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ABSTRACT
Optimal control techniques can actively maximize
buildings efficiency by a smarter HVAC (Heating,
Ventilation and Air-Conditioning) systems operation.
All these techniques involve a model of the controlled
system and an optimization process based on a cost
function.
The main difficulty with these methods is to find an ac-
curate model of a system with the right data for train-
ing and on-line operation. Our work introduces an ad-
joint based method aimed at efficiently computing an
optimal predictive command law using a descriptive
thermal model of a test case. Our approach has the ad-
vantage to enable fast analysis in order to identify the
most influential inputs and parameters with respect to
the final performance. In this paper, we present numer-
ical results concerning a simple two-room test case.

INTRODUCTION
Recent evolutions in embedded informatics, sensor
networks and wireless sensor networks, communi-
cation protocols dedicated to buildings applications
(LonWorks, KNX, Zigbee...) have fostered the evolu-
tion of Building Management Systems (BMS). These
techniques make buildings smarter, fully monitored
and informatically controlled (Lalanda et al., 2010).
All these improvements open new ways to control
HVAC equipments in buildings, such as Model Pre-
dictive Control (MPC).
Model Predictive Control is a control technique ini-
tiated by (Richalet et al., 1978), and generalized by
(Clarke et al., 1987). It is more powerful than a stan-
dard PID control (Maciejowski, 2002). It relies on
a numerical model of the controlled system and a
prediction of its future solicitations. The dynamical
model of the controlled system is used to predict its
evolution and compute the best command law a priori.
Thus, MPC is formulated as an optimization problem
over a given time period.
Some previous works intended to implement MPC
techniques in modern buildings in order to take into
account both thermal comfort and power consump-
tion, while anticipating future energy gains. Nu-
merical studies were carried out on several cases,
such as water-based floor heating (Karlsson and Ha-
gentoft, 2011), HVAC systems for commercial build-
ings (Henze et al., 2004), or real time control of
subway-stations (Ansuini et al., 2013).

The main drawback of this method lies in the need of
an accurate model and accurate predictions of its solic-
itations, otherwise important errors can be introduced
in the computed command. A standard way to solve
this problem is to use model identification techniques,
which can sometimes be difficult to implement when
the number of parameters is high.
Some sensitivity studies were performed on simula-
tion and energetic models to identify what parameters
are the most influential. In (Aude et al., 2000), local
relative sensitivities of temperatures are based on stan-
dard differentiation. In (Corrado and Mechri, 2009),
the Morris sensitivity method is applied on building
heat balance terms and in (Tian and de Wilde, 2011),
they are computed statistically for long term weather
predictions. Nevertheless, from our point of view, it is
also relevant to specifically identify important param-
eters for an optimal control in buildings.
For real time MPC, the efficiency of the optimiza-
tion code is an important issue. Most implementations
use gradient-descent techniques, and as the number of
control parameters in modern buildings can be very
high, standard differentiation techniques can be very
time consuming.
In this work, we present an MPC algorithm to op-
timally control thermal comfort based on a criterion
that includes the operative temperature. The algorithm
computes an optimal command law for the electrical
heating devices. We then propose a predictive con-
trol technique that uses a conjugate gradient algorithm
for the optimization process, with an efficient gradi-
ent computation based on the use of an adjoint model.
The computation cost proves very low and compli-
ant with real-time application needs. We eventually
present how this method can easily lead, with the same
efficiency, to sensitivity studies of the optimal control
performance. The adjoint theory widely used here is
mainly based on the theory of optimal control of sys-
tems governed by partial differential equations (Lions,
1971).

A TWO-ROOM TEST CASE
The computation of a predictive command law for a
particular system requires the use of a model accu-
rately describing its dynamics. In this section, we
present the test case selected for our studies and its
mathematical description.



Test case description
The test case used for this study is a simple two-room
building (see figure 1), used in a previous study of our
team (Brouns et al., 2013). Both rooms are identi-
cal, each of them equipped with a heater, an individ-
ual indoor-outdoor air exchange system and a standard
glazing.

Figure 1 – Case study and wall numbering

Each heater is electric, and we assume that its power is
fully controllable from of 0 to 3 kW . For this test case,
we aim to control the electrical power of both heating
devices in the most efficient way.

A physical model
In this work, we use the same mathematical model for
both simulation and control. The model is built upon
standard multizone assumptions for temperatures and
heat flows (Clarke, 2001). These are homogenous tem-
perature and pressure for each thermal zone, and one-
directional thermal conduction through uniform walls.
The temperature Tz in ◦C of each zone z ∈ {1; 2} is
governed by the following equations:


Cz

dTz

dt
=
∑
p∈Pz

Sph
0
p;z

(
θsp(t)− Tz

)
+ caqz (Ta − Tz) +Qz +Wz + γzφ

Tz(t = 0) = T 0
z

(1)
where Cz is the heat capacity of room z in J.K−1, Sp

the area of the wall p in m2, h0p;z the convective ex-
change coefficient between zone z and the indoor sur-
face of the adjacent wall p, ca the air heat capacity, qz
the total air flow between the zone and the outdoors,
Ta the outdoor temperature, Qz the internal uncon-
trolled heat gains, γz the coefficient of solar heat gains
due to the direct solar heat flow φ, and Wz the inter-
nal gains due to heaters in J.s−1. Pz is the index set
of walls adjacent to zone z, and θsp their temperature
on the adjacent surface. These equations are coupled
with those used to describe wall temperature dynamics
θp (x, t):
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p

θp(x, t = 0) = θ0p(x)
(2)

Each wall p has a thickness Lp, an equivalent heat ca-
pacity cp in J.m−3.K−1, an equivalent thermal con-
ductivity kp in J.s−1.m−1.K−1, and a radiative ex-
change coefficient αp;m with wall m. ϕL

p is the radia-
tive solar heat flux on outside surfaces, and βL

p the ra-
diative exchange coefficient with the sky temperature
T∞. To model each heater, we use a simple first order
model, with an efficiency factor ηz and a time constant
dz . {

dz
dWz

dt
+Wz = ηzPz

Wz(t = 0) =W 0
z

(3)

Equation (3) represents the dynamics between the
electrical power Pz and the heat Wz in watts effec-
tively delivered in the room z.
Note that for equation (2), (x = 0) is the abscissa of
the internal face and (x = Lp) the external one. This
equation is valid for each wall, except for walls 2, 10
and 11 where boundary conditions are different (2 is
not facing outside, and 10 and 11 are lying on a ground
of temperature Ts). For the sake of simplicity, we do
not present here the complete equations for walls 2, 10
and 11.

MODEL PREDICTIVE CONTROL
In this section, we present a method to compute an op-
timal command law for the heaters of our system. This
control method is formulated as an optimization prob-
lem and based on the model previously described.
Let u = {P1, P2} ∈ U=

(
L2 ([0, ta])

)2
be our con-

trol vector, with [0, ta] the control period. We assume
we know initial conditions (T 0

z , θ0p and W 0
z ) and all

the static model parameters (Cz , cp, kp, ...), and that a
weather forecast is available, providing with estimates
of dynamical parameters (Ta(t), T∞(t), ϕL

p (t) and
Ts(t)) for t ∈ [0, ta]. We also assume that an esti-
mation of (Qz(t), qz(t)) is available over the same pe-
riod. With all this information, we are able to compute
the model response {Tz, θp, Wz} over the control pe-
riod for any given control vector u ; and we aim to find
it such that:





J (u) = inf
u∈U

J (u)

J =
1

2

Nz∑
z=1

∫ ta

0

az (t)P
2
z dt

+
1

2

Nz∑
z=1

∫ ta

0

bz (t)
(
Topz (u)− T

c
opz

)2
dt

(4)

where Topz =
Tmrz + Tz

2
is the so-called operative

temperature, with Tmrz = θsp;z the mean of temper-
atures of surfaces adjacent to zone z. The use of the
operative temperature is motivated by its better rep-
resentativeness of the temperature felt by inhabitants;
the formula used for Topz here is a simplified version,
one can refer to (Nilsson, 2004) for further informa-
tion.
J (u) is a quadratic cost function that is a linear
scalarization of the multi-objective problem that aims

to minimize quadratic terms
1

2

Nz∑
z=1

∫ ta

0

(t)P 2
z and

1

2

Nz∑
z=1

∫ ta

0

(
Topz (u)− T c

opz

)2
dt measuring respec-

tively costs on power consumption and discomfort.
Scalarization helps to simplify the multi-objective
problem of control but weighting coefficients az and
bz managing the tradeoff between power consump-
tion and comfort over the control time must be chosen
wisely.
One can show (Chavent, 2010) that the optimization
problem (4) is well posed and its solution is unique. As

a matter of fact, the quadratic term
1

2

Nz∑
z=1

∫ ta

0

(t)P 2
z

acts like a regularization term (Engl et al., 1996). From
this point of view, gradient based algorithms will per-
form much better than costly optimization algorithms
such as genetic algorithms. To solve it we use a
method based on adjoint models and the conjugate gra-
dient algorithm, developed in the more general case of
systems governed by partial differential equations (Li-
ons, 1971).
This method aims to explicitly express gradients as a
function of states of direct and adjoint models, so that
we can compute them with the cost of only two sim-
ulations. In fact, this method is the most efficient to
compute gradients and consequently the most promis-
ing for a real time implementation.
It is important to point out that such quadratic formula-
tion has useful mathematical properties for optimiza-
tion problem solving, but the quadratic norm on the
electrical power doesn’t represent the true consumed
power. We use it there for the sake of simplicity,
since it doesn’t change our methodology, but a practi-
cal implementation should consider the true consumed
power.

Numerical implementation
We show in the appendix of this paper how the ad-
joint method leads to an explicit gradient formulation
for∇J . To compute it, we just have to solve consecu-
tively the direct and adjoint models. These simulations
are done numerically using first order finite elements
in space and with an Euler implicit scheme in time.
Note that the adjoint model prescribes final conditions
instead of initial conditions, and then must be solved
backwards.
To solve the Euler’s equation ∇L = ∇J = 0, we im-
plement a conjugate gradient algorithm that uses suc-
cessive values of gradient computed with (18).
In our previous studies, the Levenberg-Marquardt ap-
proach coupled with the conjugate gradient has proven
its efficiency on unconstrained and non-linear opti-
mization problems of a similar kind (Bourquin and
Nassiopoulos, 2011). In further studies, this method
could be easily implemented to control non-linear pa-
rameters (like air ventilation qz).
As standard heaters are considered, the power they can
deliver is bounded, so that 0 ≤ Pz ≤ Pz,max, z ∈
{1, 2}. We are in fact facing a constrained optimiza-
tion problem:

{
u ∈ Uc = {v ∈ U ; ϕi (v) ≤ 0, 1 ≤ i ≤ m}
J (u) = inf

v∈Uc

J (v) (5)

Where ϕi are linear constraint functions, positive if
and only if the constraint is unsatisfied. To solve it, we
use either an iterative projection version of the conju-
gate gradient algorithm or the Uzawa’s method (Ciar-
let, 1989), which is one of the simplest in the class of
augmented Lagrangian methods (see the appendix for
mathematical details).

First control results
For our test case described above, we perform an op-
timal command law computation and simulation over
four days (from midnight to midnight). We use stan-
dard values for all model parameters, and the weather
scenario is extracted from an EnergyPlus weather file.
We choose to apply a room temperature setpoint T c

op,
for both rooms, only between 8 a.m. and 18 p.m., that
implies az(t) = 0 for other times. The unique differ-
ence between rooms (excepted their weather exposi-
tion), is the presence of an uncontrolled thermal gain
Q in room 2 of 2, 5 kW from 9 a.m. to 12 a.m. that
models a human activity (several people plus the use
of some equipments generating heat). For a better re-
sults analysis, we do not consider zone solar heat gains
γzφ.
Figure 2 gives the whole results for this computation
: evolution of operative temperatures, heaters power
and internal gains Q.
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Figure 2 – Optimal command and temperature re-
sponse

We clearly see that when the building is supposed to be
unoccupied (i.e. the weights bz (t) are zero), the elec-
trical power of heaters is not set to zero, but managed
to give the required temperature at 9 a.m. . A standard
regulator (like a PID controller) can’t anticipate such
setpoint changes.
This graph shows also some limits of our method.
Firstly, boundary effects are quite important : even if
all solicitations are supposed to be almost periodical,
we observe an important break in periodicity at t = 0
and t = ta. Moreover, we also observe some tempera-
ture oscillations on transitions ofQ. These oscillations
are due to the fact that u is sought in a L2 space (Gibbs
phenomenon) and that heaters have non-negligible dy-
namics.
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Figure 3 – Optimal command : Non controlled gains
compensation

One can clearly see on figure 3 the anticipation of in-
ternal gains in room 2 by P2, and the instantaneous
power W2 transmitted in room 2 by its heater. How-
ever, the power compensation is not perfect on tran-
sitions, which gives oscillations observed on T2 at 9
a.m. and 12 a.m..

To solve these problems, some improvements can be
done, like ignoring last instants of our solution or mak-
ing direct improvements in the cost function : addi-
tion of a cost or a constraint associated to temperature
derivatives, for example, to limit temperature oscilla-
tions (the maximum absolute value of derivatives is
commonly called slew rate). A more rigorous tech-
nique is to use another functional space for control
(Bourquin and Nassiopoulos, 2011).
In figure 4, we have a comparison of the zone 1 tem-
perature with the corresponding operative tempera-
ture. In this case, walls temperature is lower than room
temperature, which results in an operative temperature
lower than the zone temperature.
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Figure 4 – Comparison between zone 1 temperature
and corresponding operative temperature

We can also observe that zone temperature is not nec-
essary constant while operative temperature is, be-
cause walls are progressively storing heat, reducing
zone temperature contribution in operative tempera-
ture. This can lead to energy savings in comparison
with a case where one would like to have a constant
zone temperature.

SENSITIVITIES WITH RESPECT TO
MODEL PARAMETERS
Uncertainties study
To compute an accurate command law, one has to pro-
vide accurate values for model parameters over the
control period. If these values are false, the result-
ing command law will not be as efficient as expected.
Unfortunately, obtaining these parameters with a good
precision is a really difficult task, since theoretical val-
ues provided by construction data and meteorological
forecasts often have a poor reliability. To deal with this
problem, one can use on-site calibration techniques
based on sensors measurements and inverse modeling
(Hazyuk et al., 2012), to calibrate the model before
computing a command law.
Figure 5 shows a typical workflow of the process and
indicates the various steps at which uncertainties prop-



agate. In this figure, the model parameters p are di-
vided in known parameters pk and unknown ones pu,
p̂ are estimates of parameters p after a model calibra-
tion, m are on-site measurements and J the cost func-
tion used for command computation (which is also our
command performance indicator), while ∆ represent
an error.

Model 
calibration

Command law 
synthesis

forecastings

Control parameters

Figure 5 – Uncertainties propagation through calibra-
tion and command processes

In this section, we focus on the computation of
∂Jmin

∂ (p̂)
, which is essential to find the most influential

parameters in the performance of the optimal control.

Sensitivity computations using the adjoint method
For the command synthesis process, we perform an
adjoint based gradient computation. The computation

of
∂J

∂ (p)
can be done in the same way for a given set

of parameters p, by just rewriting the sensitivity model
and the resulting adjoint model. If we compute an opti-
mal control u∗ for the constrained problem, derivatives
of the Lagrangian L′ (u∗) at this point give ∇pJmin

taking constraints into account (see appendix). Then
we obtain a gradient of the minimum of the perfor-
mance indicator for each parameter p in a very efficient
way.
This gradient can be used to compute sensitivity in-
dices.
We can build sensitivity indices, based on the assump-
tion that every parameter as the same percent of uncer-
tainty:

Sp =
1

Jmin
|〈∇pJmin, p〉| (6)

With this expression, Sp measures the normalized
variation of Jmin for a relative variation of p. Con-
sequently, if p is null, Sp is null too, but it does not
mean that p is not influential.
Moreover, there is no unique way to build sensitivity
indices.We can also compare influences of parameters
using a L2 norm on non-dimensional gradients:

Υp =

∥∥∥∥ 1

Jmin
p̄.∇pJmin

∥∥∥∥
2

(7)

Because we assume here the architecture well known,
parameters issued from geometrical characteristics
(surfaces, radiative exchange coefficients...) are

known with a good accuracy and are not involved in
our sensitivity studies.
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Figure 7 – Sensitivity indices Υp using L2 norm

For all the studied parameters, we obtain with formula
(6) the results presented in figure 6.
The most influent parameters for this configuration
seem to be initial wall temperatures, followed by
heater efficiencies, wall conductivities (excepted for
wall 2), air infiltration for room 2 and some convec-
tive exchange coefficients.
Equation (7), gives the results presented in figure 7.
These results are quite similar, but not for wall tem-
peratures that become less important. However , it’s
not surprising that parameters related to the amount
of heat transfers with the outside environment have a
such importance, since they are often chosen to char-
acterize the insulation of a building.
These sensitivities are only local, because we use lo-
cal derivatives at a particular point to compute them. It
should be interesting to compute global sensitivity in-
dices to give a better information on influential param-



eters. The DGSM technique (Sobol and Kucherenko,
2009; Kucherenko et al., 2009; Touzani and Busby,
2013), which involves local derivatives in different
points, could be implemented in further studies.
Furthermore, they can change with the time horizon
ta. A precise study of the influence of this parameter
could help to choose update times for our command
law. For example, figure (8) shows that a bias on ini-
tial temperatures for the computation of our command
naturally decreases in time, as it could be expected:
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Figure 8 – Temperature response with a bias of 1.5 ◦C
on initial temperatures

Consequently, the importance of initial temperatures
can decrease as the terminal time ta for predictions in-
creases. Studies taking in account ta can give some
useful information on how and when the model used
for control must be (re)calibrated.

CONCLUSION
This work presents a methodology to optimally control
thermal comfort based on operative temperature: an
MPC algorithm is used to compute the command law
for heating devices. The adjoint method is put to work
to provide a cost efficient implementation for gradi-
ent computations and sensitivity analysis needs. We
present first numerical results on a simple test case,
where the simulation model is the same as that used in
command synthesis.
Future developments include a better modeling of ther-
mal comfort and global sensitivity analysis. The cost
function used for command computation should take
into account temperature variations (that are involved
in comfort perception), and local sensitivities should
be extended to global sensitivities to obtain more gen-
eral and reliable results on our test case. Despite
slightly lower performances, automatic differentiation
techniques are easier to implement and should be con-
sidered (Griesse and Walther, 2004). Nevertheless, our
first results are encouraging for further studies in this
way.
Our current test case is roughly close to the Predis
MHI platform, located in G2ELab’s quarters (Dang

et al., 2013). This platform consists of two monitored
office rooms, dedicated to the study of the monitoring
of smart buildings. In future studies, we plan to adapt
our test case to the more complex Predis MHI case for
a real on-site implementation.
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APPENDIX
The adjoint method
A standard way to solve the optimization problem (4)
related to the linearized model is to use the Lagrangian
formalism (Allaire, 2007). We define a Lagrangian L
considering equations (1), (2) and (3) as constraints
with associated Lagrange multipliers Vz , Ap and Bz

for each zone z and wall p. We have :

L = L (u, Tz (u) , θp(u), Wz (u) , Vz, Ap, Bz)
(8)

Solving (4) is equivalent to find the saddle point of
L considering u and Lagrange multipliers as only one
variables (and by definition verifying∇L = 0).
Let δu = {δP1, δP2} ∈ U be a small perturbation
of the control vector. By definition, the gradient of L
verifies :

D = 〈∇L, δu〉U +O‖δu‖2U (9)

with

D = L (u+ δu)− L (u) (10)

One can shows that D also depends on δθp, δTz and
δWz such that :

θp(u+ δu) ' θp(u) + δθp(δu)

Tz(u+ δu) ' Tz(u) + δTz(δu) (11)

Topz (u+ δu) ' Topz (u) + δTopz (δu)

Where δWz , δTz and δθp are solutions of the sensitiv-
ity model around u :

Cz
dδTz

dt
=
∑
p∈Pz

Sph
0
p;z (δθp(0; t)− δTz)

− caqzδTz + δWz

δTz(t = 0) = 0

(12)
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∂t
− Sp

∂

∂x

(
kp
∂δθp
∂x

)
= 0

−kpSp
∂δθp
∂x

(0; t) =
∑
m∈Pz

Spαp;m (δθm(0; t)− δθp(0; t))

+ Sph
0
p;z (δTz − δθp(0; t))

kpSp
∂δθp
∂x

(Lp; t) =− Sp

(
hL
p + βL

p

)
δθp(Lp; t)

δθp(x, t = 0) = 0
(13){

dz
dδWz

dt
+ δWz = ηzδPz

δWz(t = 0) = 0
(14)

By performing some integrations by parts in the
full expression of L, one can show that if Vz ,
Ap and Bz are the states of of the so-called ad-
joint model of the sensitivity model, we ensure that
∀ (z, p) , ∇(Vz, Ap, Bz)L = 0 and consequently that
∇J = ∇L.
The adjoint model consists of the following equations
(15), (16) and (17), where Vz , Ap and Bz are respec-
tively adjoint states of Tz , θp and Wz .


−Cz

dVz

dt
=
∑
p∈Pz

Sph
0
p;z (Ap(0; t)− Vz)

− caqzVz +
bz
2

(
Topz + δTopz − T

d
opz

)
Vz(t = ta) = 0

(15)



−Spρcp
∂Ap

∂t
− Sp

∂

∂x

(
kp
∂Ap

∂x

)
=

bz
12

Nz∑
z=1

(
Topz + δTopz − T

d
opz

)
−kpSp

∂Ap

∂x
(0; t) =

∑
p∈Pz

Spαp;m (Am(0; t)−Ap(0; t))

+ Sph
0
p;z (Vz −Ap(0; t))

kpSp
∂Ap

∂x
(Lp; t) =Sph

L
p;z (Vz −Ap(Lp; t))

− Sp

(
hL
p + βL

p

)
Ap(Lp; t)

Ap(x, t = ta) = 0
(16){

−dz
dBz

dt
+Bz = Vz

Bz(t = ta) = 0
(17)

As a consequence, we obtain :

〈∇J (u) ; δPz〉U =

∫ ta

0

[ηzBz + azPz] δPzdt (18)

Constrained optimization problem
Uzawa’s method consists in defining a sequence(
uk, λk

)
k≥0, where λ0 is arbitrarily chosen and for

each k ≥ 0. For our problem, we have :



J
(
uk
)
+

m∑
i=1

∫
λk
i (t)ϕi

(
uk (t)

)
dt =

inf
v∈U

{
J (v) +

m∑
i=1

∫
λk
i (t)ϕi (v (t)) dt

}
λk+1
i = max

{
λk
i + ρϕi

(
uk
)
, 0
}
, 1 ≤ i ≤ m

(19)
With a particular ρc ∈ R+∗ such that convergence of(
uk, λk

)
k≥0 towards the solution of (5) is guaranteed

if 0 ≤ ρ ≤ ρc. With this method, the resolution be-
comes a sequence of unconstrained problems. Eventu-
ally, for a k where the limit of

(
uk, λk

)
k≥0 is almost

reached, the solution of the constrained problem (5) is
almost the same for the unconstrained problem :



u ∈ U

J (u) +

m∑
i=1

∫
λk
i (t)ϕi (u (t)) dt =

inf
v∈U

{
J
(
vk
)
+

m∑
i=1

∫
λk
i (t)ϕi (v (t)) dt

} (20)

In our case, we have four constraint func-
tions : {(Pz − Pz,max) , −Pz} ; z ∈ {1, 2}.
For each unconstrained problem of our se-
quence, we have to compute gradients of

J ′k = J
(
uk
)

+

m∑
i=1

∫
λki (t)ϕi

(
uk (t)

)
dt us-

ing the augmented Lagrangian L′k = L (u) +
m∑
i=1

∫
λki (t)ϕi (u (t)) dt, that gives :

〈∇J ′k; δPz〉U =

∫ ta

0

[ηzBz + azPz

+λkz,max − λkz,min

]
δPzdt

(21)

Note that this method easily extends to cases with
more complex constraints.
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