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We present a diffuse-interface all-pressure flame model that transitions smoothly be-
tween subcritical and supercritical conditions. The model involves a non-equilibrium
liquid/gas diffuse interface of van der Waals/Korteweg type embedded into a non-ideal
multicomponent reactive fluid. The multicomponent transport fluxes are evaluated in
their thermodynamic form in order to avoid singularities at thermodynamic mechanical
stability limits. The model also takes into account condensing liquid water in order to
avoid thermodynamic chemical instabilities. The resulting equations are used to inves-
tigate the interface between cold dense and hot light oxygen as well as the structure of
diffusion flames between cold dense oxygen and gaseous-like hydrogen at all pressures,
either subcritical or supercritical.

Keywords: supercritical; transcritical; diffuse interface; flame

1. Introduction

The injection of reactants in cryogenic combustion engines is often performed at supercrit-
ical pressure – in order to increase engine efficiency – and below the critical temperature –
for storage purposes. Experimental campaigns on cryotechnic benches such as MAS-
COTTE have been devoted to combustion in such extreme conditions [1,2]. Numerical
simulations have also been concerned with supercritical flames in laminar [3–10] as well as
turbulent [11–13] flows with non-ideal thermodynamics predicted with cubic equations of
states. Numerical simulations of supercritical laminar flames have notably been performed
by El Gamal et al. [5] and Giovangigli et al. [10] for plane flames and by Okongo and
Bellan [6] for mixing layers, whereas counterflow flames or droplets have notably been in-
vestigated by Saur et al. [3], Daou et al. [4], Ribert et al. [7], Pons et al. [8], and Giovangigli
and Matuszewski [10]. Such simulations may be transcritical with respect to tempera-
ture but are supercritical with respect to pressure and did not involve or require diffuse
interfaces.

Diffuse interface models describe the continuous change of fluid properties across liq-
uid/gas interfaces in subcritical conditions. Such diffuse interface models may be derived
from the second gradient theory of Van der Waals, Korteweg, Cahn and Hilliard [14–26].
Another type of diffuse interface model, which lies out of the scope of the present work,
is that of multifluid models typically obtained through averaging processes [27–34]. The
thermodynamics of second gradient diffuse interface models has been built by van der
Waals [14,15] using a gradient squared term in the free energy and the corresponding cap-
illary tensor has been derived by Korteweg [16]. Second gradient theory has been further
extended to binary fluids by Cahn and Hilliard [17,18]. Statistical mechanics of systems
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2 P. Gaillard et al.

that are highly inhomogeneous has also led to mean field theories of liquid/gas interfaces
and to direct links between capillary phenomena and intermolecular forces as established
by Rowlinson and Widom [19]. Second gradient diffuse interface models have been suc-
cessfully used to describe near critical points [19], the dynamics of contact lines [20], as
well as complex liquid/gas interfaces with topological changes [21–23], and are compatible
with the limiting free boundary problem when the interface thickness goes to zero [21].
In the high pressure domain, Dahms and Oefelein have used diffuse interface models to
investigate locally subcritical vaporising fronts using the linear gradient theory [25,26]. The
linear gradient theory is a simplified formulation that allows isothermal vaporising fronts to
be investigated for given density boundary conditions assuming linear dependencies among
species densities and avoiding having to solve boundary value problems. These studies have
led to a comprehensive analysis of the complex physics of vaporising interfaces at high
pressure [25,26].

During ignition in rocket engines, however, a transition may occur from subcritical to
supercritical pressure conditions and the resulting dynamics cannot be described by current
available flame models. Similarly, in diesel engines, the cylinder pressure may temporarily
exceeds the thermodynamic critical pressure of the injected fuel and major differences may
occur in the jet dynamics. There is thus a need for flame models that transition smoothly
from subcritical to supercritical pressure conditions. In this paper, we introduce such a
diffuse interface transcritical flame model using several ingredients.

The domain of applicability of diffuse interface models is first extended to the supercrit-
ical domain, which seems new to the best of the authors’ knowledge. The non-equilibrium
diffuse interface model is then embedded into a non-ideal multicomponent reactive fluid
framework. The multicomponent fluxes are notably evaluated in their thermodynamic form
in order to avoid singularities at thermodynamic mechanical stability limits. Binary phase
diagrams of oxygen and water are investigated and liquid water is taken into account in
order to avoid thermodynamic chemical instabilities. The resulting boundary value problem
is solved for strained vaporising oxygen interfaces as well as oxygen/hydrogen diffusion
flames at all pressure, either subcritical or supercritial.

The equations governing diffuse interfaces are presented in Section 2. The small Mach
limit for flat interfaces, self-similar equations, bulk phases thermodynamics and non-ideal
transport fluxes are addressed in Section 3. Numerical simulations of oxygen interfaces
are then presented in Section 4 and numerical simulations of oxygen/hydrogen flames are
presented in Section 5.

2. Korteweg fluids

We present the van der Waals free energy function and thermodynamics for multicompo-
nent mixtures and the corresponding Korteweg fluid equations. The free energy contains
extra gradient squared terms typically associated with long range molecular interactions
[14–21].

2.1. Van der Waals free energy

The free energy per unit volume in second gradient theory is typically of the form

F = F 0 +
∑

i,j∈S

κij∇ρi·∇ρj , (1)
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Combustion Theory and Modelling 3

where S = {1, . . . , n} denotes the species indexing set, n the number of species, F 0 the
bulk free energy, ρ i the partial density of the ith species, ∇ the usual differential operator
and κ ij, i, j ∈ S, the capillary coefficients. The superscript 0 is used to denote standard
bulk phase thermodynamic properties that do not involve gradients. The free energy F 0

only depends on the partial densities ρ1,. . . , ρn and the absolute temperature T whereas
the gradient squared term

∑
i,j∈S κij∇ρi·∇ρj in F represents the excess free energy of

the interfacial region. This gradient term may be interpreted from attractive long range
molecular interactions and the capillary coefficients κ ij related to the pair correlation
function [19].

From the expression of the free energy (1) and the classical thermodynamic relation
dF 0 = −S0dT + ∑

i∈S g0
i dρi , assuming that the capillarity coefficients κ ij, i, j ∈ S, are

constant for the sake of simplicity, we obtain that

dF = −S0 dT +
∑
i∈S

g0
i dρi +

∑
i∈S

φi·d∇ρi, (2)

where S0 denotes the bulk entropy per unit volume, g0
i the bulk Gibbs function of the ith

species per unit mass, and the vectors φi , i ∈ S, are given by

φi =
∑
j∈S

(κij + κji)∇ρj , i ∈ S. (3)

Using the thermodynamic relations ∂TF = −S and ∂ρi
F = gi , i ∈ S, where S denotes

the entropy per unit volume and gi the Gibbs function per unit mass of the ith species, the
identity (2) implies that S = S0 and gi = g0

i .
The other thermodynamic functions are easily obtained by using the expression (1) for

the free energy F , the identity S = S0, and standard thermodynamic relations. The Gibbs
function G and the enthalpy per unit volume H are found to be given by their standard
values G = G0 and H = H0, whereas the energy per unit volume E and the pressure p
read

E = E0 +
∑

i,j∈S

κij∇ρi·∇ρj , p = p0 −
∑

i,j∈S

κij∇ρi·∇ρj . (4)

Denoting respectively by e, s, f, g and h the energy, entropy, free energy, Gibbs function
and enthalpy per unit mass, by ρ = ∑

i∈S ρi the mass density, and yi the mass fraction of
the ith species, we naturally have E = ρe, S = ρs, F = ρf , G = ρg, H = ρh, ρi = ρyi ,
i ∈ S, and the Gibbs relation for the entropy s is of the form

T ds = de − p

ρ2
dρ −

∑
i∈S

g0
i dyi −

∑
i∈S

1

ρ
φi·d∇ρi, (5)

where d denotes the differentiation operator. We will deduce from this relation (5) an
entropy balance equation and next obtain the structure of the mass, momentum and energy
fluxes.

Physical values for the capillary coefficients κ ij, i, j ∈ S, are generally temperature
dependent and may be obtained by fitting surface tension experimental data [24]. Such
coefficients are typically of the form of an exponential of a polynomial in log (1 − T/Tc),
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4 P. Gaillard et al.

where Tc is a critical temperature and are thus only defined in the subcritical domain [24].
The resulting diffuse interfaces are then very thin, typically of the order of a few nanome-
ters [19,25,26]. The diffuse interface model allows the structure of such interfaces to be
faithfully reproduced using numerical grids with nanometer characteristic lengths [25,26].

Although such detailed simulations can be obtained with the diffuse interface model,
we want to obtain in this paper computationally feasible numerical flame models taking into
account the limitation on grid resolution. In this situation, one is forced to use larger values
of the capillary coefficients leading to artificially thickened interfaces and to larger values
of surface tension. This implicitly assumes that there is a scale separation so that interface
thickening and the corresponding larger numerical surface tension do not significantly
modify the flame under investigation.

In addition, our aim is to extend the diffuse interface model to supercritical conditions
in order to encompass all pressures. We thus have to extend the domain of definition of
capillary coefficients with finite values for all pressures and, in practice, we have used
constant values for capillary parameters. In the subcritical domain, the resulting diffuse
interface model then allows the computation of a continuous liquid/gas interface, whereas
in the supercritical domain the model may ease the numerical solution of sharp pseudo-
vaporising transition layers. Nonequilibrium interfaces are considered in this work and the
link with equilibrium interfaces is addressed in Appendix A.

2.2. Governing equations

The total mass conservation equation may be written

∂tρ + ∇·(ρv) = 0, (6)

where v denotes the fluid velocity, and the species mass conservation equations are of the
form

∂tρi + ∇·(ρiv) + ∇·Ji = miωi, i ∈ S, (7)

where Ji is the mass flux of the ith species, mi the molar mass of the ith species, and ωi the
molar rate of production of the ith species. The chemical source terms ωi, i ∈ S, and the
diffusive fluxes Ji , i ∈ S, satisfy the mass conservation constraints∑

i∈S

Ji = 0,
∑
i∈S

miωi = 0, (8)

so that by summing the species conservation equations (7) we recover the total mass
conservation equation (6). The momentum conservation equation reads

∂t (ρv) + ∇·(ρv⊗v) + ∇·P = 0, (9)

where P is the symmetric pressure tensor and the total energy conservation equation may
be written

∂t

(
ρ

(
e + 1

2
|v |2

))
+ ∇·

(
ρv

(
e + 1

2
|v |2

))
+ ∇·(Q + P·v) = 0, (10)
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Combustion Theory and Modelling 5

where Q denotes the total heat flux. Multiplying the momentum conservation equation
(9) by the velocity vector v and subtracting the result from the total energy conservation
equation (10) yields a conservation equation for the internal energy as in standard fluids.

2.3. Transport fluxes

The transport fluxes are derived by expressing the entropy production rate in terms of the
fluxes and the variable gradients and proceeding as in the thermodynamics of irreversible
processes [21,23,35]. By using Gibbs relation (5), it is obtained after some algebra that

ρ(∂t s + v·∇s)+∇·
(

Q
T

−
∑
i∈S

g̃iJi

T
+

∑
i∈S

φi

T
(miωi − ∇·Ji − ρi∇·v)

)

= − 1

T

(
P − p I −

∑
i∈S

(∇ρi⊗φi − ρi∇·φi I)

)
: ∇v

−
(

Q +
∑
i∈S

φi(miωi − ∇·Ji − ρi∇·v)

)
·∇T

T 2

−
∑
i∈S

Ji·∇
(

g̃i

T

)
−

∑
i∈S

g̃imiωi

T
, (11)

where g̃i = g0
i − ∇·φi denotes the generalised Gibbs free energy of the ith species. Pro-

ceeding as in the thermodynamics of irreversible processes, and using the Curie principle,
we first deduce from the expression of entropy production (11), that the pressure tensor and
the total heat flux are of the form

P = p I +
∑
i∈S

(∇ρi⊗φi − ρi∇·φi I) + �, (12)

Q = −
∑
i∈S

φi(miωi − ∇·Ji − ρi∇·v) + q, (13)

where � is the viscous tensor and q the dissipative heat flux, and, on the other hand, that
the dissipative transport fluxes �, Ji , i ∈ S, and q are of the form

� = − v∇·v I − η

(
∇v + ∇vt − 2

3
∇·v I

)
, (14)

Ji = −
∑
j∈S

Lij∇
(

g̃j

T

)
− Lie∇

(−1

T

)
, (15)

q = −
∑
i∈S

Lei∇
(

g̃i

T

)
− Lee∇

(−1

T

)
, (16)

where v denotes the volume viscosity, η the shear viscosity and Lij, i, j ∈ S ∪ {e}, the mass
and heat transport coefficients. The matrix of mass and heat transport coefficients L defined
by L = (Lij )i,j∈S∪{e} is symmetric positive semi-definite with nullspace spanned by the
vector (1,. . . , 1, 0)t as for ordinary fluids [35]. The fluxes Ji , i ∈ S, and q are obtained here
in their thermodynamic form, which will be useful in the following. In the pressure tensor
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6 P. Gaillard et al.

P , the component P − p0 I − � represents the reversible part associated with interstitial
work.

2.4. A simplified framework

We introduce in this section a simplified model obtained by assuming that all capillary
coefficients are equal. This model is well justified when there are large density gradients at
the interface and when the interface composition is essentially frozen. We therefore assume
for the purpose of simplicity that

κij = 1

2
κ, i, j ∈ S, (17)

where κ is a constant and species independent capillary coefficient. We then obtain from
(1), (3) and the definition of the generalised Gibbs free energies g̃i , i ∈ S, that

F = F 0 + 1

2
κ|∇ρ|2, (18)

φi = κ∇ρ, i ∈ S, (19)

g̃i = g0
i − κ�ρ, i ∈ S, (20)

where �ρ denotes the Laplacian of the density.
Using the general relations expressing the transport fluxes (12)–(16), the simplified

expressions (19) and (20), the mass constraints
∑

i∈S miωi = 0 and
∑

i∈S Ji = 0, as
well as

∑
i∈S Lij = ∑

j∈S Lij = 0 and
∑

j∈S Lej = ∑
i∈S Lie = 0, we obtain after some

algebra that (12) and (13) simplify to

P = p I + κ∇ρ⊗∇ρ − κρ�ρ I + �, (21)

Q = κρ∇·v ∇ρ + q, (22)

and moreover that (15) and (16) simplify to

Ji = −
∑
j∈S

Lij∇
(

g0
j

T

)
− Lie∇

(−1

T

)
, i ∈ S, (23)

q = −
∑
i∈S

Lei∇
(

g0
i

T

)
− Lee∇

(−1

T

)
. (24)

The dissipative fluxes Ji , i ∈ S, and q are in their thermodynamic form written directly in
terms of the complete gradients of the bulk chemical potentials g0

j /T , j ∈ S, and of the
usual thermodynamic thermal variable −1/T. In the pressure tensor P the new contributions
are −κρ�ρ I , the Korteweg tensor κ∇ρ⊗∇ρ and the pressure p also differs from p0. These
extra terms associated with capillary phenomena do not produce entropy and are associated
with interstitial work which is a reversible process, at variance with diffusion, chemistry
and thermal conductivity. The diffusive fluxes Ji , i ∈ S, correspond to their standard
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Combustion Theory and Modelling 7

expression but the heat flux Q also contains a supplementary term κρ∇·v ∇ρ induced by
capillarity.

We also note that by using the simplified expressions g̃i = g0
i − κ�ρ, i ∈ S, and the

mass constraint
∑

i∈S miωi = 0, the entropy production due to chemistry simplifies to the
form −∑

i∈S g̃imiωi/T = −∑
i∈S g0

i miωi/T only involving the bulk thermodynamics
chemical potentials g0

i /T , i ∈ S.

2.5. Production rates

We consider an arbitrary complex chemical reaction mechanism of the form∑
i∈S

νf
ijMi �

∑
i∈S

νb
ijMi , j ∈ R, (25)

where νf
ij and νb

ij are the forward and reverse stoichiometric coefficients of the ith species
in the jth reaction, Mi the symbol of the ith molecule, R = {1, . . . , nr} the indexing set of
chemical reactions and nr the number of chemical reactions. The production rates are given
by the usual expression

ωi =
∑
j∈R

νij τj ,

where νij = νb
ij − νf

ij is the overall stoichiometric coefficient of the kth species in the
jth reaction and τ j is the rate of progress of the jth reaction. The following vectors are
introduced for convenience:

νj =

⎛⎜⎝ ν1j

...
νnj

⎞⎟⎠ , νf
j =

⎛⎜⎝ νf
1j

...
νf

nj

⎞⎟⎠ , νb
j =

⎛⎜⎝ νb
1j

...
νb

nj

⎞⎟⎠ , μ =

⎛⎜⎝μ1
...

μn

⎞⎟⎠ ,

where μi = mig
0
i /RT is the reduced bulk chemical potential. The reaction rates of progress

given by statistical thermodynamics [9,36,37] are of the form

τj = Kj

(
exp

〈
νf

j , μ
〉 − exp

〈
νb

j , μ
〉)

, j ∈ R, (26)

where Kj is the symmetric constant of the jth reaction. The resulting expression of entropy
production in (11) is finally given by

∑
i,j∈S∪{e}

Lij∇
(

g0
i

T

)
·∇

(
g0

j

T

)
+ v

T
(∇·v)2 + η

2T
|S|2

+
∑
j∈R

RKj

(〈
νf

j , μ
〉 − 〈

νb
j , μ

〉)(
exp

〈
νf

j , μ
〉 − exp

〈
νb

j , μ
〉)

,

where we have let g0
e = −1 for convenience, where S denotes the deviatoric part of the strain

rate tensor S = ∇v + ∇vt − 2
3∇·v I , and |A|2 the Frobenius norm |A|2 = A : A = ∑

ij a2
ij

of a tensor A = (aij), so that entropy production appears as a sum of non-negative terms.
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8 P. Gaillard et al.

Remark 1: Using the generalised Gibbs function g̃i = g0
i − κ�ρ, i ∈ S, in (26) would

not change the expression for the rates of progress. Considering the jth reaction and letting
μ̃i = mig̃i/RT and μ̃ = (μ̃1, . . . , μ̃n)t we indeed obtain 〈νf

j , μ̃〉 = 〈νf
j , μ〉 − σjκ�ρ and

〈νb
j , μ̃〉 = 〈νb

j , μ〉 − σjκ�ρ, where σj RT = ∑
i∈S νf

ijmi = ∑
i∈S νb

ijmi , the last equality
resulting from mass conservation in the jth reaction. The extra factors exp ( − σ jκ�ρ)
obtained by using the generalised Gibbs functions g̃i , i ∈ S, instead of g0

i , i ∈ S, may
thus be absorbed in the symmetric reaction constant Kj of the jth chemical reaction. In the
vaporising zone of dense oxygen, where gradients of density are high, chemistry effects are
anyway limited.

3. Non-ideal strained diffuse interfaces

We complete the Korteweg fluid model presented in Section 2 by investigating the small
Mach number limit for flat interfaces as well as the equations governing strained self-similar
flows. We address the non-ideal thermodynamics of the bulk phases associated with the
Soave–Redlich–Kwong (SRK) equation of state. We finally discuss the thermodynamic
form of multicomponent fluxes and the evaluation of the transport matrix L at mechanical
thermodynamic instabilities.

3.1. Small Mach number limit for flat interfaces

In a supercritical mixing layer or in a typical diffusion laminar flame, the local Mach
number is generally small. It is therefore relevant to investigate the small Mach number
limit of the diffuse interface model presented in the previous sections which is especially
convenient for flat interfaces. Proceeding as for classical fluids [38], we expand the bulk
thermodynamic pressure p0 in powers of the square of the Mach number ε

p0 = p0 + ε2p̃0, (27)

with p0 denoting the zeroth order bulk pressure and p̃0 the fluid dynamic perturbation.
Bulk thermodynamic properties may thus be evaluated at the zeroth order pressure p0. The
unknowns other than pressure are also expanded in terms of the square of the Mach number
and are denoted as their zeroth value in order to simplify notation. The thermodynamic
pressure p = p0 − 1

2κ|∇ρ|2 can then be written p = p0 − 1
2κ|∇ρ|2 + ε2p̃ and, substituting

this expansion in the momentum equation, it is found at zeroth order that

∇·
(

p0 I − 1

2
κ|∇ρ|2 I + κ∇ρ⊗∇ρ − κρ�ρ I

)
= 0. (28)

In the absence of capillary effects, when κ = 0 we recover the usual relation ∇·(p0 I) =
∇p0 = 0 which yields that the zeroth order bulk thermodynamic pressure p0 is spatially
uniform. The situation is more complex with capillary effects so that the small Mach
number limit (28) is not very practical without further assumptions.

In order to simplify the model, we assume a planar interface with all quantities only
depending spatially on a normal coordinate ζ so that ρ = ρ(t, ζ ), p0 = p0(t, ζ ), T = T(t,
ζ ), and φ = φ(t, ζ ). In this framework, the zeroth order pressure tensor P is of the form
P = (

p0 − 1
2κρ ′ 2 − κρρ ′′)I + κρ ′ 2eζ⊗eζ where eζ denotes the unit vector normal to the

interface, ρ ′ the partial derivative ρ ′ = ∂ζ ρ and similarly ρ ′′ = ∂2
ζ ρ = �ρ. By using the
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Combustion Theory and Modelling 9

normal component of the zeroth order momentum equation (28), it is next obtained that
p0 + 1

2κρ ′ 2 − κρρ ′′ is a constant denoted by p∞ = p0 + 1
2κρ ′ 2 − κρρ ′′, which represents

the constant pressure in the bulk phases far from the interface. After some algebra, the
resulting zeroth order pressure tensor is of the form

P = (
p∞ − κρ ′ 2

)(
I − eζ⊗eζ

) + p∞eζ⊗eζ ,

so that normal to the interface the effective pressure is constant equal to p∞ whereas there
are attractive forces tangential to the interface and the corresponding energy

∫ ∞
−∞ κρ ′ 2 dζ

is interpreted as surface tension [22,23].
For such interfaces, only the perturbed pressure p̃0 plays a role in the tangential mo-

mentum conservation equation and not the perturbed density ρ̃. The zeroth order energy
conservation equation in terms of the enthalpy h = h0 also takes the simplified form

ρ∂th + ρv∇·h + ∇·Q = ∂tp
0 + v·∇p0, (29)

with a term v·∇p0 that is not anymore a priori negligible as for standard fluids.

3.2. Strained flows

We investigate in this section self-similar solutions of the diffuse interface multicomponent
equations in the small Mach number limit. These structures are typical of stagnation point
flows or strained flows and will be used to investigate pseudo-vaporisation fronts as well
as diffusion flames in the following sections. The spatial coordinates are denoted by (ξ , ζ ),
where ξ is a transverse coordinate and ζ a normal coordinate, and the components of the
velocity vector are denoted by v = (u, v)t . The typical geometry is either two-dimensional
or axisymmetric. The solution is assumed to have the following self-similar structure:

T = T (t, ζ ), ρ = ρ(t, ζ ), p0 = p0(t, ζ ),

u = ξ ũ(t, ζ ), v = v(t, ζ ), yi = yi(t, ζ ),

p̃0 = −1

2
Jξ 2 + p̂0(t, ζ ),

where J is a reduced pressure gradient. We then obtain from (23) and (24) that the dissipative
heat and mass fluxes are in the normal direction: Ji = Jieζ , i ∈ S, and q = qeζ , where
eζ denotes the base vector in the normal direction and Ji(t, ζ ), i ∈ S, and q(t, ζ ) are the
normal flux components.Substituting these expressions in the governing equations in the
small number limit, the normal momentum equation is found to uncouple from the others
whereas the tangential momentum equation has all its terms proportional to ξ . The resulting
system is a boundary value problem involving only the normal coordinate ζ in the form

∂tρ + 2δρũ + ∂ζ (ρv) = 0, (30)

ρ∂tyi + ρv∂ζ yi + ∂ζJi = miωi, i ∈ S, (31)

ρ∂t ũ + ρũ2 + ρv∂ζ ũ − J + ∂ζ (η∂ζ ũ) = 0, (32)

ρ∂th + ρv∂ζ h − v∂ζp
0 + ∂ζ

(
κρ(2δ ũ + ∂ζ v) ∂ζ ρ

) + ∂ζ q = 0, (33)
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10 P. Gaillard et al.

where δ is a geometric factor with δ = 0 in a two-dimensional geometry and δ = 1 for
axisymmetric flows. The dissipative normal mass and heat fluxes are given by (23) and (24)
in their thermodynamic form:

Ji = −
∑
j∈S

Lij ∂ζ

(
g0

j

T

)
− Lie∂ζ

(−1

T

)
, i ∈ S, (34)

q = −
∑
i∈S

Lei∂ζ

(
g0

i

T

)
− Lee∂ζ

(−1

T

)
, (35)

and it has been established in Section 3.1 that the pressure p0 is such that

p0 = p∞ − 1

2
κ(∂ζ ρ)2 + κρ ∂2

ζ ρ, (36)

where p∞ denotes the constant ambient pressure far from the interface. The boundary
conditions are typically of the form

T (−∞) = T −, T (+∞) = T +, (37)

yi(−∞) = y−
i , yi(+∞) = y+

i , (38)

ũ(−∞) = α
√

ρ+/ρ−, ũ(+∞) = α, (39)

where the superscript + is associated with the gas-like fluid coming from the positive side
on the right, the superscript − with the condensed-like fluid coming from the negative side
on the left. The imposed strain rate α is related to the pressure gradient by the relation

α = (J/ρ+)1/2, (40)

and the stagnation plane is located for convenience at the origin by

v(0) = 0. (41)

Thickening an interface may generally modify surface tension forces. Surface tension
is typically of the form

∫ ∞
−∞ κ(∂ζ ρ)2 dζ so that it scales as O(

√
κ) in the subcritical domain

with an interface thickness O(
√

κ) and as O(κ) in the supercritical domain with an interface
thickness O(1). There is thus a tradeoff between grid limitation and the resulting artificially
increased surface tension. However, for such strained flames the surface tension forces do
not significantly modify the bulk phase properties. Indeed, with planar interfaces, there are
no curvature effects and the pressure p0 in both phases far from the vaporising front is
identical and equal to the ambient pressure p∞. Essentially, the local pressure p0 is only
modified near the pseudo-vaporising zone.

3.3. Bulk thermodynamics

The thermodynamics of the bulk phase fluid must be valid over a wide range of pressure
and temperature and is built from the Soave–Redlich–Kwong cubic equation of state using
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Combustion Theory and Modelling 11

compatibility with perfect gases at low densities [39–45]. Such thermodynamics are written
in the small Mach number limit with the pressure given by its zeroth order value p0. The
Soave–Redlich–Kwong equation of state [39,40] is of the form

p0 =
∑
i∈S

yi

mi

ρRT

1 − ρb
− ρ2a

1 + ρb
, (42)

where R denotes the perfect gas constant, and a and b the attractive and repulsive pa-
rameters, respectively. The parameters a(y1, . . . , yn, T ) and b(y1, . . . , yn) are evaluated
with the van der Waals mixing rules a = ∑

i,j∈S yiyjαiαj and b = ∑
i∈S yibi . The pure-

component parameters αi(T) and bi are evaluated using either critical data for stable species
or interaction potential parameters for unstable species [9]. The validity of the equation of
state (42) and of the mixing rules have been carefully studied by comparison with NIST
data by Congiunti et al. [42] and with the results of Monte Carlo simulations by Colonna
and Silva [43] and Cañas-Marı́n et al. [44,45]. Good agreement has also been achieved with
experimental hydrogen/nitrogen stability diagrams at high pressure and low temperature
[9].

Once a pressure law (42) is given there exists a unique corresponding Gibbsian ther-
modynamics compatible at low densities with that of perfect gases [41]. For the Soave–
Redlich–Kwong equation of state it is possible to evaluate analytically the corresponding
thermodynamic properties [7,41], which are found in the form

e0 =
∑
i∈S

yie
pg
i + (

T ∂T a − a
) ln

(
1 + ρb

)
b

,

s0 =
∑
i∈S

yi s
pgI
i −

∑
i∈S

yiR

mi

ln

(
ρiRT

mi(1 − ρb)pst

)
+ ∂T a

ln
(
1 + ρb

)
b

,

where e
pg
i denotes the perfect gas specific energy of the ith species and s

pgI
i the perfect gas

specific entropy of the ith species at the standard atmospheric pressure pst.
A fundamental issue is then that of thermodynamic stability. The entropy of a stable

isolated homogeneous system should indeed be a concave function of its thermodynamic
variable γ = (v , e0, y1, . . . , yn)t where v = 1/ρ denotes the volume per unit mass. When-
ever this is not the case, the system loses its homogeneity and splits between two or more
phases in order to reach equilibrium. The Hessian matrix of entropy s0 with respect to
the thermodynamic variable γ must therefore be negative semi-definite with the nullspace
spanned N (∂2

γ γ s0) = Rγ associated with homogeneity and this can be shown to be equiv-
alent to the conditions [41]

∂T e0 > 0, ∂ρp
0 > 0,

(
∂2

yyg
0
)
T ,p0 ≥ 0, N

((
∂2

yyg
0
)
T ,p0

) = Ry.

The first condition ∂T e0 > 0 corresponds to thermal stability, the second condition ∂ρp0 > 0
to mechanical stability and the third condition (∂2

yyg
0)

T ,p0 ≥ 0 with N
(
(∂2

yyg
0)

T ,p0

) = Ry
to chemical stability. The mechanical and chemical stability criteria can also be combined
into the property that the matrix �, defined by

� = (
∂2

yye
0
)
T ,ρ

/T − (
∂2

yys
0
)
T ,ρ

,
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12 P. Gaillard et al.

is positive definite [41]. Since the thermal stability condition is generally satisfied with the
SRK equation of state [9,41,46], thermodynamic stability may therefore be investigated
by a spectral analysis of the matrix �. Note that when a multicomponent mixture reaches
a pure species state the thermodynamic instability limit is then given by the mechanical
stability of that species [41].

Finally note that bulk fluid thermodynamics plays a fundamental role in the state law, the
equilibrium diagrams, the energy equation, the chemical reaction rates as well as the non-
ideal diffusion fluxes; the bulk fluid thermodynamics has not, therefore, been artificially
modified in order to decrease the surface tension resulting from second gradient theory [23].

3.4. Dissipative transport fluxes

The evaluation of multicomponent transport fluxes requires the mass and heat transport
coefficient matrix L of size n + 1 to be evaluated. This matrix can be written in the
form [9,46]

L =
(

D Dh
(Dh)t λT 2 + 〈Dh , h〉

)
, (43)

where D denotes a square matrix of size n, h a vector of size n, λ the thermal conductivity,
and 〈 , 〉 the Euclidean scalar product. The matrix coefficients Dij , i, j ∈ S, and the vector
hi , i ∈ S, are given by

Dij = ρyiyj

m

R
Dij , hi = hi + RT

χ̃i

mi

, (44)

where Dij, i, j ∈ S, denote the species multicomponent diffusion coefficients, hi, i ∈ S,
the species specific enthalpies, and χ̃i , i ∈ S, the species reduced thermal diffusion ra-
tios [9,46]. The multicomponent diffusion coefficients Dij are obtained with an approximate
inversion [38,47–51] using

D = (� + y⊗y)−1 − u⊗u,

where y denotes the mass fraction vector, u = (1, . . . , 1)t the vector with unit components,
� the Stefan–Maxwell matrix

�kk =
∑
l �=k

xkxl

Dbin
kl

, �kl = − xkxl

Dbin
kl

, k �= l,

xk the mole fraction of the kth species, and Dbin
kl the binary coefficient for the species pair

(k, l), k �= l. The binary diffusion coefficients Dbin
kl , k, l ∈ S, k �= l, are evaluated from

the kinetic theory of a mixture of hard spheres [9,52,53] in the form Dbin
kl = Dbin pg

kl /ϒkl ,

k, l ∈ S, k �= l, where Dbin pg
kl denotes the perfect gas binary diffusion coefficient and ϒ ij

the steric factor

ϒij = 1 +
∑
k∈S

πnk

12

(
8
(
σ 3

ik + σ 3
jk

) − 6
(
σ 2

ik + σ 2
jk

)
σij − 3

(
σ 2

ik − σ 2
jk

)2
σ−1

ij + σ 3
ij

)
.
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Combustion Theory and Modelling 13
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Figure 1. The derivative ∂ρp
0 in a diffusion flame: p∞ = 51 bar; p∞ = 70 bar; p∞ =

90 bar.

In this expression, σ ij denotes the collision diameter for the species pair (i, j), nk = ρkN /mk

the particle number of the kth species per unit volume and N Avogadro’s number. The vis-
cosity and thermal conductivity are evaluated from the correlations of Ely and Hanley [54]
or Chung et al. [9,55] and the thermal diffusion ratios are evaluated as for ideal gases [9].
The properties of the matrix L are derived from the properties of the matrix D = (Dij )i,j∈S,

which is symmetric positive semi-definite having nullspace N (D) = Ry [38,47–51].
Some care must be taken, however, in order to evaluate the species specific enthalpies

hi = (∂yi
h)T ,p0,yl

, i ∈ S, in the presence of mechanical critical points where ∂ρp
0 = 0. We

indeed have the identity

hk = (∂yk
h)

T ,p0,yl
= (∂yk

h)T ,ρ,yl
− (∂ρh)T ,yl

(∂yk
p0)T ,ρ,yl

(∂ρp
0)T ,yl

, (45)

so that, at a mechanical thermodynamically unstable point where (∂ρp
0)T ,yl

= 0, the species
specific enthalpies hk, k ∈ S, are exploding and thus some components of the matrix L
are also exploding.This is expected behaviour, since it is known that singularities in the
transport coefficients may arise at critical points [56,57].

Anticipating the numerical simulations of flame structures, Figure 1 presents the partial
derivative (∂ρp0)T ,yl

as a function of the normal coordinate ζ in an oxygen/hydrogen strained

diffusion flame with κ = 10−2 g−1cm7s−2 for the three values p∞ = 51 bar, p∞ = 70 bar
and p∞ = 90 bar of the ambient pressure. We note that the minimum value of the derivative
(∂ρp

0)T ,yl
is gradually decreasing towards zero when the ambient pressure is decreased

towards the oxygen critical pressure pc = 50.43 bar with a local mixture state approaching
the mechanical stability limit near the pseudo-vaporising zone. The corresponding specific
enthalpy of water hH2O(ζ ) presented in Figure 2 then gradually explodes as the local state
of the mixture reaches the mechanical stability boundary in agreement with (45).

It is therefore necessary to control the size of the vector h making use of the fact that
in the cold part of an oxygen/hydrogen diffusion flame there is mainly oxygen. To this aim,
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14 P. Gaillard et al.
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Figure 2. Water specific enthalpy hH2O in a diffusion flame: p∞ = 51 bar; p∞ = 70 bar;
p∞ = 90 bar.

the derivative (∂yk
p0)T ,ρ,yl

is rewritten in the form

(∂yk
p0)T ,ρ,yl

= ρm

mk

(∂ρp
0)T ,yl

+ Rk, (46)

where the residual Rk is given by

Rk =
{

RT

(v − b)2
+ ma

v (v + b)2

}∑
j∈S

yj

(
bk

mj

− bj

mk

)
+ 2m

v (v + b)

∑
j,l∈S

yj ylαl

(
αj

mk

− αk

mj

)
.

The interest of this formulation (46) is that Rk vanishes for the pure species state yk = 1
and yl = 0, l ∈ S, l �= k. The species enthalpies are then written in the modified form h̃k ,
k ∈ S, with

h̃k = (∂yk
h)T ,ρ,yl

− ρm

mk

(∂ρh)T ,yl
− Rk

f
(
(∂ρp

0)T ,yl

) (∂ρh)T ,yl
,

where f is a smooth approximation of the function f(x) = max(m, x) for a positive constant
m > 0 which depends on the mixture under consideration. These modified enthalpies are
such that h̃k = hk away from the vaporising zone, as well as when the kth species is the
only one present, and remains always bounded. The points where the matrix L is effectively
modified thus only concern zones of the flames where there is essentially only oxygen and
where temperature is also nearly constant so that the stabilisation of the matrix L does not
significantly modify the physics involved. For similar reasons we did not include in the
model the complex behaviour of transport coefficients near critical points.

Remark 2: The traditional form of dissipative fluxes may be written [9,46]

Ji = −
∑
j∈S

ρyiDij (dj + xj χ̃j ∂ζ ln T ) i ∈ S, (47)
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Combustion Theory and Modelling 15

q = −λ∂ζT +
∑
i∈S

(
hi + RT

χ̃i

mi

)
Ji , (48)

where dj, j ∈ S, are the species diffusion driving force in the normal direction. These
diffusion driving forces are defined by dj = xj (∂ζμj )T , j ∈ S, where the derivative of the
reduced chemical potential (∂ζμj )T is taken at constant temperature and with μj written

as a function of temperature, pressure and mole fractions μj (T , p0, x1, . . . , xn). From the
Gibbs relation we further obtain that xj ∂ζμj = dj − (xjmjhj/RT 2)∂ζ T so that dj may be
written [9,46]

dj = xjmj vj

RT
∂ζp

0 +
∑
l∈S

�jl∂ζ xl , j ∈ S, (49)

where vj , j ∈ S, denote the species partial volume per unit mass of the jth species,
�jl the thermodynamic coefficients �jl = xj (∂xl

μj )T ,p0,xk
, j, l ∈ S, and the matrix � =

(�ij )i,j∈S reduces to the identity matrix for ideal gases. Since pressure is held constant
in the partial derivations, we deduce that the species volume per unit mass vj , j ∈ S,
and the thermodynamic coefficients �ij, i, j ∈ S, are exploding when (∂ρp

0)T ,yl
= 0 like

the species enthalpies per unit mass hj, j ∈ S. Therefore, the traditional formulation of
transport fluxes (47) and (48) is not recommended and the thermodynamical formulation
(34) and (35) is to be preferred. Such thermodynamic form indeed eliminates the exploding
quantities di, vi , i ∈ S, �ij, i, j ∈ S, from the species mass fluxes, as well as the specific
enthalpies hi, i ∈ S, from the expression for the heat flux.

3.5. Numerical considerations

The two-point boundary value problems (30)–(41) associated with strained diffuse inter-
faces are discretised by using finite differences on staggered grids. The normal velocity is
discretised at midpoints whereas the other quantities are discretised at node points.

The numerical grids are adaptively refined and the resulting discrete nonlinear problems
are solved using the damped Newton method and pseudo-unsteady iterations [58,59].
Continuation techniques are used to generate families of critical points or equilibrium
states as well as vaporising fronts or flame structures [60].

The resulting flame model in one-dimensional and all calculations have been performed
on single-processor computers with typically 2000 grid points distributed adaptively.

4. Oxygen/oxygen interfaces

We consider in this section an interface between cold liquid-like oxygen and hotter gaseous-
like oxygen. In the subcritical domain, both liquid and gaseous phases are thermodynam-
ically stable and we compute a liquid/gas diffuse interface, whereas in the supercritical
domain there is only one thermodynamically stable phase at stiff density gradients in the
pseudo-vaporisation zone. Only steady-state interfaces are considered and the correspond-
ing equations are obtained by letting ∂t = 0 in (30)–(33).

The numerical simulations first concern interfaces between cold dense oxygen and
gaseous oxygen. We present the structure of typical interfaces at subcritical as well as
supercritical conditions. Subcritical interfaces are found to be diffuse due to capillarity
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16 P. Gaillard et al.
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Figure 3. Density ρ in a diffuse oxygen interface at p∞ = 20 bar: κ = 10−6; κ = 10−4;
κ = 10−2.

whereas supercritical interfaces are only weakly perturbed at large pressure. Phase diagrams
also reveal how the unstable thermodynamic zones are crossed in the subcritical regime
with the help of second gradient theory. We also investigate the interface thickness in terms
of the pressure and the capillary coefficient κ as well as the influence of pressure on the
interface structure. In the subcritical regime, the interface thickness decreases towards zero
with κ whereas in the supercritical regime the diffuse interface thickness is close to that
of the real interface obtained with κ = 0. In the subcritical regime, there is also a natural
scaling δ ∼ √

κ of the interface thickness arising from the definition of the van der Waals
free energy.

4.1. Structure of interfaces

We consider a subcritical pressure of p∞ = 20 bar and a supercritical pressure of p∞ =
52.5 bar, the critical pressure of oxygen being pc = 50.43 bar. The supercritical pressure
p∞ = 52.5 bar is chosen close to the critical point in order to illustrate the diffuse interface
better. The strain rate α = 1000s−1 corresponds to a velocity decreasing from 100 cm s−1

to zero within 1 mm and is representative of strain rates in flames. The temperature in the
cold stream on the negative side is taken to be T− = 100 K and in the hot stream on the
positive side T+ = 300 K. For these vaporising or pseudo-vaporising interfaces, O2 is the
only chemical species and no species equations are solved.

In Figure 3 is presented the mass density ρ(ζ ) as a function of the front normal
coordinate ζ near the O2 vaporising zone at the subcritical pressure p∞ = 20 bar for the
three values of the capillary parameter κ = 10−6, κ = 10−4 and κ = 10−2 g−1cm7s−2. We
observe a major impact of the capillary parameter κ on the structure of the interface. The
lower the value of κ , the sharper the interface and in the limit κ → 0 the discontinuous
solution with an infinitely thin interface is recovered. This is natural in the sense that such
diffuse behaviour is the direct result of the van der Waals theory and of the presence of
extra gradient terms in the free energy. In Figure 4 is presented the mass density ρ(ζ )
as function of the front normal coordinate ζ near the O2 pseudo-vaporising zone at the
supercritical pressure of p∞ = 52.25 bar for the three values of the capillary parameter
κ = 0 g−1cm7s−2, κ = 10−4 g−1cm7s−2, and κ = 10−2 g−1cm7s−2. Of course the zero
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Figure 4. Density ρ in a diffuse oxygen interface at p∞ = 52.5 bar: κ = 0; κ = 10−4;
κ = 10−2.
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Figure 5. Temperature T in a diffuse oxygen interface at p∞ = 20 bar: κ = 10−6; κ = 10−4;
κ = 10−2.

value of the capillary parameter is allowed here since the pressure p∞ is supercritical. In
this supercritical condition, we observe that the interface is naturally thick and only weakly
influenced by the capillary terms.

The corresponding temperature profiles T(ζ ) are presented in Figures 5 and 6 for ambient
pressures of both p∞ = 20 and 52.5 bar, respectively. We observe that the temperature
profiles are only weakly modified by the capillary coefficient κ . The interfaces or pseudo-
interfaces where the density gradient plays an important role are indeed thin and as a result
the temperature is nearly constant in these zones, whereas in the remaining part of the
domain the temperature is governed by convection and diffusion.

The corresponding local pressure profiles p0(ζ ) near the O2 vaporising or pseudo-
vaporising zones are presented in Figures 7 and 8 for ambient pressures of both p∞ = 20
and 52.5 bar, respectively. We observe an important difference between the subcritical and
the supercritical situations. In the subcritical situation, in Figure 7, the pressure curve is
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Figure 6. Temperature T in a diffuse oxygen interface at p∞ = 52.5 bar: κ = 0; κ = 10−4;
κ = 10−2.

−40

−20

0

 20

 40

 0.8  0.9 1  1.1  1.2

ζ (µm)

p
0

(b
a
r)

Figure 7. Pressure p0 in a diffuse oxygen interface at p∞ = 20 bar: κ = 10−6; κ = 10−4;
κ = 10−2.

strained differently depending of the capillary parameter κ but is otherwise almost self-
similar. This is not the case at supercritical pressure in Figure 8 where the local pressure
variation in the interfacial region goes to zero with the capillary parameter κ .

The behaviour of the local pressure p0 at subcritical ambient pressure p∞ is due to
the fact that the diffuse interface trajectory in the phase space (ρ, p0) essentially follows
an isothermal curve of the SRK equation of state at the interface. This is illustrated in
Figure 9 where are presented the lines of equilibrium, the line of mechanical instability
where an eigenvalue of the entropy Hessian is changing sign, the SRK isotherm at the
interface temperature and the interface trajectory for the value of the capillary parameter
κ = 10−6 g−1cm7s−2. The zone between the equilibrium line and the line of mechanical
instability corresponds to metastable states and is grey in colour. The interface trajectory
closely follows the SRK isotherm in the unstable zone in such a way that at subcritical
pressure p∞ the local pressure profiles p0(ζ ) are almost self-similar for various values of
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Figure 8. Pressure p0 in a diffuse oxygen interface at p∞ = 52.5 bar: κ = 0; κ = 10−4;
κ = 10−2.
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Figure 9. Phase space (ρ, p0) for a diffuse oxygen interface at p∞ = 20 bar: equilibrium;
mechanical stability limit; � SRK isotherm; � diffuse interface trajectory. The grey zone corresponds
to metastable states.

the capillary coefficients κ . This also explains the negative values of p0 in the interface
which are a direct consequence of the negative values of the pressure given by the SRK
equation of state.

4.2. Dependence on pressure

A fundamental issue with diffuse interface models is the interface thickness δ as a function
of pressure p∞ and of the capillary parameter κ . The thickness of the interface δ is defined
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Figure 10. Thickness of oxygen diffuse interfaces: κ = 0; κ = 10−6; κ = 10−4;
κ = 10−2.

here by

δ = ρ− − ρ+

max
−∞<ζ<∞

|∂ζ ρ| ,

where ρ− and ρ + denote respectively the two extreme values of density at the left/dense
and right/light boundaries, and max |∂ζ ρ| is the maximum value of the gradient |∂ζ ρ(ζ )|
for −∞ < ζ < + ∞.

The diffuse interface thickness δ is presented in Figure 10 in terms of the pressure p∞

and of the capillary parameter κ . The critical pressure of O2 is pc = 50.43 bar and Figure 10
illustrates the clear separation between the subcritical and the supercritical situations. In
the subcritical regime, the interface thickness decreases with κ , whereas in the supercritical
regime the diffuse interface thickness is close to that of the real interface with κ = 0.
Figure 10 also illustrates the natural scaling δ − δ0 ∼ √

κ of the interface problem arising
from the definition of the van der Waals free energy, where δ0 is the interface thickness
when κ = 0, so that δ ∼ √

κ in the subcritical region. In particular, the choice of a capillary
parameter κ in a numerical model may be guided by the size of the discretisation grid in
order to represent density gradients in subcritical conditions properly.

In the next figures, we further investigate the dependence of oxygen vaporising fronts
on the pressure p∞ for the value κ = 10−2 g−1cm7s−2 of the capillary parameter. This large
value of the capillary parameter is made to illustrate how sharp the vaporisation fronts
remain in subcritical conditions. The interface structure, however, is not fundamentally
dependent on the precise value of the capillary parameter since in the subcritical domain
the vaporisation front is essentially self-similar whereas in the supercritical domain the
pseudo-vaporisation zone is only weakly perturbed as shown in Figure 10. In Figure 11
are presented the density profiles ρ(ζ ), in Figure 12 the temperature profiles T(ζ ) and in
Figure 13 the local pressure profiles p0(ζ ) for the ambient pressures p∞ = 20, 40 and 60 bar.
The very sharp structure of the vaporising fronts for subcritical interfaces is illustrated in
Figures 11 and 13. The corresponding temperature profiles in Figure 12 also illustrate the
importance of the latent heat in the subcritical regime associated with the fast variation of
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Figure 11. Density ρ in a diffuse oxygen interface: 20 bar; 40 bar; 60 bar.
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Figure 12. Local pressure p0 in a diffuse oxygen interface: 20 bar; 40 bar; 60 bar.
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Figure 13. Pressure p0 in a diffuse oxygen interface: 20 bar; 40 bar; 60 bar.
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22 P. Gaillard et al.

temperature slope ‘when seen from far away’ near the vaporising interface which gradually
disappears as the supercritical regime is approached. The fast variation of the local pressure
p0 is also apparent in Figure 13 and illustrates the multiscale aspects of the vaporising
fronts.

5. Oxygen/hydrogen flames

In this section, we investigate the structure of diffusion flames between cold liquid-like
oxygen and pure gaseous-like hydrogen. The chemical mechanism of Ó Conaire et al. [61]
is used with reaction rates of progress evaluated directly in terms of chemical potentials as
given by statistical thermodynamics [9,36,37].

5.1. Stability limits

The thermodynamic stability of mixtures is of fundamental importance for the understand-
ing of subcritical as well as supercritical oxygen/hydrogen flame structures. An exhaustive
study of the thermodynamic stability of binary mixtures of O2 and H2O has been performed
using the SRK equation of state in order to understand O2 vaporising interfaces in the pres-
ence of H2O. Numerical simulations indeed show that in O2/H2 diffusion flames mainly
H2O is diffusing from the flame front towards the incoming cold oxygen. The other species
either disappear in the flame front or are too unstable to survive the cold temperature near
the O2 vaporising or pseudo-vaporising interface. There is an exception for the species
H2O2, which is metastable but which is only present in trace amounts near oxygen vapor-
ising interfaces and has not been considered for the benefit of simplicity. Thermodynamic
stability domains are obtained by investigating the eigenvalues of the Hessian matrix of
entropy s considered as a function of the energy e, the specific volume v and the species
mass fractions y1, . . . , yn.

Liquid/vapour binary phase diagrams for mixtures in the phase plane (T , p0) may
be classified into six types according to Van Konynenburg and Scott [62,63]. Following
this classification, the liquid/vapour binary phase diagram for O2–H2O is of type III as
illustrated in Figure 14. In this diagram, the O2 equilibrium line on the left ends up with the
O2 critical point and the H2O equilibrium line on the right ends up with the H2O critical
point. There is also a line of three phase equilibria with a vapour mixture, liquid O2 and
liquid H2O which almost coincides with the O2 equilibrium line. Then the loci of critical
points with a mixture of O2 and H2O is divided into two branches. One branch on the right
starts from the H2O critical point and goes to higher pressure. The other branch on the
left side connects the O2 critical point to the end point of the three phase equilibrium line
and cannot be seen since these lines nearly coincide for the O2–H2O species pair. Such a
Type III phase diagram is associated with the large immiscibility of water and oxygen at low
temperature and has been observed between H2O and species other than O2, for instance
CO2, Xe, H2 and CH4 [64,65]. On the other hand, there is good miscibility of H2O with
NH3 and the corresponding phase diagram is then of Type I [64,65]. In Figure 14 are also
plotted experimental measurements due to Japas and Franck [64] for water-rich mixture
critical points starting from the critical point of H2O and good agreement is observed.
The corresponding equilibrium diagram in the phase plane (xH2O, p0) is also presented in
Figure 15 with again satisfactory agreement with experimental measurements.

We illustrate in Figure 16 the stability phase diagram in the coordinates (v , xH2O) at the
supercritical pressure p0 = 60 bar. A study of the entropy Hessian eigenvalues for mixtures
of O2 and H2O reveals that there are two stable states, a liquid one being almost pure water
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Figure 14. Type III equilibrium phase diagram for O2/H2O: pure species lines of equilibrium;
H2O critical point; � O2 critical point; water rich critical points; � Experimental measurements.
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Figure 15. Type III equilibrium phase diagram for O2/H2O: H2O critical point; � O2 critical
point; water rich critical points; � Experimental measurements.

and a fluid one that goes from liquid-like states – where it is nearly pure oxygen – to
gaseous-like states where it is a mixture of O2 and H2O. In Figure 16 are presented the
lines of equilibrium between the fluid oxygen containing phase and the liquid-water phase,
as well as the chemical stability limit and the mechanical stability limit. The mechanically
unstable zone where ∂ρp < 0 is strictly included in the chemically unstable zone where
the matrix � is not positive definite. The zone between the equilibrium lines and the
instability limit corresponds to metastable states and is grey in colour. Note that there is
always a single negative eigenvalue of the matrix � in the unstable zones and thus a single
eigenvalue of the entropy Hessian matrix with a positive sign. In other words, there is no
new bad eigenvalue when crossing the mechanical stability limit. We also note that for pure
water the mechanical and chemical stability zones asymptotically coincide at the top of
Figure 16.
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Figure 16. O2/H2O equilibrium diagram at 60 bar: lines of equilibrium; stability limit;
mechanical stability limit. The grey zone corresponds to metastable states.
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Figure 17. O2/H2O equilibrium diagram with logarithmic coordinates at 60 bar: lines of
equilibrium; stability limit; mechanical stability limit. The grey zone corresponds to metastable
states.

In Figure 16 the unstable zone extends towards small values of the water mole fraction
and thus prevents a transition from dense to lighter fluid without entering the forbidden
unstable zone if too much water is present. A closer look at the bottom of the diagram of
Figure 16 is presented in Figure 17 using logarithmic coordinates and reveals that only 1%
water is sufficient to impose the condensation of water at 60 bar. Numerical experiments
indicate that, below 80 bar, there is sufficient water diffusing from the flame core towards
the cold zone in order to obtain liquid water. Strictly speaking, the new liquid phase is
constituted of water with trace amounts of oxygen and is considered to be pure water for
the purpose of simplicity.

A similar stability study is presented in Figures 18 and 19 at the subcritical pressure
p0 = 45 bar. For such a pressure, three thermodynamically stable phases may be found,
namely liquid oxygen, liquid water and a gaseous-like phase that is a mixture of oxygen and
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Figure 18. O2/H2O equilibrium diagram at 45 bar: lines of equilibrium; stability limit;
mechanical stability limit; three phase equilibrium. The grey zone corresponds to metastable

states.
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Figure 19. O2/H2O equilibrium diagram with logarithmic coordinates at 45 bar: lines of
equilibrium; stability limit; mechanical stability limit; three phase equilibrium. The grey
zone corresponds to metastable states.

water. Strictly speaking, the liquid phase contains trace amounts of the other species that are
not taken into account for the purpose of clarity. There then exist equilibrium lines between
each pair of phases as well as a three phase equilibrium point. These equilibrium lines,
the three phase equilibrium point, the chemical stability limit and the mechanical stability
limit are illustrated in Figures 18 and 19. The zone between the equilibrium lines and the
instability limit corresponds to metastable states and is grey in colour. The mechanically
unstable zone is again included in the chemically unstable zone and both zones extend from
zero up to unity values of the water mole fraction since the pressure is subcritical for both
O2 and H2O. Similar trends are observed as for the supercritical case but now the transition
between dense oxygen and lighter oxygen is discontinuous. We also observe again that the
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26 P. Gaillard et al.

mechanical and chemical stability limits asymptotically coincide for both pure species O2

and H2O.
A conclusion of this preliminary analysis is that it is necessary to include a new dispersed

phase constituted by liquid-water droplets in the model since it naturally appears below a
pressure of about 80 bar. The only species of the new phase to be added is thus H2O(l) – as-
suming that the local pressure remains below 220.6 bar – and the vaporisation/condensation
reaction is of the form

H2O � H2O(l),

where we have neglected trace amounts of diluted oxygen in H2O(l). Such droplets have
notably been observed experimentally by Powell using liquid nitrogen [66]. The water
condensation mechanism is also complex and involves nucleation of molecular clusters and
particle growth through germination [67]. These droplets are only present near the interface
and their size has been discussed by Lafon et al. [67]. The droplets are sufficiently small
that they follow the fluid local temperature and velocity [67]. As a consequence, a detailed
spray simulation including the droplet radius, velocity and temperature [68–70] lay beyond
the scope of the present work and only a simplified model is considered. The liquid-water
governing equation is of the form

∂tρn+1 + ∇·(ρn+1v) = mn+1ωn+1, (50)

where n + 1 is the H2O(l) species index. The source term is modelled according to
statistical mechanics [36,37] and approximated in the form

ωn+1 � KI

(
g0

H2O − g0
H2O(l)

)
, (51)

since the interface zone is nearly isothermal and with KI = K′
I yH2O(j ) where K′

I is a
constant and j is the gaseous phase when condensation dominates, whereas j is the liquid
phase when vaporisation dominates. Such a simplified model of the liquid-water dispersed
phase has already been used by Lafon et al. [67] when investigating water condensation
around isolated Lox droplets. The new liquid-water phase then mainly acts as source or
sink for the species and energy equations [67].

5.2. Structure of diffusion flames

In the following, we present typical steady-state diffusion flame structures in the subcritical
and supercritical domains. These flames are obtained by flowing pure liquid-like oxygen
towards pure gaseous-like hydrogen. We consider a subcritical pressure of p∞ = 45 bar
and a supercritical pressure of p∞ = 60 bar – with respect to an oxygen critical pressure
of pc = 50.43 bar. The strain rate α = 10, 000 s−1 corresponds to a velocity decreasing
from 500 cm · s−1 to zero within 0.5 mm, which is representative of strain rates in flames
in cryogenic engines. The temperature in the O2 cold stream is T− = 100 K and in the
H2 hot stream T+ = 300 K. In all simulations, we have used the reaction mechanism of
Ó Conaire et al. [61] and a value of κ = 10−2 g−1cm7s−2 of the capillary parameter and
K′

I = 10−2 mol·s·cm−5 of the vaporisation/condensation reaction parameter.
Figure 20 presents the temperature T(ζ ) and density ρ(ζ ) as functions of the normal

coordinate ζ in a diffusion flame structure at p∞ = 60 bar. The density presents a steep
variation near the pseudo-vaporising front transitioning from liquid-like to gaseous-like
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Figure 20. Temperature and density in a diffusion flame at p∞ = 60 bar: ρ; T.
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Figure 21. Species mole fractions in a diffusion flame at p∞ = 60 bar: � liquid H2O; O2;
H2O; � H2; � H; � OH; ◦ O; � HO2; ♦ H2O2.

states and the temperature curve is bell-shaped, as is typical of diffusion flames. In Figure 21
are presented the corresponding species mole fractions profiles xi(ζ ), i ∈ S, which are
typical of strained diffusion flames but also include liquid water. Since the pressure is p∞ =
60 bar, the flame structure is much thinner than at atmospheric pressure. In high pressure
flames the reaction H + O2 + M −→ HO2 + M, which decreases the number of moles,
dominates H + O2 −→ OH + O over a larger temperature domain, and this leads to high
concentrations of HO2 and H2O2 radicals [9].

Figure 22 illustrates how the metastable zone is crossed by the flame trajectory in
the phase space (v , xH2O). The pseudo-vaporisation reaction parameters used in the cal-
culations are K′

I = 10−2 mol·s·cm−5, K′
I = 10−4 mol·s·cm−5, K′

I = 10−6 mol·s·cm−5 and
K′

I = 10−7 mol·s·cm−5. For the lower value K′
I = 10−8 mol·s·cm−5, the flame trajectory

would enter the forbidden unstable zone. In other words, there is no hope of avoiding the
presence of liquid water droplets at such a pressure.
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Figure 22. Phase space diagram and flame trajectory at 60 bar: lines of equilibrium; stability
limit; mechanical stability limit; � K′

I = 10−2; ◦ K′
I = 10−4; � K′

I = 10−6; � K′
I = 10−7. The

grey zone corresponds to metastable states.
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Figure 23. Temperature and density in a diffusion flame at p∞ = 45 bar: ρ; T.

We present in Figure 23 the temperature T(ζ ) and density ρ(ζ ) as functions of ζ in
a diffusion flame structure at p∞ = 45 bar. The density again presents a steep variation
at the vaporising front transitioning from liquid to gaseous states. Figure 24 shows the
species mole fractions profiles xi(ζ ), i ∈ S, as functions of the flame normal coordinate
ζ . The corresponding profiles are similar to those observed at the higher ambient pressure
p∞ = 60 bar with a sharp variation of density in the vaporising zone, the appearance and
disappearance of liquid water, the diffusion flame type bell shaped temperature distribution,
and analogous species mole fraction profiles typical of oxygen/hydrogen diffusion flames.
There is also a smooth transition between the subcritical and supercritical conditions in the
calculations thanks to the diffuse interface model.

The flame structure around the vaporising interface is presented on Figure 25. We
notably observe the condensation of water coming from the flame front by diffusion that
cannot enter further into liquid oxygen since these fluids are largely immiscible at low
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Figure 24. Species mole fractions in a diffusion flame at p∞ = 45 bar: � H2O(l); • O2; H2O; �
H2; � H; � OH; ◦ O; � HO2; ♦ H2O2.
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Figure 25. Species mole fractions near the vaporising interface in a diffusion flame at p∞ = 45 bar: �
H2O(l); O2; H2O; � H2; � OH; ◦ O; � HO2; ♦ H2O2

temperature. The chemical instability associated with water at low temperature has been
taken into account by including liquid water as a dispersed phase but it still remains
a thermodynamic instability mainly associated with the phase transition of oxygen. If
oxygen were pure the instability would be a mechanical instability, but in the presence of
other species it is generally a chemical instability as indicated by the phase diagrams. The
continuous transition between liquid oxygen and gaseous oxygen is here due to the second
gradient model of van der Waals type which removes the singularity associated with the
wrong sign eigenvalue in the entropy Hessian matrix [71].

Figure 26 illustrates how the unstable zone is crossed by the flame trajectory with
the help of the second gradient stabilizing terms. The various flame trajectories in the
phase space (v , xH2O) correspond to the pseudo-vaporisation reaction parameters K′

I =
10−2, K′

I = 10−4 and K′
I = 10−6. In comparison with the supercritical situation where the
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Figure 26. Phase space diagram and flame trajectory at p∞ = 45 bar; lines of equilibrium;
stability limit; mechanical stability limit; three phase equilibrium; �K′

I = 10−2; ◦K′
I = 10−4;

� K′
I = 10−6. The grey zone corresponds to metastable states.

metastable zone was crossed and the forbidden zone avoided with the help of the presence
of liquid water, we observe here that the upper part of the forbidden unstable zone is still
avoided with the help of liquid water, whereas the lower part of the forbidden zone is
crossed with the help of the stabilizing properties of the second gradient terms [71].

6. Conclusion

We have introduced a diffuse-interface all-pressure flame model that transitions smoothly
from subcritical to supercritical conditions. This model involves a non-equilibrium diffuse
interface embeded into a non-ideal reactive fluid with multicomponent fluxes written in
thermodynamic form as well as liquid water as a dispersed phase. The model has been
simplified using a small Mach number limit with self-similar assumptions typical of strained
flows.

Numerical simulations of oxygen interfaces, oxygen/hydrogen diffusion flames, as well
as stability diagrams have confirmed that the resulting model transitions smoothly from
subcritical to supercritical conditions. We have further established that the SRK equation
of state is able to reproduce the phase stability diagram of O2/H2O mixtures, which is of
type III according to the Van Konynenburg and Scott classification.

A first extension of the present work of high scientific interest would be to focus
on detailed simulations of interfaces including accurate capillary coefficients, nanolength
grid resolution, and/or a detailed description of the liquid-water dispersed phase with
comparisons with experiment.

Another perspective of high scientific interest would be to perform direct numerical
simulations as well as large eddy simulations of the transition between subcritical and
supercritical flames using the compressible formulation, which is fully valid in several
dimensions.
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Appendix A. Equilibrium interfaces
We discuss in this section the equations governing equilibrium interfaces and the link with the
non-equilibrium model presented in Sections 2 and 3.

We first consider the situation of a single species or equivalently the simplified formulation
of Section 2.4. In order to obtain the equilibrium structure of the interface, the entropy has to be
maximised for a given amount of mass and energy. (Equivalently, we may minimise the free energy
for a given amount of mass at constant temperature.) Using the method of Lagrange multipliers, we
write that the infinitesimal variation of interfacial entropy vanishes [23]

δ

∫ (S + αeE + αρρ
)
dx = 0, (A1)
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where δ is the infinitesimal variation symbol and αρ , αe are Lagrange multipliers. Using E =
F + T S = F + T S0, the differential expression (2), and a few integrations by parts, we obtain
that

∫
((1 + T αe)δS0 + (αe(g

0 − ∇ · φ) + αρ)δρ)dx = 0.

Since the variations δS0 and δρ are arbitrary, we deduce the Euler–Lagrange equations (1 + T αe) = 0
and αe

(
g0 − ∇ · (κ∇ρ)

) + αρ = 0 since φ = κ∇ρ. The first implies that the interface is isothermal
with T = −1/αe. Further considering now a planar interface for the sake of simplicity, denoting
by ′ the derivation with respect to the normal coordinate, and assuming that κ is a constant, we obtain
that

g0 − κρ ′′ = Const. = g∞, (A2)

where g∞ denotes the common value of g0 in both fluids at −∞ and + ∞. Multiplying this relation
by ρ ′, integrating through the interface, making use of ∂ρF 0 = g0, we next obtain that

F 0 − 1

2
κρ ′ 2 − g∞ρ = Const. (A3)

It has been assumed here that the density ρ goes towards the liquid and gas density values at both ends
so that the spatial derivative ρ ′ = ∂ζ ρ vanishes at both ends. Combining these relations, we obtain
that

p0 + 1

2
κρ ′ 2 − κρρ ′′ = p∞, (A4)

where p∞ denotes the common value of pressure for both fluids, which coincides for a one-dimensional
interface with the momentum conservation equation when it is assumed that v = 0 and T = Const.

Conversely, let us consider a steady interface with v = 0, T = Const., with a one-dimensional
structure. Using the momentum conservation equation we then obtain that (A4) holds. Deriving with
respect to the interface normal coordinate, we obtain that

(∂ρp
0)T ρ ′ − κρρ ′′′ = 0. (A5)

Using then the thermodynamic relation (∂ρp
0)T = ρ(∂ρg

0)T , simplifying by ρ, we may integrate
with respect to the interface normal coordinate to recover (A2) and a further integration – previously
multiplying by ρ ′ – then yields (A3). Therefore the interface model considered in this work coincides
with an equilibrium model provided it is steady, without convection, isothermal and with constant
limits at both interface ends, i.e. without gradients at the boundaries. One may observe, however, that
the presence of convective terms is not a significant limitation because the Mach numbers usually
involved are rather small and similarly the simulations of Sections 4 and 5.2 further show that
temperature variations are modest in the vaporising or pseudo-vaporising zones. The assumption that
is not always satisfied is that the gradients at the interface boundaries are vanishing.

Similar conclusions may be reached for a multicomponent interface. Proceeding in an analogous
way, we have to to maximise the interfacial entropy for a given energy and given masses for each
chemical species. Proceeding similarly, we have the extremal property

δ

∫ (
S + αeE +

∑
k∈S

αkρk

)
dx = 0, (A6)
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where αk , k ∈ S, and αe are Lagrange multipliers. Using then E = F + T S0, the differential expres-
sion (2), and a few integrations by parts, we obtain that

∫
V

(
(1 + T αe)δS0 +

∑
k∈S

(
αe

(
g0

k − ∇ · φk

) + αk

)
δρk

)
dx = 0. (A7)

Since the variations δS0 and δρk, k ∈ S, are arbitrary we obtain that (1 + T αe) = 0 and αe(g0
k − ∇ ·

φk) + αk = 0, k ∈ S. We have thus recovered that the interface is isothermal and that the generalised
chemical potentials g̃k = g0

k − ∇ · φk are constants through the interface. It is then found that the
interface model of Section 2.1 coincides with the model obtained at equilibrium provided the interface
is steady, without convection, isothermal, without gradients of chemical potentials, without chemistry
and with constant limits at both interface limits. We again observe that convection is not a significant
limitation because of small Mach numbers and the simulations of Sections 4 and 5.2 also suggest that
temperature variations are modest in the interfaces. The assumptions that are not always satisfied is
that the gradients at the interface boundaries are vanishing as well as the absence of chemistry.

We finally note that upon writing the partial densities in the form ρk = ρyk , assuming that the
species mass fractions are essentially invariants in the interface, so that ρ ′

k � ykρ
′, and summing the

relations g0
k − φ′

k = Cte we recover that g0 − κρ ′′ � Cte, where κ is an average value of the species
capillary parameters. The simplified model will thus be a relevant model provided that the mass
fractions are essentially unchanged in the interface.
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