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Abstract—A general formulation based on frame re-expansions
of Gaussian beam fields in the course of Gaussian beam shooting
algorithms will be outlined, and closed form expressions used
for frame decomposition of incident beam fields and frame
change will be given. The algorithm will be tested on a specific
3d problem chosen with a view toward ground-based Radar
application in semi-urban environments. The range of validity of
closed form expressions for frame re-expansion coefficients will
be discussed, and the accuracy of Gaussian beam summations
after such re-expansions will be compared to reference solutions
in cases involving diffraction.

I. INTRODUCTION

Paraxial Gaussian beams (GB) have long been recognized as
convenient propagators for fast simulations in non uniform en-
vironments, due to their phase-space localization and caustics
free behavior [1]. Their efficiency in discretizing propagating
fields with an optimally low number of propagators has been
demonstrated in free space contexts. Frame theory has brought
additional rigor and flexibility to such discretizations [2], al-
lowing for ultra-wideband Gaussian Beam Shooting (GBS)[3]
and time-domain generalization to pulsed-beam shooting [4].

Nonetheless, efficient GBS algorithms addressing the prob-
lem of accurate, if not exact, computation of diffracted fields
have not yet been developed. A recently proposed beam-
to-beam algorithm for half plane diffraction [5] as well as
complex source point discretizations [6] are good candidates
to complement the basic GBS algorithm. In this communi-
cation, we propose an alternative approach entirely based on
frame discretization. This choice imposes strong constraints on
beam propagators. Yet, its fully rigorous discretization scheme
can be of great use either to evaluate other discretization
methods or to address very general problems through efficient
hybridization of GBS with full wave methods.

A general formulation based on frame re-expansions of
GB fields in the course of GBS algorithms will be outlined,
and closed form expressions used for frame decomposition
of incident beam fields and frame change will be given. The
algorithm will be tested on a specific 3d problem chosen with
a view toward ground-based Radar application in semi-urban
environments. The range of validity of closed form expressions
for frame re-expansion coefficients will be discussed, and the
accuracy of GB summations after such re-expansions will be
compared to reference solutions in cases involving diffraction.

II. GBS WITH RE-EXPANSION FORMULATION

A. Outline of the algorithm

Considering a directive antenna, its field is first decomposed
on a frame of spatially wide windows. Paraxial GB are
“shooted” from each window in the form of “complex rays”
[3]. Within the considered environment, each beam impinging
on a given surface of limited extension is then either paraxially
transformed, if its field is negligible along the surface edges
[7], or transformed according to the following “re-expansion”
algorithm. This algorithm is performed in three successive
steps:

1) decomposition of the incident field on a narrow-
waisted window frame: only the windows centered on
the surface of interest are considered. “Diffraction” is
thus accounted for, in an approximate way similar to
Physical Optics.

2) frame change: the frame coefficients for the decomposi-
tion of the incident fields on the frame of spatially wide
windows are deduced from the coefficients calculated in
the first step,

3) paraxial transformation: each spatially wide window
represents incident fields which are paraxially reflected
or refracted according to the usual geometrical optics
laws generalized to complex rays.

Only two different frames are used to decompose fields on
all surfaces of re-expansion:

• the first one with spatially wide windows radiating colli-
mated beams to take advantage of the paraxial properties
of the radiated beams,

• the second one with narrow-waisted windows to account
for abrupt transitions on the surfaces of re-expansion.

This latter frame is only used to process field transformations
on the surface but the fields radiated by narrow-waisted
windows are not computed.

B. Notations

A frame of Gaussian windows in L2(R), called “Gabor
frame”, is a set of Gaussian functions defined by translations
in space and spectrum. The “mother” window can be taken



as:

ψ(x) =

√√
2
L
e−π

x2

L2 (1)

and the translated windows are denoted by:

ψµ(x) = ψ(x−mx̄)eink̄x(x−mx̄), µ = (m,n) ∈ Z2 (2)

where x̄ and k̄x are respectively the spatial and spectral domain
translation steps. The set of ψµ windows is a frame in L2(R) if
and only if x̄k̄x = 2πν with ν < 1 (oversampling factor) [8].
For better localization properties, we use so-called balanced
frames, i.e. with x̄ = L

√
ν. The re-expansion algorithm will

be presented in the 3d space. The frames used to represent
fields on surfaces are in L2(R2), and they are constructed
as products of frames in L2(R). The ψµ frame windows in
L2(R2), with µ = (m,n, p, q) ∈ Z4 and x = (x, y) ∈ R2 are
defined as:

Ψµ(x) = ψx|m,n(x)ψy|p,q(y) (3)

{ψx|m,n} and {ψy|p,q} are frames in L2(R). In the following,
all the frame parameters will be referred to frames in L2(R),
and indexed by x and y.

With reference to the re-expansion algorithm outlined in
II-A, we shall denote {Ψµ, µ = (m,n, p, q) ∈ Z4} the frame
of spatially wide windows and {Ψ′µ′ , µ′ = (m′, n′, p′, q′) ∈
Z4} the frame of narrow-waisted windows. Also, a′

µ′ (resp.
aµ) will denote the frame coefficients of field decomposition
on the frame of narrow-waisted (resp. spatially wide) windows.
All the frame parameters will be primed when referred to the
frame of narrow-waisted windows (ν′x, x̄′, k̄′x, ν′y , ȳ′, k̄′y ...).

Fig. 1. Scenario used to formulate the re-expansion algorithm for one bounce

We present the re-expansion algorithm in the case of one
bounce, with an incident beam impinging on a planar obstacle,
as shown in Fig. 1. The incident beam is radiated into the z0 >
0 half space by a spatially wide frame window defined in the
P 0(O, x0, y0) plane. The plane of de-composition is denoted
P 1 and we define an associated coordinate system such that
P 1 = (O1, x1, y1). A limited size obstacle occupies a finite
area in this plane. The spectral variables related to the space
variables xi = (xi, yi) (i = 0, 1) are noted kxi = (kxi , kyi)
and the zi component of a wavevector k is denoted by kzi .
An observation plane P 2 is defined, where the fields will be
computed after interacting with the obstacle.

C. Decomposition of the incident field on the narrow-waisted
window frame

Frame coefficients can be obtained through various al-
gorithms, among which projection on dual frame windows
yields the representation with minimum energy, hence the best
localization of the fields radiated from the frame expansion.
In the following, we use this projection algorithm, which is
greatly simplified by approximating dual frame functions by
Gaussian windows [3].

The a′
µ′ coefficients are obtained from a projection integral

in the spectral domain. The spectrum of the incident beam
field in the plane P 1 is given by:

Ψ̃1
µ(kx1) = Ψ̃µ(kx0)

kz0

kz1
eik·
−−−→
O0O1

(4)

The projection integral of this spectrum on the approximate
dual frame functions of the transforms of spatially narrow
windows,

ν′
xν

′
y

‖eΨ′‖2
Ψ̃′µ′(kx1), writes as:
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∫ ∞
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′
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Using a paraxial approximation to perform this integral yields:
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with:
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g(kx1) = 0.5i[σ2
x(kx0 − nk̄x)2 + σ2

y(ky0 − qk̄y)2]

− [(kx0 − nk̄x)mx̄+ (ky0 − qk̄y)pȳ] + k ·
−−→
OO′

+ [(kx1 − n′k̄′x)m′x̄′ − (ky1 − q′k̄′y)p′ȳ′]

gnq , g
′

nq and G
′′

nq are the values of the function g defined
above, of the vector of its first partial derivatives and of the
matrix of its second partial derivatives, respectively, for the
kx1 spectral variable corresponding to kx0 = (nk̄x, qk̄y), the
spectral translation vector of the incident beam spectrum in
the P 0 plane.

This paraxial approximation is justified by the slow am-
plitude variation of the narrow-waisted window spectrum as
compared to the incident beam spectrum.

D. Frame change

Using the same projection algorithm and the same approx-
imation for dual functions as in the previous subsection, the
incident field can be expressed as a sum of spatially wide



windows, with the frame coefficients:

aµ =
∫ ∫ ∞
−∞

∑
µ′

a′µ′Ψ′µ′(x)

Ψ×µ(x)dx =
∑
µ′

Cµ
′

µ aµ′

with Cµ
′

µ =
νxνy
‖Ψ‖2
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−∞

Ψ′µ′(x)Ψ×µ(x)dx (7)

The matrix C, with elements Cµ
′

µ can be viewed as a “frame
change” matrix.

Following (3) the integral expression of Cµ
′

µ in (7) is the
product of two integrals on R of the form:

Cm
′,n′

m,n =
∫ ∞
−∞

ψ′m′,n′(x)
ν

|ψ|2
ψ×m,n(x)dx (8)

The integral is evaluated analytically, yielding the following
closed form expression of Cm

′,n′

m,n :
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with c1 =
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)
where all the frame parameters refer to the one variable frames
{ψm,n} and {ψ′m′,n′} and σ = L/

√
2π, σ′ = L′/

√
2π.

The (m′x̄′−mx̄) and (n′k̄′x−nk̄x) terms appear as squared
in negative arguments of the exponential function, which
results in a sparse frame change matrix.

E. Field transformations

The use of narrow-waisted windows in the first step of
the re-expansion algorithm is not only desirable for paraxial
approximations of spectral domain projection integrals but
it also allows for easy transformations of the incident field.
Problems involving abrupt transitions on a surface can also
be addressed by treating differently the fields discretized
by narrow waisted windows in the different subdomains of
the surface. The frame discretization of incident fields on a
complex surface can serve as a starting point for a full wave
method [9].

In the case of smooth enough interfaces with limited
extension, the frame windows used for field re-expansion
after the frame change are spectrally narrow. Their fields are
thus amenable to paraxial transformation, according to the
ABCD and Fresnel laws classically used for paraxial beam
transformations on perfectly conducting or dielectric interfaces
[7].

III. NUMERICAL TESTS

A. Test case description

The frame parameters for the frames of spatially wide
windows in L2(R) are: ν = 0.09, L = 10λ. The translation
steps are then x̄ = ȳ = 3λ and k̄x = k̄y = 0.3k with k the

free space wavenumber. The frame parameters for the frames
of narrow-waisted windows are: ν′ = 0.09, L′ = 0.075λ.
The translation steps are then x̄′ = ȳ′ = 0.0225λ and
k̄′x = k̄′y = 4k. With these parameters, the discretization with
the latter frame appears as a spatial sampling. Results obtained
with different parameters will be presented at the conference.

The chosen scenario is of the type shown in Fig. 1. An
incident beam, linearly polarized along y0, is shooted from the
frame of spatially wide windows in the P 0 plane. The window
radiating the incident beam is indexed by µ = (0, 25, 0, 0).
The beam is thus rotated in the xOz plane, with an angle
θn,q = 48.6 deg between the beam axis and the z0 axis in this
plane. The collimating distance of the beam is b0 cos θn,q =
(L2/λ) cos θn,q = 66.1λ.

The obstacle plane P 1 and the plane of observation P 2

are parallel to z0O0y0, situated at x0 = 50λ and x0 = 30λ
respectively. The obstacle surface is square, centered at y0 = 0
and z0 = 41.5λ, with side length 3λ. The distance between
the beam origin and the center of the obstacle is equal to 65λ,
close to the beam collimating distance. The observation region
in plane P 2 is square, centered at y0 = 0 and z0 = 60λ, with
side length 80λ. The origins O1 and O2 of the systems of
coordinates associated to planes P 1 and P 2 are in the plane
y0 = 0 and axes are oriented as shown in Fig. 1. All the y
axes are parallel, and only the y component of the electric
field will be considered in the following, and referred to as
the “field”.

B. Field re-expansion on the surface of the obstacle

The incident beam axis is not impinging on the obstacle,
nonetheless the beam is intercepted by the obstacle. Fig. 2
shows the magnitude of the incident beam field on the ob-
stacle. Fig. 3 presents fields obtained by frame summation

Fig. 2. Magnitude of the incident field on the obstacle.

with the narrow-waisted windows and with the spatially wide
frame windows, after truncation along the obstacle edges. The
oscillations observed on the curve obtained with the wide
windows are a consequence of spatial truncation yielding
spectral widening. The number of spectrally translated wide
windows required to reconstruct the non visible part of the
spectral domain, which contributes to the fields in the plane
of truncation, is prohibitive. As can be seen on Fig. 4 the



visible domain (−k < kx < k) of truncated fields is well
synthetized after re-expansion, which guarantees an accurate
representation of radiated fields.

Fig. 3. Truncated field along y1 = 0 in plane P 1, obtained by frame
decompositions on the obstacle and by Plane Wave Spectrum (PWS) integral
(reference).

Fig. 4. Spectrum of the truncated field along ky1 = 0, obtained by frame
reconstruction and by convolution of the incident beam spectrum with the
sine cardinal accounting for truncation in plane P 1.

C. Field propagated after the re-expansion

The spatially wide frame windows used for field re-
expansion on the obstacle radiate in the form of paraxial Gaus-
sian beams. Diffracted fields are then obtained by summation
of these beam fields in an observation region. Only beams with
non negligible field in this region have to be shooted, which
can be used to a priori reduce the number of frame coefficients
to compute with the re-expansion algorithm. Fig. 5 presents
the magnitude of the field diffracted by the obstacle, computed
in plane P 2 by GBS from plane P 1. The diffraction effect
is visible, and the absolute error normalized to the maximum
field magnitude, obtained when comparing these results with a
PWS integral reference solution is less than -30dB. Reference
and GBS results visibly compare very well, as illustrated in
Fig. 6.

IV. CONCLUSION

A re-expansion algorithm allowing for GB re-shooting from
obstacles is presented and illustrated by the diffraction of a
collimated GB on a perfectly reflecting obstacle. Encouraging
results have been obtained. Other numerical results will be pre-
sented, and the choice of frame parameters will be discussed.

Fig. 5. Magnitude of the field computed in the plane P 2 by GBS after
re-expansion (in dB).

Fig. 6. Magnitude of the field computed in the plane P 2 along y2 = 0 by
GBS after re-expansion, compared with the reference field magnitude (PWS
integral).
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