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INTRODUCTION

Recent evolutions in embedded informatics, sensor networks and wireless sensor networks, communication protocols dedicated to buildings applications (LonWorks, KNX, Zigbee...) have fostered the evolution of Building Management Systems (BMS). These techniques make buildings smarter, fully monitored and informatically controlled [START_REF] Lalanda | Smart home systems[END_REF].

All these improvements open new ways to control HVAC equipments in buildings, such as Model Predictive Control (MPC). Model Predictive Control is a control technique initiated by [START_REF] Richalet | Model predictive heuristic control: Applications to industrial processes[END_REF], and generalized by [START_REF] Clarke | Generalized predictive control-Part i. the basic algorithm[END_REF]. It is more powerful than a standard PID control [START_REF] Maciejowski | Predictive Control: With Constraints[END_REF]. It relies on a numerical model of the controlled system and a prediction of its future solicitations. The dynamical model of the controlled system is used to predict its evolution and compute the best command law a priori. Thus, MPC is formulated as an optimization problem over a given time period. Some previous works intended to implement MPC techniques in modern buildings in order to take into account both thermal comfort and power consumption, while anticipating future energy gains. Numerical studies were carried out on several cases, such as water-based floor heating [START_REF] Karlsson | Application of model based predictive control for waterbased floor heating in low energy residential buildings[END_REF], HVAC systems for commercial buildings [START_REF] Henze | Evaluation of optimal control for active and passive building thermal storage[END_REF], or real time control of subway-stations [START_REF] Ansuini | Models for the real-time control of subway stations[END_REF].

The main drawback of this method lies in the need of an accurate model and accurate predictions of its solicitations, otherwise important errors can be introduced in the computed command. A standard way to solve this problem is to use model identification techniques, which can sometimes be difficult to implement when the number of parameters is high. Some sensitivity studies were performed on simulation and energetic models to identify what parameters are the most influential. In [START_REF] Aude | Sensitivity analysis and validation of buildings' thermal models using adjoint-code method[END_REF], local relative sensitivities of temperatures are based on standard differentiation. In [START_REF] Corrado | Uncertainty and sensitivity analysis for building energy rating[END_REF], the Morris sensitivity method is applied on building heat balance terms and in [START_REF] Tian | Uncertainty and sensitivity analysis of building performance using probabilistic climate projections: A UK case study[END_REF], they are computed statistically for long term weather predictions. Nevertheless, from our point of view, it is also relevant to specifically identify important parameters for an optimal control in buildings. For real time MPC, the efficiency of the optimization code is an important issue. Most implementations use gradient-descent techniques, and as the number of control parameters in modern buildings can be very high, standard differentiation techniques can be very time consuming. In this work, we present an MPC algorithm to optimally control thermal comfort based on a criterion that includes the operative temperature. The algorithm computes an optimal command law for the electrical heating devices. We then propose a predictive control technique that uses a conjugate gradient algorithm for the optimization process, with an efficient gradient computation based on the use of an adjoint model. The computation cost proves very low and compliant with real-time application needs. We eventually present how this method can easily lead, with the same efficiency, to sensitivity studies of the optimal control performance. The adjoint theory widely used here is mainly based on the theory of optimal control of systems governed by partial differential equations [START_REF] Lions | Optimal control of systems governed by partial differential equations[END_REF].

A TWO-ROOM TEST CASE

The computation of a predictive command law for a particular system requires the use of a model accurately describing its dynamics. In this section, we present the test case selected for our studies and its mathematical description.

Test case description

The test case used for this study is a simple two-room building (see figure 1), used in a previous study of our team [START_REF] Brouns | State-parameter identification problems for accurate building energy audits[END_REF]. Both rooms are identical, each of them equipped with a heater, an individual indoor-outdoor air exchange system and a standard glazing.

Figure 1 -Case study and wall numbering

Each heater is electric, and we assume that its power is fully controllable from of 0 to 3 kW . For this test case, we aim to control the electrical power of both heating devices in the most efficient way.

A physical model

In this work, we use the same mathematical model for both simulation and control. The model is built upon standard multizone assumptions for temperatures and heat flows [START_REF] Clarke | Energy Simulation in Building Design[END_REF]. These are homogenous temperature and pressure for each thermal zone, and onedirectional thermal conduction through uniform walls. The temperature T z in • C of each zone z ∈ {1; 2} is governed by the following equations:

         Cz dTz dt = p∈Pz Sph 0 p;z θ s p (t) -Tz + caqz (Ta -Tz) + Qz + Wz + γzφ Tz(t = 0) = T 0 z (1)
where C z is the heat capacity of room z in J.K -1 , S p the area of the wall p in m 2 , h 0 p;z the convective exchange coefficient between zone z and the indoor surface of the adjacent wall p, c a the air heat capacity, q z the total air flow between the zone and the outdoors, T a the outdoor temperature, Q z the internal uncontrolled heat gains, γ z the coefficient of solar heat gains due to the direct solar heat flow φ, and W z the internal gains due to heaters in J.s -1 . P z is the index set of walls adjacent to zone z, and θ s p their temperature on the adjacent surface. These equations are coupled with those used to describe wall temperature dynamics θ p (x, t): 

                              
+ Spβ L p (T ∞ -θp(Lp; t)) + Spϕ L p θp(x, t = 0) = θ 0 p (x) (2) 
Each wall p has a thickness L p , an equivalent heat capacity c p in J.m -3 .K -1 , an equivalent thermal conductivity k p in J.s -1 .m -1 .K -1 , and a radiative exchange coefficient α p;m with wall m. ϕ L p is the radiative solar heat flux on outside surfaces, and β L p the radiative exchange coefficient with the sky temperature T ∞ . To model each heater, we use a simple first order model, with an efficiency factor η z and a time constant

d z . dz dWz dt + Wz = ηzPz Wz(t = 0) = W 0 z (3)
Equation ( 3) represents the dynamics between the electrical power P z and the heat W z in watts effectively delivered in the room z.

Note that for equation ( 2), (x = 0) is the abscissa of the internal face and (x = L p ) the external one. This equation is valid for each wall, except for walls 2, 10 and 11 where boundary conditions are different (2 is not facing outside, and 10 and 11 are lying on a ground of temperature T s ). For the sake of simplicity, we do not present here the complete equations for walls 2, 10 and 11.

MODEL PREDICTIVE CONTROL

In this section, we present a method to compute an optimal command law for the heaters of our system. This control method is formulated as an optimization problem and based on the model previously described.

Let u = {P 1 , P 2 } ∈ U = L 2 ([0, t a ]
) 2 be our control vector, with [0, t a ] the control period. We assume we know initial conditions (T 0 z , θ 0 p and W 0 z ) and all the static model parameters (C z , c p , k p , ...), and that a weather forecast is available, providing with estimates of dynamical parameters (T a (t), T ∞ (t), ϕ L p (t) and T s (t)) for t ∈ [0, t a ]. We also assume that an estimation of (Q z (t), q z (t)) is available over the same period. With all this information, we are able to compute the model response {T z , θ p , W z } over the control period for any given control vector u ; and we aim to find it such that:

                 J (u) = inf u∈U J (u) J = 1 2 Nz z=1 ta 0 az (t) P 2 z dt + 1 2 Nz z=1 ta 0 bz (t) Top z (u) -T c opz 2 dt (4)
where

T opz = T mrz + T z 2
is the so-called operative temperature, with T mrz = θ s p;z the mean of temperatures of surfaces adjacent to zone z. The use of the operative temperature is motivated by its better representativeness of the temperature felt by inhabitants; the formula used for T opz here is a simplified version, one can refer to [START_REF] Nilsson | Comfort climate evaluation with thermal manikin methods and computer simulation models[END_REF] for further information. J (u) is a quadratic cost function that is a linear scalarization of the multi-objective problem that aims to minimize quadratic terms 1 2 acts like a regularization term [START_REF] Engl | Regularization of Inverse Problems[END_REF]. From this point of view, gradient based algorithms will perform much better than costly optimization algorithms such as genetic algorithms. To solve it we use a method based on adjoint models and the conjugate gradient algorithm, developed in the more general case of systems governed by partial differential equations [START_REF] Lions | Optimal control of systems governed by partial differential equations[END_REF]). This method aims to explicitly express gradients as a function of states of direct and adjoint models, so that we can compute them with the cost of only two simulations. In fact, this method is the most efficient to compute gradients and consequently the most promising for a real time implementation.

It is important to point out that such quadratic formulation has useful mathematical properties for optimization problem solving, but the quadratic norm on the electrical power doesn't represent the true consumed power. We use it there for the sake of simplicity, since it doesn't change our methodology, but a practical implementation should consider the true consumed power.

Numerical implementation

We show in the appendix of this paper how the adjoint method leads to an explicit gradient formulation for ∇J. To compute it, we just have to solve consecutively the direct and adjoint models. These simulations are done numerically using first order finite elements in space and with an Euler implicit scheme in time.

Note that the adjoint model prescribes final conditions instead of initial conditions, and then must be solved backwards.

To solve the Euler's equation ∇L = ∇J = 0, we implement a conjugate gradient algorithm that uses successive values of gradient computed with (18).

In our previous studies, the Levenberg-Marquardt approach coupled with the conjugate gradient has proven its efficiency on unconstrained and non-linear optimization problems of a similar kind [START_REF] Bourquin | Inverse reconstruction of initial and boundary conditions of a heat transfer problem with accurate final state[END_REF]. In further studies, this method could be easily implemented to control non-linear parameters (like air ventilation q z ).

As standard heaters are considered, the power they can deliver is bounded, so that 0 ≤ P z ≤ P z,max , z ∈ {1, 2}. We are in fact facing a constrained optimization problem:

u ∈ Uc = {v ∈ U ; ϕi (v) ≤ 0, 1 ≤ i ≤ m} J (u) = inf v∈Uc J (v) (5) 
Where ϕ i are linear constraint functions, positive if and only if the constraint is unsatisfied. To solve it, we use either an iterative projection version of the conjugate gradient algorithm or the Uzawa's method [START_REF] Ciarlet | Introduction to Numerical Linear Algebra and Optimisation[END_REF], which is one of the simplest in the class of augmented Lagrangian methods (see the appendix for mathematical details).

First control results

For our test case described above, we perform an optimal command law computation and simulation over four days (from midnight to midnight). We use standard values for all model parameters, and the weather scenario is extracted from an EnergyPlus weather file.

We choose to apply a room temperature setpoint T c op , for both rooms, only between 8 a.m. and 18 p.m., that implies a z (t) = 0 for other times. The unique difference between rooms (excepted their weather exposition), is the presence of an uncontrolled thermal gain Q in room 2 of 2, 5 kW from 9 a.m. to 12 a.m. that models a human activity (several people plus the use of some equipments generating heat). For a better results analysis, we do not consider zone solar heat gains γ z φ. Figure 2 gives the whole results for this computation : evolution of operative temperatures, heaters power and internal gains Q. We clearly see that when the building is supposed to be unoccupied (i.e. the weights b z (t) are zero), the electrical power of heaters is not set to zero, but managed to give the required temperature at 9 a.m. . A standard regulator (like a PID controller) can't anticipate such setpoint changes. This graph shows also some limits of our method. Firstly, boundary effects are quite important : even if all solicitations are supposed to be almost periodical, we observe an important break in periodicity at t = 0 and t = t a . Moreover, we also observe some temperature oscillations on transitions of Q. These oscillations are due to the fact that u is sought in a L 2 space (Gibbs phenomenon) and that heaters have non-negligible dynamics. One can clearly see on figure 3 the anticipation of internal gains in room 2 by P 2 , and the instantaneous power W 2 transmitted in room 2 by its heater. However, the power compensation is not perfect on transitions, which gives oscillations observed on T 2 at 9 a.m. and 12 a.m..

To solve these problems, some improvements can be done, like ignoring last instants of our solution or making direct improvements in the cost function : addition of a cost or a constraint associated to temperature derivatives, for example, to limit temperature oscillations (the maximum absolute value of derivatives is commonly called slew rate). A more rigorous technique is to use another functional space for control [START_REF] Bourquin | Inverse reconstruction of initial and boundary conditions of a heat transfer problem with accurate final state[END_REF]. In figure 4, we have a comparison of the zone 1 temperature with the corresponding operative temperature. In this case, walls temperature is lower than room temperature, which results in an operative temperature lower than the zone temperature. We can also observe that zone temperature is not necessary constant while operative temperature is, because walls are progressively storing heat, reducing zone temperature contribution in operative temperature. This can lead to energy savings in comparison with a case where one would like to have a constant zone temperature.

SENSITIVITIES WITH RESPECT TO MODEL PARAMETERS

Uncertainties study

To compute an accurate command law, one has to provide accurate values for model parameters over the control period. If these values are false, the resulting command law will not be as efficient as expected.

Unfortunately, obtaining these parameters with a good precision is a really difficult task, since theoretical values provided by construction data and meteorological forecasts often have a poor reliability. To deal with this problem, one can use on-site calibration techniques based on sensors measurements and inverse modeling [START_REF] Hazyuk | Optimal temperature control of intermittently heated buildings using model predictive control: Part i -building modeling[END_REF], to calibrate the model before computing a command law.

Figure 5 shows a typical workflow of the process and indicates the various steps at which uncertainties prop- In this section, we focus on the computation of

∂J min ∂ (p)
, which is essential to find the most influential parameters in the performance of the optimal control.

Sensitivity computations using the adjoint method

For the command synthesis process, we perform an adjoint based gradient computation. The computation of ∂J ∂ (p) can be done in the same way for a given set of parameters p, by just rewriting the sensitivity model and the resulting adjoint model. If we compute an optimal control u * for the constrained problem, derivatives of the Lagrangian L (u * ) at this point give ∇ p J min taking constraints into account (see appendix). Then we obtain a gradient of the minimum of the performance indicator for each parameter p in a very efficient way. This gradient can be used to compute sensitivity indices.

We can build sensitivity indices, based on the assumption that every parameter as the same percent of uncertainty:

S p = 1 J min | ∇ p J min , p | (6) 
With this expression, S p measures the normalized variation of J min for a relative variation of p. Consequently, if p is null, S p is null too, but it does not mean that p is not influential. Moreover, there is no unique way to build sensitivity indices.We can also compare influences of parameters using a L 2 norm on non-dimensional gradients:

Υ p = 1 J min p.∇ p J min 2 (7) 
Because we assume here the architecture well known, parameters issued from geometrical characteristics (surfaces, radiative exchange coefficients...) are known with a good accuracy and are not involved in our sensitivity studies. ini (6)

θ ini (11) η(1) η(2) k(8) k(1) k(3) d(2) k(7) k(5) k(9) k(4) k(6) h(8,1,1) h(1,1,1) h(3,1,1) sensitivities Figure 6 -Sensitivity indices S p 0 0.5 1 1.5 2 η(1) η(2) k(8) k(1) k(3) d(2) k(7) k(5) k(9) k(4) k(6) h(8,1,1) h(1,1,1) h(3,1,1) h(10,1,1) h(7,2,1) h(5,2,1) ρ c (8) h(9,2,1) h(4,1,1) Ts ρ c (1) ρ c (3) ρ c (4) Ta θ ini (1) θ ini (3) θ ini (8) ρ c (6) ρ c (9) sensitivities Figure 7 -Sensitivity indices Υ p using L 2 norm
For all the studied parameters, we obtain with formula (6) the results presented in figure 6. The most influent parameters for this configuration seem to be initial wall temperatures, followed by heater efficiencies, wall conductivities (excepted for wall 2), air infiltration for room 2 and some convective exchange coefficients. Equation ( 7), gives the results presented in figure 7. These results are quite similar, but not for wall temperatures that become less important. However , it's not surprising that parameters related to the amount of heat transfers with the outside environment have a such importance, since they are often chosen to characterize the insulation of a building. These sensitivities are only local, because we use local derivatives at a particular point to compute them. It should be interesting to compute global sensitivity indices to give a better information on influential param-eters. The DGSM technique [START_REF] Sobol | Derivative based global sensitivity measures and their link with global sensitivity indices[END_REF][START_REF] Kucherenko | Monte carlo evaluation of derivative-based global sensitivity measures[END_REF][START_REF] Touzani | Screening method using the derivative-based global sensitivity indices with application to reservoir simulator[END_REF], which involves local derivatives in different points, could be implemented in further studies. Furthermore, they can change with the time horizon t a . A precise study of the influence of this parameter could help to choose update times for our command law. For example, figure (8) shows that a bias on initial temperatures for the computation of our command naturally decreases in time, as it could be expected: Consequently, the importance of initial temperatures can decrease as the terminal time t a for predictions increases. Studies taking in account t a can give some useful information on how and when the model used for control must be (re)calibrated.

CONCLUSION

This work presents a methodology to optimally control thermal comfort based on operative temperature: an MPC algorithm is used to compute the command law for heating devices. The adjoint method is put to work to provide a cost efficient implementation for gradient computations and sensitivity analysis needs. We present first numerical results on a simple test case, where the simulation model is the same as that used in command synthesis. Future developments include a better modeling of thermal comfort and global sensitivity analysis. The cost function used for command computation should take into account temperature variations (that are involved in comfort perception), and local sensitivities should be extended to global sensitivities to obtain more general and reliable results on our test case. Despite slightly lower performances, automatic differentiation techniques are easier to implement and should be considered [START_REF] Griesse | Evaluating gradients in optimal control: Continuous adjoints versus automatic differentiation[END_REF]. Nevertheless, our first results are encouraging for further studies in this way. Our current test case is roughly close to the Predis MHI platform, located in G2ELab's quarters [START_REF] Dang | Building simulation of energy consumption and ambient temperature: application to the PRE-DIS platform[END_REF]. This platform consists of two monitored office rooms, dedicated to the study of the monitoring of smart buildings. In future studies, we plan to adapt our test case to the more complex Predis MHI case for a real on-site implementation. 
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APPENDIX

The adjoint method A standard way to solve the optimization problem (4) related to the linearized model is to use the Lagrangian formalism [START_REF] Allaire | Numerical Analysis and Optimization: An Introduction to Mathematical Modelling and Numerical Simulation[END_REF]. We define a Lagrangian L considering equations ( 1), ( 2) and (3) as constraints with associated Lagrange multipliers V z , A p and B z for each zone z and wall p. We have : 4) is equivalent to find the saddle point of L considering u and Lagrange multipliers as only one variables (and by definition verifying ∇L = 0). Let δu = {δP 1 , δP 2 } ∈ U be a small perturbation of the control vector. By definition, the gradient of L verifies :

L = L (u, T z (u) , θ p (u), W z (u) , V z , A p , B z ) (8) Solving (
D = ∇L, δu U + O δu 2 U (9) with D = L (u + δu) -L (u) (10) 
One can shows that D also depends on δθ p , δT z and δW z such that :

θp(u + δu) θp(u) + δθp(δu) Tz(u + δu) Tz(u) + δTz(δu) (11) Top z (u + δu) Top z (u) + δTop z (δu)
Where δW z , δT z and δθ p are solutions of the sensitivity model around u :

         Cz dδTz dt = p∈Pz Sph 0 p;z (δθp(0; t) -δTz) -caqzδTz + δWz δTz(t = 0) = 0 (12)                          Spρcp ∂δθp ∂t -Sp ∂ ∂x kp ∂δθp ∂x = 0 -kpSp ∂δθp ∂x (0; t) = m∈Pz Spαp;m (δθm(0; t) -δθp(0; t)) + Sph 0 p;z (δTz -δθp(0; t)) kpSp ∂δθp ∂x (Lp; t) = -Sp h L p + β L p δθp(Lp; t) δθp(x, t = 0) = 0 (13) dz dδWz dt + δWz = ηzδPz δWz(t = 0) = 0 (14) 
By performing some integrations by parts in the full expression of L, one can show that if V z , A p and B z are the states of of the so-called adjoint model of the sensitivity model, we ensure that ∀ (z, p) , ∇ (Vz, Ap, Bz) L = 0 and consequently that ∇J = ∇L.

The adjoint model consists of the following equations ( 15), ( 16) and ( 17), where V z , A p and B z are respectively adjoint states of T z , θ p and W z . 

                                           

Constrained optimization problem

Uzawa's method consists in defining a sequence u k , λ k k≥0 , where λ 0 is arbitrarily chosen and for each k ≥ 0. For our problem, we have :

               J u k + m i=1 λ k i (t) ϕi u k (t) dt = inf v∈U J (v) + m i=1 λ k i (t) ϕi (v (t)) dt λ k+1 i = max λ k i + ρϕi u k , 0 , 1 ≤ i ≤ m (19)
With a particular ρ c ∈ R + * such that convergence of u k , λ k k≥0 towards the solution of ( 5) is guaranteed if 0 ≤ ρ ≤ ρ c . With this method, the resolution becomes a sequence of unconstrained problems. Eventually, for a k where the limit of u k , λ k k≥0 is almost reached, the solution of the constrained problem ( 5) is almost the same for the unconstrained problem :

               u ∈ U J (u) + m i=1 λ k i (t) ϕi (u (t)) dt = inf v∈U J v k + m i=1 λ k i (t) ϕi (v (t)) dt (20) 
In our case, we have four constraint functions : {(P z -P z,max ) , -P z } ; z ∈ {1, 2}.

For each unconstrained problem of our sequence, we have to compute gradients of Note that this method easily extends to cases with more complex constraints.

J k = J u k + m i=1 λ k i (t)

T

  opz (u) -T c opz 2 dt measuring respectively costs on power consumption and discomfort. Scalarization helps to simplify the multi-objective problem of control but weighting coefficients a z and b z managing the tradeoff between power consumption and comfort over the control time must be chosen wisely. One can show[START_REF] Chavent | Nonlinear Least Squares for Inverse Problems: Theoretical Foundations and Step-by-Step Guide for Applications[END_REF] that the optimization problem (4) is well posed and its solution is unique. As a matter of fact, the quadratic term 1
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  ϕ i u k (t) dt using the augmented Lagrangian L k = L (u) + m i=1 λ k i (t) ϕ i (u (t)) dt, that gives :∇J k ; δP z U = ta 0 [η z B z + a z P z +λ k z,max -λ k z,min δP z dt(21)