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Abstract The paper is composed of three main parts: the first part presents a two

degrees of freedom coupled oscillators with rheology. One of the oscillators is intended

to be the main structure and the second one is a nonlinear energy sink. The rheology

of the system is represented via a set of internal variables that are governed by either

differential inclusions or differential equations or direct algebraic relations between

system variables. A step by step methodology is explained to trace system behaviors

around a 1 : 1 resonance at different time scales. Invariant of the system at fast time

scale is detected while possible periodic and strongly modulated regimes around its

invariant are traced at slow time scales. The second part of the paper considers a set

of several degrees of freedom main oscillators which are coupled to several nonlinear

energy sinks. The overall system can house several rheologies. Explained methodology

of the first part is expanded to this general case for tracing system responses at different

time scales around 1 : 1 resonances. The third part of the paper presents two practical

examples: The proposed methodology is used to detect invariants of systems and their

equilibrium and singular points. This methodology provides some tools for designing

equilibrium and singular points, i.e. periodic and strongly modulated regimes which

lead to the design of nonlinear energy sinks for passively controlling and/or energy

harvesting of the main oscillators.
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1 Introduction

Energy exchanges between two oscillators can be tuned for passive control or harvest-

ing the energy of one of them. One of the well known methods for this aim is coupling

a linear oscillator as the controller or the harvester to main systems. This linear os-

cillator is known as Frahm or tuned mass damper [1]. This system is quite heavy and

modifies the frequency of the main structural systems while is efficient for narrow fre-

quency ranges. In the past decade the nonlinear energy sink (NES) device is proposed

for passive control or for energy harvesting of main structural systems [2–15]. Most

of past studies consider that the NES possesses cubic nonlinearity [15] and the main

structure is linear or presents smooth nonlinearity [16]. Some studies have been carried

out which consider other types of nonlinearities for the NES such as vibro-impact and

non-polynomial nonlinearities [17–21] or non-smooth potential function with constant

or time-dependent mass [22–25]. Meanwhile, some research works have been studied

which consider nonsmooth main oscillator and coupled nonsmooth or cubic NES. For

instance, following coupled oscillators have been studied: a main oscillator with piece-

wise linear, Dahl-type and hardening elasto-plastic behaviors which are coupled nons-

mooth NES [26–28]; a main oscillator with hysteresis behavior of Bouc-Wen type and

a NES with general nonlinear potential function [29]; a main structure with single or

several Saint-Venant elements [30] in parallel and a NES with cubic or general poten-

tial functions [31, 32]. In this paper, we present a general methodology for studying

the time multi-scale responses of main oscillators with general behaviors (nonlinear,

nosmooth, ...) and coupled NES with general potentials (smooth, nonsmooth,...). The

paper is followed by two special cases which consider two different types of coupled

systems with different rheologies. Organization of the paper is as it follows: The gen-

eral academic model of a two degrees of freedom (dof) system is presented in Sect.2.

Primary treatments of system equations, i.e. possible change of system coordinates,

complexification and using a Galerkin method are described in Sect. 2.1. System be-

haviors at fast and slow time scales which contains tracing invariant manifold of the

system, its equilibrium and singular points are explained in Sect. 2.2. Another general

system with rheologies composed of several dof main forced oscillators and several cou-

pled NES is studied in Sect. 3. There, explained methodology in previous section is

expanded to detect invariant, equilibrium points and singularities of considered several

dof coupled oscillators. In Sect. 4 explained general methodology is endowed to study

time multi-scale energy exchanges between a main linear system and a nonsmooth NES

in the gravitational field. Sect. 5 uses the same methods for detection of time multi-

scale behaviors of a main system with hysteresis behavior which is coupled to a NES

with cubic potential function. Finally, the paper is concluded in Sect. 6.

2 A two dof system with internal variables in the main dof

The system under consideration is composed of two coupled oscillators: The main one

with the mass 1, the displacement x and internal variables zj and żj (j = 1, . . . , n) (rep-

resenting parameters of a rheology) is under external force ǫf0 sin(ωT ). This oscillator

is attached to a NES with the displacement y, the mass ǫ and a cubic or nonsmooth
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potential function. We summarize governing equations of the system as:





ẍ+ f̃1(x, ẋ, z1, . . . , zn, ż1, . . . , żn)︸ ︷︷ ︸
initial system with internal variables zj ,żj,j=1,...,n

+ f̃2(x, ẋ, y, ẏ︸ ︷︷ ︸
coupling

) = ǫf0 sin(ωT )

ǫÿ − ǫf2(y, ẏ, x, ẋ)︸ ︷︷ ︸
additional dof (NES)

= 0

Rheology → z1, . . . , zn, ż1, . . . , żn(Dimension n).Constitutive laws for z1, . . . , zn
in neighbourhood of (0, . . . , 0).

(1)

Internal variables zj and żj (j = 1, . . . , n) are governed by either differential inclu-

sions, eg. St-Venant elements [30], or differential equations, eg. Bouc-Wen models [35],

or piece-wise direct algebraic relations between zj , żj , x and ẋ (or y and ẏ) via

f̃1(x, ẋ, z1, . . . , zn, ż1, . . . , żn).

We emphasis that:

– Equations 1 are re-scaled forms of original system equations with respect to the

new time domain T .

– The parameter ǫ which is in fact the mass ratio of the main oscillator and the NES,

is very small: 0 < ǫ ≪ 1.

– We study system behavior around a 1 : 1 resonance. This is carried out by setting

ω = ω0 + σǫ, where ω0 is the re-scaled linear frequency of the main system, eg.

ω0 = 1. The detuning parameter σ permits to detect system behaviors around the

1 : 1 resonance.

In order to study and to predict behaviors of two oscillators at different scales of time,

the system 1 is treated as it follows:

2.1 Possible change of system coordinates, complexifications and using the Galerkin

technique

Some preliminary treatments of system 1 are carried out in order to prepare it for the

time multi-scale analysis. They are listed here:

– Linear transformation for x and y coordinates via A matrix:

(
v

w

)
= A

(
x

y

)
(2)

For instance, transferring the system to the center of the mass and the relative

displacement of two oscillators:

A =

(
1 ǫ

1 −1

)
(3)

– Depending on the condition of the system, complex variables of Manevitch (for

systems without pre-stress) [33] or their extended versions (for pre-stressed systems)
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[23,28] are applied (i2 = −1):





ib1 + ϕ1e
iωT = v̇ + iωv

ib2 + ϕ2e
iωT = ẇ + iωw

ϕ3je
iωT = żj + iωzj j = 1, . . . , n

(4)

It should be mentioned that we can consider higher harmonics such as (ϕ12e
2iωT +

ϕ13e
3iωT + . . .), (ϕ22e

2iωT + ϕ23e
3iωT + . . .) and (ϕ3j2e

2iωT + ϕ3j3e
3iωT + . . .).

– We consider different scales of the time, fast time scale (τ0), slow time scale (τ1),. . .

connecting to each other by ǫ parameter:

T = τ0, τ1 = ǫτ0, τ2 = ǫ2τ0, · · · (5)

– We use the Galerkin method, i.e. a truncated Fourier series (constant terms and

first harmonics). For a general function k(b1, b2, ϕ1, ϕ2, ϕ31, . . . , ϕ3n), it reads:

χ(b1, b2, ϕ1, ϕ2, ϕ31, . . . , ϕ3n) =
ω

2π

∫ 2π
ω

0

k(b1, b2, ϕ1, ϕ2, ϕ31, . . . , ϕ3n)e
−liωT

dT

(6)

with l = 0, 1 for evaluating constant terms and first harmonics of the Fourier series,

respectively. For evaluating the integral of the Eq. 6, we assume that b1, b2, ϕ1,

ϕ2, ϕ31, . . ., ϕ3n do not depend on fast time scale, i.e. τ0 = T . This will be either

verified during the time multi-scale analysis of the system or we will suppose that

after a long transient response, the system reaches to an asymptotic state which is

independent to time T (mathematically τ0 → ∞).

2.2 Detection of system behaviors at different scales of time

A multiple scale method [36] for detecting system behaviors at different scales of time

is used. After embedding the time T into different scales, i.e. via Eq. 5, we would like

to study system behaviors at each time scale, which means that we should consider

system equations at different orders of ǫ. If we consider constant terms of Fourier series,

i.e. by setting l = 0 in Eq. 6, then ǫ0 and ǫ1 orders of system equations provide both

constant terms of Eq. 4, b1 and b2, as a function of pre-stressing terms. In the next

sections we will focus on the evolutions of first harmonics of the system at different

time scales.

2.2.1 System behavior at fast time scale: ǫ0 order of system equations

Let us consider first harmonics of the system via setting l = 1 in Eq. 6. At fast time

scale the system yields to:

∂ϕ1

∂τ0
= 0 ⇒ ϕ1 = ϕ1(τ1, τ2, ...) (7)

∂ϕ2

∂τ0
+ Λ(ϕ1, ϕ2, ϕ31, ϕ32, . . . , ϕ3n) = 0 (8)
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Υ (ϕ1, ϕ2, ϕ31, ϕ32, . . . , ϕ3n) = 0 (9)

Let us consider Eq. 8 at the infinity of fast time scale, i.e.
∂ϕ2

∂τ0
→ 0:

Λ(ϕ1, ϕ2, ϕ31, ϕ32, . . . , ϕ3n) = 0 (10)

Equations 9 and 10 present an asymptotic equilibrium governed by a manifold called

slow invariant manifold (SIM). Equations 7, 9 and 10 show that ϕ1,ϕ2, ϕ31, . . ., ϕ3n

are constant during the time τ0 = T , so our assumption for evaluating the constant

and first terms of Fourier series in Eq. 6 is verified a posteriori. We can distinguish two

possible cases for the SIM:

Case 1

Let us assume that Eq. 9 provides following explicit relation:

ϕ3j = H3j(ϕ1, ϕ2), j = 1, . . . , n (11)

so, Eq. 10 reads:

Λ(ϕ1, ϕ2, ϕ31, ϕ32, . . . , ϕ3n) = 0 ⇔ Λ̃(ϕ1, ϕ2) = 0 (12)

We set ϕj = Nje
iδj , j = 1, 2. There are two possibilities on the relation between

ϕ1 and ϕ2:

I There is an explicit relation between ϕ1 and ϕ2, i.e.:

ϕ1 = H(ϕ2) (13)

or, 



δ1 = h1(δ2, N2)

N1 = h2(δ2, N2)

⇔
(

δ1
N1

)
= h(δ2, N2) (14)

II There is not an explicit relation between ϕ1 and ϕ2. In this case Eq. 12 provides

two relations:

Λ̃(ϕ1, ϕ2) = 0 ⇔ Λ̂(δ2, N2, δ1, N1) =

(
0

0

)
(15)

Functions Λ̃(ϕ1, ϕ2) are equations defined in the complex domain and Λ̂(δ2, N2, δ1, N1)

correspond to the same equations in the real domain.

Case 2

This case considers a very general form of the SIM supposing that there is not

explicit relations between system variables. By combining Eqs. 9 and 10, the general

form of the SIM can be written in the compact form as:

S (ϕ1, ϕ2, ϕ31, ϕ32, . . . , ϕ3n) = 0 (16)

which is a set of equations in the complex domain. The same equations in the real

domain read:

Ŝ (δ2, N2, δ1, N1, δ31, N31, . . . , N1, δ3n, N3n) = 0 (17)
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2.2.2 System behavior at slow time scale: ǫ1 order of system equations

We are interested to study the system at slow time scale but around its SIM. This means

that in the developments of system equations at ǫ1 order, we should consider equations

of the SIM which are obtained in Sect.2.2.1. The core idea is to detect equilibrium and

singular points of the system which correspond to its periodic regimes and strongly

modulated responses (SMR) [34]. We can distinguish different scenarios according to

different cases which have been defined in Sect.2.2.1:

Scenario 1

Let us suppose that the SIM follows assumptions of the Case 1:

I There is an explicit relation between ϕ1 and ϕ2.

∂ϕ1

∂τ1
= H (ϕ1, ϕ2) ⇔




∂δ1
∂τ1

∂N1

∂τ1


 =




H1(δ2, N2)

H2(δ2, N2)


 (18)

Let us consider evolution of the system along the SIM at τ1 time scale. We

inject Eq. 14 in the Eq. 18,

∇(δ2,N2)h




N2
∂δ2
∂τ1

∂N2

∂τ1


 = H̃ (δ2, N2) (19)

where ∇(δ2,N2)h denotes the jacobian matrix of h versus variables δ2 and N2

(similar notations are used here after). Equilibrium points of the system are

those which provide:





H̃ (δ2, N2) = 0

&

∇(δ2,N2)h be invertible

(20)

while singular points provide:





H̃ (δ2, N2) = 0

&

∇(δ2,N2)h not to be invertible

(21)

II There is not an explicit relation between ϕ1 and ϕ2.

∂ϕ1

∂τ1
= F (ϕ1, ϕ2) ⇔




∂δ1
∂τ1

∂N1

∂τ1


 =




F1(δ2, N2, δ1, N1)

F2(δ2, N2, δ1, N1)


 (22)

Let us consider system modulations along the SIM at τ1 time scale. Equation

15 is derived versus τ1 time scale:
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∇(δ2,N2,δ1,N1)Λ̂




∂δ2
∂τ1

∂N2

∂τ1

∂δ1
∂τ1

∂N1

∂τ1




=




0

0


 (23)

The dimension of the matrix ∇Λ̂(δ2, N2, δ1, N1) is (2× 4). In the blocked form

it can be re-written as:

∇(δ2,N2,δ1,N1)Λ̂ =
[
∇(δ2,N2)Λ̂ ∇(δ1,N1)Λ̂

]
(24)

So, Eq. 23 reads:

∇(δ2,N2)Λ̂




∂δ2
∂τ1

∂N2

∂τ1


+∇(δ1,N1)Λ̂




∂δ1
∂τ1

∂N1

∂τ1


 =




0

0


 (25)

This equation can be rearranged by considering Eq. 22:

∇(δ2,N2)Λ̂




∂δ2
∂τ1

∂N2

∂τ1


 = −∇(δ1,N1)Λ̂




F1(δ2, N2, δ1, N1)

F2(δ2, N2, δ1, N1)


 (26)

Equations 15, 22 and 26 provide useful information relevant to positions of

equilibrium and singular points. Equilibrium points of the system provide:




Λ̂(δ2, N2, δ1, N1) =

(
0

0

)

&

F1(δ2, N2, δ1, N1) = F2(δ2, N2, δ1, N1) = 0

&

∇(δ2,N2)Λ̂ be invertible

(27)

Singular points of the system provide:




Λ̂(δ2, N2, δ1, N1) =

(
0

0

)

&

F1(δ2, N2, δ1, N1) = F2(δ2, N2, δ1, N1) = 0

&

∇(δ2,N2)Λ̂ not to be invertible

(28)

Scenario 2

Let us consider a very general form of the SIM (see Eq. 16) which has been explained

in Case 2 of the Sect. 2.2.1.
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ǫ1 order of system equations read (i.e. the system at slow time scale):




∂ϕ1

∂τ1

∂ϕ31

∂τ1

...

∂ϕ3n

∂τ1




= M (ϕ1, ϕ2, ϕ31, . . . , ϕ3n) ⇔




∂δ1
∂τ1

∂N1

∂τ1

∂δ31
∂τ1

∂N31

∂τ1

...

∂δ3n
∂τ1

∂N3n

∂τ1




= M (29)

with

M =




M1(δ2, N2, δ1, N1, δ31, N31, . . . , N1, δ3n, N3n)

M2(δ2, N2, δ1, N1, δ31, N31, . . . , N1, δ3n, N3n)

M3(δ2, N2, δ1, N1, δ31, N31, . . . , N1, δ3n, N3n)

...

M2n+3(δ2, N2, δ1, N1, δ31, N31, . . . , N1, δ3n, N3n)

M2n+4(δ2, N2, δ1, N1, δ31, N31, . . . , N1, δ3n, N3n)




(30)
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Equation 17 can be derived versus τ1 time scale as:

∇(δ2,N2,δ1,N1,δ31,N31,...,N1,δ3n,N3n)Ŝ




∂δ2
∂τ1

∂N2

∂τ1

∂δ1
∂τ1

∂N1

∂τ1

∂δ31
∂τ1

∂N31

∂τ1

...

∂δ3n
∂τ1

∂N3n

∂τ1




=




0

...

0




(31)

Dimension of the ∇(δ2,N2,δ1,N1,δ31,N31,...,N1,δ3n,N3n)Ŝ is (2n+ 2) × (2n+ 4). So, Eq.

31 provides (2n+ 2) relations. In the blocked form we can write:

∇(δ2,N2,δ1,N1,δ31,N31,...,N1,δ3n,N3n)Ŝ =

[
∇(δ2,N2)Ŝ ∇(δ1,N1,δ31,N31,...,N1,δ3n,N3n)Ŝ

] (32)
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Equation 31 reads;

∇(δ2,N2)Ŝ




∂δ2
∂τ1

∂N2

∂τ1


+∇(δ1,N1,δ31,N31,...,N1,δ3n,N3n)Ŝ




∂δ1
∂τ1

∂N1

∂τ1

∂δ31
∂τ1

∂N31

∂τ1

...

∂δ3n
∂τ1

∂N3n

∂τ1




=




0

...

0




(33)

or

∇(δ2,N2)Ŝ




∂δ2
∂τ1

∂N2

∂τ1


 = −∇(δ1,N1,δ31,N31,...,N1,δ3n,N3n)ŜM (34)

Equilibrium and singular points of the system can be traced via Eqs. 17, 29 and 34.

Equilibrium points can be detected via





Ŝ (δ2, N2, δ1, N1, δ31, N31, . . . , N1, δ3n, N3n) = 0

&

M = 0

&

∇(δ2,N2)Ŝ be invertible

(35)

Singular points of the system provide:





Ŝ (δ2, N2, δ1, N1, δ31, N31, . . . , N1, δ3n, N3n) = 0

&

M = 0

&

∇(δ2,N2)Ŝ not to be invertible

(36)

3 Time multi-scale energy exchanges between a multiple degrees of

freedom main oscillator and multiple NES including rheologies

All developments which are explained in Sect.2 are based on a two dof system which

includes a rheology of dimension n (see Eq. 1). In this section we would like to expand
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all of previous developments to a system which is composed of nm dof main oscillators

which are coupled to nn dof NES. The dimension of the rheology is assumed to be nr .

Let us assume that system equations read:





Ÿ1 +∆1Y1 + ǫ∆2Ẏ1 + ǫF1(Y1,Y2) + ǫF2(Ẏ1, Ẏ2)︸ ︷︷ ︸
ǫF̃(Y1,Y2,Ẏ1,Ẏ2)

+E(Y1,Y2, Ẏ3) = ǫf0sin(ωT )

ǫŸ2 − ǫF̃(Y1,Y2, Ẏ1, Ẏ2) = 0

Ẏ3 +G(Y1,Y2,Y3) = 0 or
(
Ẏ3 +G(Y1,Y2,Y3)

)
∋ 0

(37)

Where Y1, Y2 and Y3 are vectors of dimensions nm, nn and nr, respectively. f0 is

the vector of applied external forcing amplitudes on each dof of the main system (with

dimension nm). Since we would like to study system behaviors around 1 : 1 resonances,

we assume that:

∆1 = ω2Id + ǫΣ (38)

Σ is a diagonal matrix of detuning parameters and Id is the unity matrix. To detect

system behaviors at different scales of time, we follow similar steps which have been

explained in Sect.2.

3.1 Complexifications and using the Galerkin technique

System variables could be submitted to the following linear transformation:

(
V

W

)
= A

(
Y1

Y2

)
(39)

In order to simplify, let us assume that A = Id. Complex variables of Manevitch [33]

or their extended versions [23,28] are applied to system variables:





iB1 +Φ1e
iωT = V̇ + iωV

iB2 +Φ2e
iωT = Ẇ + iωW

Φ3e
iωT = Ẏ3 + iωY3

(40)

The Galerkin technique is endowed for keeping constant and first harmonics of the

Fourier series. For any arbitrary function kkk(B1,B1,Φ1,Φ2,Φ3) this task is carried

out via:

χ(B1,B1,Φ1,Φ2,Φ3) =
ω

2π

∫ 2π
ω

0

kkk(B1,B1,Φ1,Φ2,Φ3)e
−liωT

dT (41)

with l = 0, 1. For solving integrals of Eq. 41 we use the same assumptions that are

explained in Sect. 2.1.
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3.2 Time multi-scale behaviors of the system

If we use l = 0 in Eq. 41, i.e. we keep constant terms of the Fourier series, then vectors

B1 and B2 can be revealed by considering system equations at ǫ0 and ǫ1 orders. Let

us concentrate at first harmonics of Fourier series, i.e. we set l = 1 in Eq. 41. ǫ0 order

of system equations provide:

∂Φ1

∂τ0
= 0 ⇒ Φ1 = Φ1(τ1, τ2, ...) (42)

∂Φ2

∂τ0
+Λ(Φ1,Φ2,Φ3) = 0 (43)

Υ (Φ1,Φ2,Φ3) = 0 (44)

Equation 42 provides nm relations in the complex domain. When τ0 → ∞ (
∂Φ2

∂τ0
= 0),

Eq. 43 and 44 provide asymptotic responses of the system which are in fact its SIM.

In the compact form and as a set of equations in the complex domain, it reads:

S (Φ1,Φ2,Φ3) = 0 (45)

which provides nm + nr relations in the complex domain. Equations 45 in the real

domain read:

Ŝ (δ2,N2, δ1,N1, δ3,N3) = 0 (46)

where δj , Nj , j = 1, 2, 3 are phase and amplitude vectors of Φj , j = 1, 2, 3, respectively.

Equation 46 provides 2(nm+nr) relations. Detection of system behaviors at slow time

scale τ1 demands consideration of system equations at ǫ1 order. We can write:




∂Φ1

∂τ1

∂Φ3

∂τ1


 = M (Φ1,Φ2,Φ3) ⇔




∂δ1
∂τ1

∂N1

∂τ1

∂δ3
∂τ1

∂N3

∂τ1




= M (47)
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Let us find the evolution of the SIM at τ1 time scale. Equation 46 is derived versus τ1
time scale:

∇(δ2,N2,δ1,N1,δ3,N3)Ŝ




∂δ2
∂τ1

∂N2

∂τ1

∂δ1
∂τ1

∂N1

∂τ1

∂δ3
∂τ1

∂N3

∂τ1




= 0 (48)

Dimension of ∇(δ2,N2,δ1,N1,δ3,N3)Ŝ is 2(nn + nr) × 2(nm + nn + nr). System of

equations 48 can be reorganized as:

∇(δ2,N2)Ŝ




∂δ2
∂τ1

∂N2

∂τ1


+∇(δ1,N1,δ3,N3)Ŝ




∂δ1
∂τ1

∂N1

∂τ1

∂δ3
∂τ1

∂N3

∂τ1




= 0 (49)

Dimension of ∇(δ2,N2)Ŝ is 2(nn + nr)× 2nn while dimension of ∇(δ1,N1,δ3,N3)Ŝ is

2(nn + nr) × 2(nm + nr). Equations 46, 47 and 49 provide useful tools for detecting

equilibrium and singular pints of the system. Equilibrium points of the system can be

traced by:




Ŝ (δ2,N2, δ1,N1, δ3,N3) = 0

&

M = 0

&

∇(δ2,N2)Ŝ be invertible

(50)

Singular points of system can be revealed by:





Ŝ (δ2,N2, δ1,N1, δ3,N3) = 0

&

M = 0

&

∇(δ2,N2)Ŝ not to be invertible

(51)
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4 Example 1: Time multi scale energy exchanges between a linear

oscillator and a coupled nonsmooth NES in the gravitational field

The system under consideration is composed of two coupled oscillators in the gravita-

tional field: the main system is linear with the scalled mass 1; it is coupled to a NES

with the mass ǫ (0 < ǫ ≪ 1), scalled nonsmooth potential ǫF̃ and scalled damping

ǫλ. We suppose that the main oscillator is under external scaled force ǫf0 sin(ωT ).

Governing system equations are summarized as [23]:





ÿ1 + y1 + ǫF̃ (y1 − y2) + ǫλ(ẏ1 − ẏ2) + γ = ǫf0 sin(ωT )

ǫÿ2 + ǫF̃ (y2 − y1) + ǫλ(ẏ2 − ẏ1) + ǫγ = 0

(52)

with

F̃ (z) =





0 if −δ ≤ z ≤ δ

k(z − δ) if z ≥ δ

k(z + δ) if z ≤ −δ

(53)

and γ is related to the scaled weight of both oscillators. Since we would like to analyze

system behaviors around the 1 : 1 resonance, we set ω = 1 + σǫ.

4.1 Change of variables, complexification and truncated Fourier series of system

equations

Since in the system under consideration there is a pre-stressing term γ, we use the

extended version of complex variables of Manevitch (see Eq. 4). By following explained

procedures of Sect. 2.1, constant and first terms of the Fourier series read:





1

1 + ǫ
(
b1
ω

+ ǫ
b2
ω
) + (1 + ǫ)γ = 0

1

1 + ǫ
(
b1
ω

+ ǫ
b2
ω
) + (1 + ǫ)fz(b2, ϕ2, ϕ

∗

2) = 0

(54)





ϕ̇1 = − i

2
ǫf0 +

i

2ω(1 + ǫ)
(ϕ1 + ǫϕ2)−

i

2
ωϕ1

ϕ̇2 = − i

2
ǫf0 +

i

2ω(1 + ǫ)
(ϕ1 + ǫϕ2)−

λ(1 + ǫ)

2
ϕ2 − i

2
ωϕ2 − (1 + ǫ)ff (b2, ϕ2, ϕ

∗

2)

(55)

Definitions of fz(b2, ϕ2, ϕ
∗

2) and ff (b2, ϕ2, ϕ
∗

2) are given in Appendix (see Eqs. 83-85).

4.2 Time multi scale behavior of the system

For detecting system behaviors at different time scales we implement the explained

methods of the Sect. 2.2.



15

4.2.1 Constant terms

The general form of the system (54) show that γ = fz(N
2
2 ). During the ǫ0 order, it

leads to:

b1 = −γ (56)

while during the ǫ1 order we have:

b2 = −γ(2 + σ) (57)

4.2.2 First harmonics

Here, we would like to detect time multi-scale responses of first harmonics of the system

which are defined in Eq. 55. At fast time scale there is an explicite relation between

ϕ1 and ϕ2 [23]. This means that we should consider part I of the Case 1 in Sect 2.2.1.

Equations 12 and 14 read:

Λ̃(ϕ1, ϕ2) =
i
(
1−Gf

(
|ϕ2

2|
))

+ λ

2
ϕ2 − i

2
ϕ1 = 0

(58)

(
δ1
N1

)
= h(δ2, N2) =




δ2 − arctan
(

λ

1−Gf (N
2
2 )

)

N2

√
λ2 +

(
1−Gf (N

2
2 )
)2


 (59)

Stability borders of the SIM are written as [23]:

λ2 +
(
1−Gf (N

2
2 )
)(
1− 2N2G

′

f (N
2
2 )N

2
2 −Gf (N

2
2 )
)
> 0 (60)

At slow time scale, Eq. 18 can be detected by keeping the ǫ1 order of the first equation

of the system (55),

∂ϕ1

∂τ1
= H (ϕ1, ϕ2) = − i

2
f0 +

i

2
(ϕ2 − ϕ1 − σϕ1)−

i

2
σϕ1 (61)

Here, Eq. 19 reads:

g(N2)




N2
∂δ2
∂τ1

∂N2

∂τ1


 = H̃ (δ2, N2) =




f1(N2, δ2)

f2(N2, δ2)


 (62)

f1(N2, δ2), f2(N2, δ2) and g(N2) are defined in Appendix (see Eqs. 86-88). Equilibrium

points of the system are those which provide f1(N2, δ2) = f2(N2, δ2) = 0 and g(N2) 6= 0

while fold singularities are those that give f1(N2, δ2) = f2(N2, δ2) = g(N2) = 0.

g(N2) = 0 provides two values for N2, namely N21 and N22. They are called as fold

lines of the system. Comparing Eqs. 60 and 88, one can see that g(N2) = 0 provides

stability borders of the SIM. So, fold lines N21 and N22 are in fact stability borders of

the invariant.
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4.3 A numerical example

We set δ = 1, k = 1.5, λ = 0.2 γ = 9.81×10−4, ǫ = 10−3, f0 = 1.6 and σ = 0.1. Fold line

of the system can be obtained via Eq. 88 by setting g(N2) = 0: they read N21 = 1.2310

and N22 = 3.2130. Positions of equilibrium and singular points are presented in Fig.

1 which are obtained by using Eqs. 86-88. It can be seen that for the given forcing

amplitude and detuning parameter, the system possesses a pair of fold singularities,

namely no.1 and no.2 on the fold line N21. There is an equilibrium point which is

inside the unstable zone of the system i.e. between fold line N21 and N22, so it can

not be reached. As a summary, the system does not possess any equilibrium points.

Existence of fold singularities predicts a SMR for the system under consideration.

Let us assume that the initial conditions of Eqs. 52 are (y1(0), y2(0), ẏ1(0), ẏ2(0)) =

0 1 2 3 4 5 6
0

1

2

3

4

5

δ
2

N
2

21

N
22

N
21

Fig. 1 Positions of equilibrium and singular points for the system under external forcing term
f0 = 1.6 and detuning parameter σ = 0.1: g(N2) = 0 or N21, N22 (—), f2(N2, δ2) = 0 (−−−),
f1(N2, δ2) = 0 (−·−·−). The zone between N21 and N22 is unstable. The system possesses
a pair of fold singularities on the fold line N21, namely no. 1 and no. 2. The system does not
possess any equilibrium points.

(1.5+y10, y20, 0, 0). y10 and y20 are initial equilibrium positions of the main system and

the NES due to their weight (i.e. positions at rest). Equations 52 are directly integrated

by the Runge-Kutta method in Matlab via function “ode45”. The SIM of the system

(Eq. 59), its stability borders (Eq. 60) and included numerical results are depicted in

Fig. 2. It is seen that the system presents SMR with repeated bifurcations between

its stable zones. This behavior has been already predicted by analytically detection of

equilibrium and singular points of the system which have been illustrated in Fig. 1.

Histories of amplitudes of two oscillators which are shown in Fig. 3 show the existence

of SMR for a quite long time span.
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0 2 4 6 8
0

0.5

1

1.5

2

N
2

N
1

StableStable

Unstable

δ=1
k=1.5
λ=0.2
γ=9.81 × 10−4

Fig. 2 The SIM (− − −), its stability borders (−·−·−) and corresponding numerical results
(—) of the system with f0 = 1.6 and σ = 0.1. Numerical results are obtained by direct
integration of Eqs. (52).

5 Example 2: Time multi-scale energy exchanges between a Bouc-Wen

type oscillator coupled to a NES with cubic potential

We consider two coupled oscillators: The main one is with the scaled mass, initial linear

stiffness and damping as 1, 1 and ǫζ, respectively. It is under external force ǫf0 sin(ωT )

and presents a hysteresis behavior of Bouc-Wen type with following carachterstics:

the post-yield stiffness Kp, ratio of the post-yield stiffness and initial stiffnesses as a,

i.e. a =
Kp

1
, and A, β > 0, γ and n are dimensionless parameters parameters which

control the hysteresis behavior of the model. This oscillator is coupled to a NES with

the scaled mass ǫ (0 < ǫ ≪ 1), scaled damping ǫλ and the scaled cubic potential

function ǫF̂ (α) = ǫkα3. If we assume that z and ż are internal variables for Bouc-Wen

model, then governing system equations can be summarized [29]:





ÿ1 + ǫζẏ1 + y1 +
1− a

a
z + ǫF̂ (y1 − y2) + ǫλ(ẏ1 − ẏ2) = ǫf0 sin(ωT )

ǫÿ2 + ǫF̂ (y2 − y1) + ǫλ(ẏ2 − ẏ1) = 0

ż = Aẏ1 − β|ẏ1||z|n−1z − γẏ1|z|n

(63)

with z(0) = 0. We suppose that k = O(ǫ0) and
1− a

a
= ǫa0 = O(ǫ1).
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Fig. 3 Histories of system amplitudes with f0 = 1.6 and σ = 0.1: a) N2; b) N1. Results
are obtained by direct integration of Eqs. (52). Figures are zoomed for the interval of T ∈

[7× 104, 8× 104].

5.1 Change of variables, complexification and truncated Fourier series of system

equations

Let us follows explained procedure of the Sect. 2.1. In the described system of Eqs. 63

there is not any pre-stressing term. So, in Eq. 4 we set b1 = b2 = 0 and we keep just

“first harmonics” of the system by setting l = 1 in Eq. 6. Following system is obtained
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around the 1 : 1 resonance (ω = 1 + σǫ) [29]:





ϕ̇1 +
i

2
(1 + σǫ)ϕ1 +

ǫζ

2(1 + ǫ)
(ϕ1 + ǫϕ2)−

i

2(1 + ǫ)(1 + σǫ)
(ϕ1 + ǫϕ2)−

1− a

a

i

2(1 + σǫ)
ϕ3 =

ǫf0
2i

ϕ̇2 +
i

2
(1 + σǫ)ϕ2 +

ǫζ

2(1 + ǫ)
(ϕ1 + ǫϕ2)−

i

2(1 + ǫ)(1 + σǫ)
(ϕ1 + ǫϕ2)−

1− a

a

i

2(1 + σǫ)
ϕ3 − i

2
(1 + ǫ)ϕ2G

(
|ϕ2|2

)
+

1 + ǫ

2
λϕ2 =

ǫf0
2i

ϕ3 =
A

1 + ǫ
(ϕ1 + ǫϕ2)−

1

π
e
iδ3 ρ

1 + ǫ
(
N3

ω
)n

(
(β + γ)I(n, 0, s1, order of ǫ)+

(−β + γ)I(n, s1, π, order of ǫ) + (−1)n(β + γ)I(n, π, s2, order of ǫ)+

(−1)n(−β + γ)I(n, s2, 2π, order of ǫ)

)

(64)

with:

G
(
|ϕ2|2

)
=

3

4
k|ϕ2|2 (65)

ρ =
((

N1 cos(δ1) + ǫN2 cos(δ2)
)2

+
(
N1 sin(δ1) + ǫN2 sin(δ2)

)2)
1

2 (66)

tan(θ) =
N1 sin(δ1) + ǫN2 sin(δ2)

N1 cos(δ1) + ǫN2 cos(δ2)
(67)

q(s) = cos(s+ θ − δ3)(sin(s))
n
e
−is (68)

s1 =
π

2
+ δ3 − θ

s2 = s1 + π

(69)

I(n, α1, α2, order of ǫ) =

∫ α2

α1

q(s)ds (70)

I(n, α1, α2, order of ǫ) can be calculated for any Bouc-Wen parameter n.

5.2 Time multi-scale behavior of the system

At fast time scale the functions Λ of Eq. 10 reads:

Λ(ϕ1, ϕ2, ϕ3) =
i
(
1−G

(
|ϕ2|2

))
+ λ

2
ϕ2 − i

2
ϕ1 = 0

(71)

To deal with all types of Bouc-Wen type behavior with any n parameter, demands a

lot of technical computational efforts. So, in this example we focus on the special case
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when n = 3. The function Υ in Eq. 9 can be obtained from the third equation of the

Eq. 64 at ǫ0 order:

Υ (ϕ1, ϕ2, ϕ3) = Aϕ1 − 1

π
e
iδ3N3N1

(
(β + γ)I(3, 0,

π

2
+ δ3 − δ1, 0)+

(−β + γ)I(3,
π

2
+ δ3 − δ1, π, 0) + (−1)3(β + γ)I(3, π,

3π

2
+ δ3 − δ1, 0)+

(−1)3(−β + γ)I(3,
3π

2
+ δ3 − δ1, 2π, 0)

)
− ϕ3 = 0

(72)

Equation 72 indicates that there is not any explicit relations between ϕ3, ϕ2 and ϕ1. So,

the system under consideration follows Case 2 of the Sect. 2.1. Equation 71 provides

following relations:

δ2 − arctan
(

λ

1−G(N2
2 )

)
− δ1 = 0 (73)

N2

√
λ2 +

(
1−G(N2

2 )
)2 −N1 = 0 (74)

Equation 74 provides a two-dimentional flow of energies of two oscillators, i.e. N2 and

N1. This SIM has stability borders as [29]:

λ2 +
(
1−G(N2

2 )
)(
1− 2N2G

′(N2
2 )N

2
2 −G(N2

2 )
)
> 0 (75)

G′(N2
2 ) is the derivative of G(N2

2 ) with respect to the N2
2 .

At slow time scale, Eqs. 29 yield to:

∂ϕ1

∂τ1
= M (ϕ1, ϕ2, ϕ31, . . . , ϕ3n) = − i

2
f0 +

i

2
(−2σ − 1 + iζ)ϕ1 +

i

2
ϕ2 +

ia0
2

ϕ3

(76)

After consideration of definitions of ϕ1 and ϕ3 from Eqs. 71 and 72 in Eq. 76, Eq. 34

reads [29]:

g1(N2)




N2
∂δ2
∂τ1

∂N2

∂τ1


 =




̥1(N2, δ2)

̥2(N2, δ2)


 =




λΞ +
(
1−G

(
N

2
2

)
− 2N2

2G
′
(
N

2
2

))
Θ

(
1−G

(
N

2
2

))
Ξ − λΘ




(77)

Ξ, Θ and g1(N2) are presented in Appendix (see Eqs. 89-91). Eq. 91 is also stability

borders of the SIM of the system which already defined in Eq.75. Equilibrium and

singular points of the system can be traced via 77: Equilibrium points are those that

provide ̥1 = ̥2 = 0 and g1(N2) 6= 0. Singular points of the system are those which

give ̥1 = ̥2 = g1(N2) = 0. Let us set ̥1 = ̥2 = 0. We will have:





(
1−G

(
N2

2

))
Ξ − λΘ = 0

λΞ +
(
1−G

(
N2

2

)
− 2N2

2G
′
(
N2

2

))
Θ = 0

(78)

Equation 78 is a homogeneous system of two equations with respect to Ξ and Θ.

Its characteristic equation which provides its eigenvalues is equal to g1(N2) = 0. If
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g1(N2) 6= 0, then Ξ = Θ = 0 will be only solutions of the homogeneous system of two

equations. So, the system at equilibrium points reads:





−1

2
f0 sin(δ2)−

1

2
N2λ(2σ + 1)− 1

2
N2ζ

(
1−G

(
N

2
2

))
−

1

2
N3a0 sin(δ3 − δ2) = 0

−1

2
f0 cos(δ2)−

1

2
N2

(
1−G

(
N

2
2

))
(2σ + 1) +

1

2
N2ζλ+

1

2
N2+

1

2
N3a0 cos(δ3 − δ2) = 0

(79)

From Eq. 79 following relations can be obtained:

N3 =
1

a0

((
− f0 sin(δ2)−N2λ(2σ + 1)−N2ζ(1−G)

)2
+

(
− f0 cos(δ2)−N2(1−G)(2σ + 1) +N2ζλ+N2

)2)
1

2
(80)

δ3 = δ2 − sin−1

(
f0 sin(δ2) +N2λ(2σ + 1) +N2ζ(1−G)

a0N3

)
(81)

Let us define real and imaginary parts of the Eq.(72), as C1 and C2, respectively. Equi-

librium points of the system in the surface of (δ2, N2) can be traced via consideration

of the definition of N3 and δ3 from Eqs. 80 and 81 in C1(δ2, N2) = C2(δ2, N2) = 0.

Amplitudes of fold singularities of the system can be detected by setting g1(N2) = 0

which provides two values for N2 (fold lines), namely N21 and N22:

N21 =
2

3

√
2

k
−

√
1− 3λ2

k

N22 =
2

3

√
2

k
+

√
1− 3λ2

k

(82)

Phases in the fold lines are obtained by injecting Eqs. 80 and 82 in C1(δ2, δ3) =

C2(δ2, δ3) = 0.

5.3 A numerical example

Let us assume following system parameters: ǫ = 10−3, λ = 0.2, ζ = 0.1, σ = 1,

A = 1, a = 0.99, β = 0.5, γ = 0, n = 3, k = 0.01 and f0 = 15. We assume that

y1(0) = 10 and y2(0) = ẏ1(0) = ẏ2(0) = 0. Equations 63 are integrated directly by

“ode45” function of Matlab and are compared with analytical predictions. Positions

of equilibrium points are highlighted in Fig. 4. The system possesses two equilibrium

points, namely no. 1 and no. 2. There are other equilibrium points but their positions

are in the unstable zone of the system, i.e. between two fold line, so they are unstable

and we do not consider them. Singular points should be detected on fold lines N21 and

N22. Their locations on these lines are illustrated in Figs. 5 and 6, respectively. As

a summary there is a pair of singular points on the fold line N21 while fold line N22

does not host any singular points. The SIM of the system obtained from Eq. 74 and



22

corresponding results from numerical integration of the Eqs. 63 are depicted in Fig. 7.

Histories of system amplitudes detected via numerical integration are shown in Fig. 8.

These figures show that the system presents SMR which houses repeated bifurcations

between its stability borders. This behavior is due to existence of singular points on the

first fold line which prepare the system for reverse bifurcations. The energy of the main

oscillator is trapped in the closed loop cycle. This behavior is desirable from passive

control view point if the system behavior during the closed loop bifurcations via SMR,

presents allowable energy variations for the main oscillator. This can be carried out by

appropriate design of the NES. The system possesses two equilibrium points (see Fig.

4) which can be stable or unstable; they can be seen after very long time during τ1 time

scale or during other time scales such as τ2 time scale. Detection of this behavior via

numerical integration of main equations demands a lot of computational efforts and is

out of the scope of the current paper.
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Fig. 4 Positions of equilibrium points for the system under external forcing term f0 = 15:
g1(N2) = 0 (—), i.e. N21, N22 lines, C1(N2, δ2) = 0 (− − −), C2(N2, δ2) = 0, (−·−·−): the
system has two equilibrium points namely no. 1 and no. 2.

6 Conclusions

A general methodology for detection of time multi-scale behaviors of general coupled

oscillators is presented. The first set of the oscillators is considered to be the main ones

and the other set is nonlinear energy sink devices with very light masses compared to

the masses of the first set. The rheology of the system can be represented via consti-

tutive laws by either differential inclusions, differential equations or algebraic relations

between internal variables. Step by step treatments of primary system equations in the

complex domain permit us to use a Galerkin technique by keeping constant terms and
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Fig. 5 Positions of fold singularities for the system under external forcing term f0 = 15 on
the fold line N21: C1(δ2, δ3) = 0 (− − −), C2(δ2, δ3) = 0, (−·−·−). The system has two
singular points namely no.1 and no. 2, on the fold line N21.
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Fig. 6 Positions of fold singularities for the system under external forcing term f0 = 15 on
the fold line N22: C1(δ2, δ3) = 0 (− − −), C2(δ2, δ3) = 0, (−·−·−). The system does not have
any singular point on the fold line N22.
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Fig. 7 The SIM (− − −), its stability borders (−·−·−) and corresponding numerical results
(—) for the system with f0 = 15. Numerical results are obtained via direct integration of Eqs.
63.

first harmonics of the Fourier series. Studying the system at fast time scale provides

its invariant while its behavior at slow time scale provides positions of equilibrium

and singular points on the invariant. Equilibrium and singular points correspond to

periodic and possible strongly modulated responses, respectively. Application of the

proposed methodology is demonstrated in two special cases representing two different

coupled oscillators with different rheologies. Developed analytical tools permit us to

design “desired” equilibrium and singular points which is equivalent to the design of

nonlinear energy sink according to the demand, which can be passive control and/or

energy harvesting of main oscillators.
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Fig. 8 Histories of system amplitudes with f0 = 15: a) N2; b) N1. These results are obtained
via direct integration of Eqs. 63.

Appendix

For any variable χ ≥ 0

fz
(
χ
)
=





0 if
b2
ω

+

√
χ

ω
< δ

k

πω

(
b2π +

√
(b2 +

√
χ− δω)(−b+

√
χ+ δω)−

√
(−b2 +

√
χ− δω)(b2 +

√
χ+ δω)+

(b2 − δω) arcsin
( b2 − δω√

χ

)
+ (b2 + δω) arcsin

( b2 + δω√
χ

)
)

if
b2
ω

+

√
χ

ω
≥ δ

(83)
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ff (b2, ϕ2, ϕ
∗

2) = − iϕ2

2
Gf

(
|ϕ2|2

)
(84)

Gf

(
χ) =





0 if
b2
ω

+

√
χ

ω
< δ

k

2πω

(
π +

2b2
χ

√
χ− (b2 − δω)2 − 2δω

χ

√
χ− (b2 − δω)2−

2b2
χ

√
χ− (b2 + δω)2 − 2δω

χ

√
χ− (b2 + δω)2+

2arccos
( b2 + δω√

χ

)
+ 2arcsin

( b2 − δω√
χ

)
)

if
b2
ω

+

√
χ

ω
≥ δ

(85)

f1(N2, δ2) = −
(
1−Gf

(
N2

2

)
− 2N2

2G
′

f

(
N2

2

))
f0 cos(δ2)− λf0 sin(δ2)−

N2λ
2(1 + 2σ) +N2

(
1−Gf

(
N2

2

)
− 2N2

2G
′

f

(
N2

2

))(
− 2σ + 2σGf

(
N2

2

)
+Gf

(
N2

2

))

(86)

f2(N2, δ2) = f0 sin(δ2)
(
Gf

(
N2

2

)
− 1
)
− λN2 + λf0 cos(δ2) (87)

g(N2) = 2
(
λ2 +

(
1−Gf (N

2
2 )
)(
1− 2N2G

′

f (N
2
2 )N

2
2 −Gf (N

2
2 )
)))

(88)

Ξ = −1

2
f0 sin(δ2)−

1

2
N2λ(2σ + 1)− 1

2
N2ζ

(
1−G

(
N

2
2

))
−

1

2
N3a0 sin(δ3 − δ2)

(89)

Θ = −1

2
f0 cos(δ2)−

1

2
N2

(
1−G

(
N

2
2

))
(2σ + 1) +

1

2
N2ζλ+

1

2
N2+

1

2
N3a0 cos(δ3 − δ2)

(90)

g1(N2) =
(
− 1 +G

(
N2

2

))2
+ λ2 + 2

(
− 1 +G

(
N2

2

))
N2

2G
′
(
N2

2

)
(91)

References

1. Frahm, H.: Device for damping vibrations of bodies, Apr. 18 1911. US Patent 989,958.
2. Gendelman, O., Manevitch, L. I., Vakakis, A. F., MCloskey, R.: Energy pumping in nonlin-

ear mechanical oscillators: part i - dynamics of the underlying hamiltonian systems. Journal
of Applied Mechanics, 68 (1), 34–41 (2001).

3. Vakakis A. F.: Inducing passive nonlinear energy sinks in vibrating systems. Journal of
Vibration and Acoustics, 123(3), 324–332 (2001).

4. Kerschen, G., Vakakis, A. F., Lee, Y. S., McFarland, D. M., Kowtko, J. J., Bergman, L.
A.: Energy transfers in a system of two coupled oscillators with essential nonlinearity: 1:1
resonance manifold and transient bridging orbits. Nonlinear Dynamics, 42, 283–303 (2005).

5. Gourdon, E., Lamarque, C.-H.: Energy pumping for a larger span of energy. Journal of
Sound and Vibration 285, 711–720 (2005).

6. Kerschen, G., Lee, Y. S., Vakakis, A. F., McFarland, D. M., Bergman, L. A.: Irreversible
passive energy transfer in coupled oscillators with essential nonlinearity. SIAM Journal of
Applied Mathematics, 66, 648–679, (2006)

7. Manevitch, L. I., Gourdon, E., Lamarque, C.-H.: Parameters optimization for energy pump-
ing in strongly nonhomogeneous 2 dof system. Chaos Soliton & Fracal, 31, 900–911 (2007).



27

8. Starosvetsky, Y, Gendelman, O. V.: Vibration absorption in systems with a nonlinear energy
sink: nonlinear damping. Journal of Sound and Vibration, 324, 916–939 (2009)

9. Gendelman, O. V., Vakakis, A. F., Bergman, L. A., McFarland, D. M.: Asymptotic analysis
of passive nonlinear suppression of aeroelastic instabilities of a rigid wing in subsonic flow.
SIAM Journal of Applied Mathematics, 70, 1655–1677 (2010).

10. Vaurigaud, B., Ture Savadkoohi, A., Lamarque, C.-H.: Targeted energy transfer with par-
allel nonlinear energy sinks Part I: Design theory and numerical results. Nonlinear Dynamics,
66 (4), 763–780 (2011).

11. Luongo, A., Zulli, D.: Dynamic analysis of externally excited NES-controlled systems via
a mixed Multiple Scale/Harmonic Balance algorithm. Nonlinear Dynamics, 70, 2049–2061
(2012)

12. Ture Savadkoohi, A., Vaurigaud, B., Lamarque C.-H., Pernot, S.: Targeted energy transfer
with parallel nonlinear energy sinks, part II: theory and experiments. Nonlinear Dynamics,
67, 37–46 (2012)

13. Wierschem, N. E., Quinn, D. D., Hubbard, S. A., Al-Shudeifatd, M. A., McFarlandc, D.
M., Luo, J., Fahnestock, L. A., Spencer Jr, B. F., Vakakis, A. F., Bergman, L. A.: Passive
damping enhancement of a two-degree-of-freedom system through a strongly nonlinear two-
degree-of-freedom attachment. Journal of Sound and Vibration, 331, 5393–5407 (2012)

14. Luongo, A., Zulli, D.: Aeroelastic instability analysis of NES-controlled systems via a mixed
Multiple Scale/Harmonic Balance Method. Journal of Vibration and Control, 20, 1985–1998
(2014)

15. Vakakis, A. F., Gendelman, O. V., Bergman, L. A., McFarland, D. M., Kerschen, G.,
Lee, Y. S.: Nonlinear trageted energy transfer in mechanical and structural systems I & II.
Springer, Berlin (2008)

16. Vaurigaud, B., Manevitch, L. I., Lamarque, C.-H.: Passive control of aeroelastic instability
in a long span bridge model prone to coupled flutter using targeted energy transfer. Journal
of Sound and Vibration, 330 (11), 2580–2595 (2011)

17. Nucera, F., Vakakis, A. F., McFarland, D. M., Bergman, L. A., Kerschen, G.: Targeted
energy transfers in vibro-impact oscillators for seismic mitigation. Nonlinear Dynamics, 50,
651–677 (2007)

18. Gendelman, O. V.: Targeted energy transfer in systems with non-polynomial nonlinearity.
Journal of Sound and Vibration, 315, 732–745 (2008).

19. Gendelman, O. V.: Analytic treatment of a system with a vibro-impact nonlinear energy
sink. Journal of Sound and Vibration, 331, 4599–4608 (2012).

20. Gourc, E., Michon, M., Seguy, S., Berlioz, A.: Targeted energy transfer under harmonic
forcing with a vibro-impact nonlinear energy sink: analytical and experimental developments.
Journal of Vibration and Acoustics, 137, 031008 (2015)

21. Gendelman, O. V., Alloni, A.: Dynamics of forced system with vibro-impact energy sink.
Journal of Sound and Vibration, 358, 301–314 (2015)

22. Lamarque, C.-H., Gendelman, O. V., Ture Savadkoohi, A., Etcheverria, E.: Targeted en-
ergy transfer in mechanical systems by means of non-smooth nonlinear energy sink. Acta
Mechanica. 221, 175–200 (2011)

23. Ture Savadkoohi, A., Lamarque, C.-H., Dimitrijevic, Z.: Vibratory energy exchange be-
tween a linear and a non-smooth system in the presence of the gravity. Nonlinear Dynamics,
70, 1473–1483 (2012)

24. Lamarque, C.-H., Ture Savadkoohi, A., Dimitrijevic, Z.: Dynamics of a linear system with
time-dependant mass and a coupled light mass with non-smooth potential. Meccanica, 49,
135–145 (2014)

25. Ture Savadkoohi, A., Lamarque, C.-H.: Vibratory energy localization by non-smooth en-
ergy sink with time-varying mass. Applied Non-Linear Dynamical Systems. Springer Pro-
ceedings in Mathematics & Statistics. 93, 429–442 (2014)

26. Lamarque, C.-H., Ture Savadkoohi, A., Etcheverria, E., Dimitrijevic, Z.: Multi-scales dy-
namics of two coupled non-smooth systems. International Journal of Bifurcation and Chaos,
22, 1250295:1–18 (2012).

27. Ture Savadkoohi, A., Lamarque, C.-H.: Dynamics of coupled Dahl type and non-smooth
systems at different scales of time. International Journal of Bifurcation and Chaos, 23,
1350114: 1–14 (2013).

28. Weiss, M., Chenia, M., Ture Savadkoohi, A., Lamarque, C.-H., Vaurigaud, B., Hammouda,
A.: Multi-scale energy exchanges between an elasto-plastic oscillator and a light nonsmooth
system with external pre-stress. Nonlinear Dynamics, 83, 109–135 (2016)



28

29. Lamarque, C.-H., Ture Savadkoohi, A.: Dynamical behavior of a Bouc-Wen type oscillator
coupled to a nonlinear energy sink. Meccanica, 49, 1917–1928 (2014)

30. Bastien, J., Bernardin, F., Lamarque, C.-H.: Non Smooth Deterministic or Stochastic
Discrete Dynamical Systems: Applications to Models with Friction or Impact. Wiley, 515
(2013).

31. Weiss, M., Ture Savadkoohi, A., Gendelman, O. V., Lamarque, C.-H.: Dynamical behavior
of a mechanical system including saint-venant component coupled to a nonlinear energy sink.
Internation Journal of Non-Linear Mechanics, 63, 10–18 (2014)

32. Lamarque, C.-H., Ture Savadkoohi, A.: Targeted energy transfer between a system with
a set of Saint-Venant elements and a nonlinear energy sink. Continuum Mechanics and
Thermodynamics, 27 (4), 819–833 (2015).

33. Manevitch L. I., The description of localized normal modes in a chain of nonlinear coupled
oscillators using complex variables. Nonlinear Dynamics, 25, 95-109 (2001).

34. Starosvetsky Y, Gendelman O. V., Strongly modulated response in forced 2DOF oscillatory
system with essential mass and potential asymmetry. Physica D, 237, 1719-1733 (2008).

35. Ikhouane F. Rodellar J., Systems with Hysteresis. Wiley, West Sussex (2007).
36. Nayfeh A. H., Mook D. T., Nonlinear oscillations, 720, John Wiley and Sons, New York

(1979).


