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We investigate the conductance of a Normal-Normal’-Superconductor (NN’S) junction, in which
current injection destroys superconductivity in a small region N’ of the superconductor, with a size
varying with the applied voltage V. Voltage-dependent de Gennes - Saint James (dGSJ) bound
states appearing in the N’ slab lead to two distinct sets of conductance oscillations. We show that
this effect significantly alters the conductance of systems for which κ2vF ∼ 109 m/s such as pnictides
(κ and vF being the Ginzburg number and the Fermi velocity, respectively), and we discuss their
consequences on the identification of the bosonic modes of strongly coupled superconductors.

Current-voltage I(V) characteristics of junctions are
powerful tools to study the coupling of charge carriers
with the various excitations of a solid. In particular
the second derivative of the differential conductance is
proportional to the Eliashberg function, α2F (ω)1, that
quantifies the interaction of electrons with the bosonic
excitations of a given system. This quantity has hence
been extensively used to study a large variety of bosonic
modes, such as phonons in normal metals or magnons and
crystal field splittings2. Likewise, in the strong-coupling
limit, the Eliashberg theory of superconductivity predicts
an energy-dependent order parameter ∆(ω), which ex-
hibits strong modulations at energies for which α2F (ω) is
large3, leading to modulations of the single-particle exci-
tation spectrum (the so-called tunneling density of states,
tDOS). One of the first and most famous examples is the
tDOS of Pb, which exhibits two dip-hump features re-
lated to the two phonon modes responsible for most of the
pairing interaction4. More recently, a well-defined satel-
lite structure was evidenced in the tDOS of pnictides5,6.
The energy and temperature dependence of this satellite
closely match the behavior of a magnetic mode observed
by neutron scattering, commonly accepted to be involved
in the unconventional s± gap symmetry7.

Point-Contact Spectroscopy (PCS) is a technique in
which a microscopic Normal Metal-Superconductor (NS)
junction is created, for example by making a nanoscale
contact between a metallic tip and the studied super-
conductor (the so-called spear-anvil technique which is
used in our setup). At the NS interface, the supercon-
ducting pairing potential ∆ is weakened by the proxim-
ity of the normal metal, which results in the formation
of coherent bound states, first described by de Gennes
and Saint-James8, and experimentally observed in vari-
ous systems9. Experimentally, it turns out that in most
PCS measurements the proximity effect can be neglected.
However, in the case of pnictides, unusually large lifetime
broadenings must be introduced to fit the conductance
peaks, hindering a detailed analysis of the gap symme-
try. Moreover, many PCS spectra exhibit non-negligible
modulations at voltages in the range 20-60 meV which

are poorly accounted for6,10,11. We show here that in-
jection effects actually have to be taken into account in
the modeling of the metal - superconductor junction in
systems for which κ2vF ∼ 109 m/s such as pnictides (κ
and vF being the Ginzburg number and the Fermi ve-
locity, respectively). Indeed, in this case, a small normal
region (N’) develops at the NS interface, forming a NN’S
junction. The size of this N’ region is dynamically driven
by the applied current (and is hence voltage-dependent)
significantly altering the electronic structure of the su-
perconductor on a typical distance on the order of the
superconducting coherence length.

The model is based on the Bogoliubov-De Gennes
equations in a simplified 1D geometry, following the ap-
proach of Hahn12,13. The normal metal (superconduc-
tor) occupies the y<0 (y>0) half-space (see Fig.1). As
discussed below, a metallic slab (with effective mass and
Fermi velocity similar to those of the superconductor nor-
mal state) can develop in the superconductor on a size L
due to injection effects and the one-electron potential will
hence be given by V (y) = VN +Hδ(y) + (VS − VN )Θ(y),
with δ(y) and Θ(y) the Dirac and Heaviside distributions,
respectively. Finally, the pairing potential ∆(y) can then
be taken as ∆(y) = ∆Θ(y−L), where ∆ is constant and
isotropic.

The transmission coefficient of the NN’S junction will
be given by (see Eq.(18) in12) :

T (ε, λ) =
τN (1 + τNx− (1− τN )x2)

1− 2(1− τN )x cos[2(α− φ)] + (1− τN )2x2

where τN = 1/(1 +Z2
eff ) (Zeff being the effective trans-

parency of the barrier), α = 2λε/π with ε = E/∆ being
the normalized energy in unit of the superconducting gap
and λ = L/ξ the renormalized length of N’ normal slab
in unit of the coherence length ξ,

[x, φ] =

{
[(ε−

√
ε2 − 1)2, 0] if ε > 1

[1, arccos ε] if ε < 1
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Figure 1. Sketch of the NN’S junction studied in this paper.
We assume that a dynamically current-driven N’ normal state
develops at the NS interface for 0 < x < L(V ). The super-
conducting pairing potential is destroyed in this region and
becomes finite for x > L (right scale) whereas the one-electron
potential is discontinuous at the x = 0 (left scale).

and the differential conductance of the junction by :

dINS
dV

=
∂INS
∂V

∣∣∣∣
λ

+
dλ

dV

∂INS
∂λ

∣∣∣∣
V

where INS(V ) = − ∆
eRN

∫ eV/∆
0

T (ε,λ)
τN

dε and the second
term explicitly takes into account the dynamical change
of the slab width λ. The calculation is straightforward
and, introducing the renormalized voltage Ṽ = eV/∆,
one finally obtains

G(Ṽ ) =
T [Ṽ , λ(Ṽ )]

τN
+

1

τN

dλ

dṼ

∫ Ṽ

0

dT

dλ
dε = G0(Ṽ )+Gd(Ṽ )

where G0 corresponds to a standard "static" conduc-
tance channel, which is non-zero in all possible geome-
tries, and Gd a "dynamical" channel which exists only
when the slab width changes with voltage. The differen-
tial conductance of the junction is then fully determined
by the Blonder-Tinkham-Klapwijk (BTK) barrier14 (τN )
and the voltage dependence of the slab width, λ(Ṽ ). The
fixed L geometry (G(V ) = T (eV, L)/τN ) has been thor-
oughly studied in the literature and we will rather focus
on the case for which the slab width L changes with ap-
plied voltage due to high current injection that will drive
the junction out of equilibrium (see discussion below).
Note that the former equations have been derived at T=0
and, at finite temperature, the differential conductance
is given by the standard convolution by the Fermi func-
tion.The temperature hence acts as a low-pass filter on
the differential conductance, strongly smearing out oscil-
lations with periods smaller than a few kBT .

Fig.2a displays the G0 and Gd components of the dif-
ferential conductance at T=0, calculated for a moderate
barrier Zeff = 1 and a linearly growing slab of width
L = αeV with a typical α value on the order of ξ/∆ i.e.
λ = βṼ with β = 1. For this Zeff value, G0 exhibits
a low-bias peak and an oscillating behavior for Ṽ > 1
with a period and amplitude that decrease with increas-
ing voltage. As expected, G0 tends towards 1 at high
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Figure 2. (a) G0 and Gd components of the normalized dif-
ferential conductance in a dynamically current-driven NN’S
junctions (see text for details) calculated for Zeff = 1 and a
slab growth law λ(Ṽ ) = 1 × Ṽ . Both components exhibit a
high-frequency oscillation, whereas a low-frequency oscillation
is also present in the dynamical channel Gd (see text). Inset
: comparison of the low biais spectra in the standard BTK
model (no N’ slab, black curve), a static N’ slab of size L=ξ
(blue curve) and a dynamical N’ slab of width L(V ) = eV ξ/∆
(Red Curve). Note that the coherence peak is shifted towards
low biais voltages in the presence of the slab. (b) high biais
zoom the total normalized differential conductance for three
same geometries.

biases. Similarly, Gd also exhibits a low-bias peak and os-
cillations which coincide with the G0 ones but, the high-
bias Gd baseline is centered around zero conductance, as
it is mainly a correction to the excess current caused by
the dynamical change of the N’ slab. Besides, a second,
low-frequency oscillation is visible, with a slowly decreas-
ing amplitude.

In the standard BTK model (i.e. no N’ slab), the con-
ductance is featureless except for the quasiparticle peak
located exactly at the gap energy (Ṽ = 1, see inset of
Fig.2a), but it is important to note this peak is shifted
to lower biases in the presence of the N’ slab (either of
constant width or for a dynamically increasing slab). In-
deed, the De Gennes-Saint James (dGSJ) subgap states
present in the N’ slab8 give rise to oscillations in the
differential conductance (cosine term in the transmission
coefficient) and, in presence of the slab, G is maximum
when α−φ = 0 [π]. A first subgap state is hence obtained
for Ṽ = cos(2λṼ /π) ≤ 1 and the corresponding broad
conductance peak is a signature of the discontinuity in
the dGSJ density of states and not of a true quasipartic-
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ule peak anymore (see inset of Fig.2a). The peak position
still gives directly the energy position of the dGSJ fea-
ture for constant L, but does no longer correspond to any
particular energy in the case of a dynamically growing N’
slab. It is hence important to note that the differential
conductance can no longer be directly related to the den-
sity of states of the junction as the electronic structure
of the slab dynamically evolves with the applied voltage.

For Ṽ > 1, the conductance maxima occur for voltages
Ṽ = nπ2/2λ(Ṽ ), which correspond to the well-known
Rowell-McMillan (RMM) oscillations15. Those oscilla-
tions are periodic for a constant L value (see Fig.2b)
and are present in both G0 and Gd for the dynamically
current-driven slab with a quasi-period that decreases as
λ increases. The low-frequency oscillations visible in Gd
have a more subtle origin : they correspond to the en-
trance of a new dGSJ bound state below the supercon-
ducting gap and are defined by : λ(Ṽ ) = nπ2/2. As
the slab size increases, the total number of subgap states
inside the slab increases, with sudden jumps appearing
when a new state enters. The differential conductance
of a dynamically growing NN’S junction will hence show
two kinds of characteristic features, both related to the
existence and the evolution of dGSJ bound states inside
the N’ region (see Fig.2b). First,the quantized nature of
the dGSJ spectrum will give rise to broad subgap states
and non-periodic RMM type oscillations above the gap.
Second, the modulation of the total number of bound
states inside the N’ region as it grows with voltage will
lead to a low-frequency, slowly decaying oscillation.

The effect of the interface effective barrier Zeff on the
differential conductance of the dynamical NN’S model is
displayed in Fig.3. As expected from the BTK model, the
zero-bias conductance decreases with increasing Zeff , as
the probability of Andreev reflexion at the NN’ inter-
face drops, and the shape of the conductance becomes
more and more tunnel-like. The oscillations vanish for
Zeff = 0, as the differential conductance tends towards
the "bare" BTK prediction. Indeed, in this case, the
charge carriers can cross the NN’ interface without being
scattered or reflected, and no quasiparticle interference
can occur : the NN’S sandwich behaves as an effective
NS junction. For increasing Zeff quasi-particule inter-
ferences become more and more effective, resulting in
sharper subgap peaks and RMM oscillations of higher
amplitude. As shown in Fig.3b, the low frequency os-
cillations increases for Zeff . 1 but are hidden by the
RMM signal for higher barrier strengths. For Zeff = 10
the low-frequency signal is completely invisible compared
to the 1/ε2 envelope function of the RMM oscillations.

Finally, the influence of the grow rate β = dλ/dṼ is
displayed in the inset of Fig.3a. As discussed above, for
β ≤ 4 the main low biais conductance peak shifts towards
lower energies with increasing β and do not correspond
to the quasiparticle peak anymore. For higher β values,
several dGSJ subbands appear before the gap voltage is
reached and the differential conductance exhibits n sub-
gap peaks. Correspondingly, the quasi period of the high
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Figure 3. (a)Effect of the effective barrier parameter Zeff on
the differential conductance of a dynamically current-driven
NN’S junctions with λ = 1 × Ṽ . Inset : influence of the N’
region growth rate β = dλ/dṼ on the differential conductance
at T=0. The spectra corresponding to the values displayed
on the left axis are displayed as full black lines above the
color map. (b) High bias zoom of the differential conductance
showing that the amplitude of the low frequency oscillations
increases for Zeff → 1.

bias oscillations decreases with increasing β.
Let us now discuss the two main mechanisms that can

destroy superconductivity in the vicinity of the NN’ con-
tact . The model will be derived for the case of a point
contact between the N and N’ regions, and a hemispheri-
cal N’ region (which we call a "normal bubble"). It turns
out, that the dGSJ states for a s-wave superconductor
in spherical symmetry have the same characteristic ener-
gies and lengths as the 1D case16. Besides, taking into
account the 2D or 3D nature of the junction often leads
to results that can be nearly reproduced by a 1D model
with an effective barrier strength2. Apart from some am-
plitude deviations, we then expect the 1D model to be a
fair approximation of a more realistic 3D point-contact.

First, if the local current density exceeds the depairing
current density Jd in a region of typical size L ≈ ξ, it
becomes energetically favorable for the sample to tran-
sit into the metallic state in this region. Let us con-
sider a planar NS junction of contact resistance RN and
assume that the current is injected in the S electrode
through a point contact and spreads isotropically in the
superconductor from this point source (this is a good
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Figure 4. (a) High bias differential conductivity measure-
ments in a BaFe2−xNixAs2 close to optimal doping between
T = 5.5 K and 12.1 K (the different curves have been shifted
for clarity). As shown quasi-periodic strong modulations
are visible (left) and the position of the maxima roughly
scales as the superconducting gap (right). The position of
the peaks can be indexed following two sequences scaling as
Vmax = αn2/3 (see text for details) with α ∼ 10 meV (open
circles) and α ∼ 16 meV (closed squares), respectively. (b)
Calculated λ(Ṽ ) (dotted line) for typical parameters of the
122 pnictides (see text). The red full line is the corresponding
calculated differential conductance at T=0. Strong modula-
tions of the differential conductivity are visible in the vicinity
of the bosonic modes.

approximation for small Zeff ). In this approximation
the surfaces of constant current densities are hemispheres
centered around the injection point and J ∼ Jd for
L ∼

√
V/[2πRNJd]. Note that we assumed here a linear

I(V ) characteristics which leads to an error of at most a
factor 2 in the Zeff → 0 limit (for Ṽ < 1), and becomes
exact in the Ṽ � 1 limit.

The RMM maxima of the differential conductance will
then be obtained for Ṽ = (n2π5ξ2RNJde/2∆)1/3. Taking
Jd(0) ∼ 10−10/λL(0)2ξ(0) and ∆(0) = ~vF /πξ(0) one
obtains :

Ṽ ∼ [n2108RN/vFκ
2]1/3F (T/Tc)

with κ = λL/ξ is the Ginzburg parameter and vF being
the Fermi velocity. Note that F (T/Tc) ∼ 1 so that Ṽ is
only very weakly temperature dependent. Similarly, the

low frequency oscillations will be observed for λ = nπ2/2

i.e. for Ṽ = [n2108RN/vFκ
2]. Taking RN ∼ 10 Ω, those

out-of-equilibrium effects are hence expected o be ob-
served in systems for which vFκ2 ∼ 109 m/s. Note that
in this normal bubble scenario the energy period of the
oscillations shrinks with temperature (following the gap)
in strong contrast with the ∆(ω) related bosonic spec-
trum in superconducting tunneling experiments, which
shifts in energy with temperature, as the superconduct-
ing gap closes.

In standard superconductors (such as Nb) κ ∼ 10,
vF ∼ 3.105 m/s and 108RN/vFκ

2 ∼ 30; the oscilla-
tions are hence barely visible but in 122-pnictides, such
as BaFe2−x(Co,Ni)xAs2, κ ∼ 100 (see for instance17),
vF ∼ 105 m/s18 and 108RN/vFκ

2 ∼ 1 making this sys-
tem very sensitive to those current induced out of equilib-
rium phenomena. This system has been previously inten-
sively studied in our group (see [17] and references therein
for sample details) and we have performed PCS measure-
ments (with RN ∼ 10 − 20 Ω) in BaFe2−xNixAs2 single
crystals close to optimal doping. As shown in Fig.4(a),
as expected, clear oscillations are visible in the high bias
differential conductivity in very good agreement with our
theoretical current-driven N’ "bubble" (the low energy
spectra present the typical Andreev bump usually ob-
served in those systems, not shown). Those oscillations
have been observed in several samples and in all of them
the conductance maxima could be ascribed to two quasi
periods Vmax = αn2/3 with α ∼ 10 meV and α ∼ 16 meV,
respectively (see Fig.4a). Introducing the two gaps of this
system (∆S ∼ 4 meV and ∆L ∼ 10 meV6,11), one hence
gets [108RN/vFκ

2] ∼ 0.1 in very reasonable agreement
with the electronic parameters of this system18. Note
that, as discussed above, the presence of those oscilla-
tions also leads to a shift (and important smearing) of the
low biais peak which then leads for an underestimation
of the gap value on the order of ∼ 10% for the small gap
and up to ∼ 30% for large gap. This shift/smearing ef-
fect can account for the large dispersion of the gap values
deduced from PCS measurements11. Finally note that,
as expected, the position of the observed maxima shrinks
with T, nearly following the temperature dependence of
the gap (see right panel in Fig.4a).

The second mechanism which is expected to give rise to
an injection-dependent normal bubble is the formation of
a non-thermal "hot spot" near the point-contact. In this
scenario, multiple scattering of high-energy injected elec-
trons leads to an out-of-equilibrium electron distribution
function that does not allow for a superconducting gap to
exist on a typical scale that depends on injection current
and electron-boson coupling. In order to calculate the
λ(Ṽ ) law, numerical calculations were carried out using
the formalism introduced by Hahn19. The input param-
eters of the model are the Fermi velocity, the coherence
length (or superconducting gap), the density of states at
the Fermi energy and the electron-boson coupling Eliash-
berg function. The λ(Ṽ ) law calculated for typical pa-
rameters of the 122 Ni or Co doped pnictides18 (N0 = 1.3
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1020J−1.nm−3, ξ0 = 3nm, ∆0 = 4meV ) and the Eliash-
berg fonction sketched by the dashed-dotted line is dis-
played in Fig.4b (dotted line) together with the corre-
sponding calculated differential conductance (red line).

As shown, If α2F (ω) exhibits well-defined strongly
coupled low-energy peaks λ(Ṽ ), the injected electrons
are poorly scattered for low voltages and the normal
bubble remains very small. When the injection voltage
reaches the first (sharp) bosonic mode, electron scatter-
ing becomes very efficient and the normal bubble grows
quickly. As the voltage increases, more and more bosonic
modes will become available for scattering, resulting in
a smoothly growing bubble, with some modulations for
voltages matching strongly coupled bosonic modes. This
non-trivial bubble growth is then expected to give rise to
satellite structures in the differential conductance (see
red curve in fig. 4b) opening the possibility to iden-
tify the relevant bosonic modes for charge transport even
in imperfect, strongly diffusive junctions. Even though
most of the single-electron spectroscopic information is
lost in such junctions, this work suggests that in real
experiments electron-boson coupling can still be probed
accurately in "bad" junctions, provided the quasiparticle
mean free path is of the order of magnitude of, or slightly
larger than the superconducting coherence length. Un-
fortunately, in our case, the strong oscillations induced
by the first mechanism are hindering the clear identifi-

cation of those bosonic modes but it is worth noting the
enhanced oscillations observed for V ∼ 20 meV which
are consistent with the magnetic modes deduced from
neutron measurements7 (see also6).

We have presented here a model for the differential
conductance of current-driven NN’S junctions, in which
the N’ slab is dynamically induced by current injection
effects. This slab can be due either to the fact that the
injected current density exceeds the depairing current in
the vicinity of the injection point or to downscattering of
high-energy charge carriers by strongly coupled bosonic
modes. Critical current effects are expected to play an
important role in systems for which vFκ

2 ∼ 109 m/s
in very good agreement with PCS spectra performed in
BaFe2−xNixAs2 signal crystals. If the electron mean free
path is comparable to the Pippard coherence length, en-
hanced modulations of the differential conductivity are
expected to be observed for voltages corresponding to
strongly coupled bosonic modes.
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