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Abstract—This paper focuses on low-complexity detection
for large scale multiple-input multiple-output (MIMO) systems
involving tens to hundreds of transmit/receive antennas. Due
to the exponential increase of its processing complexity with
the data signal dimensions (antenna number, modulation or-
der), a maximum likelihood detection is infeasible in practice.
To overcome this drawback, authors in [1] proposed a low-
complexity detection based on a sparse decomposition of the
information vector. It is proved that this decomposition is mainly
adpated to underdetermined systems and leads to a significant
reduction on the processing complexity. As an extension to
the work investigated in [1], we propose in this paper a new
decomposition that makes the computation cost less dependent on
the modulation alphabet cardinality, thus reducing theoretically
the complexity by 50% for 4-QAM and by 72% for 16-QAM
compared to the previous detector in [1], while achieving the
same error rate performance.

Index Terms—Sparse representation, source separation, basis
pursuit, maximum likelihood detection, massive MIMO...

I. INTRODUCTION

DATA traffic is expected to significantly increase in the next
decade due to the increase of the connected machine

number (machine type communications) and the data rate.
MIMO technology has been selected in the 5G standard
definition as a solution to provide higher throughput under
spectrum limitations [2]. Large number of antennas and/or
users is involved, which makes the receiver design critical from
the complexity point of view. The maximum likelihood (ML)
joint detection is optimum in term of bit error rate (BER)
but its complexity increases exponentially with the system
dimensions and the modulation alphabet cardinality which
makes it infeasible in practice [3]. The sphere decoder reduces
the search space to a hypersphere around the signal-space
projection of the received signal and performs near-optimally
provided the hypersphere radius be well tuned [4]. How-
ever, sphere decoding technique involves an exhaustive search
within the hypersphere whose dimensions remain high in the
large-scale MIMO case, yielding computationally-unsolvable
detection. Research for high-performance receiver design that
can lead to practical realization of large- MIM0 systems is
both nascent as well as promising [5]. Usual linear equalizers
such as minimum mean square error (MMSE) and zero-forcing
(ZF) have low computation complexity but perform poorly
when used in underdetermined uncoded MIMO systems. Such

configuration is expected in future 5G system uplink, as
the number of connected users times their transmit antenna
number could be much higher than the base station receive
antenna number. Previous works proved that source separation
is possible in the underdetermined case thanks to basis pursuit
(BP) technique [6]. Following this approach, a sparse repre-
sentation was proposed in [7] to define a successful separation
method for a conditioned dimension system. Underdetermined
noisy MIMO system with finite alphabet was dealt with as an
application case of [7] in [1] and [8], where the problem was
formulated as a basis pursuit denoising (BPDN) problem with
relaxed constraints. In [8], the `0-norm was relaxed into the `1-
norm to obtain a minimization problem which is solved thanks
to an iterative algorithm subject to a spherical search space.
The problem dependency on the sphere radius makes it harder
to solve. The problem formulation proposed in [1] outperforms
the previous one and its success detection probability relies
only on the equivalence between the `0-norm and `1-norm.
This formulation is based on a ML criterion applied with
relaxed constraints. In this paper, we consider the method
developed in [1] and we look for a new basis with limited size
in order to develop a more reduced complexity algorithm and
maintain a low computational cost even with the increase of
the system and/or constellation size. This proposed algorithm
relies on a half-sparse decomposition of the data signal vector
and a new problem formulation.

This paper is organized as follows. Section II describes
the underdetermined MIMO transmission model. Section III
deals with the source separation problem in the noiseless
case. We propose the new half-sparse decomposition and we
introduce the corresponding problem formulation. In Section
IV, we apply the proposed scheme to the massive MIMO
noisy channel. In Section V, we compare the proposed
half-sparse decomposition-based detection method to the one
investigated in [1] as well as to the MMSE linear equalizer.
Finally, Section VI concludes the paper.
Notations: boldface upper case letters and boldface lower
case letters denote matrices and vectors, respectively. For the
transpose, transpose conjugate and conjugate matrices we use
(.)T ,(.)H and (.)∗, respectively. ⊗ is the Kronecker product.
Ip is the p × p identity matrix and 1p is the all-one size-p
vector.
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II. SYSTEM MODEL

Let us consider a K-user MIMO transmission over a flat
fading channel, where each user has Nt transmit antennas
and Nr receive antennas and let N = K × Nt. No user
cooperation for transmission nor precoding scheme is taken
into account. At the base station side, we assume n equivalent
receive antennas (base station cooperation through the base
station controller is possible) with n ≤ N . We assume a
perfect knowledge of the channel state information (CSI) at
the base station. In this paper, we focus on the uplink of
the communication system. The received signal is defined as
follows:

y =Hx+ z. (1)

where H is an n×N random channel matrix, x is the N × 1
data vector, and z is the n× 1 complex circularly symmetric
additive Gaussian noise vector with zero mean and a covari-
ance matrix equal to σ2I . We assume that the components
of x belong to a M -QAM modulation alphabet such that
M = L2 (square QAM constellation). In that case denoting
by Q the modulation alphabet then Q = {q1, q2, ..., qM}. We
associate to Q the symbol vector q = [q1, q2, ..., qM ] where
qi = ai + jbi, i ∈ {1..M} with (ai, bi) ∈ A × A and
A = {−2k + 1, ...,−3,−1, 1, 3, ..., 2k − 1}, k = log2(

√
M).

The challenge is to design an efficient joint detection
scheme of the transmitted data with moderate computational
complexity order over the whole SNR range in an underde-
termined system (n ≤ N ). In the following, we propose to
recover x from sparse detection techniques as described in [1]
but with a new decomposition that enables a computation cost
reduction while keeping the same error rate performance. To
this end, in Section III we study the detection scheme with the
new decomposition assuming a noise-free transmission. Then,
in section IV, we extend it to the case of the noisy massive
MIMO transmission uplink described by (1).

III. SPARSITY-BASED RECOVERY METHOD (NOISE-FREE)
A. Problem statement

We consider the underdetermined linear system or noise free
mixing model

y =Hx, x ∈ QN . (2)

where x = [x1, x2, ..., xN ]T is the N × 1 source vector,
y = [y1, y2, ..., yn]T is the n × 1 observation vector and H
is an n×N generic random matrix with n ≤ N . In [1], [8],
the authors proposed a framework for the recovery of finite
alphabet signals based on their sparse decomposition.

B. Existing sparse decomposition [1]
Exploiting the fact that the vector x belongs to a finite

alphabet, each element of x can be decomposed on the
basis of the vector space in which the finite alphabet vector
q = [q1, q2, ..., qM ] can be cast. The data vector with N entries
can be modeled as an equivalent sparse data vector with NM
entries.
The decomposition of the jth component of x is decomposed
as

xj = q rTj , (3)
where rj = [δq1(xj), δq2(xj), ..., δqM (xj)].

Applying this decomposition over all the components, the
vector x can be formulated as a function of r as

x = Bq r, (4)

where r = [r1, r2, ..., rN ]T ,

Bq = IN ⊗ q.

Bq is a N ×NM block diagonal matrix.
Then, the received signal is written as

y = HBqr. (5)

C. Proposed half-sparse decomposition

In this section we propose another sparse decomposition
which reduces the complexity of the decoding scheme as
compared to the first decomposition. We consider M -QAM
modulations and the sets Q and A defined in Section II.
We propose to decompose the elements of A on a basis
with binary components vector as introduced in [9]. Let
β = [2k−1, ..., 21, 20]. Then, each component of A can be
decomposed as

a = β cT ,where c ∈ {−1, 1}k. (6)

As c ∈ {−1, 1}k, its ith component, denoted by ci, can be
written as

ci = p sTi , (7)
where p = [−1, 1],
and si = [δ(−1)(ci), δ(1)(ci)].

Let βc = [β jβ]. Extending the previous decomposition to Q,
each element q of Q can be expressed as:

q = a+ jb = βcc
T ,with c ∈ {−1, 1}`, and ` = log2(M) = 2k. (8)

As c ∈ {−1, 1}`, the ith element of c can be written as
follows

ci = p sTi , (9)
where p = [−1, 1],
and si = [δ(−1)(ci), δ(1)(ci)].

Coming back to the system model, the vector x can be
formulated as a function of s

x = BβBps, (10)

with Bβ = IN ⊗ βTc ,
Bp = I`N ⊗ p,
s = [s1, s2, ..., s`N ]T ∈ {0, 1}2`N .

where Bβ is a N × `N block diagonal matrix and Bp is a
`N × 2`N block diagonal matrix.
It results that the received signal reads

y = HBβBps. (11)
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D. Source separation
Since the output of the first decomposition is a sparse vector

that contains a majority of zero elements, the detection of the
original information can be seen as a sparse source decoding.
In this context, the authors in [7] demonstrated that the vector
x can be recovered by resolving the following optimization
problem:

(PF,1) : arg min
r

||r||1 subject to r ∈ F, (12)

where F = {r|y =HBqr,B
F
1 r = 1N}

and BF
1 = IN ⊗ 1M .

Considering the new decomposition (10), the vector s
is half sparse as half of its components are equal to zero.
We can still apply sparse detection techniques to recover the
original information. The new optimization problem reads:

(PG,1) : arg min
s

||s||1 subject to s ∈ G, (13)

where G = {s|y =HBβBps,B
G
1 s = 1`N}

and BG
1 = I`N ⊗ 12.

IV. EXTENSION TO THE NOISY MASSIVE MIMO
TRANSMISSION

We now consider the MIMO system described in Section II
with large values of n and N .i.e. (massive MIMO configu-
ration). In this respect, the optimal ML joint detection, based
on exhaustive search is a problem computationally unsolvable.
Using the first decomposition, the received signal can be
defined as follows [1]:

y =HBqr+ z. (14)

To recover the sparse vector r, the authors in [7] proposed to
solve the following optimization problem:

(PF,2) : arg min
r

||y−HBqr||2 (15)

subject to BF
1 r = 1N ,

r ≥ 0.

This optimization problem statement can be seen as a ML
relaxed detector that minimizes the euclidean distance with
the received signal. When we apply the proposed half-sparse
decomposition, the received signal can be written as:

y =HBβBps+ z. (16)

Exploiting the half-sparsity of s, we can investigate the same
approach as in [1]. Given (16), we seek the half-sparse
vector s that minimizes the euclidean distance to the received
signal on a well-defined plane. The ML detector requires an
exhaustive search through all the possible values of s. The
solution corresponds to the closest point to y in the received
constellation. Hence the ML detection problem reads

(PML) : arg min
x

||y−Hx||2 subject to x ∈ Q
N . (17)

The main drawback of the ML detection problem remains its
high computational complexity due to the constraint x ∈ QN

that entails an exhaustive search.
In [1], the authors relaxed the ML problem into the
minimization one (PF,2) that can be solved by using iterative
algorithms with polynomial complexity. Following the same

approach, we propose an equivalence to the constraint
x ∈ QN using the following Proposition 1. which resorts to
the half-sparse decomposition defined in (10).

Proposition 1. The components of x belong to the
finite alphabet constellation Q if and only if the following
equalities hold: BG

1 s = 1`N and ||s||0 = `N

Proof. Let us assume that the vector x belongs to the
finite alphabet constellation Q, then it can be half-sparsely
decomposed as x = BβBps, where s is composed of `N
consecutive 2-uples, such that each 2-uple contains one 1 and
one 0. This means that B1s = 1`N . s is a half-sparse vector
satisfying ||s||0 = `N .
Reciprocally, let us now assume that BG

1 s = 1`N and
||s||0 = `N . BG

1 s = 1`N means that sj + s(j+1) = 1 for all
j ∈ {1, 3, ..., 2`N − 1}, implying that at least one component
of each 2-uple is different from zero. The second equality
||s||0 = `N imposes that the total number of non-zero
elements in s is equal to `N . Using the two previously
deducted properties, we conclude that each 2-uple has exactly
one non-zero component equal to 1. Thereby, the length-N
vector x = BβBps belongs to the finite alphabet QN .

Using Proposition 1., the minimization problem (PML)
becomes

arg min
s

||y−HBβBps||2 (18)

subject to BG
1 s = 1`N ,

||s||0 = `N.

The constraint ||s||0 = `N makes the problem NP-hard.
It requires an exhaustive search to seek the solution. By
exploiting the sparsity of the searched vector, we propose to
relax the `0-norm into the `1-norm. The relaxed constraint
becomes ||s||1 = `N . However, our system is not convex, thus,
a global optimum is not necessarily achieved. To overcome this
problem, we introduce the following lemma:
Lemma 1. Let BG

1 = I`N ⊗ 12 and s a (2`N) × 1 real
vector satisfying BG

1 s = 1`N . Then all components of s are
positive if and only if its `1-norm equals `N i.e. ||s||1 = `N .

Proof. The equality BG
1 s = 1`N implies that sj+s(j+1) = 1

for all j ∈ {1, 3, ..., 2`N − 1}.
By successive additions of the 2-uples which compose the
sparse vector, we obtain

2`N∑
i=1

si =
∑

1≤j≤`N,j odd

sj + s(j+1) = `N. (19)

Let us assume that all the components of s are positive. We
deduce that

∑2`N
i=1 |si| = `N , i.e ||s||1 = `N .

Reciprocally, let assume that ||s||1 = `N . According to
(19), we can thus write

2`N∑
i=1

(|si| − si) = 0. (20)

Let N(s) denote the set of indexes corresponding to all
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non-zero negative elements of s. Then
∑2`N
i=1 (|si| − si) =

2
∑
i∈N(s) |si|. It follows from (20) that si = 0 when

i ∈ N(s) which is in contradiction with the definition of N(s).
We conclude that N(s) = ∅ and that all the components of s
are positive.
Using Lemma 1., the decoding problem becomes

(PG,2) : arg min
s

||y−HBβBps||2 (21)

subject to BG
1 s = 1`N

s ≥ 0.

The new optimization problem (PG,2) is a quadratic program-
ming model with linear equality constraints and nonnegative
variables.

V. SIMULATION RESULTS

In this section, we evaluate the new half-sparse
decomposition-based detection in terms of complexity
and error rate in the discussed cases in Section III (noiseless
channel) and in Section IV (noisy channel). The channel
coefficients are assumed to be i.i.d circularly symmetric
complex Gaussian distributed with zero mean and unit
variance. We use the CVX toolox, which is a Matlab library
for convex optimization [10]. The `1-minimization problem
under convex constraints (PG,1) is solved by the SeDumi
solver [11], while the quadratic minimization problem (PG,2)
is solved by using the Gurobi optimizer [12]. The simulation
results are obtained by using a PC with OS Linux Ubuntu
14.04 with processor Intel Core i3-2350M 2.3 GHz and 8 GB
of RAM memory. For the sake of brievity, in the remainder
of the paper, we refer to each detector by the problem that
solves. For example, the detector that seeks for the solution
of (PG,1) will be referred to as (PG,1) detector.

A. Noiseless MIMO channel

In order to study the performance of the proposed detection
over the noiseless channel, we compare the solution of the
optimization problem (PG,1) found by the SeDumi solver,
denoted by x̂, with the true signal x. The recovery is said

to be correct if the relative error
||x̂− x||2
||x||2

is less than 10−5

[7]. The phase diagrams are plotted in Fig. 1 for M = 4, 16
and 64. We observe that the half-sparse decomposition en-
ables to achieve the same performance as the original sparse
decomposition. Moreover, it can be observed that the success

probabilility is higher than 50% when

√
M − 1√
M

n ≤ N and

tends to 1 when
n

N
increases with a higher convergence rate

for large values of N . We deduce the asymptotic equivalence
between the `0 and `1-based optimization problems. According
to Fig. 1 we observe that the success probability increases from
50% to 100% with a slightly variation of

n

N
for higher N .

For the 4-QAM the optimum convergence state is obtained for
a variation ∆

n

N
= 0.055 when N = 256 and it is equal to

0.09 for N = 128.
The interest of the new half-sparse decomposition can be
motivated by its complexity order. The CVX toolbox relies

n/N
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Fig. 1: Phase diagrams of the half-sparse decomposition-based
detection for M -QAM with M = 4, 16, 64 and N = 128, 256.
(Solution of (PG,1) found by the CVX SeDumi solver)

on the interior point method whose complexity is a function
of the number of constraints and the dimension of the searched
vector. A convex optimization problem defined in the real
field over Rm under d constraints requires, in the worst case,
O(
√
d) iterations for a computational cost of order O(m2d)

per iteration and yields a total computational cost of order
O(m2d3/2) [13]. Applied to (PF,1) and (PG,1), we obtain the
computational costs given in Table 1. The total computation
cost is ( M

log2(M) )
2 higher in the case of (PF,1), which makes

the problem (PG,1) all the more interesting one to solve when
the modulation order is high.
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Fig. 2: BER performance comparison in 16 × 14 MIMO
channel.

B. Noisy MIMO channel

For noisy massive MIMO transmission, Fig. 2 compares
the BER performance of the proposed (PG,2) detection to the
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Dimension Computational cost per iteration Total

(PF,1) MN O(M2N2(N + n)) O(M2N2(N + n)3/2)

(PG,1) log2(M)N O((log2(M))2N2(N + n)) O((log2(M))2N2(N + n)3/2)

TABLE I: Computational cost with the interior point method.
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Fig. 3: BER performance comparison in 64 × 64 MIMO
channel.

sphere decoder (SD), described in [14], and to the (PF,2)
detector. We assume a 4-QAM constellation mapping. As
(PF,2) and (PG,2) resort to the same detection principle, they
perform equivalently for different system dimensions. It can
be also observed that beyond 6.7dB, the SD outperforms the
(PG,2) detector, e.g. at BER 10−3, a gain of about 5 dB is
achieved in the case of 16 × 14 MIMO system. Increasing
the system dimension to 64×64, the SD complexity becomes
too high and we compare in Fig. 3 the (PG,2) detector to the
minimum mean square error (MMSE) detector. We remind
that the MMSE detector requires that the system is at least
determined. One can observe that the (PG,2) detector exploits
better the receive diversity than the MMSE detector. At BER
10−2, the (PG,2) outperforms the MMSE by about 5.5dB. This
gain increases to reach 7dB for a BER of 10−2.

It is important to emphasize that in practice, an outer
forward error correction (FEC) code is used and the proposed
detection can be inserted within an iterative turbo-like receiver.
In that case, the performance loss towards the SD can be
reduced at the convergence state of the receiver.

Fig. 4 and Fig. 5 illustrate the runtime of the (PG,2) detec-
tion compared to the (PF,2) detection for 16-QAM and 64-
QAM respectively to show the asset of the new decomposition.
It can be observed that the runtime increases slightly with
the system dimension and independently of the SNR level.
Moreover, we observe that the (PG,2) is computationally less
costly than the (PF,2) e.g. for 16-QAM we reduce around
50% of the time run for any considered dimension value.

50 60 70 80 90 100 110 120 130 140

5

10

15

20

25

30

35

40

45

50

n
ti
m

e
−

ru
n

(s
e
c
)

 

 

(PF ,1), 8dB

(PG,1), 8dB

(PG,1), 15 dB

(PF ,1), 15dB

Fig. 4: Runtime comparison for different SNR values with a
16-QAM modulation and N=(8/7)n.
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Fig. 5: Runtime comparison for different SNR values with a
64-QAM modulation and N=(8/7)n.

We also note from Fig. 4 and Fig. 5 that the gain in the
computational cost compared to (PF,2) increases with the
modulation order which is in agreement with the Table 1. This
gain is around 72% for 64-QAM modulation.
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Let us emphasize that compared to the sparse decomposition
used in (PF,2), the new half-sparse decomposition used in
(PG,2) enables the detector to provide soft output that can be
more directly exploited in a symbol to binary conversion to
feed the FEC decoder with reliable soft input. The study is
still in progress and preliminary results are promising.

VI. CONCLUSION

In this paper we have addressed the problem of decoding in
large MIMO systems with finite M -ary QAM constellation.
We have proposed a new decomposition of the data symbol
vector into a half-sparse input vector with half of its com-
ponents equal to 0. Exploiting its sparsity, we have relaxed
the ML problem into another minimization problem (PG,2) of
lower polynomial complexity compared to the original (PF,2),
while achieving the same error rate performance. In addition
to its asset for the complexity, a study still in progress shows
that the new half-sparse decomposition enables the detector
to provide reliable soft-output which can be integrated in a
turbo-detection scheme.
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