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(Dated: August 7, 2018)

We study the atypically large deviations of the height H ∼ O(t) at the origin at late times in
1 + 1-dimensional growth models belonging to the Kardar-Parisi-Zhang (KPZ) universality class.
We present exact results for the rate functions for the discrete single step growth model, as well
as for the continuum KPZ equation in a droplet geometry. Based on our exact calculation of the
rate functions we argue that models in the KPZ class undergo a third order phase transition from
a strong coupling to a weak coupling phase, at late times.

The celebrated Tracy-Widom (TW) distribution was
discovered originally in random matrix theory (RMT)
[1, 2]. In RMT, it describes the probability distribution
of the typical fluctuations of the largest eigenvalue of a
Gaussian random matrix. Since then, this distribution
has emerged in a variety of problems [3, 4] (unrelated a
priori to RMT), ranging from random permutations [5]
all the way up to the Yang-Mills gauge field theory [6].
Why is TW distribution so ubiquitous? It was recently
shown that in several systems where TW distribution
occurs there is usually an underlying third order phase
transition between a strong and a weak coupling phase
[7]. In these systems the TW distribution appears as a
finite-size crossover function connecting the free-energies
of the two phases across the third order critical point [7].
In the strong coupling phase, the degrees of freedom of
the system act collectively while the weak coupling phase
is described by a single dominant degree of freedom. In
the context of RMT, this third-order phase transition
shows up in the distribution of the top eigenvalue λmax

of a N × N matrix belonging to the classical Gaussian
ensembles [7]. The central part of the distribution, corre-
sponding to the typical fluctuations of λmax, is described
by the TW distribution, while the atypically large fluc-
tuations to the left (right) correspond to the strong (re-
spectively weak) coupling phases.

For a wide class of 1+1-dimensional interface growth
models belonging to the Kardar-Parisi-Zhang (KPZ) uni-
versality class [8], it is well known that the typical height
fluctuations grow at late times as ∼ t1/3 [9]. Moreover
the probability distribution function (PDF) of these typi-
cal fluctuations are given by the TW distribution [10–19].
This TW distribution has also been verified experimen-
tally in liquid crystal and paper burning systems [20–22].
The appearance of the TW distribution in these growth
models then raises a natural question: is there a third
order phase transition between a strong and a weak cou-
pling phase in such growth models? If so, how can one
describe these two phases? In this Letter, we show that
there is indeed a third order phase transition in these
growth models by studying the probability distribution
P (H, t) of the height H at the origin (suitably centered)

P (H, t)

H
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FIG. 1. A schematic picture of the height distribution at the
origin. The typical fluctuationsH ∼ O(t1/3) around the mean
are distributed according to the Tracy-Widom GUE law (blue
line). The atypical large fluctuations to the left (red line) and
to the right (green line) are described respectively by the left
and right large deviation functions in Eq. (1).

at late times t � 1. Specifically, we find that P (H, t),
for t� 1, has three different behaviors

P (H, t) ∼



e−t
2 Φ−(H/t) , H ∼ O(t) < 0 I

1

t1/3
f

[
H

t1/3

]
, H ∼ O(t1/3) II

e−tΦ+(H/t) , H ∼ O(t) > 0 III .

(1)

The regime II is well known and it describes the typical
height fluctuations (H ∼ O(t1/3)) and the scaling func-
tion f(s) is given by the TW distribution. The scaling
function depends on the initial conditions: for the flat
geometry it corresponds to f1(s) (i.e., TW for the Gaus-
sian Orthogonal Ensemble, GOE), while for the curved
(or droplet) geometry, it corresponds to f2(s) (i.e., TW
for the Gaussian Unitary Ensemble, GUE). These distri-
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butions have asymmetric non-Gaussian tails:

fβ(s) ∼
{

e−
β
24 |s|3 , s→ −∞

e−
2β
3 s

3/2

, s→ +∞ ,
(2)

where β = 1 and 2 correspond respectively to GOE and
GUE.

The new results in this Letter concern the atypical
large height fluctuations in regime I and III in Eq. (1).
The regime I corresponds to the large negative fluctua-
tions (H ∼ O(t) < 0) and is characterized by the left
large deviation function Φ−(z). Similarly, the regime III
describes the large positive fluctuations (H ∼ O(t) > 0)
and is characterized by the right large deviation function
Φ+(z). These two rate functions Φ±(z) are the char-
acteristics of the two phases: Φ−(z) corresponds to the
strong coupling phase, while Φ+(z) describes the weak
coupling phase (as explained later). Note that on the
scale H ∼ O(t), the central part of width O(t1/3) is ef-
fectively reduced to a point z = 0 as t → ∞. Indeed, it
follows from Eq. (1) that

lim
t→∞

− 1

t2
lnP (H = z t, t) =

{
Φ−(z) , z ≤ 0

0 , z ≥ 0 .
(3)

Thus as t→∞, z = 0 becomes a critical point and Φ−(z)
can be interpreted as the “free energy” of the strong cou-
pling phase. We further show that it vanishes univer-
sally, Φ−(z) ∝ |z|3, as z → 0−, thus indicating a third
order phase transition. Therefore in order to probe this
third order transition it is important to compute the large
deviation functions. In this Letter, we compute Φ±(z)
explicitly for the droplet geometry in (i) a discrete sin-
gle step growth model belonging to the KPZ class and
(ii) the continuum KPZ equation. In general, Φ±(z) are
non-universal and depend on the model. However, their
small arguments behaviors are universal: Φ−(z) ∝ |z|3
as z → 0− and Φ+(z) ∝ z3/2 as z → 0+. Indeed, as
the critical point z = 0 is approached from either side,
the large deviation behaviors smoothly match with the
asymptotic tails of the TW distribution (2).

We start by analyzing a directed polymer model be-
longing to the KPZ universality class studied by Johans-
son [10]. This model can be translated to a discrete
space-time (x, t) growth model in a “droplet” geometry.
The growth takes place on the substrate −t ≤ x ≤ t (see
Fig. 2), starting from the seed at the origin x = 0 at
t = 0. The interface height h(x, t), at site x and at time
t, evolves in the bulk −t < x < t as [23]

h(x, t) = max[h(x−1, t−1), h(x+1, t−1)]+η(x, t) (4)

where η(x, t) ≥ 0’s are independent and identically
distributed (i.i.d.) nonnegative random variables each
drawn from an exponential distribution: p(η) = e−η for
η ≥ 0. Johansson showed that at late times, the aver-
age height 〈h(x, t)〉 = v(x/t) t with v(z) = 1 +

√
1− z2

x

h

h(x, t1)

h(x, t2)

t2�t2 �t1 t1x = 0

FIG. 2. The height h(x, t) evolving on a substrate −t ≤
x ≤ t. The light cone (black lines) describes the evolution
of the substrate. The solid line (in blue) represents the av-
erage height at two different times, 〈h(x, t)〉 = v(x/t) t with
v(z) = 1 +

√
1− z2 having a semi-circular shape.

exhibiting a semi-circular droplet shape (see Fig. 2).
Moreover the height at the origin at late times behaves
as h(0, t) ' 2 t + 2 t1/3χ2, where χ2 is a t-independent
random variable distributed via the TW distribution for
the GUE, f2(s) [10]. By exploiting an exact mapping
to the largest eigenvalue of complex Wishart matrices
[10], and using the results for the large deviations of the
latter [24, 25], we establish the result in Eq. (1) (with

H = h(0,t)
2 − t). In regime I, we get [26]:

Φ−(z) =
1

8

(
2z − z2 − 2 ln (1 + z)

)
, −1 < z ≤ 0 , (5)

where z > −1 since the height h(0, t) > 0. As z → 0−,
one gets Φ−(z) ∼ |z|3/12 as announced in the introduc-
tion. In regime III, we find

Φ+(z) = 2
√
z(z + 1)+ln

(
2z + 1− 2

√
z(z + 1)

)
, z ≥ 0 ,

(6)
which behaves as Φ+(z) ∼ (4/3)z3/2 as z → 0+. Note
that in regime II, if we make H ∼ O(t) and use the
asymptotic behaviors of TW distribution in Eq. (2) with
β = 2, it can be checked that it matches smoothly with
the large deviation regimes on both sides. Interestingly,
in this height model (4) there is a clear physical expla-
nation as to why the left tail [regime I in (1)] scales like

∼ e−t
2

while the right tail [regime III in (1)] behaves
like ∼ e−t. Indeed, in order to realize a configuration
of H much smaller than its typical value (regime I), the
noise variables η(x, t) at all the sites within the 1 + 1-
dimensional wedge (cf Fig. 2) should be small. Indeed, if
any of the η(x, t) within this wedge is big, the dynamics
in Eq. (4) would force the neighboring sites at the next
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time step to be big. The probability of this event, where
collectively all the noise variables η(x, t) inside the wedge
(|x| < t), of area ∝ t2, are all small is proportional to

e−t
2

(the noise variables being i.i.d.). In contrast, a con-
figuration where H is much bigger than its typical value
(regime III) can be realized by adding large positive noise
variables at the origin η(x = 0, τ) at all times τ between
0 and t. The probability of this event is simply ∝ e−t as
the noises at different times are i.i.d. Hence this event
is not a collective one, unlike the left large deviation.
Thus, the left large deviation [regime I in Eq. (1)] is
the analogue of the ‘strong coupling phase’ and the right
large deviation [regime II in Eq. (1)] corresponds to the
‘weak coupling’ phase. The transition between the two
phases is a third order phase transition, as Φ−(z) ∝ |z|3
as z → 0−, as mentioned above. This picture is very
similar to other third order phase transitions observed
before in RMT and reviewed recently in Ref. [7].

While the right tail rate function Φ+(z) has been stud-
ied numerically [27] and, more recently, analytically [28]
in discrete growth models, the left tail Φ−(z) is much
harder to compute, and there are very few exact results,
an exception being the longest increasing subsequence in
random permutations (for both tails) [29]. We now show
that these rate functions can also be calculated for the
continuum KPZ equation itself, where the height field
h(x, t) evolves as [8]

∂th = ν ∂2
xh+

λ0

2
(∂xh)2 +

√
D ξ(x, t) , (7)

where ν > 0 is the coefficient of diffusive relaxation, λ0 >
0 is the strength of the non-linearity and ξ(x, t) is a Gaus-
sian white noise with zero mean and 〈ξ(x, t)ξ(x′, t′)〉 =
δ(x−x′)δ(t− t′). We use everywhere the natural units of
space x∗ = (2ν)3/(Dλ2

0), time t∗ = 2(2ν)5/(D2λ4
0) and

height h∗ = 2ν
λ0

.

Here for definiteness we focus on the narrow wedge
initial condition, h(x, 0) = −|x|/δ, with δ � 1, which
gives rise to a curved (or droplet) mean profile as time
evolves [15–19]. We focus on the shifted height at the
origin at x = 0, H(t) = h(0, t) + t

12 , which fluctuates

typically on a scale t1/3 around its mean at large time, as
described by the regime II in Eq. (1) with f(s) = f2(s),
the TW distribution for the GUE.

We show below that for the continuum KPZ equation,
in a droplet geometry, the generic result in Eq. (1) holds
in regime I and III as well. Interestingly the rate func-
tions turn out to be rather simple in this case

Φ−(z) =
1

12
|z|3 , z ≤ 0 (8)

Φ+(z) =
4

3
z3/2 , z ≥ 0 . (9)

Thus the continuum KPZ equation also exhibits a third
order phase transition at the critical point z = 0.

To derive the rate functions for the continuum KPZ
case, we start from an exact formula [15–18], valid at all
times t in the droplet geometry. It relates the following
generating function to a Fredholm determinant (FD)

gt(s) := 〈exp(−eH(t)−t1/3s)〉 = det(I − PsKtPs) (10)

where the finite time kernel is

Kt(r, r
′) =

∫ ∞
−∞

du
Ai(r + u)Ai(r′ + u)

1 + e−t1/3u
(11)

and Ps is the projector on the interval [s,+∞) [30]. In
Eq. (11), Ai(x) denotes the Airy function.

Let us recall that to obtain the typical fluctuations
regime (II) in formula (1), where H(t) ∼ t1/3, one needs
to take the limit t → +∞ at fixed s in (10). In that
limit Kt(r, r

′) converges to the standard Airy kernel,
KAi(r, r

′) =
∫∞

0
duAi(r + u)Ai(r′ + u) and the right

hand side (r.h.s.) converges to the GUE-TW distribu-
tion. The left hand side (l.h.s.) of (10) converges to
〈θ(s−t−1/3H(y))〉 (where θ(x) is the Heaviside step func-
tion), and one obtains

lim
t→+∞

Prob.(χt < s) = det(I − PsKAiPs) = F2(s) (12)

where F2(s) =
∫ s
−∞ f2(s′)ds′ is the cumulative distribu-

tion function (CDF) of the GUE-TW distribution. To
compute the rate functions Φ±(z) we now consider the
formula (10) in the limit when s and t are both large,
keeping the ratio y = s/t2/3 fixed.
Right tail. We start with the right large deviation func-

tion, therefore we consider formula (10) in the regime of
large s > 0. Consider first the l.h.s. of Eq. (10). It is
convenient to introduce a random variable γ (indepen-
dent of H) distributed via the Gumbel distribution, of
CDF given by

〈θ(b− γ)〉γ = e−e
−b
. (13)

Substituting b = st1/3 − H in (13) allows us to rewrite
the l.h.s of (10) as

1−〈exp(−eH(t)−t1/3s)〉 = 〈Prob(H > st1/3−γ)〉γ . (14)

Now consider the r.h.s of Eq. (10) for s� 1. Expanding
the FD in powers of Kt and keeping only the first two
terms one obtains

det(I − PsKtPs) ' 1−
∫ +∞

s

drKt(r, r) . (15)

Equating Eq. (14) and (15) and taking a derivative with
respect to s gives

t1/3〈P (H = st1/3 − γ, t)〉γ = Kt(s, s) (16)

a relation exact for all t.
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We first study the asymptotics of Kt(s, s) for large
s ∼ t2/3. Performing a change of variable u = −t2/3v,
(11) becomes

Kt(yt
2/3, yt2/3) = t2/3

∫ +∞

−∞
dv

Ai2(t2/3(y − v))

1 + etv
(17)

with y = O(1). This integral can be analyzed for large t
[26] and we obtain [31]

Kt(yt
2/3, yt2/3) ∼ e−tI(y) , I(y) =

{
4
3y

3/2 , 0 < y < 1
4

y − 1
12 , y >

1
4 ,

(18)
where the pre-exponential factors are given in [26]. Hav-
ing obtained the r.h.s of (16) we now consider its l.h.s.
We anticipate (and verify a posteriori) that in this right
tail the PDF has the form (setting z = H/t)

lnP (H, t) = −t4
3
z3/2 − a ln t− χdroplet(z) + o(1) (19)

where the constant a and the function χdroplet(z) are yet
to be determined. Inserting this form on the l.h.s. of
Eq. (16), analyzing the resulting integral [26] and com-
paring it to the r.h.s. in (18), we find that indeed the
ansatz in (19) is correct with a = 1 and an explicit form
for χdroplet(z) given in Eq. (80) of the Supp. Mat. [26].
Finally, keeping only the leading behavior of (19) gives
us the exact right rate function

Φ+(z) =
4

3
z3/2 , z ≥ 0 , (20)

as announced in Eq. (9). For the pre-exponential factor
in the flat case we find a = 1/2 and χflat(z) given in
Eq. (87) of the Supp. Mat. [26].

This result is also consistent with the known exact
large time behavior of the moments, enH ∼t→+∞ e

1
12n

3t,
calculated using the Bethe ansatz [32]. Indeed a saddle

point calculation using P (H, t) ∼ e−
4
3 ( H

t1/3
)3/2

reads∫
dH e

nH− 4
3 ( H

t1/3
)3/2 ∼ e 1

12n
3t (21)

where the saddle point, at Hn = n2t/4 for fixed inte-
ger n, is precisely in the right large deviation regime.
Note that the dependence on the initial condition ap-
pears only in the (subdominant) pre-exponential factor
of the moments, as discussed in [26] where we establish
that Φ+(z) = 4

3z
3/2 both for droplet and flat initial con-

ditions.
Left tail. We now focus on the left tail where we set

H/t ∼ O(1) < 0. In this case, one can show [26] that

the l.h.s. of (10) scales as ∼ e−t
2Φ−(y=s/t2/3) for y =

O(1). The r.h.s of (10), Qt(s) := det(I − PsKtPs), is
not easy to analyze in the regime of large negative s.
Fortunately in Ref. [18] the authors proved an exact
differential equation satisfied by Qt(s):

∂2
s lnQt(s) = −

∫ +∞

−∞
dvσ′t(v)[qt(s, v)]2 (22)

where

σt(v) =
1

1 + e−t1/3v
(23)

and σ′t(v) = ∂vσt(v). The function qt(s, v) satisfies a
non-linear integro-differential equation in the s variable

∂2
sqt(s, v) = (s+ v + 2

∫ +∞

−∞
dwσ′t(w)[qt(s, w)]2)qt(s, v)

(24)
with the boundary condition qt(s, v) 's→+∞ Ai(s + v).
In the long limit t→ +∞, σ′t(v)→ δ(v) and hence qt(s, 0)
satisfies the standard Painlevé II equation [1].

For large but finite t, we substitute the anticipated

scaling form Qt(s) ∼ e−t
2Φ−(y=s/t2/3) in (22). The con-

sistency then suggests that qt(s, v) takes the scaling form

qt(s, v) ' t1/3q̃(s/t2/3, vt1/3) , for t →∞ , (25)

and the scaling function q̃(y, v) satisfies∫ +∞

−∞
dv
q̃(y, v)2e−v

(1 + e−v)2
= Φ′′−(y). (26)

Substituting further the scaling form (25) in the differ-
ential equation (24) we obtain as t→∞

y + 2

∫ +∞

−∞
dv
q̃(y, v)2e−v

(1 + e−v)2
= 0 . (27)

Comparing with (26) immediately gives for all z ≤ 0,
Φ′′−(z) = − z2 . Solving with the boundary condition
Φ−(z) 'z→0 |z|3/12, coming from matching with the left
tail of the TW GUE distribution as z → 0−, implies

Φ−(z) =
1

12
|z|3 , z ≤ 0 , (28)

as announced in Eq. (8).
In summary, our results on large deviations for the

height at late times for growth models in the KPZ class
suggest a third order phase transition between a strong
and a weak coupling phase. Generically the associated
rate functions are non-universal but their small argument
behavior are universal, as they match the TW tails. In
the case of the continuum KPZ equation these functions
are simple, Eqs. (8, 9), showing that the TW universality
extends all the way to the large deviation regime. A nat-
ural question is how this late time behavior is approached
as time increases. Weak noise expansion and instanton
calculations in the tails (for the flat geometry) indicate a

different behavior P (H, t) ∼ e−|H|
5/2/t1/2 in the left tail

in the early time regime t � 1 [33, 34]. In fact we have
computed exactly the short time height distribution in
the droplet geometry which exhibits a similar |H|5/2 left
tail behavior [35], manifestly different from the late time
behavior |H|3 obtained here at late times. In contrast,
the right tail H3/2 is already attained at early time.
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.

SUPPLEMENTARY MATERIAL

JOHANSSON MODEL

Johansson’s directed polymer model in 2-dimensions [10] is defined as follows. Consider a 2-d lattice where a site
(i, j) has a quenched energy η(i, j), drawn independently for each site from an exponential distribution: p(η) = e−η

with η ≥ 0. Consider now a directed path from the origin to the site (M,N) (M ≥ 0, N ≥ 0). The energy of a path is
just the sum of the energies of all sites belonging to the path. From all possible paths ending at (M,N), one considers
the optimal path, i.e., the one with the highest energy. Let E(M,N) denote the energy of this optimal path. One
can easily write a recursion relation

E(M,N) = max[E(M − 1, N), E(M,N − 1)] + η(M,N) . (29)

Clearly, E(M,N) is a random variable and one is interested in its probability distribution. Making the change of
variables, x = M − N and t = M + N and denoting E(M,N) ≡ h(x, t), it reduces to an interface growth model,
where the height h(x, t) (−t ≤ x ≤ t), evolves with discrete time t according to the following rules (see Fig. 2),

h(x, t) = max[h(x− 1, t− 1), h(x+ 1, t− 1)] + η(x, t) for − t < x < t . (30)

At the two edge points x = ±t, the evolution of the height h(±t, t) ≡ h±(t) is slightly different

h+(t) = h+(t− 1) + η(t, t) (31)

h−(t) = h−(t− 1) + η(−t, t) . (32)

At late times, the average height at point x converges to [10]

〈h(x, t)〉 → v
(x
t

)
t ; −t ≤ x ≤ t (33)

where v(z = x/t) = 1 +
√

1− z2 has a semi-circular form (see Fig. 2). The height h(x, t) fluctuates around this
average typically on a scale ∼ O(t1/3) for large t. In particular, at x = 0, the height at late times converges to
h(0, t)→ 2t+ 2 t1/3 χ2, where the random variable χ2 is of O(1) (independent of t for large t) and is distributed via
the Tracy-Widom GUE law [10]. In other words, the PDF of the scaled (and centered) height at the origin

H =
h(0, t)

2
− t (34)

has the late time scaling form

P (H, t) ∼ 1

t1/3
f2

(
H

t1/3

)
(35)

where f2(s) is the TW GUE PDF with asymptotics given in Eq. (2) of the main text with β = 2. This is represented
schematically by the central blue region in Fig. 1 of the main text.

In contrast to the typical fluctuations, the atypically large fluctuations both to the left and to the right of the mean,
are not described by the Tracy-Widom distribution. To compute these tails, one can use an exact mapping due to
Johansson [10] that states

Prob. [E(M,N) ≤ l] = Prob. [λmax ≤ l] , (36)

where λmax denotes the largest eigenvalue of an (M × N) complex Wishart matrix defined as follows. Let X be an
(M ×N) rectangular matrix whose entries are independent complex Gaussian variables, Prob. [X] ∝ exp[−Tr(X†X)].
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Construct then the product matrix W = X†X which is (N×N) and has N non-negative real eigenvalues λ1, λ2, . . . , λN
with maximal eigenvalue λmax = max(λ1, λ2, . . . , λN ). Without any loss of generality, one can assume N ≤ M . The
statistics of λmax has been studied extensively in the random matrix literature and one can then borrow these results
for our problem. In terms of the height, the relation (36) simply reads

Prob. [h(x, t) ≤ l] = Prob. [λmax ≤ l] , (37)

where x = M −N and t = M + N . Since we are interested in the height at x = 0, this corresponds to the Wishart
matrix with M = N and N = t/2. For M = N , it is well known [10] that for large N , λmax → 4N + 24/3N1/3 χ2.
Using N = t/2, one immediately recovers the result that h(0, t) → 2 t + 2 t1/3 χ2 for large t as mentioned above. In
addition, the large deviation tails of λmax for Wishart matrices are also known [24, 25]. For M = N , they read as
N →∞

Prob. [λmax ≤ l] ∼ exp

[
−N2 ψW−

(
l

N

)]
for 0 ≤ l

N
≤ 4 (38)

∼ 1− exp

[
−N ψW+

(
l

N

)]
for

l

N
≥ 4 (39)

where the left rate function ψW− (y) is given explicitly as [24]

ψW− (y) = ln 4− ln y −
(

1− y

4

)
− 1

2

(
1− y

4

)2

for 0 ≤ y ≤ 4 , (40)

while the right rate function ψW+ (y) has the expression [25]

ψW+ (y) = − ln 4 +
√
y(y − 4) + 2 ln

(
y − 2−

√
y(y − 4

)
for y ≥ 4 . (41)

Note that the superscript W stands for Wishart matrices.
To translate these results to the height model and derive the large deviation results mentioned in Eq. (1) in the

main text, we consider the scaled height defined in Eq. (34). Then, using N = t/2, we get

Prob. [H ≤ t z] = Prob. [h(0, t) ≤ 2 (1 + z) t] = Prob. [λmax ≤ 4 (1 + z)N ] . (42)

Finally, using the results from Eqs. (38) and (39) and using again N = t/2 we obtain the announced results

Prob. [H ≤ t z] ∼ exp
[
−t2 Φ−(z)

]
for − 1 ≤ z ≤ 0 (43)

∼ 1− exp [−tΦ+(z)] for z ≥ 0 (44)

where the rate functions Φ±(z) can be expressed explicitly in terms of the Wishart rate functions in Eqs. (40) and
(41). We get

Φ−(z) =
1

4
ψW− (4 (1 + z)) =

1

4

[
z − z2

2
− ln(1 + z)

]
for − 1 ≤ z ≤ 0 , (45)

Φ+(z) =
1

2
ψW+ (4 (1 + z)) = 2

√
z(1 + z) + ln

(
2z + 1− 2

√
z(1 + z)

)
for z ≥ 0 . (46)

Taking derivatives with respect to z in Eqs. (43) and (44), one gets the large deviation tails of the PDF P (H, t) of
the scaled height H at the origin as announced in Eqs. (5) and (6) respectively in the main text.

Note that while the large deviation principle in this problem was originally established by Johansson [10], the left
rate function Φ−(z) was not computed. Here we obtain this function explicitly in (45). While a general expression
for the right rate function Φ+(z) was computed by Johansson for the geometric disorder, here we obtain a simplified
explicit expression for Φ+(z) in (46) for the exponential disorder.

Matching with the tails of the Tracy-Widom distribution:

We start from the left tail. When the scaled height z = H/t in Eq. (34) approaches 0 from below, it is easy to see
by expanding Φ−(z) to leading order for small z

Φ−(z) ∼ |z|
3

12
. (47)
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Substituting this result in Eq. (43) and taking a derivative with respect to z, one finds that when z → 0−, the left
large deviation tail of the PDF of H behaves as

P (H, t) ∼ exp

[
−|H|

3

12 t

]
. (48)

On the other hand, if we start from the central Tracy-Widom distribution that describes typical fluctuations of O(t1/3)
in Eq. (35), and set H = z t, we will probe the probability of fluctuations to the left that are much larger (of O(t))
than the typical size O(t1/3). This gives

P (H = z t, t) ∼ t−1/3 f2

(
z t2/3

)
. (49)

As t→∞ with fixed z < 0, the argument of f2 in Eq. (49) tends to negative infinity. So, we need to use the left tail
asymptotic of the Tracy-Widom density in Eq. (2) of the main text: f2(s) ∼ exp[−|s|3/12]. Substituting this in Eq.
(49) gives P (H, t) ∼ exp[−|H|3/12t], which matches smoothly with the result in Eq. (48) obtained from the small
argument behavior of the left large deviation regime.

A similar matching can be verified on the right side as well. When z approaches 0+ from above, we get by expanding
Φ+(z) to leading order

Φ+(z) ∼ 4

3
z3/2 . (50)

Substituting in Eq. (44) and taking a derivative with respect to z, one finds that when z → 0+, the right large
deviation tail of the PDF of H behaves as

P (H, t) ∼ exp

[
−4

3

H3/2

√
t

]
. (51)

In contrast, starting from the central TW regime (valid on a scale H ∼ t1/3), and setting H = z t gives Eq. (49)
where z > 0. As t→∞ with fixed z > 0, the argument of f2 in Eq. (49) now tends to positive infinity. Hence, we use
the right tail asymptotic of the Tracy-Widom density in Eq. (2) of the main text: f2(s) ∼ exp[− 4

3 s
3/2]. Substituting

this in Eq. (49) gives P (H, t) ∼ exp[− 4
3
H3/2
√
t

], which then matches smoothly with the result in Eq. (51) obtained

from the small argument behavior of the right large deviation regime.
Note that although here we have restricted ourselves, for simplicity, to the height at the origin x = 0, the compu-

tations presented above can be easily extended to the large deviations of the height h(x, t) at a generic point x.

RIGHT TAIL ASYMPTOTICS OF THE KERNEL AT EQUAL POINTS

In Eq. (17) of the main text, for the simplicity of reading, we only provided the leading exponential factor for the
asymptotic expansion of the kernel. However, one can easily obtain also the subdominant pre-exponential factors as
shown below.

We start by evaluating the asymptotic behavior of the integral on the r.h.s. of (17) with y = O(1) fixed and as
t → ∞. It turns out that the dominant contribution to this integral comes from the interval v ∈ [−∞, y]. In this

interval, for large t, we can replace the Airy function by its large positive tail asymptotics Ai(z) ' 1√
4πz1/2

e−
2
3 z

3/2

as

z → +∞. This leads to

Kt(yt
2/3, yt2/3) ' t1/3

4π

∫ y

−∞

dv

(y − v)1/2

e−t
4
3 (y−v)3/2

1 + evt
. (52)

It turns out that there are two regimes (i) y > 1/4 (ii) 0 < y < 1/4.
In the first regime y > 1/4, the integral can be evaluated by the saddle point method. We first assume, and then

check a posteriori, that there is a saddle point v∗ > 0. Then the integral will be dominated near v∗ > 0. Then, one
can replace 1/(1 + evt) by e−vt for large t with v > 0 and evaluate the integral by the saddle point method:

Kt(yt
2/3, yt2/3) ' t1/3

4π

∫ y

−∞

dv

(y − v)1/2
e−tS(y,v) (53)

S(y, v) =
4

3
(y − v)3/2 + v . (54)
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For y > 1/4, the saddle point is at v∗ = y − 1
4 . For consistency we need v∗ > 0, i.e., y > 1/4. Evaluating the integral

at this saddle point gives

Kt(yt
2/3, yt2/3) ' 1√

4πt1/3
e−t(y−

1
12 ) . (55)

In the second regime 0 < y < 1/4, there is no saddle point and the dominant contribution to the integral in (52)
comes from the edge v ≈ 0. Setting v = w/t and keeping only leading order terms for large t we obtain

Kt(yt
2/3, yt2/3) ' e−t

4
3y

3/2

4πt2/3
√
y

∫ +∞

−∞
dw

e2
√
yw

1 + ew
(56)

This integral can be performed explicitly giving

Kt(yt
2/3, yt2/3) ' e−t

4
3y

3/2

4t2/3
√
y sin

(
2π
√
y
) . (57)

If we neglect the pre-exponential factors we recover the formula given in the text, namely

Kt(yt
2/3, yt2/3) ∼ e−tI(y) (58)

I(y) =

{
4
3y

3/2 , 0 < y < 1
4

y − 1
12 , y > 1

4 .
(59)

PRE-EXPONENTIAL FACTOR IN THE RIGHT LARGE DEVIATION TAIL

Inspired by the form of the subdominant corrections in the right large deviation tail of the top eigenvalue of a
Gaussian random matrix [36], it is natural to make the following ansatz in the limit of large time

lnP (H, t) ' −t4
3
z3/2 − a ln t− χ(z) + o(1) , z = H/t fixed . (60)

In this section we establish this behavior, both using moments from the replica method and using the exact form of
the generating function. We also calculate a and χ(z) explicitly, both for the flat as well as droplet initial conditions
and show that they do depend on the initial conditions.

Moments from the replica method

The positive integer moments of eH for the continuum KPZ equation can be studied using the mapping to the
attractive Lieb-Liniger model with n bosons [32]. From the Bethe ansatz solution of this model the exact formula for
the moments at arbitrary time [16, 17] takes the form of a sum of exponentials

〈enH〉 =
∑
µn

Bµn,t e
−Eµn t (61)

where the index µn labels the n- boson eigenstates. In the limit of large system size L = +∞, these are made of
so-called strings, with a total energy spectrum

Eµn =

ns∑
j=1

mjk
2
j −

1

12
m3
j ,

ns∑
j=1

mj = 1 , mj ≥ 1 , 1 ≤ ns ≤ n (62)

where the kj are the (real) momenta of each string.
At large time and fixed positive integer n, the sum (61) is dominated by the ground state |0〉n,k=0, together with

its center of mass finite momentum excitation, i.e. more precisely, taking into account the gap with the next set of
excited states

〈enH〉 ∼t→+∞ An,te
1
12n

3t[1 +O(e−
1
4n(n−1)t)] (63)
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where the amplitude (see e.g. [37])

An,t = lim
L→+∞

1

L

∑
k= 2πp

nL ,p∈Z
e−nk

2t 1

n2
〈Ψ0|0〉n,k . (64)

The last factor is the overlap, i.e., the scalar product of the (unnormalized) ground state wave function (such that
〈0, ..0|0〉n = n!), with the (unnormalized) replica wave function |Ψ0〉 encoding for the initial condition. This overlap
is complicated in general, but is known for some special initial conditions. This leads for n ≥ 1 to

〈Ψ0|0〉n,k = n22n−1L δk,0 ⇒ An,t = 2n−1 , flat initial condition , (65)

〈Ψ0|0〉n,k = n! ⇒ An,t =
n!

n3/2(4πt)1/2
, droplet initial condition . (66)

The saddle point method described in the text can be extended to obtain the pre-exponential factor. Substituting
the anticipated form (60) we obtain for any fixed integer n > 0 and large t

〈enH〉 ' t
∫
dze−t(

4
3 z

3/2−nz)−a ln t−χ(z) ' t 1
2−a
√
πn e

tn3

12 −χ(n2/4) , (67)

obtained using the saddle point at z = zn = n2/4.
In the flat initial condition case, comparing (63), (65) with (67) one finds a = 1/2 and the correction to scaling

function

χflat(z) =
1

2
ln(8π) +

1

4
ln z − (ln 4)

√
z , z = zn = n2/4 , n ∈ N∗ . (68)

In the droplet case we get a = 1 and χdroplet(n
2/4) = ln(2πn2/n!), hence the correction to scaling function

χdroplet(z) = ln(4π) +
1

2
ln z − ln

(
Γ(2
√
z)
)

, z = zn = n2/4 , n ∈ N∗ . (69)

From moments to the generating function

Expanding the generating function in Eq. (10) in terms of moments, reads

gt(s) = 1 +
∑
n≥1

(−1)n

n!
e−nt

1/3s〈enH〉 ' 1−
∫ ∞
−∞

duAi(2u+ 22/3s)(1− e−2e2
1/3t1/3u

) , flat initial condition(70)

' 1−
∫ ∞
s

dr

∫ ∞
−∞

du
Ai(r + u)2

1 + e−t1/3u
, droplet initial condition . (71)

To obtain the first line we used (63), (65) and the ”Airy trick” identity
∫ +∞
−∞ dyAi(y)eyw = ew

3/3 for w > 0. To obtain
the second line we used (63), (66) and the following variant

e−nt
1/3s en

3t/12

n3/2(4πt)1/2
=

∫ +∞

s

dr

∫ ∞
−∞

duAi(r + u)2ent
1/3u (72)

for n > 0, and then summed up the geometric series in n (see [16] and Section 4.2.1 in [37] for details). In the droplet
case it recovers the expansion (15) and for t→ +∞ in the flat case it also reproduces (15) where Kt(r, r

′) is replaced
by the GOE kernel Ai(r + r′). The asymptotics of these kernels then allow to recover the asymptotics obtained by
the saddle point method, showing that, to obtain the right tail large deviations, it is equivalent to work on the replica
formula or on the generating function, as mentioned in the text and also done below.

Right tail from the generating function: droplet initial condition

Taking a derivative of gt(s) with respect to s in (10) we obtain the relation (valid for all t and large s)

〈eH−st1/3−eH−st
1/3

〉 =
1

t1/3
Kt(s, s) . (73)
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Setting s = yt2/3 and H = tz it can be rewritten as

〈et(z−y)−et(z−y)〉 =
1

t1/3
Kt(yt

2/3, yt2/3) . (74)

The r.h.s. of this equation has been analyzed in a Section above. We now analyze the l.h.s. of Eq. (74).
Consider first the case y > 1/4. In the large t limit, using (55), the r.h.s. reads:

1√
4πt

e−t(y−
1
12 ) . (75)

Inserting now the the anticipated form (60) in the l.h.s. one sees that for y > 1/4 it can be evaluated by the saddle
point method, the saddle point being at z = 1/4. One obtains

〈eH−st1/3−eH−st
1/3

〉 ' √πt 1
2−ae−χdroplet(1/4)−t(y− 1

12 ) . (76)

Comparing the two sides we obtain a = 1 and χdroplet(1/4) = ln(2π) in perfect agreement with the replica calculation
(for n = 1).

Let us now consider the case 0 < y < 1/4. Using (57), the r.h.s. of (74) reads for large time

e−t
4
3 y

3/2

4 t
√
y sin

(
2π
√
y
) . (77)

Inserting now the the anticipated form (60) in the l.h.s. of (74) we see that for 0 < y < 1/4 the integral is dominated
by the region of z near y. Let us write z = y + w/t and expand the integrand in powers of t. This gives

〈eH−st1/3−eH−st
1/3

〉 ' 1

ta
e−t

4
3y

3/2−χdroplet(y)

∫ +∞

−ty
dw e

(1−2
√
y)w−ew− w2

2t
√
y . (78)

If y < 1/4 and is kept fixed, as t → +∞, the last integral can be calculated by neglecting the quadratic term in the
exponential and setting the lower integration limit to −∞. It then becomes Γ(1− 2

√
y). Matching now with the r.h.s

(77) gives a = 1 and

e−χdroplet Γ(1− 2
√
z) =

1

4
√
z sin (2π

√
z)
. (79)

Using Γ(x)Γ(1− x) = π/ sin(πx), this immediately gives

χdroplet(z) = ln(4π) +
1

2
ln z − ln

(
Γ
(
2
√
z
))
. (80)

One checks from Eq. (80) that χdroplet(z) → ln(2π) as z → 1/4 from below, thus matching perfectly with the result
obtained for z = 1/4 given by Eq. (69) for n = 1. In fact, this formula for χdroplet(z) in Eq. (80) is valid for all z > 0,
and clearly coincides with Eq. (69) for z = n2/4 (obtained for integer n).

Right tail from the generating function: flat initial condition

We start with the following relation, obtained from Eq. (70),

〈(exp(−eH−t1/3s)− 1)〉 = −
∫ +∞

−∞
duAi(2u+ 22/3s) (1− e−2e(2t)

1/3u

) . (81)

Denoting H = tz and making the change of variable u = −2−1/3vt2/3, s = yt2/3 we obtain

〈(exp(−et(z−y))− 1)〉 = −2−1/3t2/3
∫ +∞

−∞
dvAi

(
(2t)2/3(y − v)

)
(1− e−2e−vt) . (82)

We first evaluate the asymptotics of the r.h.s. of Eq. (82). On the r.h.s. the dominant contribution to the integral
comes from the interval v ∈ (−∞, y]. Replacing the Airy function by its large positive tail asymptotics Ai(z) '

1√
4πz1/2

e−
2
3 z

3/2

as z → +∞, we find

− t1/2√
8π

∫ y

−∞
dv

1

(y − v)1/4
e−

4
3 t(y−v)3/2(1− e−2e−vt) . (83)
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For 0 < y < 1/4, this integral is dominated by the neighborhood of v = 0. Setting v = w/t, expanding and keeping
only the leading terms gives

− e−t
4
3 y

3/2

√
8πt y1/4

fR(y), where fR(y) =

∫ ∞
−∞

dw e2
√
y w
[
1− e−2 e−w

]
. (84)

We now turn to the l.h.s of Eq. (82). We substitute the anticipated form (60) for P (H, t) (with H = zt) on the
l.h.s of (82). This results in the following integral

t1−a
∫ ∞

0

dz
[
e−e

t(z−y) − 1
]
e−

4
3 t z

3/2

e−χflat(z) . (85)

For large t, this integral is dominated by the neighborhood of z = y. Hence, we set z = y − w′/t, expand in t and
keep only up to leading order terms for large t. This gives the l.h.s

− t−a e−χflat(y) e−
4
3 t y

3/2

fL(y), where fL(y) =

∫ ∞
−∞

dw′ e2
√
y w′

[
1− e−e−w

′ ]
. (86)

In fact, with a change of variable, it is easy to show that fL(y) = 2−
√

4y fR(y).
Comparing the l.h.s in (86) with the r.h.s in (84) gives a = 1/2 and

χflat(z) = ln

(√
8π z1/4 fL(z)

fR(z)

)
=

1

2
ln(8π) +

1

4
ln(z)− (ln 4)

√
z . (87)

This result is valid for all z > 0 and matches perfectly with the result in Eq. (68) obtained from the integer moments.

Matching with the right tail of Tracy-Widom distributions

In the typical fluctuations regime, H ∼ t1/3, the PDF of the height at large time is well known to be described by
the Tracy-Widom distributions

Pdroplet(H, t) '
1

t1/3
f2

(
H

t1/3

)
, (88)

Pflat(H, t) '
22/3

t1/3
f1

(
22/3 H

t1/3

)
. (89)

If we set H ∼ t > 0 in these formula, we should be probing fluctuations much larger than t1/3 on the right side, where
we have obtained above large deviation estimates. Therefore the large argument behavior of (88), (89) should match
with the small z behavior of Eq. (60). Indeed, the behavior of the TW-PDF as x→ +∞ is well known [38, 39]

fβ(x) ' Γ(1 + β
2 )

π(4β)β/2
x(2−3β)/4 e−

2β
3 x

3/2

(90)

where β = 1 and β = 2 correspond respectively to the flat and the droplet initial conditions. Substituting the tails in
(88), (89) we find (with H = zt)

Pdroplet(H, t) ' e−
4
3 tz

3/2−ln t−ln(8π)−ln z , (91)

Pflat(H, t) ' e−
4
3 tz

3/2− 1
2 ln t− 1

2 ln(8π)− 1
4 ln z . (92)

In contrast, starting with the large deviation forms given in (60) and using the exact results for χ(z) from (80) and
(87) in the two cases we get

Pdroplet(H, t) ' e−
4
3 tz

3/2−ln t−ln(4π)− 1
2 ln z+ln Γ(2

√
z) , (93)

Pflat(H, t) ' e−
4
3 tz

3/2− 1
2 ln t− 1

2 ln(8π)− 1
4 ln z+(ln 4)

√
z . (94)

Clearly these expressions differ from those in (91), (92) for finite z > 0, showing that these large deviation results go
beyond the asymptotic large time regime of Tracy-Widom (and more generally of the Airy processes of the KPZ fixed
point) and carry information about finite time solution. However in the limit of small z, using Γ(2

√
z) ' 1/(2

√
z),

we find that they perfectly match as they should.
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LEFT LARGE DEVIATION TAIL

We start from the exact relation

〈exp(−eH(t)−t1/3s)〉 = 〈Prob(H < st1/3 − γ)〉γ (95)

where γ is a random variable distributed via the Gumbel PDF p(γ) = e−γ−e
−γ

. Therefore the r.h.s. of (95) reads∫ ∞
−∞

dγ Prob(H < st1/3 − γ) e−γ−e
−γ

. (96)

On the left large deviation tail the PDF has the form P (H, t) ∼ e−t
2Φ−(H/t) and its associated CDF has the same

behavior to leading order for large t. Substituting this form in the integral (96) leads to∫ ∞
−∞

dγ e
−t2Φ−

(
s

t2/3
− γt
)
−γ−e−γ

. (97)

For large t with s/t2/3 = y fixed, one can neglect the γ/t term in the argument of Φ−(z), and hence to leading order

for large t this integral is given by ∼ e−t
2Φ−

(
s

t2/3

)
as discussed in the main text before Eq. (22).
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