
HAL Id: hal-01308183
https://hal.science/hal-01308183v1

Submitted on 27 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Shortest Processing Time First and Hadoop
Laurent Bobelin, Patrick Martineau, Haiwu He

To cite this version:
Laurent Bobelin, Patrick Martineau, Haiwu He. Shortest Processing Time First and Hadoop. 3rd
IEEE International Conference on Cyber Security and Cloud Computing (CSCloud 2016), Jun 2016,
Pékin, China. �hal-01308183�

https://hal.science/hal-01308183v1
https://hal.archives-ouvertes.fr


Shortest Processing Time First and Hadoop
Laurent Bobelin∗, Patrick Martineau∗, Haiwu He†
∗ LI, Université François Rabelais, Tours, France

Email:firstname.lastname@univ-tours.fr
†CSTNET/CAS, China

Email: haiwuhe@cstnet.cn

Abstract—Big data has revealed itself as a powerful tool for
many sectors ranging from science to business. Distributed data-
parallel computing is then common nowadays: using a large
number of computing and storage resources makes possible
data processing of a yet unknown scale. But to develop large-
scale distributed big data processing, one have to tackle many
challenges. One of the most complex is scheduling.

As it is known to be an optimal online scheduling policy
when it comes to minimize the average flowtime, Shortest
Processing Time First (SPT) is a classic scheduling policy used
in many systems. We then decided to integrate this policy into
Hadoop, a framework for big data processing, and realize an
implementation prototype. This paper describes this integration,
as well as tests results obtained on our testbed.

I. INTRODUCTION

Interest into Big Data processing is constantly growing since
a few years. Its widespread use and its constant need of growth
in terms of scale has lead many researchers to pay attention
to it. Lots of tools have been produced to handle big data
and tackle the various challenges implied by manipulating it:
Distributed File Systems, deployment and management, data
import/export, SQL or NoSQL processing, Machine Learning,
etc.

Apache Hadoop is one of the major tools used nowadays
for Big Data distributed processing. Early releases of Hadoop
were limited to an efficient implementation of MapReduce
(MR), a programming framework dedicated to bid data. At that
time, the scheduler architecture was a weakness of Hadoop:
it did not scale well enough due to an over stressed single
point of failure, in charge of any scheduling decisions [1].
Since the identification of this problem, researchers commu-
nity have massively proposed algorithms and architectures to
alleviate this component. Lesson learned from initial archi-
tecture has led Apache to choose a new architecture named
YARN [2] that clearly separates allocation and scheduling
decisions depending of if this decision is cluster-wide (i.e.
fair share of resources between users) or application-wide
(which task should be scheduled and where). Applications
have then now to be written using the master/slave paradigm
and the master is responsible for application-wide scheduling
decisions. This architecture change also let Hadoop become
a generic middleware able to run any kind of jobs instead of
being able to cope only with MapReduce job. As a side-effect
of this architecture clean-up, tools associated with Hadoop
comes now as a complete ecosystem, each tool having a clear
separated role within the whole cluster operation.

Nowaday Hadoop also comes with a mature set of schedul-
ing algorithms that scale more efficiently than before. On the
allocation side, well-known algorithms as FIFO or fair-share
based algorithms are included in Hadoop, and the number
of possibilities offered by the whole architecture in terms of
scheduling grows fast, each release adding new features.

Shortest Processing Time First (SPT) is a well-known rule
used in the field of job-shop scheduling [3] known to be
optimal if the objective is to minimize the average flowtime.
Its principle is to order jobs according to their duration and
schedule them by beginning by the shorters. As the new
architecture induces an extra cost strongly related to flowtime
- the application master that spend resources as long as the
application is not over - minimizing average flowtime seems
to be a interesting way to optimize resource consumption.
We then decided to investigate possible integration of SPT
mechanism into Hadoop YARN scheduling.

This paper presents our integration choices, our prototype
implementation of SPT into Hadoop, as well as experimental
results obtained on our cluster. The rest of this paper is orga-
nized as follows. In SectionII we present YARN architecture
and its main features. Then in Section III we motivate our
work by showing gains expected from integration of SPT
into Hadoop, as well as giving a broad description of our
implementation. Then in section IV we give results, as well
as analysis of why results are so mixed, and compare it to
state-of-the-art algorithms in section V. We finally conclude
in section VI.

II. HADOOP SCHEDULING OVERVIEW

Hadoop see computing and storage resources as nodes
belonging to a cluster, as pictured in figure 1. Each node
belongs to a group named rack because it merely reflects what
a rack is in a data center: two nodes belonging to the same
rack are neighbors, and so communications should be more
efficient between those two nodes than between two nodes
not belonging to the same rack. Each node has an amount
of resources (CPU or RAM) that can be used to process
data. Computing resource is modeled by vCore, an entity that
most of the time is similar to core in a multicore architecture
(Hadoop v1 allowed to do some time-share on a core by the
possibility of defining computing slot - this is now strongly
deprecated).

Hadoop usually relies on HDFS, a distributed file systems
dedicated to big data storage. Each time data is stored, Hadoop



v
C
o
re

v
C
o
re

v
C
o
re

Node

v
C
o
re

v
C
o
re

v
C
o
re

Node

v
C
o
re

v
C
o
re

v
C
o
re

Node

Rack

v
C
o
re

v
C
o
re

v
C
o
re

Node

v
C
o
re

v
C
o
re

v
C
o
re

Node

v
C
o
re

v
C
o
re

v
C
o
re

Node

Rack

v
C
o
re

v
C
o
re

v
C
o
re

Node

v
C
o
re

v
C
o
re

v
C
o
re

Node

v
C
o
re

v
C
o
re

v
C
o
re

Node

Rack

Cluster

Fig. 1. Hadoop cluster

splits files into large blocks and distributes them across nodes
in a cluster of resources. It uses replication of blocks across
the racks to statistically give high probabilities that at least
one replica may be accessed easily, and thus ensure that if
any task needs this block it will be executed on a node near
to the replica. Since Hadoop v2 it is possible to use other
distributed file systems, but however most of them uses the
same kind of mechanisms to ensure good performances.

Hadoop v2 manages applications submitted by users to
queues. Applications are processing workload defined by
users: they have to follow the master/slave paradigm. Any time
a client submits application to a queue he asks for resource that
will be granted for his Master execution. Once the submission
is accepted, an Application Master submit resource requests
necessary to execute its tasks. It then schedules its tasks on
resource acquired before, or asks for resource to the cluster
central allocation point. Usually, it uses a kind of generic tool
(an execution engine) to deal with scheduling issues, as well
as fault tolerance and tasks monitoring. Queues are entities
defined by administrators: for each of this, a share of resource
is defined, as well as a set of user that may submit applications
using this queue.

The cluster-wide allocation of resource is done by a unique
component named Resource Manager (RM). Resource Man-
ager handles client requests for application submission as well
as resource requests coming from the different AM currently
running. RM is responsible for fair resources allocation in
regard to queues at which users submits their applications,
as defined by the cluster administrator. It allocates resource
within Containers. A Container guarantees exclusive access
of an amount of resources (nowaday, RAM and vCore) to
the application it has been allocated to. For each node, a
NodeManager interacts with RM for monitoring and handling
Containers allocated by RM to application on the node. An
overview of the application submission and execution is given
at fig 2. The cluster has n nodes, each of them having 4
cores. Each node then propose 3 vCore, and save the forth
core for NodeManager execution. Client request to submit
its application to RM; RM then accepts its application, and
gives client a Container on node 1 to host its AM. Once the
application master (AM) is deployed, it asks for Containers to
RM, and execute its tasks within those Containers. Monitoring
information from each Container is sent to the AM. Each NM

Container Container

Container Container

Container Container

Container

Container

Client

Resource
Manager

AppMaster Manager
Node

Node 1

Manager
Node

Manager
Node

Node 2

Node n

Fig. 2. Hadoop submission and run of an application

also sends monitoring information to RM (not pictured here).
Overall Hadoop architecture and design relies since its

beginning on a few key concepts:
• Homogeneity of resources (resources within the platform

are supposed to be distributed evenly on each platform
node so as any resource may be replaced seamlessly by
another in case of failure)

• Master/slave paradigm is used anywhere possible, since
its first version until now. Master/Slave is used for ex-
ample between RM and NM as well as between AM and
Containers.

• heartbeat-based communications that leverages scaling
effects. It allows administrator to control monitoring
bandwidth consumption by choosing the heartbeat rate.

Since version 2, another design pattern has been widely
adopted: event-based communication. The different operation
are handled separately by different threads or processes, al-
lowing to decorrelate loads. All those design patterns and
architectural choices are driven by the will to scale nicely. It
is then normal that scheduling itself relies on simple, fast and
efficient online algorithms. The overall behavior of Hadoop’s
algorithms is quite simple and relies on a pull model: any time
resources are freed, the scheduler search for resource request
to satisfy with these resources (an administrator, depending
on the cluster load, may also choose to run continuously this
search and ignore this event, which is useful when there is
many short running tasks).

3 different schedulers are available in Hadoop v2.6:
• FIFO (First In First Out) is the oldest scheduler imple-

mentation, and does not rely on queues.
• Capacity Scheduler handles hierarchy of queues. Admin-

istrator defines min and maximum amount of resources
that may be used by any application submitted to a given
queue. Queues may contain queues that then have to
share resource limits defined for the upper level queue.
Applications may obtain from the cluster the resource
ratio defined for its queue. If multiple applications either
from the same queue or from different queues requires
resources, they obtain it on first-come-first-serve pattern.

• Fair Scheduler also relies on hierarchy of queues. If
cluster resource are underused, an application may obtain



vCore 1 vCore 2 vCore 3 vCore 4 vCore 5 vCore 6

T2

T2

T2

T2

T2

T2

T2

T2

T2

T2

T2

T1

time

AM2AM1
T1

vCore 1 vCore 2 vCore 3 vCore 4 vCore 5 vCore 6

T2

T2

T2

T2

T2

T2

T2

T2

T2

T1

T2T2

time

AM2AM1
T1

Fig. 3. 2 different schedules for tasks. Left: arbitrary, right: SPT

more than its share of resources. If cluster is heavily
loaded, then a newly coming application is ensured to
obtain at least its fair share of resource as the RM will use
preemption to obtain resource back. In addition to this, a
policy can be configured for application submitted via the
same queue. Possible policies includes FIFO, where no
preemption will be used, Fair, where preemption will be
used to share resources between applications, based on
vCore share, and finally DRF, that calculates share based
on the most stressed resource.

III. INTEGRATING SPT INTO HADOOP

A. Motivation

SPT is optimal for the average flowtime metric. As any
application that is executed is driven by an AM that may
have resources reserved without actually fully using it (mainly
CPU), minimizing flowtime should minimize the number of
concurrent AM running, and, by doing so, it should minimize
total completion time of a set of applications concurrently
submitted. Nowadays schedulers does not take into account
the extra load induced by Application Master, and so SPT may
be of benefit. This is illustrated by figure 3. In this example,
Hadoop cluster has 6 vCores. There are 2 applications running
belonging to the same queue: application 1 has to run two
sequential tasks of duration 1, while application 2 comes
with 10 independant tasks of same unit duration 1. Each
application starts at time 0: their Application Masters named
AM1 and AM2 starts and consume each one vCore. At
first, any application receive vCore according to its need,
respectively one and 3 vCore. Then on the left of the figure,
application waits till time 3 before gaining a new container.
AM1 runs till time 3, while AM2 runs till time 4. On the
right side, the scheduler uses SPT; as application 1 is shorter
(2 tasks of size 1 instead of 10 for application 2), the scheduler
provides application 1 a container for its second task at time
1 instead of 2. Application Master 1 then finishes at time 2,
freeing a resource for the last task of application 2 which will
end at time 3. Both applications will then finish earlier when
using SPT.

B. Integration

As a policy for accepting jobs, SPT may be included in
both Capacity and Fair scheduler, or as a Scheduler per se for
a cluster-wide policy. If Hadoop official documentation states
that it is fairly simple to implement new scheduler, the shift

to event-based communication done between v1 and v2 of
Hadoop architecture does not simplify the task: interfaces to
implement in order to plug a new scheduler are in fact empty
shells, and so one have to implement event handling to have his
scheduler to work. A simpler choice to implement a prototype
is to implement SPT as policy for queues: if the queue contains
all cluster resources, then its behavior is similar to a cluster-
wide scheduler. Capacity Scheduler by default uses FIFO and
is not designed to plug new policies but FairScheduler is
designed to plug new policies. We then choose to implement
SPT as part as policies available for Fair scheduler (with the
same default of event-based communication stated before for
cluster-wide scheduler).

However integration is not straightforward. Indeed Hadoop
is designed based on the principle that any resource may be
replaced by another. So, when RM receives a set of resource
requests from an application, it fulfills those requests by
sending a set of Containers. It is up to application to decide
how it will use those Containers, based on its own needs,
and taking into account resources already acquired. Indeed in
between AM resource requests and RM response, there may
be changes in AM application states: some tasks may have
finished, some tasks may be ready to be scheduled, etc. There
is then in Hadooop implementation no direct relationships
between a Container granted to an AM and the resource
request that lead RM to grant it. However in our case it is
mandatory to do such link in order to schedule tasks of a
known duration into a Container of that duration. This led
to modify most of scheduler and AM internal as well as the
communication protocol between them to support this feature.

IV. EXPERIMENTAL RESULTS

Experiments where run on a machine with 2 processors
having each 12 cores, so 24 cores total, 64Gb of RAM, running
Linux Fedora 3.15. Our prototype is a modified version of
Hadoop 2.5.2. We compared SPT implementation to Fair and
FIFO queuing policy within Fair Scheduler. For FIFO and
Fair expermiments, we run a genuine 2.5.2 Hadoop version.
We configured the system to have 22 cores available as
vCore (2 cores where reserved for Client, RM, NodeManager).
We configured the maximum number of Application Master
running concurrently to 5, other submitted application are
staying in SUBMITTED states until a running AM finishes.

For each test, a client submit between 5 and 50 applications
to the queue at random start times. Each application sets
randomly a duration for any of its tasks, and sets randomly the
number of independent tasks to run. Each task is composed
of a system sleep (as Container gives exclusive access to
resource, there is no need of actual computation). We then
choose to set a negligible value for memory requests so as
to be able to neglect this parameter. We repeated each test
with different random seeds 5 times, and reused those random
seeds to have the same experiments running with any of the
3 policies, for a total of 150 tests. Makespan for the tests are
given in table I.



TABLE I
TESTS RESULTS (IN MINUTES)

number of app. Fair FIFO SPT
10 5.359543 5.033950 5.195693
15 9.462897 8.994237 9.917407
20 12.507600 11.643107 12.320407
25 15.057217 14.355550 15.571203
30 17.726013 17.233723 16.610773
35 21.098980 20.070550 20.042053
40 22.450530 21.245387 24.466207
45 26.226520 25.071687 25.636037
50 28.938380 27.633343 27.469473

Avg 1059000 1009000 1048000

As we may expect, FIFO gives the best results as it
schedules applications in their submission order, while Fair
gives worsts results. SPT shows better results in average than
Fair policy, and from time to time performs better than FIFO,
but on average SPT performances stays closer to Fair ones
than FIFO ones.

A closer looks at traces indicates us that SPT policy effect
is close to the mechanism existing to handle load induced by
AM: queue set up allows to limit the number of Application
Master currently running per queue (and by doing so preserve
the system for starvation that may occur if all resources are
used by Application Master ; in this case there would no
more resources to satisfy AM resources requests, and all AM
will wait for resources forever). This allows to statically limit
the number of currently running AM and so will minimize
average flowtime. The effects of SPT may been hidden by
this mechanism, mitigating results obtained.

V. RELATED WORK

Many work have been done on improving Hadoop schedul-
ing. One can find many survey, for example [4], [5], [6], [7] or
[8]. Algorithms developed range from RM scheduling policy
and schedulers to AM schedulers -dedicated or not to MR. It
should be noted that many of previous research has been driven
by the requirements of former (v1) Hadoop architecture. As
Hadoop v1 architecture was integrating all those 3 different
kind of algorithms into one single component, and as it was
a bottleneck when dealing with scaling, it is often hard to
compare those algorithms to algorithms dedicated to YARN
that separate cluster-wide and application-wide scheduling
and allocation. There are also many attempts to redefine
architecture and algorithms at the same time that are irrelevant
with our work.

Some works addressed the problem using job duration.
Authors of [9] for example use time-based information to do
preemption based on jobs duration: as long as a job uses the
platform it is aging and its priority decline other time ; authors
main aim is to provide a more efficient alternative to Hadoop’s
fair share while preserving a kind of fairness for user, while
our work target makespan.

Authors of [10] builds job profiles to predict job duration
and then schedule and allocate resources to jobs according to a
deadline, using an algorithm similar to the well-known earliest

deadline first; it targets only MapReduce tasks as it is based
on Hadoop v1.

Haste [11] is a YARN scheduler based on tasks duration
and dependencies, but it is dedicated to MapReduce tasks and
not any kind of load.

VI. CONCLUSION

In this paper we described integration of Shortest Processing
Time in Hadoop and our real-life experiments with our proto-
type. Despite of what the official documentation says, integrat-
ing new feature into Hadoop code is more complicated than
implementing an interface, as the event-based implementation
pattern used into code eventually led interface to be more or
less an empty shell.

Mixed results have been obtained. SPT efficiency is lever-
aged by the regulation of number of AM concurrently running.
This setting has to be done by administrators and wise choice
of the ratio between resource used by AM and resources
actually used to processing tasks may be complex, and shall
depend of the kind of load the cluster have to handle. SPT
then may be an help to leverage bad configuration choices on
some situations.

ACKNOWLEDGMENT

This work was partially supported by the European FEDER
project Big Trend.

REFERENCES

[1] Apache-Foundation, “Apache yarn,” 2015, accessed 16-05-2015.
[Online]. Available: http://hadoop.apache.org/docs/current/hadoop-yarn/
hadoop-yarn-site/YARN.html

[2] A. C. Murthy, V. K. Vavilapalli, D. Eadline, J. Niemiec, and J. Markham,
Apache Hadoop YARN: Moving Beyond MapReduce and Batch Process-
ing with Apache Hadoop 2, 1st ed. Addison-Wesley Professional, 2014.

[3] R. W. Conway, W. L. Maxwell, and L. Miller, Theory of Scheduling,
1st ed. Addison-Wesley Publishing Company, 1967, ch. 11.

[4] B. T. Rao and L. S. S. Reddy, “Survey on improved scheduling in
hadoop mapreduce in cloud environments,” CoRR, vol. abs/1207.0780,
2012. [Online]. Available: http://arxiv.org/abs/1207.0780

[5] S. Patil and S. Deshmukh, “Article: Survey on task assignment tech-
niques in hadoop,” International Journal of Computer Applications,
vol. 59, no. 14, pp. 15–18, December 2012, full text available.

[6] A. P. Kulkarni and M. Khandewal, “Survey on hadoop and introduction
to yarn,” International Journal of Emerging Technology and Advanced
Engineering, vol. 4, no. 5, pp. 82–87, May 2014.

[7] S. Bardhan and D. A. Menascé, “The anatomy of mapreduce jobs,
scheduling, and performance challenges,” in 39. International Computer
Measurement Group Conference, La Jolla, CA, USA, November 4-8,
2013, 2013. [Online]. Available: http://www.cmg.org/?s2member file
download=/proceedings/2013/254-Menasce.pdf

[8] D. H. S. G. Harshitha R, Rekha G S, “A survey on scheduling techniques
in hadoop,” International Journal of Engineering Development and
Research, vol. 3, no. ISSN:2321-9939, pp. 248–254, Jan. 2015.

[9] M. Pastorelli, A. Barbuzzi, D. Carra, M. Dell’Amico, and P. Michiardi,
“Hfsp: Size-based scheduling for hadoop,” in Big Data, 2013 IEEE
International Conference on, Oct 2013, pp. 51–59.

[10] A. Verma, L. Cherkasova, and R. H. Campbell, “Aria: Automatic
resource inference and allocation for mapreduce environments,” in
Proceedings of the 8th ACM International Conference on Autonomic
Computing, ser. ICAC ’11. New York, NY, USA: ACM, 2011, pp. 235–
244. [Online]. Available: http://doi.acm.org/10.1145/1998582.1998637

[11] Y. Yao, J. Wang, B. Sheng, J. Lin, and N. Mi, “Haste: Hadoop yarn
scheduling based on task-dependency and resource-demand,” in Cloud
Computing (CLOUD), 2014 IEEE 7th International Conference on, June
2014, pp. 184–191.


