Conservation spectra library. At 443 nm, Latm variability 

is large, especially for regions at sunset and sunrise. This demonstrates that the accuracy of Lu,TOA 

depends on the location, season and atmosphere conditions, with sunrise and sunset being the worst 

conditions. A typical task during the preparation stage of a future satellite mission is to assess the optimal 

spatial resolution for studying a given type of landscape. This problem was investigated with the 

assumption that radiance spatial variability, as represented by radiance standard deviation, is the textural 

information of interest. Figure 10 shows the hourly variation of the standard deviation of Lu,toa at 665 nm 

for the desert sandy landscape (barchans dune), with spatial resolution ranging from 1 m up to 100 m, 

for 21 June 2012. As expected, the spatial variability of Lu,TOA decreases as image spatial resolution 

coarsens, which allows selection of the optimal spatial resolution.  

a)  

Figure 9. Cont. 
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b)  

c)  

Figure 9. DART simulated BOA (a), atmosphere (b) and TOA (c) radiance (W/m2/sr/µm) 

at 443 nm, for 6 h 44 m (left), 8 h 44 m (middle) and 10 h 44 m (right) UTC as measured 

by a geostationary satellite at Latitude 0° N, Longitude 17° E and 36,000 km altitude on  

21 June 2012. 

(a)  (b)  

Figure 10. Spatial variability of the useful radiance Lu,TOA of a sandy desert dune (25.5º N, 

30.4º E, altitude of 78 m), acquired by a future geostationary satellite (0º N, 17º E, altitude 

of 36,000 km) at 665 nm on 21 June 2012. (a) DART simulated radiance image of a barchan 

dune at solar noon. (b) Hourly standard deviation of Lu,TOA for spatial resolution from 1 m up 

to 100 m. Sand reflectance was obtained from the ASTER spectral library. 
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4. Modeling LIDAR Signal with Ray-Carlo and Box Methods  

New features related to LIDAR simulations, such as the simulation of airborne LIDAR full-waveform 

products of single and multiple pulses, as well as LIDAR photon counting and terrestrial LIDAR 

observations, were recently introduced in DART [53,54]. Figure 11 shows the typical geometry 

configuration of an airborne laser scanner (ALS). The sensor is defined by a circular footprint with a 

radius Rfootprint defined by the LIDAR illumination solid angle footprint(footprint), the ALS altitude HLIDAR 
and the footprint area S୭୭୲୮୰୧୬୲ ൌ π ⋅ R୭୭୲୮୰୧୬୲

ଶ . In case of an oblique central illumination direction with 

a zenith angle L, the 1st order illuminated surface has an elliptical shape with a major axis 
ୖ౪౦౨౪
ୡ୭ୱమ ై

, a 

minor axis 
ୖ౪౦౨౪
ୡ୭ୱై

, and an area S୧୪୪୳୫୧୬ ൌ
ୗ౪౦౨౪
ୡ୭ୱయ ై

. Photons launched within footprint can have any 

angular distribution (e.g., Gaussian) and pulse characteristics. A photon scattered in the atmosphere at 

(x,y,z) can illuminate Sillumin within the solid angle  (x,y,z). The LIDAR field of view (FOV) is 

defined either directly as SFOV or by the angle FOV. The viewed surface covers the area S୴୧ୣ୵ ൌ ୗూో
ୡ୭ୱయ ై

. In 

Figure 11, the ground surface is assumed to be horizontal. However, in presence of terrain topography, 

the ground altitude is the minimum altitude of provided topography. A photon, which is scattered in 

atmosphere or landscape at the (x,y,z) position, can irradiate the LIDAR sensor in directions within the 

solid angle  (x,y,z), defined by the sensor aperture area ALIDAR.  

 

Figure 11. The LIDAR geometry configuration, with horizontal ground surface. 

The Monte Carlo (MC) photon tracing method is frequently used for simulating LIDAR signals [60,61]. 

It simulates multiple scattering of each photon as a succession of exactly simulated single scattering 

events, and produces very accurate results. MC can determine if and where photon interception takes 

place and if an intercepted photon is absorbed or scattered. However, a tiny FOV of LIDAR FOV with 

an even tinier solid angle  (x,y,z), within which the sensor is viewed by scattering events both imply 

that the probability for a photon to enter the sensor is extremely small. This case, therefore, requires a 

launch of a tremendous number of photons, which is usually computationally unmanageable. 

Introduction of anisotropic phase functions into scene elements further increases this number. 
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Consequently, most of the LIDAR simulating RT models use a reverse approach, i.e., they are tracing 

photons from the sensor instead of from their source [61]. DART, however, uses a different approach 

for forward simulations of LIDAR signal. Each photon launched from the LIDAR transmission source 

is tracked within the Earth-atmosphere scene until it is absorbed, measured by sensor or rejected out of 

the scene. Two modeling methods were devised in order to reduce the computational time constraint: 

the Ray-Carlo and the Box methods. 

4.1. Ray-Carlo: Photon Tracing Method 

Any DART volume and/or surface element is characterized by its scattering phase function P(n  m). 

For each photon intercepted by a scene element at (x,y,z) location, the classical MC random pulling uses 

the element’s single scattering albedo to determine if the photon is scattered, and subsequently what is 

the discrete direction m, m) of the scattered photon. For each scattering event, a particle, called 

photon for simplicity reasons, is sent to a randomly selected discrete direction (m, m) with a weight 

proportional to the solid angle m and the phase function P(n m), and another particle is sent 

directly towards the LIDAR sensor along the direction  (x,y,z) with a weight proportional to the solid 

angle  (x,y,z) and the phase function P(n  (x,y,z)). The photon along the direction (m, m) 

will contribute to multiple scattering events, conversely to the photon that is sent to the sensor. The latter 

one has an energy that is negligible compared to the photon scattered along (m, m), mostly because 

 (x,y,z) << m. The photon along  (x,y,z) is tracked towards the sensor with an energy (weight) 

that may decrease, or even become null, as being attenuated by existing landscape and/or atmosphere 

elements. The energy and the travelled distance are recorded when the photon reaches the sensor. The 

accumulation of these photons builds up the waveform output, which is used to produce the photon-counting 

signal via a statistical approach. In practice, scattering of photons sent to the LIDAR is neglected in our 

modeling approach, because their energy is negligibly small.  

Figure 12 illustrates graphically the DART Ray-Carlo method. A photon of weight win, propagated 

along the direction in, is intercepted in position (x1,y1,z1). If the MC random pulling provides a positive 

scattering decision, the photon (weight wDART,1) is scattered along the DART discrete direction (n1, 
n1) and the position (x1,y1,z1) is verified if the direction towards LIDAR (1) is within FOV. In case 

of positive answer, the photon (weight wLIDAR,1) is sent towards the LIDAR sensor along the direction 1 

within the solid angle  (x1,y1,z1). The following two equations must be satisfied during this process: 

ݓ ൌ ூோ,ଵݓ  ோ்,ଵ (1)ݓ

And 

ூோ,ଵݓ
ோ்,ଵݓ

ൌ
 ܲሺΩ → Ωሻఠሺ௫భ,௬భ,௭భሻ

݀Ω

 ܲሺΩ → Ωሻஐభ
݀Ω

 (2)

For any scattering order i, the direction {i,  (xi,yi,zi)} is calculated and the condition within FOV 

is checked. It must be noted that i is a flexible direction, independent of the discrete directions. Millions 

of flexible directions can be simulated, each per a scattering event. For this reason, the phase functions 

P(n  ) of flexible directions cannot be pre-computed as in the case of discrete directions. Thus,  

P(n  i) is assumed to be equal to P(n  mi), where i lies within the solid angle mi of a pre-defined 
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discrete direction. It implies that 
୵ైీఽ,భ

୵ీఽ,భ
ൌ னሺ୶భ,୷భ,భሻ

ஐౣ
ൎ ైీఽ

୰మ⋅ஐౣ
, where r is the distance from a scene 

element to the LIDAR sensor. The photon weight wLIDAR,i is, consequently, very small. The GLAS 

satellite LIDAR [62], with ALIDAR  0.8 m2 and r = 6×105
 m, has wLIDAR,i of around 10−13. To be able to 

simulate the acquisition of a single photon with this particular sensor, the use of actual photons without 

weights would require about 1013 scattering events.  

Since cells in DART simulated atmosphere are usually bigger than those used for simulating the 

landscape, a single interception event inside an atmospheric cell that gives rise to a scattering leads to a 

large uncertainty on the scattering event location defined by the MC random pulling. In order to reduce 

the associated MC noise without increasing the number of launched photons, K interception events are 

simulated per interception event along the photon travelling path towards LIDAR FOV. Thus, K photons 

are sent to the LIDAR, which partially fills the gap of distance recorded based on the random MC pulling 

with a single scattering event per interception. This approach mimics more closely real behavior of an 

actual flux of photons, which is continuously intercepted along its path.  

 

Figure 12. The Ray-Carlo approach for LIDAR simulation, depicted with all several 

scattering orders. 

RT models usually consider the atmosphere as a superimposition of atmospheric layers, each of them 

being characterized by specific gas and aerosol optical depths. Each layer is defined by constant gas and 

aerosol extinction coefficients, resulting in a discontinuity of the extinction coefficients at each layer 

interface. Unlike in case of passive radiometer images, this characterization of the atmosphere leads to 

inaccurate simulations of LIDAR signals, producing waveforms with discontinuities at the top and 

bottom of each atmosphere layer. This problem is solved in DART by simulating the atmosphere with 

vertically continuous gas and aerosol extinction coefficients.  

4.2. Box Method: Selection of Photon Scattering Directions 

Selection of the discrete direction that corresponds to scattering of a photon incident along a given 

discrete direction using MC approach is a complex task. Ideally, a function should relate any randomly 

selected number to a defined discrete direction, and needs to operate between two mathematical spaces: (1) 
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the positive real numbers within [0, 1] and (2) the N discrete directions, so that any number within [0, 1] 

corresponds to a unique direction. This means that a bijection map has to be built to link the set of N 

directions with the corresponding set of N intervals defining the [0, 1] interval.  

The probability to select the direction j is defined as:  

P(j) ൌ
 ሺஐ౩,ஐౠሻಈ

ୢஐౠ

∑  ሺஐ౩,ஐౡሻಈౡ
.ୢஐౡ

ొ
ౡసభ

 (3)

with ∑ 	
୨ୀଵ P(j) ൌ1. 

A direct method to determine the direction j is to compare a randomly pulled number with each 

interval representing each direction. This requires performing a maximum of N comparisons per pulling, 

which is computationally expensive. This problem can be easily solved if the cumulative probability 
Pcum(n) = ∑ 	

୨ୀଵ .P(j) is invertible. Then, random pulling a  [0, 1] gives directly the direction index  

n = P −1(a), which indicates the selected direction. However, Pcum(n) is, in most cases, not invertible. 

Several inversion methods (e.g., bisection) were tested, but all of them led to large errors, at least for 

some directions. Therefore, we developed a Box method that can select the scattering direction rapidly 

with only two random numbers and without any computation of inverse function.  

The Box method keeps in memory an array of boxes, where each box represents a tiny interval of 

Pcum(n) that corresponds to a given direction index (i.e., scattering direction). Subsequently, reading of 

an array B with a randomly selected number within [0, 1] provides directly a direction index without 

any need for further computation. The total number of boxes in B is ruled by the user-defined size of 

computer memory used for its storage. A larger memory size implies that more boxes with smaller 

probability intervals per box can be stored, giving a better accuracy at each random pulling. The number 

of lines of B is equal to the N number of incident discrete directions i and the computer memory is 

distributed to store the boxes per line of B. A various number of boxes per possible scattering direction 

j,i is assigned to a single line i of B, which is proportional to the probability of occurrence pj,i = P(j|i) 

of scattering towards the direction j for an incident direction i. The value of each box associated to a 

given scattering direction j,i is the index j of that direction. For each line i of B, the least probable 

scattering direction with probability p1,i is represented by m1,i boxes, which defines the number Mj,i of 
boxes per scattering direction j,i, with total number of boxes Mi = ∑ 	

୨ୀଵ Mj,i. Consequently, a random 

number m  [0, Mi] defines the scattering direction index. This approach may require quite a large 

amount of computer memory if the scattering directions have a wide range of occurrence probabilities. 

For instance, if 10 boxes are used for a scattering direction with a probability of 5×10−7, then 4×106 

boxes are needed for a scattering direction with a probability of 0.2. 

The requirement of large computer memory and computation time is solved as follows. Scattering 

directions j,i are sorted per incident direction i according to their occurrence probability. Then, sorted 

adjacent directions are grouped into classes in such a way that the ratio between maximum and minimum 

probability over all scattering directions j,i within the same class is smaller than a given threshold . 
Probability P୧

୩ of a class k is the sum of occurrence probabilities P୨,୧
୩ of all scattering directions Ω୨,୧

୩
, in 

class k, i.e., P୧
୩ ൌ ∑ P୨,୧

୩
୨ . Each class k is represented by a number of boxes that depends directly on its 

probability of occurrence P୧
୩ for any incident direction i, and a given number of boxes that is assigned 

to the class with the lower probability. Since two probability arrays are being used, two successive 

random pulling values are needed for any scattering event with incident direction i. The first pulling 
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derives the class index k from {P୧

୩}, while the second one derives the direction index j from {P୨,୧
୩}. 

Finally, the value of  is optimized such a way that probability arrays {P୧
୩} and {P୨,୧

୩} require a computer 

memory smaller than the user specified value. Indeed, if  is increased, the size of {P୧
୩} decreases with 

the number of classes, whereas the size of {P୨,୧
୩} increases with the number of directions per class.  

  

   

Figure 13. A virtual tree built out of geometrical facets (a) and the same turbid-cell tree derived 

by the facet-to-turbid conversion tool (b) with their 3D LIDAR point clouds for an oblique view 

( = 30°, = 135°) and the 1D waveform with its first scattering order contribution (c). The 

image of photons that reached the ground is showing the last LIDAR echo (d) and DART ray 

tracking provides a high spatial resolution (10 cm) nadir image at  = 1064 nm. 

DART simulations of LIDAR point clouds can be conducted using Ray-Carlo and Box methods for 

landscapes created with geometrical primitives (facets) and voxels filled with turbid medium. An 

example of airborne LIDAR sensor viewing a facet based tree created by the AMAP Research Centre 

under an oblique direction ( = 30°) at wavelength = 1064 nm is presented in Figure 13. High similarity 

of the two 3D points clouds (i.e., LIDAR echoes) for the two representations, i.e., tree built from facets 

and transformed into voxels with turbid medium (Figure 13a,b) proves the correct functionality of this 

timesaving “facet to turbid medium” conversion. 1D waveforms (Figure 13c) display distances measured as 

time differences between transmission and reception of LIDAR photons. The waveform curve corresponding 

to multiple scattering orders is significantly larger than the first scattering order curve, which demonstrates 

high importance of multiple scattering at  = 1064 nm. It also shows a strong contribution of the ground 

surface to the simulated signal. Figure 13d shows 2D distribution of photons that reached the ground (i.e., 

the last echo). As expected, the number of photons tends to be smaller under the tree, relative to the rest of 

the LIDAR footprint. Finally, Figure 13e presents image of the simulated facet tree as captured by a nadir 

imaging spectroradiometer at  = 1064 nm. The 10 cm spatial resolution provides enough details to detect 

single leaves. It must be mentioned that in addition to mono-pulse LIDAR, DART can also simulate  

b)

e)d)

Waveform 

1st scattering 
order 

a) 

c) 

Number of photons
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multi-pulse LIDAR acquisitions for any spectral wavelengths, using a multi-threading algorithm. Such a 

simulation of the St. Sernin Basilica (Toulouse, France) is shown in Section 5. 

Two other LIDAR techniques were implemented in DART, in addition to the airborne/satellite laser 

scanning: (i) terrestrial LIDAR (TLIDAR), and (ii) photon counting LIDAR. TLIDAR, such as  

ILRIS-LR can map objects on the ground, resulting in accuracy within millimeters or centimeters. It is 

increasingly used to assess tree architecture and to extract metrics of forest canopies [63]. TLIDAR 

simulation within DART is aiming at better understanding of actual data. The photon counting LIDAR 

is more efficient than conventional LIDAR because it requires only a single detected photon to perform 

a range measurement. That is why the next ICESat-2 mission [64] will carry a photon counting 

instrument called the Advanced Topographic Laser Altimeter System (ATLAS). DART simulates 

photon counting data using the statistical information derived from one or several simulated waveforms. 

Figure 14 shows an example using a simple bare ground with a vegetation plot and signal of a photon 

counting LIDAR acquired at  = 1064 nm along a horizontal sensor path, perpendicular to the vegetation 

plot. Because, the sun direction was set as oblique (s = 45°), part of the bare ground is in the shade of 

the vegetation cover. Figure 14b shows the radiance image demonstrating the sun illumination, which is 

used to compute the solar noise of LIDAR signals. Figure 14c illustrates the photon counting simulation 

along the sensor path (horizontal axis) and Figure 14d is a subset enlargement of Figure 14c. The 

continuous point cloud above and below the bare ground level corresponds to the solar noise caused by 

the sun radiation reflected from the bare ground and the vegetation plot. Solar noise is reaching its 

maxima at the location of the vegetation plot, because vegetation is more reflective than bare ground at 

1064 nm. Similarly, solar noise tends to be minimal in the shaded part of the bare ground, where the sun 

irradiance is diffuse, and consequently minimal. 

 
 

   

 

 

Figure 14. DART simulated photon counting LIDAR with solar noise. (a) Bare ground and 

vegetation plot with an oblique sun irradiation (s = 45°) and a horizontal LIDAR sensor 

path. (b) Radiance image of the scene (i.e., solar noise). (c) Simulated photon counting 

signal. (d) An enlarged subset of simulated scene (c).  

5. Modeling IS Data with the Perspective Projection  

RT simulations of BRF are usually based on the assumption that the whole landscape is observed 

along the same viewing direction. This assumption is acceptable when a relatively small landscape is 

observed from an altitude ensuring that the divergence of the FOV over the landscape can be neglected. 
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However, this disqualifies direct comparison of RT modeled images with actual observations that do not 

meet this assumption. DART was, therefore, improved to properly consider landscape dimensions 

together with sensor altitude and consequent sensor FOV [65]. This new functionality provides DART 

images simulated at large scales with realistic geometries, which allows their per-pixel comparability with 

actual RS acquisitions. Two types of sensor geometries are available: a pinhole camera and an imaging 

scanner. Pinhole camera acquisitions are modeled with the perspective projection, where the ray convergence 

point is unique, whereas imaging scanner acquisitions are modeled with the parallel-perspective projection, 

where the ray convergent point changes with the platform movement. 

The perspective projection is modeled for each sensor pixel (xs,ys) located within the sensor focal 

plane. The pixel value is driven by scattering and/or emission of a facet and/or turbid medium volume at 
location M(x,y,z) in the horizontal plane PzM. Its associated sensor pixel is viewed from M(x,y,z) along 

a flexible direction {(M),  (M)} under zenith angle v, which depends on the location of the 

scattering point M(x,y,z) and the geometry of sensor pixel S(xs,ys,zs). A scattering and/or emission event 

at M(x,y,z) gives rise to local fluxes Wn(M) per discrete direction (n, n) and to a flexible flux W() 

that heads towards its associated sensor pixel along the direction {(M), (M)}. In order to reduce 

computational time, the scattering phase function for any flexible direction {(M), (M)} is similar to 

the scattering phase function corresponding with the scattering discrete direction {n, n} that contains 

direction {(M), (M)}. Thus, one can write that:  

WሺΩୱ → ωሻ ൌ W୬ሺΩୱ → Ω୬ሻ.
னሺሻ

ஐ
, (4)

with  

ωሺMሻ ⊂ ሼΩ୬, ΔΩ୬ሽ. 

The upward flux due to the facet scattering at M(x,y,z), which reaches the BOA plane, is computed as:  

W∗ሺMሻ ൌ T→ሺωሻ ൈ
W୬ሺMሻ

ΔΩ୬
.
Sୱୣ୬ୱ୭୰ ⋅ Ωୱୣ୬ୱ୭୰ ⋅ ωሺMሻ

Sୱୡୟ୲୲ୣ୰ୣ୰ ⋅ Ωୱୡୟ୲୲ୣ୰ୣ୰ ⋅ ωሺMሻ
ൈ Minሼ

Sୱୡୟ୲୲ୣ୰ୣ୰ ⋅ Ωୱୡୟ୲୲ୣ୰ୣ୰ ⋅ ωሺMሻ

rୱୣ୬ୱ୭୰,
ଶ , ΔΩୱୣ୬ୱ୭୰ሽ (5)

with  

rୱୣ୬ୱ୭୰,
ଶ ൌ ሺxୱ െ xሻଶ  ሺyୱ െ yሻଶ  ሺzୱ െ zሻଶ ൌ ൬

zୱ െ z
cos θ୴

൰
ଶ

 

where sensor is the sensor pixel FOV and T→ሺωሻ is the path transmittance from the scatterer at 

location M up to the BOA level (top of the Earth scene).  

The condition Minሼୗ౩ౙ౪౪౨౨⋅ஐ౩ౙ౪౪౨౨⋅ன
ሺሻ

୰౩౩౨,
మ , ΔΩୱୣ୬ୱ୭୰ሽ ensures that the flux, which arrives to a sensor 

pixel, is not outside sensor. If (M) is within sensor, we have:  

W∗ሺMሻ ൌ ெܶ→ைሺωሻ.
W୬ሺMሻ

ΔΩ୬
.
Sୱୣ୬ୱ୭୰. Ωୱୣ୬ୱ୭୰. ωሺMሻ

rୱୣ୬ୱ୭୰,
ଶ  (6)

The term 1/r2 stresses that a scattered/emitted flux captured within the sensor pixel FOV decreases 

with the square of the distance from its scattering/emission point. Fluxes that leave an Earth scene are 
stored in the horizontal plane Pzmin at the scene minimum altitude zmin. To achieve this, scattering facets 

and volumes are projected along direction (M) into Pzmin, with M' being the projection of M along 

(M) into Pzmin, and SM,xy and SM',xy being the areas of projections along (M) of the scattering element 

M into PzM and Pzmin, respectively. Since the projection keeps the radiance constant, one can write:  



Remote Sens. 2015, 7 1690 

 
W∗ሺMሻ ⋅ rୱୣ୬ୱ୭୰,

ଶ

S ⋅ cos θ୴ ⋅ Sୱୣ୬ୱ୭୰ ⋅ Ωୱୣ୬ୱ୭୰ ⋅ ωሺMሻ
ൌ

W∗ሺM′ሻ ⋅ rୱୣ୬ୱ୭୰,ᇱ
ଶ

Sᇱ ⋅ cos θ୴ ⋅ Sୱୣ୬ୱ୭୰ ⋅ Ωୱୣ୬ୱ୭୰ ⋅ ωሺM′ሻ
 (7)

It implies that: W∗ሺM′ሻ ൌ W∗ሺMሻ ൈ
౩౩౨,

మ ⋅ୗᇲ,౮౯

౩౩౨,ᇲ
మ ⋅ୗ,౮౯

, with zsensor,M = zs – zM and zsensor,M' = zs – zM'. 

Three sensor projections are considered in DART:  

(1) Orthographic projection with parallel rays to the sensor plane: SM',xy = SM,xy, resulting in  

W∗ሺM′ሻ ൌ W∗ሺMሻ ൈ
౩౩౨,

మ

౩౩౨,ᇲ
మ . 

(2) Perspective projection of a pin-hole camera: Sᇲ,୶୷ ൌ S,୶୷ ൈ


౩౩౨,ᇲ
మ

౩౩౨,
మ , resulting in  

W*(M') = W*(M). 

(3) Combined projection of a scanner: orthographic projection for the axis parallel to the sensor path, 

and perspective for the other axis. Thus, Sᇲ,୶୷ ൌ S,୶୷ ൈ


౩౩౨,ᇲ
మ

౩౩౨,
మ  resulting in 	

W∗ሺM′ሻ ൌ W∗ሺMሻ ൈ
౩౩౨,

	

౩౩౨,ᇲ
. 

During the projection process, W*(M') and the associated projected surface SM are spread over DART 
pixels (x, y) of Pzmin. The proportion M'i,j of W*(M') in pixel (x, y) is used to compute the total flux 
from (x, y) to the sensor pixel (i,j): W୧,୨

∗ ൌ ∑ γᇲ→୧,୨ ൈ W∗ሺM′ሻᇲ , leading to pixel radiance  

L୧,୨
∗ ൌ

∑ ஓᇲ→,ౠ⋅
∗ሺᇱሻᇲ

୶⋅୷⋅ୡ୭ୱ౬,,ౠ⋅ன,ౠ
, where {i,j(v,i,j, v,i,j),i,j} is the direction under which the sensor is viewed from 

(i, j). Finally, the sensor image is created by projecting the atmosphere-transmitted radiance onto the sensor 

plane. Sensor orientation (precession, nutation, and intrinsic angle) is taken into account during  

this procedure.  

A DART modeled airborne camera image of the St. Sernin Basilica (Toulouse, France) is illustrated 

in Figure 15a. It differs geometrically from the satellite image simulated with an orthographic projection 

(Figure 15b). As one can see, two surfaces with the same area and orientation, but located at different 

places, are having, due to perspective projection, different dimensions in the airborne camera image, but 

equal dimensions in the orthographic projection of the satellite image. This explains why objects, as for 

instance the basilica tower and the tree next to it look much larger in the camera image.  

The fact that pixels in a scanner image correspond to different view directions can strongly affect 

their radiometric values. This is illustrated by DART simulated scanner images of the Jarvselja birch 

stand (Estonia) in summer (Figure 16). Jarvselja stand is one of the RAMI IV experiment test sites [38]. 

It is a 103 m × 103 m × 31 m large forest plot, which was simulated as an image with three spectral bands 

at 442, 551 and 661 nm, with SKYL (fraction of diffuse-to-direct scene irradiance) equal to 0.21, 0.15 

and 0.12, respectively. The scanner followed a horizontal path at three flying altitudes of 0.2 km, 2 km 

and 5 km. The solar zenith angle was 36.6° (in Figure 16, the solar direction goes from the bottom to the 

top of images), and the ground spatial resolution was equal to 0.5 m for all three acquisitions. For any 

altitude, the central view direction of the imaging scanner is the hotspot direction. In the hotspot 

configuration [66], the sun is exactly behind the sensor. As a result, no shadows occur in the sensor’s 

FOV, providing maximal reflectance values (Figure 16a) represented as a bright horizontal line running 

parallel to the scanner path of motion (Figure 16b). The hotspot effect (BRF local maximum) is observed 

in a relatively small angular sector centered in the exact hotspot direction. As expected, the perception 
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of shadows increases rapidly for viewing directions located far from the hotspot direction. At altitude of 

0.2 km, the range of the scanner viewing directions over the whole forest scene is relatively large, ranging 

from 12.3° to 55.4°, and the hotspot phenomenon is therefore visible only along a narrow line. The range 

of scanner view directions decreases with increasing altitude. It falls between 34.0° and 39.1° at 2 km 

altitude and between 36.595° and 36.605° at 5 km altitude, which explains why the hotspot line broadens 

in case of higher observing altitude of 2 km (Figure 16c), and why the whole forest stand is observed 

under the hotspot configuration at 5 km altitude (Figure 16d).  

    

Figure 15. DART simulated products of the St. Sernin Basilica (Toulouse, France).  

(a) Airborne camera image (RGB color composite in natural colors) with the projective 

projection. (b) Satellite image with the orthographic projection. (c) Airborne LIDAR scanner 

simulation, displayed with SPDlib software. 

a)  b)   

Figure 16. Cont. 

a) b) c)

Hot spot

Scanner path
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c)  d)  

Figure 16. The changing hotspot perception simulated for the Jarvselja birth forest stand 

(Estonia) in summer: (a) DART simulated BRF for three spectral bands (442 nm, 551 nm, 

661 nm), with SKYL equal to 0.21, 0.15 and 0.12, respectively, and DART simulated images 

for an airborne scanner flown at three altitudes: (b) 0.2 km, (c) 2 km and (d) 5 km, with 

ground resolution of 0.5 m. Dark zones in (c) and (d) correspond with occurrences of few 

pine trees in the birch stand.  

Air-/space-borne RS images are usually transformed into orthorectified products that can be 

superimposed with local maps. DART computes orthorectified RS images directly, without classical 

orthorectification methods, because the exact location of each scattering/emission event occurring during an 

image simulation is known [65]. Two types of orthorectified products are produced by DART (Figure 17): 

ideally orthorectified images and industry orthorectified images, which are similar to RS images derived 

by industrial orthorectification methods. In the ideal orthorectification, radiance of pixel (i,j) results from 

the sum of all the fluxes that originate from scattering events occurring within the voxels (i,j,k) from the 

bottom up to the top of the scene. Selection of two ideal projections is available in DART:  

- Orthographic projection (Figure 17a): radiance of pixel (i,j) is L୧,୨ሺΩ୬ሻ ൌ
∑ 

∗ ሺ୧,୨,୩,ஐሻ
	
ౡ

୶⋅୷⋅ஐౝ⋅ஐ⋅ஐ
, with Ω 

the surface normal vector, (n, n) the sensor viewing direction (i.e., DART discrete direction) 

and k the index of cells above pixel (i,j), and  

- Perspective projection (Figure 17b): radiance of pixel (i, j) is L୧,୨൫ω୧,୨൯ ൌ ∑
	
∗ሺ୧,୨,୩,ன,ౠ,ౡሻ

୶⋅୷⋅ஐౝ⋅ன,ౠ⋅ன,ౠ,ౡ
୩ , with 

(i,j,k, i,j,k) being the sensor viewing direction for cell (i,j,k) above pixel (i,j).  

The industry orthorectification (Figure 17c), which uses altitude of the Earth surface including any 

3D object (e.g., trees, man-made objects, etc.) from a digital surface model (DSM), is carried out in two 

successive steps. In the first step, nadir downward ray tracking samples the DSM with a spatial sampling 

equal to that of the created ortho-image. This step provides the altitude Hi,j for each pixel  

(i, j) of the ortho-image. In the second step, rays are tracked up to the sensor from each Hi,j. Any upward 

ray originating from Hi,j that is not intercepted within the Earth scene reaches the sensor plane at a point 

Msensor. In this case, the sensor radiance value at the point Msensor is assigned to the pixel (i, j) of the 

ortho-image. If an upward ray from Hi,j is at least partially intercepted within the Earth scene, then a 
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value of −1 is assigned to the pixel (i,j), which indicates that this pixel cannot be viewed by the sensor 

(Figure 17c).  

 
(a) (b) (c) 

Figure 17. Schematic representation of the DART procedure that simulates orthorectified RS 

images: an ideal orthorectification with orthographic (a) and perspective projection (b), 

respectively, and an industry orthorectification (c) with either perspective or  

orthographic projection.  

DART ideal orthorectification with orthographic projection, for a satellite optical sensor observing 

the Jarvselja birch stand with the central viewing zenith angle of 25° and the illumination direction along 

the horizontal axis, is illustrated in Figure 18a. The same simulation but for industry orthorectification 

using a DSM that represents the upper surface of the tree canopy is presented in Figure 18b. Bright color 

tones in Figure 18b indicate deep occlusion areas of the DSM, indicated in Figure 17c, that sensor cannot see 

due to the 3D nature of forest canopy. No-signal values are assigned to the corresponding pixels. Figure 18c 

shows scatterplot of reflectance values of both orthorectified images. Although reflectance images are 

strongly correlated, one can observe numerous outliers originating from different assumptions about the 

tree canopy surface. It is considered as a non-opaque medium in the ideal orthorectification, but an opaque 

surface for the industry orthorectification.  

a)  b)  c)  

Figure 18. DART simulated orthorectified satellite images of the Jarvselja birth forest stand 

(Estonia) in summer obtained with ideal (a) and industry (b) orthorectification (bright tones 

indicate zones invisible to the sensor, due to the DSM opacity), accompanied by a scatterplot (c) 

displaying linear regression between per-pixel reflectance values of both orthorectified images.  

  

Reflectance: industry orthorectification 
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6. Fusion of DART Simulated Imaging Spectroscopy and LIDAR Data  

New multi-sensor airborne RS systems, such as the Carnegie Airborne Observatory (CAO) [67,68] 

and the Goddard’s LiDAR, Hyperspectral & Thermal Imager (G-LiHT) [69], are carrying on-board 

LIDAR and imaging spectrometer instruments simultaneously. The FOV of the instruments are 

geometrically aligned and both data streams are spatially co-registered. This sensor synergy offers a 

possibility of an in-flight data fusion, where LIDAR provides structural and geometrical information and 

imaging spectrometer provides spectral information of observed Earth’s objects. This type of fusion can 

find its use in various RS applications such as land cover/use classifications, monitoring of natural and 

man-managed ecosystem services or mapping of vegetation bio-diversity and eco-physiological functions.  

  

  

Figure 19. DART fusion of LIDAR and spectral images of St Sernin Basilica (Toulouse, 

France). (a) Acquisition geometry. (b) Multi-pulse LIDAR image. (c) RGB composition of 

corresponding spectral image. (d) and (e) Products of LIDAR-spectral fusion for two 

opposite viewing directions.  

a) b)

c) 

d)

e)

meters
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Since DART can apply the ray tracking method to simulate IS and the Ray-Carlo method to simulate 

LIDAR multi-pulse waveforms of the same landscape in a single run, it can also directly facilitate the 

in-flight fusion of both simulated datasets. During the first step of this procedure, the position of the 

LIDAR FOV center at the minimum altitude is recorded per pulse together with corresponding pulse 

identification number (ID). Then, the imaging scanner image at the minimum altitude is simulated with 

the parallel-perspective projection. This image is automatically referenced in DART scene coordinate 

system, which allows the radiance value to be computed in accordance with the FOV center of each 

recorded LIDAR pulse through a cubic-spline interpolation of the scanner image. The LIDAR output is 

then converted into the SPD format and processed with the SPDlib software to produce the LIDAR point 

clouds. Each LIDAR pulse contains n returns, which create n discrete points in 3D space. These points 

are linked with radiance value via pulse ID, which results in structural information and spectral 

information of the simulated landscape objects being achieved through the same path of a given pulse.  

The DART in-flight data fusion for the St. Sernin Basilica (Toulouse, France) is illustrated in  

Figure 19. Figure 19a shows the geometrical configuration of the 250 m × 250 m scene with the x and y 

axes of the DART coordinate system. The aircraft equipped with a LIDAR sensor ( = 1064 nm) and an 

imaging spectrometer (three spectral bands at 450 nm: B, 550 m: G, 650 nm: R) was flown at altitude of 

2000 m along the y axis, with an off-nadir viewing angle of 30 degrees from the center of the scene to 

the left side of the flight path. This set up ensures that the walls of buildings in the scene, which are 

facing positive values of the x-axis are seen by both the LIDAR and spectrometer. Cell size of 50 cm 

with an average LIDAR pulse density of 4/m2 resulted in 250,000 LIDAR pulses, stored in a matrix of 

500 × 500 ID items. Figure 19b shows the simulated height image (500 × 500 pixels) of the first returns 

for each LIDAR pulse, and Figure 19c shows the RGB composition of simulated spectral image, both 

co-registered via a unique pulse ID. The DART 3D fusion product is then constructed by merging the 

LIDAR point clouds with spectral radiance image values per pulse ID. Figure 19d illustrates that the 

walls of the buildings that face the negative x-axis are present, whereas the walls that face the positive 

x-axis are missing (Figure 19e). This is caused by the off-nadir geometrical configuration allowing the 

LIDAR and IS sensor to observe only one side of the scene. 

7. Conclusions 

During more than 20 years of development, DART has reached the stage of a reference RT model in 

the field of optical RS. Free licenses are provided for research and teaching activities by the Paul Sabatier 

University (UPS) in Toulouse in cooperation with Centre National d’Etudes Spatiales (CNES, France). 

More than 100 research organizations and universities use it for designing future satellite sensors, for 

developing new RS applications for forestry, agriculture, and urbanism, and also for educational 

purposes, especially for lecturing the physical bases of RS and radiative budget.  

This paper demonstrates new DART modeling and functionalities for simulating data of satellite and 

airborne LIDAR waveform and photon counting sensors, as well as images produced by IS from visible 

to thermal infrared wavelengths, both for an identical scene containing any vegetation and urban objects. 

Recent improvements enhanced the capacity of DART to simulate any Earth landscape with any 

atmosphere conditions from common databases (e.g., AERONET network and ECMWF database). 

Natural and urban landscapes can be now simulated with geometrically explicit surfaces (facets) and 
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turbid vegetation/fluid volumes. It addition, DART can import and manage 3D objects (tree, house, etc.) 

in the conventional *.obj format. Moreover, it can transform part or all of these objects into 3D turbid 

voxels. Finally, three major improvements in radiation modeling were introduced.  

(1) Modeling of satellite and aircraft LIDAR waveform and photon counting signals using the 

specifically designed Box and Ray-Carlo methods.  

(2) Image simulation of spectroradiometers mounted on aircraft or unmanned aerial vehicles in the 

perspective projection. This simulation is useful to bridge the scaling gap between in situ 

radiometric measurements and satellite observations. The possibility to model LIDAR and 

spectral image data of the same landscape is highly appealing for RS data fusion techniques.  

(3) Simulation of data acquired by an IS aboard a geostationary satellite, for any Earth region, and 

at any date from sunrise to sunset.  

Apart from new scientific functionalities, many technical improvements took place in DART, such 

as parallelizing computations with the multithread approach or, management of DART outputs as SQL 

databases. Improvement of DART physics, optimization of its computational performance, and 

development of new functionalities still continue. The DART developing team is currently working on 

the following five improvements.  

(1) Orthorectification based on digital elevation model in addition to surface model.  

(2) Modeling spectral measurements of a sensor within the Earth landscape. Consequently, it will 

be possible to simulate camera acquisitions that are used to assess the LAI of trees and crops.  

(3) Simulation of airborne acquisition according to the actual platform trajectory. This is essential 

for a pixel-wise comparison with real airborne and satellite images.  

(4) Simulation of landscapes with cells of variable dimensions within the same scene for decreasing 

computational time and computer storage requirements. It will be possible to simulate larger scenes.  

(5) RT modeling of water bodies. This modeling relies on 3D distribution of the so-called fluid turbid 

cells. This new feature is expected to open DART to the scientific community of ocean and 

inland water remote sensing.  
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