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Abstract
Background Nickel (Ni) phytomining operations
cultivate hyperaccumulator plants (‘metal crops’)
on Ni-rich (ultramafic) soils, followed by harvest-
ing and incineration of the biomass to produce a
high-grade ‘bio-ore’ from which Ni metal or pure
Ni salts are recovered.
Scope This review examines the current status,
progress and challenges in the development of
Ni phytomining agronomy since the first field
trial over two decades ago. To date, the agronomy

of less than 10 species has been tested, while
most research focussed on Alyssum murale and
A. corsicum. Nickel phytomining trials have so
far been undertaken in Albania, Canada, France,
Italy, New Zealand, Spain and USA using ultra-
mafic or Ni-contaminated soils with 0.05–1 %
total Ni.
Conclusions N, P and K fertilisation significantly in-
creases the biomass of Ni hyperaccumulator plants, and
causes negligible dilution in shoot Ni concentration.
Organic matter additions have pronounced positive ef-
fects on the biomass of Ni hyperaccumulator plants, but
may reduce shoot Ni concentration. Soil pH adjust-
ments, S additions, N fertilisation, and bacterial inocu-
lation generally increase Ni phytoavailability, and con-
sequently, Ni yield in ‘metal crops’. Calcium soil
amendments are necessary because substantial amounts
of Ca are removed through the harvesting of ‘bio-ore’.
Organic amendments generally improve the physical
properties of ultramafic soil, and soil moisture has a
pronounced positive effect on Ni yield. Repeated ‘metal
crop’ harvesting depletes soil phytoavailable Ni, but
also promotes transfer of non-labile soil Ni to
phytoavailable forms. Traditional chemical soil
extractants used to estimate phytoavailability of trace
e lements a re of l imi ted use to pred ic t Ni
phytoavailability to ‘metal crop’ species and hence
Ni uptake.

Keywords Agronomy. Annual Ni yield . Biomass
production . EconomicNi phytomining . Ni
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Introduction

Phytomining operations cultivate hyperaccumulator
plants on low-grade ore bodies or superficially
mineralised (ultramafic) soils, followed by harvesting
and a series of post-harvest processing operations to
recover target elements such as nickel (Ni) for profit
(Anderson et al. 1999; Chaney et al. 1998; Hunt 2014;
Robinson et al. 1999a; van der Ent et al. 2015). Appro-
priate agronomic practises are a critical pre-requisite in
the development of commercially viable phytomining
technology (Li et al. 2003a; Rascio and Navari-Izzo
2011). Numerous agronomic experiments have been
undertaken since the first phytomining field trial
in 1995 and these studies have substantially ad-
vanced our understanding on phytomining agrono-
my (Bani et al. 2015a; Chaney et al. 2007b; Li
et al. 2003a; Nicks and Chambers 1995; Robinson
et al. 1997a). This review examines the current
status of knowledge on Ni phytomining agronomy
since the first field trial, and identifies future chal-
lenges and research priorities.

Nickel phytomining operations

Nickel phytomining operations consist of growing se-
lected hyperaccumulator plant species (‘metal crops’)
on Ni-rich (ultramafic) soils, followed by harvesting and
incineration of the biomass to produce a ‘bio-ore’ from
which Ni salts or Ni metal may be recovered (Anderson
et al. 1999; Chaney et al. 1998; Hunt 2014; Robinson
et al. 1999b). These operations may be undertaken on:
(i) large ultramafic areas with suitable topography,
where soils are unsuitable for food production; or (ii)
degraded Ni-rich land which includes Ni laterite mine
sites, smelter contaminated areas and ore beneficiation
tailings (van der Ent et al. 2015a). The criteria for
selection of ‘metal crops’ include high biomass yield
combined with high Ni concentrations (>1 %) in the
above-ground biomass (Chaney et al. 2007a). Local
plant species are recommended because of their adapta-
tion to local climatic and edaphic conditions (Baker
1999). Suitable species must be relatively easy to collect
as bulk seed accessions and have high success rates of
germination, establishment and growth (O'Dell and
Claassen 2009). The selected species may be propagated
via direct seeding, transplantation, or by using cuttings
(Brooks et al. 1998; Li et al. 2003a). Appropriate soil

and plant management practices, based on insights from
laboratory and field tests, are required to maximise the
yields of the selected ‘metal crop’. Annual Ni yields
ranging from 67.5 to 168 kg ha-1 have been demonstrat-
ed in phytomining field trials (Bani et al. 2015a; Bani
et al. 2015b; Robinson et al. 1997a; Robinson et al.
1997b). In principle, Ni phytomining has similar costs
of production as food crops such as corn (Chaney et al.
2007a); and this potentially makes Ni phytomining a
viable business opportunity for ‘metal farmers’ especial-
ly in developing countries such as Indonesia (van der
Ent et al. 2013b).

Economics of Ni phytomining

Here we present the economic potential of Ni
phytomining under two generalised production systems:
an intensive system such as demonstrated in the USA
(e.g. Li et al. 2003a) and an extensive system as dem-
onstrated in Albania (e.g. Bani et al. 2015a). In the
intensive system, the cost of production is high, includ-
ing costs for seed stock, fertilisers, labor and equipment,
whereas the production costs in the extensive system are
relatively low because it mainly involves the use of
fertilisers, herbicides and complementary agricultural
management practices. On the basis of: (i) an average
commercial value of Ni over a period of 5 years (2010–
2015) at the London Metal Exchange of $18 per kg, (ii)
an annual crop Ni yield of 200 kg ha-1 for an intensive
system and 110 kg ha-1for an extensive system, (iii) a
cost of production in 2016 of $1074 ha-1 yr-1 and $600
ha-1 yr-1 for the intensive and extensive systems, respec-
tively, (iv) an estimated 20 % of Ni value for the cost of
metal recovery, then the gross values of an annual
phytomining crop per ha for intensive and an extensive
system are $3600 and $1980, respectively, with
corresponding net values of $1806 and $984. It
is hence clear that Ni phytomining is a highly
profitable agricultural technology for the respective
systems. Other potential sources that may further
increase the profitability of Ni phytomining in-
clude: i) recovery of energy of combustion and
ii) sale of carbon credits. Although a Ni metal
product is in itself profitable, other higher value
Ni products, including pure Ni salts, may further
increase the profitability of Ni phytomining, but
the current market for pure Ni salts is limited.
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Soil Ni availability for ‘metal crops’

Ultramafic soils develop from the weathering of ultra-
mafic bedrock (Baillie et al. 2000; Brooks 1987; Li et al.
2003a; Tappero et al. 2007) and are characterised by
relatively high concentrations of Mg, Fe, Cr, Co, Mn
and Ni, usually low concentrations of Ca, low to defi-
cient levels of macronutrients (N, P and K), and defi-
cient levels of Mo and B (Baker and Brooks 1989;
Brooks 1987; Jenny 1980; Kruckeberg 1985; Proctor
and Woodell 1975). The soil pH of many ultramafic
soils, especially those derived from strongly
serpentinised bedrock, is often relatively high due to
the buffering of Mg-silicates (Alexander 2004;
Chardot et al. 2007). The soil pH can range from neutral
to alkaline with a pH ranging from 6–8 inMediterranean
climates and in young soils (Cambisols) (Massoura et al.
2006), whereas in tropical regions with intensive
leaching, the soil pH may be acidic (pH 5.5) on
Ferralsols (‘laterites’) (van der Ent et al. 2013b). Total
Ni concentrations in ultramafic surface soils typically
range from 0.1 to 0.3 % but is often strongly enriched in
the underlying saprolite (0.8–1.5 %), especially under
intense leaching under tropical conditions (Estrade et al.
2015; Golightly 1979; Proctor and Nagy 1992; Quantin
et al. 2002). Ultramafic soils that have total Ni concen-
trations greater than 0.1 % with high phytoavailable Ni
pools are potentially suitable for Ni phytomining (van
der Ent et al. 2015b).

Nickel in ultramafic soils is associated with three
main fractions: (i) short-term labile fraction (water-sol-
uble fraction, NH4-acetate-exchangeable fraction, ex-
changeable fromMn-oxides and amorphous Fe-oxides);
(ii) long-term labile fraction (bound to crystalline Fe-
oxides and adsorbed to organic matter); and (iii) non-
labile fraction (solid phase residual fraction including
Ni-Al layered double hydroxides, Ni-silicates and Ni
occluded in Fe and Mn oxides), the latter generally
constitutes >50 % of the soil total Ni content (Cheng
et al. 2011; Hseu 2006; Quantin et al. 2002; Tessier et al.
1979; Viets 1962; Vithanage et al. 2014). Soil Ni avail-
ability is mainly controlled by the mineralogy and Ni-
bearing mineral phases (Becquer et al. 2001; Chardot
et al. 2007; Quantin et al. 2001). In strongly leached
ultramafic soils, such as in Ferralsols, generally the Ni
phytoavailability is low (Bani et al. 2014; Cheng et al.
2011; Das et al. 1999; Echevarria et al. 2006; Massoura
et al. 2006; Raous et al. 2010; Raous et al. 2013).
However, in clay-mineral rich young soils (Cambisols)

and saprolite materials, the Ni phytoavailable fraction is
generally high (Raous et al. 2010). The main factors that
influence Ni phytoavailability include: (i) the original
parent material characteristics and its weathering histo-
ry; (ii) soil composition, such as organic matter and clay
content, thermodynamic conditions including pH and
redox potential, and (iii) rhizosphere effects including
root exudates (Antić-Mladenović et al. 2011; Baker and
Walker 1989; Chardot et al. 2007; Echevarria et al.
1998; Echevarria et al. 2006; Ernst 1996; Massoura
et al. 2006; Massoura et al. 2004). High nickel
phytoavailability is essential for successful Ni
phytomining (Massoura et al . 2004), as Ni
hyperaccumulator plants take up Ni from the same soil
labile Ni pools as ‘normal’ plants (Echevarria et al.
2006; Shallari et al. 2001). Nickel hyperaccumulator
plants have efficient root absorption mechanisms that
deplete the phytoavailable Ni pools to the extent that the
soil Ni chemical equilibrium is changed (Centofanti
et al. 2012; Deng et al. 2014). As a result, Ni from
non-labile pools replenishes the labile pool over time
to maintain equilibration (Centofanti et al. 2012), but
this is a slow process and depends on the local buffering
system (Massoura et al. 2004).

Several different chemical extraction methods permit
measuring soil Ni labile pools. These are illustrated in
Fig. 1a, b providing data for the DTPA- and NH4-
acetate-extractable Ni of 17 ultramafic soils from Ore-
gon and Maryland, USA, which have been acidified by
addition of HNO3 and leaching of dissolved cations
before fertilisation with N, P, K, CaSO4, B and Mo
and cropped with Alyssum species (Chaney et al. un-
published). Figure 1c shows the accumulation of Ni in
shoots of A. murale and A. corsicum on 17 of the same
topsoils after growing Alyssum for 120 days from
transplanting. It is clear that the effect of pH on extract-
ability is not closely related to the effect of pH on
accumulation of Ni in shoots of Alyssum species and
these usual soil extraction methods are not predictive of
Ni accumulation by Alyssum species. Traditional soil
extraction methods cannot be used for prediction of Ni
accumulation by hyperaccumulator plants, even though
several authors have previously used NH4-acetate ex-
t rac t ion to predic t the deple t ion of Ni by
phytoextraction, or to compare varied soils as a
phytomining resource (e.g. Robinson et al. 2003;
Robinson et al. 1999b). The Isotopic Exchange Kinetics
(IEK) method allows for the description of the magni-
tude of the Ni labile pool (Echevarria et al. 1998) but
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may not describe the supply of Ni from the soil for
uptake in hyperaccumulator plants. Currently no chem-
ical extraction method can accurately predict Ni avail-
ability, and hence uptake to hyperaccumulator plants.

Nickel hyperaccumulator plants as ‘metal crops’

More than 400 Ni hyperaccumulator plants across over
40 families have been recorded worldwide (Krämer
2010; Pollard 2002; van der Ent et al. 2013a;
Verbruggen et al. 2009). The greatest numbers of
hyperaccumulator plant species are known from Cuba,
New Caledonia and Southeast Asia (Reeves et al. 1999).
However, species of Brassicaceae from the Mediterra-
nean Region are the most widely studied for their Ni
phytomining potential (Bani et al. 2015a; Chaney et al.
2007a). Most Ni hyperaccumulator plants accumulate
0.1–0.5 %Ni in their biomass, but for phytomining only
so-called ‘hypernickelophores’ (>1 % Ni) are

potentially suitable (Chaney et al. 2007a; b; van der
En t e t a l . 2 0 1 3 a ) . Ta b l e 1 l i s t s t h e N i
‘hypernickelophore’ species that have been identified
as having especially high Ni phytomining potential for
use as ‘metal crops’.

Field and laboratory agronomic trials to optimise Ni
phytomining

Nutrient management to increase biomass production

Since the first field trial on a farmed ultramafic soil in
California (USA), using Streptanthus polygaloides
without any fertiliser application (Nicks and Chambers
1995), all other reported trials have incorporated nutri-
ent management. Due to the deficiency of macronutri-
ents in ultramafic soils, there is a strong positive re-
sponse of biomass production to fertilisation in Alyssum
spp. (Bani et al. 2015a). The hyperaccumulator species

Fig. 1 The effect of adjusted pH on (a) 1.0 M NH4-acetate-
extractable; (b) DTPA-extractable Ni; and (c) Ni accumulation in
shoots of Alyssum species grown for 120 days in 17 ultramafic
soils from Oregon and Maryland, USA. (d) Effect of pH on Ni
accumulation in shoots of Alyssum species grown for 120 days on
2 soils collected near a Ni refinery at Port Colborne, Ontario
(Quarry muck; Welland loam; organic and mineral soils respec-
tively), and the Brockman cobbly loam. (e) The effect of adjusted

pH (control treatment 2, and acidified treatment 6, which have
been described in Table 3) on 1.0 M NH4-acetate-extractable and,
(f) DTPA-extractable Ni in relation to Ni phytoextraction from 17
ultramafic soils from Oregon and Maryland, USA. Soil pH was
adjusted by addition of HNO3, followed by leaching of soluble
ions, and fertilization for the growth of Alyssum species to test the
effect of soil pH on Ni accumulation
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tested on ultramafic soils have proven to react strongly
to increasing levels of soil N, P and K, due to the very
low fertility of their native habitats. Trials using ultra-
mafic soils have shown that fertiliser application en-
h a n c e s s h o o t b i oma s s p r o d u c t i o n o f N i
hyperaccumulator plants and also increases their overall
Ni yield (Table 2). As such, N+P+K fertilisation tri-
pled the biomass of Berkheya coddii dry matter to 9 t ha-
1 (Robinson et al. 1999a). There was also a significant
increase in the biomass of Alyssummurale from 3.2 t ha-
1 in unfertilised plots to 6.3 t ha-1 in the fertilised
treatment (Bani et al. 2013). Table 3 shows the effect
of P and Ca fertilisers and pH adjustment on Ni and
other element accumulation by A. murale from an Ore-
gon ultramafic soil that had received little fertiliser from
previous land use. Trials on the independent effect of N
application indicate significant increases in Alyssum
biomass with negligible effect on the shoot Ni concen-
tration, subsequently increasing Ni yield (Bennett et al.
1998; Li et al. 2003a). A significant effect on biomass
production has been observed for N application
(Bennett et al. 1998; Li et al. 2003a), whereas that for
P has been negligible if soils had been fertilized for crop
production previously (Bani 2007; Bani et al. 2015a).
However, split N application could be employed to
minimise excessive N leaching (Li et al. 2003a). The
Ni content of B. coddii increased two-fold with N addi-
tion (Robinson et al. 1997a), whilst split N application
also increased annual biomass Ni yields (Bani et al.
2015a; Chaney et al. 2007a). Phosphorus has a particu-
larly strong effect on the biomass yield and Ni uptake by
hyperaccumulator species growing on soil not previous-
ly fertilized (Table 3) while previously fertilized soils
show a lesser response to P fertilizer (Bennett et al.
1998; Chaney et al. 2008; Robinson et al. 1997a;
Shallari et al. 2001). Additions of micronutrients have
also been considered during fertilisation trials because
ultramafic soils are usually deficient in B and Mo (Li
et al. 2003b). Some ultramafic soils rich in Fe have
proven deficient in Mo even for native ultramafic veg-
etation (Walker 1948; Walker 2001), while low levels of
B fertilisers may be beneficial in many previously un-
fertilized soils.

The effects of soil pH adjustments on Ni accumulation

Studies indicate that the uptake of Ni from ultramafic
soils by Ni hyperaccumulator plants is strongly influ-
enced by soil pH (Chaney et al. 1998; Chaney et al. T
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2007b; Chaney et al. 2000; Chardot et al. 2005;
Echevarria et al. 2006). In both strongly acidic and
alkaline soil conditions, Ni uptake is low in ultra-
mafic soils (Table 4; Fig. 1c), but not in smelter
contaminated soils (Fig. 1d) (Chaney et al. 2007a;
Robinson et al. 1999b; Robinson et al. 1997a). The
solubility of Ni, as well as that of other divalent
cations including Zn, Cu, Fe, Co and Mn, generally
increases in acidic soil conditions (Chaney et al.
2007b; Robinson et al. 1996). On the other hand,
at relatively high soil pH, the concentration of Fe-
oxides in ultramafic soils increases the sorption of
Ni (Chaney et al. 2007a) limiting Ni availability
which ultimately leads to a reduced Ni uptake in
hyperaccumulator plants. Smelter contaminated soils
low in Fe-oxides showed an increase in Alyssum
species (A. murale and A. corsicum) shoot Ni con-
centration across the range from about pH 5 to 7 or
higher, while ultramafic soils revealed a maximum
shoot Ni near pH 6.5 (Table 4; Fig. 1c). Indeed, Ni

uptake decreased at elevated soil pH when both
B. coddii and A. bertolonii were grown in ultramafic
soils (Robinson et al. 1999b; Robinson et al. 1997b).
Within a pH range of 5–6.5 in ultramafic soils, Ni
accumulation by Ni hyperaccumulator plants in-
creases (Chaney et al. 2007b). Because of the dif-
ferent effects of soil pH on extractability of soil Ni
and uptake by Alyssum species, it is not possible to
accurately predict shoot Ni from extractable Ni data
(Fig 1e,f). On the other hand, when Ni accumulation
from 17 ultramafic topsoils was regressed (linear or
quadratic) on to the total soil Ni or DTPA-
extractable Ni, the DTPA-extractable Ni had R2

0.47 for linear and R2 0.53 for quadratic regressions,
but soil total Ni had R2 0.65 for linear and R2 0.72
for quadratic regression of shoot Ni (Fig. 2). Higher
soil Ni will always be a desired property of soils
intended for commercial phytomining. More re-
search is required for assessing the ways in which
hyperaccumulator plants access Ni pools in the soil,

Table 3 Effect of amending Brockman cobbly loam ultramafic soil
(fine, magnesic, mesic Vertic Haploxerepts) from a unmanaged
pasture field in Josephine County, Oregon, USA with phosphate
(kg ha-1 P), pH adjusting, or Ca fertiliser (CaSO4 H2O, t ha

-1)
treatments on terminal soil pH, mean yield and macronutrient
composition of shoots of two Alyssum species (A. murale and
A. corsicum) grown for 120 days (GM designates geometric mean).
For single variable treatments, all other nutrients were applied as

in treatment 2 (100 kg ha-1 P; 1.0 t CaSO4 2H2O ha-1). Bray-1
extractable P was 0.49, 11.1, 49.9 and 100 mg kg-1 soil for the 0,
100, 250 and 500 kg ha-1 P treatments (applied as
Ca(H2PO4)2 2H2O); all except treatment 1 received 200 kg ha-1 N
as NH4NO3. The experimental design, set-up and conditions have
been described by Li et al. (2003b) in which the data from the Port
Colborne soils were reported similar to the serpentine soil
treatments

Treatment Final pH GM-Yield GM-P Mg Ca K
g pot -1 g kg-1

1 None 6.56 a ‡ 4.1 c 1.04 e 4.06 d 17.5 ab 9.1 d

Phosphate treatments:

3 0 P 5.82 e 1.6 d 0.61 f 6.47 a 17.5 ab 10.0 cd

2 100 P 6.24 b 24.5 a 2.16 cd 6.20 bc 17.1 ab 16.5 b

4 250 P 6.14 bcd 23.2 ab 3.00 b 6.46 bc 19.8 a 19.9 a

5 500 P 6.16 bc 26.5 a 3.59 a 6.40 bc 18.2 ab 19.8 a

pH treatments:

6 Lo pH 5.42 g 27.4 a 2.03 d 4.92 cd 16.7 ab 18.4 ab

7 MLo pH 5.69 f 26.2 a 2.12 d 6.42 bc 18.5 ab 17.0 b

8 MHi pH 5.89 e 27.0 a 2.07 d 5.31 bcd 16.2 ab 18.4 ab

2 As is pH 6.24 b 24.5 a 2.16 cd 6.20 bc 17.1 ab 16.5 b

Ca:Mg treatments:

9 0.0 Ca 6.10 cd 19.3 b 2.43 c 5.66 bc 14.8 b 12.4 c

2 1.0 Ca 6.24 b 24.5 a 2.16 cd 6.20 bc 17.1 ab 16.5 b

10 2.5 Ca 6.04 cd 25.2 a 2.10 d 6.74 b 18.4 ab 17.7 ab

11 5.0 Ca 6.03 d 24.2 a 1.94 d 6.26 bc 16.2 ab 17.2 ab

‡Means followed by the same letter are not significantly different (P< 0.05 level) according to the Duncan-Waller K-ratio t-test
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and to develop predictive tools for Ni uptake in
hyperaccumulator plants.

The effects of soil Ca amendments on Ni accumulation

Nickel hyperaccumulator plants accumulate normal
foliar levels of Ca from soils with very low concen-
trations of exchangeable Ca and low Ca:Mg ratios,
which is part of the natural adaptation to growing on
ultramafic soils (Brooks 1987; Vlamis and Jenny
1948; Walker et al. 1955). Studies show that there
is a positive correlation between the exchangeable
Ca:Mg ratio and the labile Ni pools in ultramafic
soils (Cheng et al. 2011). Calcium supply to high
Mg ultramafic soils will be required to maintain the
annual Ni uptake in Alyssum species because bio-
mass harvest and removal reduces the pool of
phytoavailable Ca in these soils, for example, the
annual removal of 1 t of biomass removes 20 kg of
Ca (Chaney et al. 2007a; Chaney et al. 2008). The
sequestration mechanisms for Ni is distinct from Ca
handling or storage in Ni hyperaccumulator plants
(Broadhurst et al. 2004a); but a positive correlation
exists in the foliar concentrations of Ca and Ni in

some ‘metal crop’ species (van der Ent and Mulligan
2015). Nickel hyperaccumulator species absorb
more Ca relative to Mg, which leads to high Ca:Mg
ratio in the leaf tissues (Bani et al. 2014); this
selective Ca accumulation from soils with very low
Ca:Mg ratios substantially reduces Mg and Ni tox-
icity (Kruckeberg 1991). Unless Ca is actually defi-
cient, Ca addition has little effect on the Ni concen-
tration in the above-ground biomass and shoot yield
as well as root-to-shoot translocation of Ni, but may
increase Ni tolerance (Chaney et al. 2008). Calcium
supply in the form of CaCO3 increases Ni uptake in
hyperaccumulator plants growing on some soils, as a
result of the combined effect of Ca addition and soil
pH (Kukier et al. 2004). However, Ni tolerance in
hyperaccumulator plants may be improved by
CaSO4 addition independent of soil pH (Chaney
et al. 2008). Moreover, Ca is present in ultramafic
soils at low concentrations; hence Ca depletion
should be avoided in Ni phytomining operations
(Bani et al. 2015a; Chaney et al. 2007b; Chaney
et al. 2008). Apart from these observations, our
current understanding about the role of Ca in
hyperaccumulator plants is limited.

Table 4 Effect on terminal soil pH, mean yield and microelement composition of shoots of Alyssum species grown for 120 days (GM
designates geometric mean) under conditions noted in Table 3

Treatment Final pH GM-Yield GM-Ni GM-Co GM-Mn GM-Zn GM-Fe Cu
g pot -1 mg kg-1

1 None 6.56 a ‡ 4.1 c 14,740. a 34.3 c 56.5 e 63.4 bc 154. b 3.0 cd

Phosphate treatments:

3 0 P 5.82 e 1.6 d 6250. cd 19.4 ef 62.3 cde 118. a 273. a 2.8 d

2 100 P 6.24 b 24.5 a 6270. cd 19.9 ef 60.9 cde 59.9 bc 112. cd 3.6 bc

4 250 P 6.14 bcd 23.2 ab 6810. bc 22.6 def 65.2 cde 60.2 bc 104. d 4.2 ab

5 500 P 6.16 bc 26.5 a 5690. d 18.1 f 67.2 cde 55.1 cd 92. d 4.0 ab

pH treatments:

6 Lo pH 5.42 g 27.4 a 6150. cd 224. a 462. a 63.1 bc 144. bc 4.4 ab

7 MLo pH 5.69 f 26.2 a 6800. bc 50.4 b 132. b 68.7 b 117. bcd 4.6 a

8 MHi pH 5.89 e 27.0 a 5990. cd 28.8 cd 73.1 cd 58.2 bcd 96. d 3.6 bc

2 As is pH 6.24 b 24.5 a 6270. cd 19.9 ef 60.9 cde 59.9 bc 112. cd 3.6 bc

Ca:Mg treatments:

9 0.0 Ca 6.10 cd 19.3 b 7860. b 21.1 ef 55.6 e 49.4 d 87. d 3.1 cd

2 1.0 Ca 6.24 b 24.5 a 6270. cd 19.9 ef 60.9 cde 59.9 bc 112. cd 3.6 bc

10 2.5 Ca 6.04 cd 25.2 a 6050. cd 18.4 ef 58.2 de 59.6 bc 87. d 3.8 bc

11 5.0 Ca 6.03 d 24.2 a 5630. d 24.4 de 78.5 c 63.3 bc 93. d 3.6 bc

‡Means followed by the same letter are not significantly different (P< 0.05 level) according to the Duncan-Waller K-ratio t-test.
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Soil S additions and Ni accumulation

Additions of soil S increase Ni yield in B. coddii but
does not have a significant effect on biomass production
(Robinson et al. 1999a). Sulphur additions in the form of
elemental finely ground sulphur lower the soil pH,
thereby increasing the NH4-acetate-extractable Ni frac-
tion (Robinson et al. 1999b). However, limited studies
exist on the use of S treatments in Ni phytomining
(Table 2). Sulphur additions to ultramafic soils may
enhance Ni uptake in Ni hyperaccumulator plants by
increasing the extractability of Ni (Chaney et al. 2007a;
Robinson et al. 1999a). Furthermore, S is reported to be
taken up intensively by all Brassicaceae (i.e. Alyssum
spp.) due to their specific metabolic requirements (e.g.
in glucosinolates) (Booth et al. 1995) apart from any
hyperaccumulation traits. Basic studies on Ni tolerance
by Noccaea Ni hyperaccumulators (Noccaea
goesingense, N. oxyceras, and N. rosulare) indicate that
glutathione plays a role in Ni tolerance in these
species (Freeman et al. 2004) and that a S-rich
precursor of glutathione (L-cysteine) may be in-
volved in Ni hyperaccumulation in Noccaea (Na
and Salt 2011). Broadhurst et al. (2004b; 2009)
reported co-localisation of Ni and S in vacuoles
of A. murale and A. corsicum grown on ultramafic
soils and in nutrient solutions and suggested SO4

2-

was needed as a counter-ion to maintain the
charge balance in vacuoles storing high concentra-
tions of Ni. Future studies need to assess the
independent role of S on phytoavailability of Ni

in ultramafic soils, at least for Brassicaceae Ni
hyperaccumulator plants.

Soil organic matter additions and Ni accumulation

The use of organic amendments in the culture of the Ni
hyperaccumulators Alyssum serpyllifolium subsp.
lusitanicum, A. serpyllifolium subsp. malacitanum,
A. bertolonii and N. goesingense demonstrated substan-
tial positive effects on the biomass yield of the plants
(Álvarez-López et al. 2016). The authors found that the
Ni yield was significantly increased due to the stimula-
tion of biomass production while the organic
amendments decreased both soil Ni availability
and shoot Ni concentrations. The increase in bio-
mass production could be due to improvements in
the soil physical properties such as soil structure,
porosity and water-holding capacity. Organic
amendments could therefore be beneficial in Ni
phytomining operations, but this need to be dem-
onstrated in field trials.

Plant management practices

Nickel phytomining pot and field trials have shown that
plant management practices, beyond fertiliser treatment
and pH adjustment, may enhance Ni yield in Ni
hyperaccumulators via a number of ways: (i) plant den-
sity is important to optimise biomass production per unit
area (Bani et al. 2015b; Lasat 2002); (ii) weed control
reduces competition for essential nutrients and water

Fig 2 Relation of Alyssum shoot Ni to (a) DTPA-extractable Ni in 17 ultramafic topsoils; and (b) total soil Ni in 17 ultramafic topsoils
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between the ‘metal crop’ and weeds (Bani et al. 2015a;
Chaney et al. 2007a); (iii) plant growth regulators may
increase biomass production (Cabello-Conejo et al.
2014; Cassina et al. 2011) but can reduce their Ni
yield (Cabello-Conejo et al. 2014), although a
recent study shows positive effects on both bio-
mass y ie ld and Ni accumula t ion in two
hyperaccumulator species (Durand et al. 2015);
( i v ) r h i z o b a c t e r i a m a y i n c r e a s e t h e
phytoavailability of soil Ni (Abou-Shanab et al.
2006; Abou-Shanab et al. 2003) and (v) mycorrhi-
zas may be critical for those hyperaccumulator
species which are strongly associated by mycorrhi-
zas, such as B. coddii (Orłowska et al. 2011).

In the only study to date that has used plant
breeding techniques to produce improved ‘metal
crop’ cultivars, Li et al. (2003b) showed a wide
range of shoot Ni concentrations and yield of
diverse A. murale and A. corsicum germplasm
(Fig. 3). Using recurrent selection (required for
self-incompatible species), the authors significantly
increased shoot Ni concentration and yield of Ni
during three cycles of selection. In this study,
plant lines were also selected for retention of
leaves during flowering so that the high Ni foliar
biomass was not lost before harvest of the
flowering crop. Collection of diverse germplasm
followed by normal plant breeding techniques to
improve the ‘metal crop’ is clearly a key step in
developing the agronomy of phytomining.

Soil physical properties

Soil physical properties influence Ni yield of
hyperaccumulator plants, for example adequate soil
drainage is an important factor in the agronomy of Ni
phytomining. In a wet climate when soils are poorly
drained, the growth of hyperaccumulator plants is ad-
versely affected and plants may die before normal har-
vest time. Chaney et al. (2007a) have demonstrated in
field trials that such conditions may be corrected by
establishing plants with ridge tilling. Good soil water-
holding capacity is also important for economic Ni
phytomining. Soil moisture affects soil Ni extractability,
Ni uptake by hyperaccumulator species, plant growth
and ultimately Ni yield (Angle et al. 2003). A. murale
and B. coddii grow well at high moisture content; Ni
foliar concentration increases with increasing soil mois-
ture content despite a decreasing trend in the soil Ni
extractability (Angle et al. 2003). Addition of compost
generally improves soil structure, porosity and water-
holding capacity, and is likely beneficial for Ni
phytomining operations.

Potential lifespan of profitable Ni phytomining
operation

There is a time limitation for commercial Ni
phytomining operations due to depleting soil Ni re-
sources. To date, there have been no long-term repeated
hyperaccumulator cropping experiments to ascertain the
number of crop years that are possible for profitable Ni
phytomining. We stress that an attempt to predict the
lifespan via traditional soil extraction modelling may
not be useful. From a five-year field trial, Bani et al.
(2015a) suggested that economic Ni phytomining oper-
ations could be undertaken for at least several years
(>10 years) before the need for soil modification (for
example, ploughing). Many ultramafic soils contain
>0.1 % total Ni concentrations and Ni yields of 200
and 110 kg ha-1 could be achieved under intensive and
extensive phytomining production systems, respective-
ly. Considering 1 ha ultramafic substrate with total soil
Ni 2000 μg g-1 to a depth of 1 m, and assuming a bulk
density of 1.5 kg L-1, the resource contains about 30 t of
Ni. Annual Ni yields of 200 and 110 kg ha-1 on such a
substrate only constitute 1/150 and 1.1/300, respectively
of the total resource. If 10–20 % of the total soil Ni is
available to plants over the time-scale of operations,
profitable Ni phytomining of an intensive and extensive

Fig 3 Variation in shoot Ni concentrations among A. murale
genotypes grown to (mid-flowering) harvest stage on an Oregon
Brockman variant ultramafic soil with 5500 mg kg-1 Ni (Adapted
with permission from Li et al. 2003b)
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systems could be sustainable over 15–30 years and 27–
54 years, respectively.

The way ahead and challenges

Numerous Ni phytomining pot and field trials have
been undertaken in Albania, Canada, France, Italy,
New Zealand, Spain and USA. The Ni-rich soils
that were used include ultramafic soils and Ni-
contaminated soils. Studies have shown that soils
with >0.1 % Ni and a large available soil Ni pool
are suitable for Ni phytomining. Several Ni
hyperaccumulator plants have been identified as
suitable ‘metal crops’ of which Alyssum spp. and
B. coddii have proven especially successful. Exten-
sive soil and plant management practices have
been tested for their effects on the Ni yield and
biomass yield of the ‘metal crops’ (Table 2). Since
the first field trial in California on a farmed ultra-
mafic soil (USA), using S. polygaloides without
fert i l iser application, all other tr ials have

incorporated nutrient management. By way of con-
clusion, the agronomic trials undertaken to date
have demonstrated that:

i) N+P+K fertilisation, organic matter additions and
plant growth regulators substantially increase the
biomass yield of ‘metal crops’ without causing di-
lution in shoot Ni yields.

ii) Soil pH adjustments, S additions, N fertilisation,
and bacterial inoculation generally increase Ni
phytoavailability, and consequently, Ni yield in
‘metal crops’.

iii) Traditional chemical soil extractants used to
estimate phytoavailability of trace elements
a r e o f l i m i t e d u s e t o p r e d i c t N i
phytoavailability to ‘metal crop’ species and
hence Ni uptake.

iv) Calcium soil amendments are necessary during
phytomining because substantial amounts of Ca
are removed through harvesting of ‘bio-ore’. Fu-
ture studies must provide information on the effect

Table 5 Major challenges and research priorities for developing Ni phytomining around the world

Steps to develop Ni phytomining Challenges Research priorities

Selection of Ni-rich soils Phytoavailability of Ni in soils
Topography/landform of sites
Size of available land area
Lease of land

Identify soils where Ni phytomining
could be profitable.

Develop Ni phytoavailability assays
to predict Ni yield in metal crops.
Negotiate land ownership agreements.
Undertake repeated hyperaccumulator
cropping experiments to assess the
number of crop years possible for
profitable phytomining.

Discovery and selection of ‘metal crops’ Native crops are most suitable requiring
screening to happen at each locality

Hypernickelophore species are very
rare globally

There is the need for increased surveys
especially in tropical regions.

Breeding of improved cultivars to optimise
growth rate and biomass production.

Soil and plant management practices The Ni uptake and biomass
yield of most potential phytomining
‘metal crops’ remain untested at scale

Greenhouse or growth chamber trials to
assess Ni uptake and biomass yield of
such crops.

Test the effect of other plant management
practices such as fertilization, crop
rotation and mixed cropping on Ni yield.

Harvesting techniques Different cropping systems may require
different harvesting technique

Identify appropriate harvesting technique
suitable for each cropping system.

Post-harvest processing of nickel Nickel recovery using smelter is profitable,
while other high value products such as
pure Ni salts currently have limited markets

Explore more methods of producing high
value Ni products with potential markets
in the near future from the biomass ash.

Explore the production of Ni catalysts
from biomass.
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of Ca additions on labile Ni pools and Ni
phytoavailability.

v) Phosphorus fertilisation has a large effect on bio-
mass yield of ‘metal crops’ when cultivated on
ultramafic soils not previously fertilized with P.

vi) Additions of organic matter enhance soil
physical properties; soil moisture has positive
effects on soil Ni extractability, Ni uptake by
hyperaccumulator species, plant growth and
ultimately Ni yield.

vii) Repeated hyperaccumulator cropping may not on-
ly deplete soil phytoavailable Ni, but also promote
transfer of non-labile soil Ni to phytoavailable
forms.

Nickel phytomining has high economic potential, but
large-scale demonstrations are needed to provide ‘real-
life’ evidence for commercial operations (van der Ent
et al. 2015a). Table 5 highlights the major challenges
facing the commercial development and implementa-
tion of Ni phytomining, and presents the main research
priorities.
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