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On the computation of viscous terms for incompressible 

two-phase flows with Level Set/Ghost Fluid Method
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In this paper, we present a detailed analysis of the computation of the viscous terms for the 
simulation of incompressible two-phase flows in the framework of Level Set/Ghost Fluid 
Method when viscosity is discontinuous across the interface. Two pioneering papers on 
the topic, Kang et al. [10] and Sussman et al. [26], proposed two different approaches to 
deal with viscous terms. However, a definitive assessment of their respective efficiency 
is currently not available. In this paper, we demonstrate from theoretical arguments and 
confirm from numerical simulations that these two approaches are equivalent from a 
continuous point of view and we compare their accuracies in relevant test-cases. We 
also propose a new intermediate method which uses the properties of the two previous 
methods. This new method enables a simple implementation for an implicit temporal 
discretization of the viscous terms. In addition, the efficiency of the Delta Function method 
[24] is also assessed and compared to the three previous ones, which allow us to propose 
a general overview of the accuracy of all available methods. The selected test-cases involve 
configurations wherein viscosity plays a major role and for which either theoretical results 
or experimental data are available as reference solutions: simulations of spherical rising 
bubbles, shape-oscillating bubbles and deformed rising bubbles at low Reynolds numbers.

1. Introduction

In pioneering works on simulation of incompressible two-phase flows with interface tracking or interface capturing algo-
rithms, discontinuities of pressure field, density field or viscosity field were tackled by smoothing the singular terms across 
the interface on a finite layer of about 2 or 3 grid cells thick. This kind of approaches has been proposed in the framework 
of Front-Tracking algorithms [1,30], for Volume-of-Fluid methods [6,12], and for Level-Set methods [24]. In the literature, they 
are referred to as Continuum Surface Force methods or Delta Function methods. Such methods still provide satisfactory results 
in many situations. Nevertheless, they suffer from some drawbacks such as the presence of intense spurious currents at high 
capillary-numbers, which can induce strong numerical instabilities. Also, they have to face the tricky problem of describing 
a surface as a volume of small thickness. A few years ago, a new class of method appeared in the literature, where singular 
terms across an interface are treated as jump conditions, which prevents from interface thickening as well as it reduces 
spurious currents. Significant contributions to this new approach, well known as Sharp Interface method, can be found in 
[21] for Front-Tracking methods, in [10,15,26] for Level-Set methods, and [5] Volume-of-Fluid methods. In [26], a Level-Set
method was coupled with a Volume-of-Fluid method, but the way to impose the jump conditions depended only on the 
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Level-Set function – the volume fraction being just used to improve interface advection and to compute interface curvature. 
Most of these papers emphasize on improvements resulting from a sharp description of the surface tension, but they are 
not conclusive about the effectiveness of Sharp Interface methods for the discretization of viscous terms. However, Kang 
et al. [10] proposed a new discretization of the viscous terms based on the general principle of the Ghost Fluid Method 
[4,15]. The main feature of this new approach consists in computing the contraction of the divergence of the viscous stress 
tensor in a Laplacian operator of the velocity components µ1 EV rather than its full expression (with µ the dynamic vis-
cosity and EV the velocity field). This contraction is only possible for incompressible flow when viscosity is uniform; it is 
hence apparently not suited to compute the viscous terms on grid cells that are crossed by an interface between two dif-
ferent fluids. To solve this issue for two-phase flows, once µ1 EV has been computed, the authors propose to add explicitly 
the jump of the normal viscous stresses at the interface, resulting from the jump of viscosity, to the pressure jump while 
solving the Poisson equation for the pressure. Another approach to compute the viscous terms in the framework of Sharp 
Interface methods, inspired of a previous work [15], was proposed by Sussman et al. [26]. In a similar way of what it is 
usually done in Continuum Surface Force methods, the full expression of the divergence of the viscous stress tensor ∇.(2µD)

is discretized, the viscous stress tensor being defined by 2µD for a Newtonian fluid, with D the rate-of-deformation tensor. 
In this approach, contrary to previous work [10], it seems that the contribution of the normal viscous stresses has not to be 
added explicitly to the pressure jump condition at the interface. Valuable numerical validations of this method are proposed 
in [26]. However, whether these two approaches are formally equivalent or not remained an open question. In particular, 
the fact that jump of the normal viscous stresses has to be explicitly added to the pressure jump in [10] and not in [26]
still required to be justified.

In this paper, we focus on the computation of viscous terms for incompressible two-phase flows using Level-Set methods.
In the framework of Sharp-Interface methods, we shall demonstrate that the two approaches introduced in [10] and [26]

are equivalent from a theoretical point of view, even if their numerical implementation is quite different.
From this original demonstration, a new intermediate method is proposed, which allows to make more easily the implicit 

temporal discretization of the viscous terms as the two methods proposed in [10] and [26].
To complete this survey of numerical methods, we also discuss the consistency of these three Sharp-Interface methods 

with the Delta-Function method that is based on a Continuum Surface Force approach.
Section 2 describes the formalism of this set of four methods and proves their equivalence. Then, Section 3 proposes 

three numerical benchmarks that are particularly relevant to assess the reliability of these methods and compare their 
accuracy: spherical rising bubbles, damped shape oscillations of a bubble, and deformed rising bubbles at low Reynolds 
number.

2. Equations & numerical methods

2.1. Equation of motion for two-phase flows, jump condition and singular source term

Let us consider the Navier–Stokes equations for a single-phase incompressible flow; the following two equations express 
respectively momentum and mass conservation:

ρ
D EV

Dt
= −∇p + ∇ · (2µD) + ρEg, (1)

∇ · EV = 0, (2)

where EV is the velocity field, D
Dt

is the Lagrangian derivative, ρ is the fluid density, µ is the fluid viscosity, p is the pressure 
field, Eg is the gravity acceleration, and D is the rate-of-deformation tensor defined as:

D =
∇ EV + ∇ EV T

2
. (3)

For incompressible flows with constant viscosity, it can be easily shown that:

∇ · (2µD) = µ1 EV , (4)

which leads to the following simplified expression for Navier–Stokes equation:

ρ
D EV

Dt
= −∇p + µ1 EV + ρEg. (5)

Let us now consider an incompressible two-phase flow, the whole-domain-formulation [1,23] leads to the following expres-
sion that includes the capillary forces:

ρ
D EV

Dt
= −∇p + ∇ · (2µD) + σκEnδΓ + ρEg, (6)

where σ is the surface tension, κ is the interface curvature, En is the normal vector at the interface and δΓ is a multidimen-
sional Dirac distribution localized at the interface. If no phase change occurs, eq. (2) stays valid. As density and viscosity 
can vary the across interface, they can be defined as:



ρ = ρgas + (ρliq − ρgas)HΓ = ρgas + [ρ]Γ HΓ , (7)

µ = µgas + (µliq − µgas)HΓ = µgas + [µ]Γ HΓ , (8)

where HΓ is a Heaviside distribution, equal to 1 in the liquid phase and equal to 0 in the gas phase, with the following 
definitions for density and viscosity jump conditions:

[ρ]Γ = ρliq − ρgas, (9)

[µ]Γ = µliq − µgas. (10)

Moreover, considering a divergence-free condition on the velocity field, the following unsteady advection equation for the 
density field is obtained from mass conservation:

Dρ

Dt
= 0. (11)

From that equation, we can deduce the usual propagation equation for interface motion that can be used with Level Set 
methods:

Dφ

Dt
= 0, (12)

where φ is a signed distance function from the interface. Note that another similar equation can be derived for Volume Of 
Fluid methods:

DF

Dt
= 0, (13)

where F is the local volume fraction of the considered phase in a computational cell.
The balance of normal stresses at the interface involves a jump of pressure and a jump of normal viscous stresses:

[p]Γ = σκ + 2[µ]Γ
∂Vn

∂n
. (14)

Let us remark now that the viscous-stress tensor can be split into two parts:

∇ · (2µD) = µ∇ · (2D) + 2D · ∇µ. (15)

If viscosity is a piecewise constant, by using the definition of the Heaviside derivative, it can be shown that:

∇µ = [µ]Γ EnδΓ . (16)

Finally, we observe that the previous splitting (15) is a decomposition of the global viscous term in a continuous part and a 
singular part (zero everywhere except at the interface):

∇ · (2µD) = µ1 EV + 2[µ]Γ D · EnδΓ (17)

This highlights that the contribution of the viscous terms on the pressure jump is already included in the left-hand side 
of eq. (17). Thus, we can suppose that computing the divergence of the overall viscous stress tensor allows including the 
contribution of viscous effects in the pressure jump. A more rigorous proof of that assertion is provided in Section 2.4 of 
this paper.

To summarize, the momentum equation can be defined in a whole-domain formulation leading to eq. (6) with a density 
and a viscosity field defined respectively by eqs. (7) and (8), or in a jump-condition formulation leading to eq. (5) with 
additional jump conditions (9), (10), (14).

2.2. About the link between jump conditions and singular source terms

Let us consider a volume Ω , bounded by a surface Σ , and defined as Ω1UΩ2 , where the two subdomains Ω1 and Ω2

are separated by a closed surface Γ with Γ ∩ Σ = ∅, as illustrated in Fig. 1. We define En1 and En2 as the normal vectors at 
the surface Γ pointing respectively towards Ω1 and Ω2 .

Let us now consider a piecewise continuous function ψ which respects the Poisson equation,

1ψ = 0 (18)

inside both subdomains Ω1 and Ω2 , with the following jump condition at the interface:

[ψ]Γ = a(ExΓ ), (19)

where a(ExΓ ) is a function of the interface coordinate ExΓ . The jump condition (19) involves that the following surface integral 
is equal to zero



Fig. 1. Sketch of a two-phase flow domain Ω1UΩ2 with an immersed interface Γ .

¨

Γ

(

[ψ]Γ − a(ExΓ )
)

En2dS = E0 (20)

Considering a homogeneous Dirichlet boundary condition on the external boundary Σ of the computational field, it can be 
easily demonstrated that

¨

Σ

ψEnΣdS = 0, (21)

where EnΣ is the normal vector pointing outwards the external boundary Σ . Thus
¨

Σ

ψEnΣdS +

¨

Γ

(

[ψ]Γ − a(ExΓ )
)

En2dS = 0. (22)

Moreover, by remarking that
¨

Γ

(

[ψ]Γ − a(ExΓ )
)

En2dS =

¨

Γ

ψEn2dS +

¨

Γ

ψEn1dS −

¨

Γ

a(ExΓ )En2dS (23)

we obtain the following equality:
¨

Σ

ψEnΣdS +

¨

Γ

ψEn2dS +

¨

Γ

ψEn1dS =

¨

Γ

a(ExΓ )En2dS. (24)

Eq. (24) can also be written as
˚

Ω1

∇ψdΩ +

˚

Ω2

∇ψdΩ =

˚

Ω

∇ψdΩ =

˚

Ω

a(ExΓ )En2δΓ dΩ, (25)

which leads to the following local formulation:

∇ψ = a(ExΓ )En2δΓ . (26)

Finally, after differentiation, we obtain:

1ψ = ∇ ·
(

a(ExΓ )En2δΓ

)

. (27)

We have therefore shown that adding the following source term ∇ · (a(ExΓ )En2δΓ ) to the right-hand side of a Poisson equation 
imposes a jump condition [ψ]Γ = a(ExΓ ) on its solution ψ . This is also valid for a Poisson equation like eq. (18) with a 
right-hand side different from zero.

Moreover, following a similar approach, it can also be demonstrated that a scalar field that is solution of the following 
equation

1ψ = b(ExΓ )δΓ , (28)

with b(ExΓ ) another function depending on interface coordinate, will also fulfills the following jump condition:

[En2 · ∇ψ] = b(ExΓ ). (29)

More accurate demonstrations on the derivation of jump conditions can be found in [14].



2.3. Projection method for whole-domain formulation and jump-condition formulation

Let us consider now a first-order explicit projection method for the single-phase incompressible Navier–Stokes equation. 
It consists in prescribing a first intermediate velocity field which does not respect the divergence-free condition (predictor 
step):

EV ∗
1 = EV n − 1t

((

EV n · ∇
)

EV n − υ1 EV n − Eg
)

, (30)

with υ the kinematic viscosity.
Next, a Poisson equation must be solved to determine the pressure field:

1pn+1 = ρn+1∇ · EV ∗

1t
. (31)

Then, in a last step, the final divergence-free velocity field can be computed using the pressure field determined at the 
previous step:

EV n+1 = EV ∗ − 1t
∇pn+1

ρn+1
. (32)

Applying the projection method to an incompressible two-phase flow is less straightforward. Depending on whether the 
whole-domain formulation or the jump-condition formulation is used, the intermediate velocity in the first step of the projec-
tion method has to be different.

Let us first consider a whole-domain formulation. An explicit temporal discretization of the capillary and viscous terms 
leads quite naturally to the following predictor step

EV ∗
2 = EV n − 1t

(

(

EV n · ∇
)

EV n −
∇ · (2µD

n)

ρn+1
−

σκEnδΓ

ρn+1
− Eg

)

, (33)

with the corresponding Poisson equation

∇ ·

(

∇pn+1

ρn+1

)

=
∇ · EV ∗

2

1t
= ∇ ·

(

EV n − 1t

(

(

EV n · ∇
)

EV n −
∇ · (2µD

n)

ρn+1
−

σκEnδΓ

ρn+1
− Eg

))

. (34)

Next, the correction step gives:

EV n+1 = EV ∗
2 − 1t

∇pn+1

ρn+1
. (35)

Let us now consider the application of the projection method to a jump-condition formulation of the Navier–Stokes equation. 
We have to solve eq. (5), so the first step of the projection method is similar to eq. (30) for a single-phase flow. As we want 
to impose the appropriate jump condition at the interface on the pressure field (eq. (14)), we can show, using the results 
presented in Section 2.2, that it can be done by solving the following Poisson equation for the pressure with a right-hand 
side split into a continuous part and a singular part:

∇ ·

(

∇pn+1

ρn+1

)

=
∇ · EV ∗

1

1t
+ ∇ ·

(

(σκ + 2[µ]Γ
∂Vn
∂n

)EnδΓ

ρn+1

)

. (36)

Using the splitting of the viscous term given in eq. (17) and noting that En · D · En = ∂Vn
∂n

, we find the following relation 
between EV ∗

2 and EV ∗
1 :

EV ∗
2 = EV ∗

1 + 1t
(σκ + 2[µ]Γ

∂Vn
∂n

)EnδΓ

ρn+1
. (37)

The use of eq. (37) allows demonstrating that eq. (34) and eq. (36) are formally identical:

∇ ·

(

∇pn+1

ρn+1

)

=
∇ · EV ∗

2

1t
=

∇ · EV ∗
1

1t
+ ∇ ·

(

(σκ + 2[µ]Γ
∂Vn
∂n

)EnδΓ

ρn+1

)

. (38)

Then, by considering eq. (37), we can deduce the following correction step for a jump-condition formulation, leading to the 
same field EV n+1 than in eq. (35):

EV n+1 = EV ∗
1 −

1t

ρn+1

(

∇pn+1 −

(

σκ + 2[µ]Γ
∂Vn

∂n

)

EnδΓ

)

. (39)

To summarize, we have shown that both a whole-domain formulation and a jump-condition formulation can be used when 
applying a projection method to an incompressible two-phase flow. These two methods are formally equivalent, but they 



lead to a different definition of the predicted velocity field in the first step of the projection method. In [10], the interme-
diate velocity field EV ∗

1 is used, whereas in [1,3,6,24] it is the intermediate velocity field EV ∗
2 . These two methods will be 

respectively named in the rest of this paper the Ghost-Fluid Primitive viscous Method (GFPM) and the Delta-Function Method

(DFM).

2.4. Projection method for intermediate formulations

Other definitions of the predicted velocity field are possible. For example, we propose the following two definitions, the 
respective interests of which will be discussed later:

EV ∗
3 = EV n − 1t

(

(

EV n · ∇
)

EV n −
∇ · (2µD

n)

ρn+1
− Eg

)

, (40)

EV ∗
4 = EV n − 1t

(

(

EV n · ∇
)

EV n −
∇ · (µ∇ EV n)

ρn+1
− Eg

)

. (41)

In the same way as in the previous section, they lead to the definition of these two Poisson equations, formally equivalent 
to eq. (34) and eq. (36):

∇ ·

(

∇pn+1

ρn+1

)

=
∇ · EV ∗

3

1t
+ ∇ ·

(

σκEnδΓ

ρn+1

)

, (42)

∇ ·

(

∇pn+1

ρn+1

)

=
∇ · EV ∗

4

1t
+ ∇ ·

(

(σκ + [µ]Γ
∂Vn
∂n

)EnδΓ

ρn+1

)

. (43)

The following relations have been used to determine eq. (43):

∇ · (2µD) = ∇ ·
(

µ
(

∇ EV + ∇T EV
))

= ∇ · (µ∇ EV ) + µ∇ · ∇T EV + ∇µ · ∇T EV , (44)

∇ · (2µD) = ∇ · (µ∇ EV ) + [µ]Γ ∇T EV .EnδΓ , (45)

since ∇.∇T EV = 0 for an incompressible flow, and

En.∇T EV .En =
∂Vn

∂n
. (46)

Then, the two final corrector steps, respectively suitable with eq. (40) and eq. (41), are:

EV n+1 = EV ∗
3 −

1t

ρn+1

(

∇pn+1 − σκEnδΓ

)

, (47)

EV n+1 = EV ∗
4 −

1t

ρn+1

(

∇pn+1 −

(

σκ + [µ]Γ
∂Vn

∂n

)

EnδΓ

)

. (48)

The intermediate velocity field EV ∗
3 has already been used in Refs. [5,21,26] in the framework of Sharp Interface methods. 

In the rest of this paper, the Ghost-Fluid Conservative viscous Method (GFCM) will refer to the numerical method proposed 
in [26]. Finally, the use of EV ∗

4 leads to an original numerical method to deal with the viscous terms, that we name the 
Ghost-Fluid Semi-Conservative viscous Method (GFSCM).

The four methods DFM, GFPM, GFCM and GFSCM described above are therefore theoretically equivalent, but they lead 
to different numerical approximations. The next objective of this paper is to discuss about their respective interests and 
numerical accuracy.

2.5. Spatial discretization of surface tension

When a whole-domain formulation [3,6,12,24,30] is used, the surface-tension singular term is accounted for when EV ∗
2

is computed. The intermediate velocity field is next differentiated to compute the right-hand side of the pressure Poisson 
equation. Therefore, it is well suited to a smooth discretization of the surface-tension term that involves a fictitious interface 
thickness. Its application to a sharp-interface description would be trickier. This approach is that of the Delta-Function 
Method, known as Continuum Surface Force method. In this framework, the numerical discretization of discontinuous terms 
makes use of the following regularized smoothed Heaviside function defined from the Level-Set function φ:

Hε(φ) =











0 if φ < −ε

1
2

(

1+ φ
ε +

sin(
πφ
ε )

π

)

if |φ| ≤ ε

1 if φ > +ε,

(49)

where ε is the fictitious interface thickness, which is equal to 2 or 3 cell sizes. The surface-tension term can then be 
computed using the following approximation:



σκEnδΓ
∼= σκ∇Hε. (50)

At the opposite, a projection method using a jump-condition formulation with EV ∗
1 as intermediate velocity field is well 

suited for Sharp-Interface methods. Thanks to this formulation, artificial smoothing of interface singularities can be avoided, 
allowing a sharp-interface description. It has been used in the framework of Ghost-Fluid Method in [15], where authors 
propose a first-order discretization to impose a jump condition to the solution as well as to the normal derivative of the 
solution when solving the Poisson equation

∇ · (β∇u) = f , (51)

i.e. with the following interface jump conditions

[u] = a(ExΓ ) and

[

β
∂u

∂n

]

= b(ExΓ ).

Considering that capillary effects can be computed as a jump condition on pressure, an original Sharp-Interface method for 
solving the Navier–Stokes equation in the framework of Level-Set methods was introduced in [10]. This method has been 
widely used to perform direct numerical simulations of two-phase flows [16,26–29]. Let us now briefly summarize this 
approach.

The discretization of a 2D Poisson equation as eq. (51), which involves a discontinuity of the solution and of its normal 
derivative at the interface, writes:

βi+1/2 j(
ui+1 j−ui j

1x
) − βi−1/2 j(

ui j−ui−1 j

1x
)

1x
+

βi j+1/2(
ui j+1−ui j

1y
) − βi j− 1

2
(
ui j−ui j−1

1y
)

1y
= f i j + gi j + hi j, (52)

where interpolations of the diffusion coefficient β on the cell borders are computed as the harmonic average of its value 
β+ in the region where the Level Set function is positive and its value β− in the region where the Level Set function is 
negative; for example, if the interface crosses a mesh segment between xi and xi+1:

βi+1/2 j =
β+β−

β+θ + β−(1− θ)
, (53)

with

θ =
|φi+1 j|

|φi+1 j| + |φi j|
. (54)

The source terms gi j and hi j in the right-hand side of eq. (52) match with the discontinuities of u and of β ∂u
∂n
; they can be 

computed as

gi j = gR
i j + gL

i j + gT
i j + gB

i j, (55)

hi j = hR
i j + hL

i j + hT
i j + hB

i j, (56)

where each of these terms are non-zero when an interface crosses the corresponding grid segment, and superscripts R , L, 
T , B denote respectively right, left, top and bottom sides. Their expressions are:

gR
i j = ±

βi+1/2 jaΓ

1x2
gL
i j = ±

βi−1/2 jaΓ

1x2
gT
i j = ±

βi j+1/2aΓ

1y2
gB
i j = ±

βi j+1/2 jaΓ

1y2
, (57)

hR
i j = ±

βi+ 1
2 jbΓ θ

β±1x
hL
i j = ∓

βi− 1
2 jbΓ θ

β±1x
hT
i j = ±

βi j+ 1
2
bΓ θ

β±1y
hB
i j = ∓

βi j− 1
2
bΓ θ

β±1y
. (58)

It is noteworthy that an analogy can be established by using the results demonstrated in Section 2.2 and the discretization 
described in this section. For sake of simplicity, let us take a diffusion coefficient β equal to unity. In Section 2.2, it has 
been shown that solving

1u = f with [u] = a(ExΓ ) and

[

∂u

∂n

]

= b(ExΓ )

is equivalent to solve

1u = f + ∇.
(

a(ExΓ )EnδΓ

)

+ b(ExΓ )δΓ .

Comparing this expression with discrete equation (52), we deduce that source terms gi j and hi j , that appear in the frame-
work of the Ghost-Fluid Method, are respectively numerical approximations of ∇.(a(ExΓ )EnδΓ )|i j and b(ExΓ )δΓ |i j :

∇ · (aEnδ)|i j = gi j + O (1x) (59)

bδ|i j = hi j + O (1x) (60)

Such an analogy establishes the link between the Continuum Surface Force approach based on numerical approximations of 
δ, and the Ghost-Fluid Method that accounts for source terms in the discretization of Poisson equations.



2.6. Spatial discretization of viscous terms

More details are provided in this section about the spatial discretization of viscous terms for the different methods 
described in the previous sections. In the following, for sake of simplicity, all developments are presented in 2D with 
Cartesian coordinates and a uniform grid. The generalization to axisymmetric coordinates or 3D geometry is straightforward.

2.6.1. Conservative viscous formulation

If a conservative viscous formulation ∇.(2µD) is considered, as it is the case in the GFCM or in the DFM, the projection 
of the divergence of the viscous-stress tensor leads to the following relations:

∇ · (2µD)|x =
∂

∂x

(

2µ
∂u

∂x

)

+
∂

∂ y

(

µ

(

∂u

∂ y
+

∂v

∂x

))

(61)

∇ · (2µD)|y =
∂

∂x

(

µ

(

∂u

∂ y
+

∂v

∂x

))

+
∂

∂ y

(

2µ

(

∂v

∂ y

))

(62)

Let us remark that these two relations depend on both velocity components. This is why a fully implicit temporal dis-
cretization of viscous terms is more complex when this formulation is used. Suitable approximations of eq. (61) lead to the 
following spatial discretizations, Dx and D y denoting the differential operators:

(

∇ · (2µD)
)

· Eex|i+1/2 j
∼= Dx(2µDxu)|i+1/2 j + D y(µD yu)|i+1/2 j + D y(µDxv)|i+1/2 j (63)

Dx(2µDxu)|i+1/2 j =
2µi+1 j(

ui+3/2 j−ui+1/2 j

1x
) − 2µi j(

ui+1/2 j−ui−1/2 j

1x
)

1x
(64)

D y(µD yu)|i+1/2 j =
µi+1/2 j+1/2(

ui+1/2 j+1−ui+1/2 j

1y
) − µi+1/2 j−1/2(

ui+1/2 j−ui+1/2 j−1

1y
)

1y
(65)

D y(µDxv)|i+1/2 j =
µi+1/2 j+1/2(

v i+1 j+1/2−v i j+1/2

1x
) − µi+1/2 j−1/2(

v i+1 j−1/2−v i j−1/2

1x
)

1y
(66)

The following spatial discretization for eq. (62) is
(

∇ · (2µD)
)

· Eey|i j+1/2
∼= Dx(µD yu)|i j+1/2 + Dx(µDxv)|i j+1/2 + D y(2µD yv)|i j+1/2 (67)

Dx(µD yu)|i j+1/2 =
µi+1/2 j+1/2(

ui+1/2 j+1−ui+1/2 j

1y
) − µi−1/2 j+1/2(

ui−1/2 j+1−ui−1/2 j

1y
)

1x
(68)

Dx(µDxv)|i j+1/2 =
µi+1/2 j+1/2(

v i+1 j+1/2−v i j+1/2

1x
) − µi−1/2 j+1/2(

v i j+1/2−v i−1 j+1/2

1x
)

1x
(69)

D y(2µD yv)|i j+1/2 =
2µi j+1(

v i j+3/2−v i j+1/2

1y
) − 2µi j(

v i j+1/2−v i j−1/2

1y
)

1y
(70)

This spatial discretization for the conservative viscous approach can be used both in the framework of Smoothed-Interface 
methods (e.g. in the DFM) [3,24] or Sharp-Interface methods (e.g. in the GFCM) [26]. The difference lies in the way viscosity 
is approximated on the border of a cell that is crossed by an interface.

In the DFM, eq. (8) is used with the approximation of the Heaviside function given by eq. (49).
In the GFCM proposed by Sussman et al. [26], the interpolation used to compute viscosity on the cell border is quite 

similar to that proposed by Liu et al. [15] to interpolate the diffusion coefficient of a Poisson equation (given here by 
eq. (53)). Thereafter, this kind of interpolation will be used for all the computations that involve the Ghost-Fluid Method (i.e. 
GFCM, GFPM and GFSCM).

2.6.2. Ghost-Fluid Primitive viscous Method

The GFPM of Kang et al. [10] is now briefly described. When this approach is used, the jump condition on the normal 
viscous stresses is added to the capillary forces when solving the Poisson equation for pressure as shown in eq. (36).

This approach for the viscous term can be summarized by considering the following projections for the Laplacian of the 
velocity:

µ1 EV |x = µ

(

∂2u

∂x2
+

∂2u

∂ y2

)

, (71)

µ1 EV |y = µ

(

∂2v

∂x2
+

∂2v

∂ y2

)

. (72)

The corresponding discretizations can be expressed by using operators Dx and D y :



(µ1 EV ) · Eex|i+1/2 j
∼= µ

(

D2
xu|i+1/2 j + D2

yu|i+1/2 j

)

, (73)

(µ1 EV ) · Eey|i j+ 1
2

∼= µ
(

D2
x v|i j+ 1

2
+ D2

yv|i j+ 1
2

)

. (74)

In [10], remarking that the velocity gradients are strongly discontinuous at the interface because of viscosity jumps, it was 
proposed to compute each component of the Laplacian of the velocity µ1 EV (eqs. (73) and (74)) by computing the different 
terms of the vector ∇.(µ∇ EV ) and subtracting their jump at the interface; on the x-axis,

µD2
xu|i+1/2 j = Dx(µDxu)|i+1/2 j − [µDxu]δΓ |i+1/2 j, (75)

µD2
yu|i+1/2 j = D y(µD yu)|i+1/2 j − [µD yu]δΓ |i+1/2 j, (76)

and on the y-axis,

µD2
x v|i j+1/2 = Dx(µDxv)|i j+1/2 − [µDxv]δΓ |i j+1/2, (77)

µD2
yv|i j+1/2 = D y(µD yv)|i j+1/2 − [µD yv]δΓ |i j+1/2. (78)

The appropriate jump conditions for eqs. (75), (76), (77) and (78) are given in the following matrix by:
(

[µ ∂u
∂x

] [µ ∂u
∂ y

]

[µ ∂v
∂x

] [µ ∂v
∂ y

]

)

= [µ]∇ EV

(

E0
Et

)T (

E0
Et

)

+ [µ]EnT En∇ EV EnT En − [µ]

(

E0
Et

)T (

E0
Et

)

∇ EV EnT En, (79)

where Et is the unit vector tangent to the interface.
To compute accurately eqs. (75), (76), (77), (78) in the framework of the Ghost-Fluid Method [10], suitable sharp approxi-

mations, eq. (58), of the Dirac distribution are required.
Note that the jump conditions in eq. (79) are only valid for a continuous velocity field between the two phases: this 

approach cannot be used when phase changes or mass transfers occur.

2.6.3. Ghost Fluid Semi-Conservative viscous Method

In the GFSCM, updating EV ∗
4 requires computing the following viscous terms:

∇ · (µ∇ EV )|x =
∂

∂x

(

µ
∂u

∂x

)

+
∂

∂ y

(

µ
∂u

∂ y

)

, (80)

∇ · (µ∇ EV )|y =
∂

∂x

(

µ
∂v

∂x

)

+
∂

∂ y

(

µ
∂v

∂ y

)

. (81)

That can be done in a similar way as for the conservative viscous approach, except for the second-order cross-derivatives, 
which are non-zero only at the interface and are therefore included in the pressure jump when the Poisson equation is 
solved. As pointed out previously, this approach can be used with an implicit temporal discretization of the viscous terms 
and also when a phase change occurs.

2.7. Implicit temporal discretization of viscous terms

Further elements are provided now to deal with an implicit temporal discretization of viscous terms.
When the incompressible Navier–Stokes equations for a single-phase flow are considered, the projection method leads 

to the following semi-implicit algorithm for the predictor step

EV ∗
1 − 1tυ1 EV ∗

1 = EV n − 1t
(

EV n · ∇
)

EV n, (82)

which requires solving an independent linear system for each velocity component.
When a two-phase flow with a discontinuous viscosity is considered, the use of a semi-implicit projection method to 

solve the incompressible Navier–Stokes equations is more complex. Indeed, in 2D, the following two coupled equations must 
be solved simultaneously, leading to a more complicated linear system as it is carried out in [25,26]:

ρn+1
i+1/2 ju

∗
i+1/2 j − 1t

(

Dx

(

2µDxu
∗
)

+ D y

(

µD yu
∗
)

+ D y

(

µDxv
∗
))∣

∣

i+1/2 j

= ρn+1
i+1/2 j

(

un
i+1/2 j − 1t

(

EV n · ∇
)

un|i+1/2 j

)

, (83)

ρn+1
i j+1/2v

∗
i j+1/2 − 1t

(

Dx

(

µD yu
∗
)

+ Dx

(

µDxv
∗
)

+ D y

(

2µD yv
∗
))∣

∣

i j+1/2

= ρn+1
i j+1/2

(

vni j+1/2 − 1t
(

EV n · ∇
)

vn|i j+1/2

)

. (84)

Some previous works report the following temporal discretization to split the resolution of this system:



ρn+1
i+1/2 ju

∗
i+1/2 j − 1t

(

Dx

(

2µDxu
∗
)

+ D y

(

µD yu
∗
))∣

∣

i+1/2 j

= ρn+1
i+1/2 j

(

un
i+1/2 j − 1t

(

EV n · ∇
)

un
∣

∣

i+1/2 j

)

+ 1tD y

(

µDxv
n
)∣

∣

i+1/2 j
, (85)

ρn+1
i j+1/2v

∗
i j+1/2 − 1t

(

Dx

(

µDxv
∗
)

+ D y

(

2µD yv
∗
))∣

∣

i j+1/2

= ρn+1
i j+1/2

(

vni j+1/2 − 1t
(

EV n · ∇
)

vn
∣

∣

i j+1/2

)

+ 1tDx

(

µD yu
n
)∣

∣

i j+1/2
. (86)

Nevertheless, it is doubtful that the numerical scheme composed of eqs. (85), (86) really alleviates the time step constraint 
imposed by viscosity since the last terms on the right is treated explicitly.

Another way to carry out an implicit treatment of the viscous terms for incompressible flows is proposed in [11]. This 
is based on an approximate factorization which requires solving tridiagonal matrices rather than inversion of a large sparse 
matrix. This alternative method has not been tested in this work.

At the opposite, as it has been previously shown, for incompressible flows the second-order cross-derivatives are perfectly 
compensated everywhere except at the interface where viscosity is discontinuous. Therefore, the GFSCM can be used with 
benefits with an implicit treatment of the viscous terms, which leads to the following discretization:

ρn+1
i+1/2 ju

∗
i+1/2 j − 1t

(

Dx

(

µDxu
∗
)

+ D y

(

µD yu
∗
))∣

∣

i+1/2 j

= ρn+1
i+1/2 j

(

un
i+1/2 j − 1t

(

EV n · ∇
)

un|i+1/2 j

)

, (87)

ρn+1
i j+1/2v

∗
i j+1/2 − 1t

(

Dx

(

µDxv
∗
)

+ D y

(

µD yv
∗
))∣

∣

i j+1/2

= ρn+1
i j+1/2

(

vni j+1/2 − 1t
(

EV n · ∇
)

vn|i j+1/2

)

. (88)

The resulting linear systems can be solved as easily as in the single-phase case: the matrices of discretization are symmetric, 
definite and positive, which allows the use of an efficient and simple black-box solver. Note that an implicit temporal 
discretization of the viscous terms can also be used with the GFPM [8].

We conclude by some comments on the way to define the density: ρn+1
i+1/2 j and ρn+1

i j+1/2 . The definition must be compat-

ible with the computation of the correction step, which itself relies on the manner density is computed when the Poisson 
equation on pressure is solved. Accurate results are obtained by using the following general expression for ρn+1

i+1/2 j and 

ρn+1
i j+1/2 in the grid cells that are crossed by an interface:

1

ρn+1
=

1
ρ+ρ−

1
ρ+ θ + 1

ρ− (1− θ)
=

1

ρ−θ + ρ+(1− θ)
. (89)

2.8. Summary about the four different methods to deal with viscosity

Table 1 gives an overview of the characteristics of the four different methods to deal with viscous terms in the simula-
tions of two-phase flows with Level-Set methods, and describes the main steps for implementing it.

2.9. Level-Set methods for interface capturing

Interface motion is captured with a Level-Set method [20,24], which consists in solving a convection equation for the 
Level-Set function φ:

∂φ

∂t
+ ( EV · ∇)φ = 0, (90)

with EV the velocity at the interface. A reinitialization step [24] can next be performed to insure that the φ function remains 
a signed distance in the computation domain. This can be done by solving iteratively the specific PDE:

∂d

∂τ
= sign(φ)

(

1− |∇d|
)

, (91)

where d is the reinitialized distance function, τ a fictitious reinitialization time and sign(φ) a smoothed signed function 
defined in [4,24]. At the end of every physical time step, two temporal iterations of the redistancing equation (91) are 
solved using a second-order TVD–Runge–Kutta scheme.

The signed distance function allows preserving a good accuracy when computing interface geometrical properties as the 
normal vector or the curvature with the following simple relations:

En =
∇φ

|∇φ|
, (92)

κ(φ) = −∇ · En. (93)



Table 1

Summary of four different methods to deal with viscous terms with Level-Set methods.

Framework Method and reference papers Steps of the explicit projection method and number of the 
corresponding equations in the reference paper

Implementation of an 
implicit method

“Whole domain 
formulation”

Delta-Function Method

DFM

Sussman et al. [3,24,25]

EV ∗
2 = EV n − 1t

(

( EV n · ∇) EV n − ∇·(2µD
n)

ρn+1 − σκEnδΓ

ρn+1 − Eg
)

(33) One complex coupled 
parabolic linear system for 
all the velocity components

∇ ·
( ∇pn+1

ρn+1

)

=
∇· EV ∗

2
1t

(34)

EV n+1 = EV ∗
2 − 1t

∇pn+1

ρn+1 (35)

“Jump condition 
formulation”

Ghost-Fluid Primitive viscous 
Method

GFPM

Kang et al. [10]
Hong et al. [8]

EV ∗
1 = EV n − 1t

(

( EV n · ∇) EV n − µ1 EV n

ρn+1 − Eg
)

(30) Several simple independent 
linear systems with explicit 
jump conditions on the 
components of the viscous 
tensor

∇ ·
( ∇pn+1

ρn+1

)

=
∇· EV ∗

1
1t

+ ∇ ·
( (σκ+2[µ]Γ

∂Vn
∂n )EnδΓ

ρn+1

)

(36)

⇔







∇ ·
( ∇pn+1

ρn+1

)

=
∇· EV ∗

1
1t

[pn+1]Γ = σκ + 2[µ]Γ
∂Vn
∂n

EV n+1 = EV ∗
1 − 1t

ρn+1

(

∇pn+1 −
(

σκ + 2[µ]Γ
∂Vn
∂n

)

EnδΓ

)

(39)

Ghost-Fluid Conservative 
viscous Method

GFCM

Sussman et al. [26]

EV ∗
3 = EV n − 1t

(

( EV n · ∇) EV n − ∇·(2µD
n)

ρn+1 − Eg
)

(40) One complex coupled 
parabolic linear system for 
all the velocity components

∇ ·
( ∇pn+1

ρn+1

)

=
∇· EV ∗

3
1t

+ ∇ ·
(

σκEnδΓ

ρn+1

)

(42)

⇔

{

∇ ·
( ∇pn+1

ρn+1

)

=
∇· EV ∗

3
1t

[pn+1]Γ = σκ

EV n+1 = EV ∗
3 − 1t

ρn+1 (∇pn+1 − σκEnδΓ ) (47)

Ghost-Fluid 
Semi-Conservative viscous 
Method

GFSCM

Present paper

EV ∗
4 = EV n − 1t

(

( EV n · ∇) EV n − ∇·(µ∇ EV n)

ρn+1 − Eg
)

(41) Several simple independent 
linear systems without any 
jump conditions on the 
components of the viscous 
tensor

∇ ·
( ∇pn+1

ρn+1

)

=
∇· EV ∗

4
1t

+ ∇ ·
( (σκ+[µ]Γ

∂Vn
∂n )EnδΓ

ρn+1

)

(43)

⇔







∇ ·
( ∇pn+1

ρn+1

)

=
∇· EV ∗

4
1t

[pn+1]Γ = σκ + [µ]Γ
∂Vn
∂n

EV n+1 = EV ∗
4 − 1t

ρn+1

(

∇pn+1 −
(

σκ + [µ]Γ
∂Vn
∂n

)

EnδΓ

)

(48)

The curvature is firstly computed on all the grid nodes with simple finite difference schemes. Next, if the Ghost Fluid 
Method is used, the curvature is interpolated on the interface. For example, if it crosses the segment [xi, xi+1] the following 
interpolation is used:

κI = κi+1θ + κi(1− θ) (94)

2.10. Temporal and spatial discretizations

All convective terms and spatial derivatives of the redistance equation are discretized by means of a fifth-order WENO 
5 scheme [9]. First-order explicit or semi-implicit temporal integration methods have been described in previous sections. 
These elementary steps are finally included in a second-order TVD–Runge–Kutta scheme for the overall temporal integration 
of the PDE system in order to improve the computation stability. A classical time-step constraint [10,23,24] accounting 
for the stability conditions on convection, viscosity (in case of an explicit temporal discretization) and surface tension is 
imposed.

1tconv =
1x

max‖ EV ‖
(95)

1tvisc =
1

4

1x2

max(υliq,υgaz)
(96)

1tsurf_tens =
1

2

√

ρliq1x3

σ
(97)

If an implicit temporal discretization is used with the GFSCM, an explicit part depending on the viscosity jump condition 
remains in Eqs. (43), (48). Therefore, the corresponding term involves another temporal constraint which is different from 
Eq. (96), since it depends on a viscosity jump condition instead of a maximum kinematic viscosity value. By performing 
several numerical test-cases with zero surface tension and very low gravity (in order to remove the stability constraints 
due to surface tension and convection), we have observed that the following time step restriction is sufficient to ensure the 
numerical stability:



1tvisc =
ρ1x2

[µ]
(98)

with ρ the average density of the two phases. Whereas this constraint depends also on 1x2 , it can be much more lenient 
than the classical one, Eq. (96), because ρ

[µ] ∼ 1
υliq

is much higher than 1
υgas

for many typical gas–liquid systems such as

air–water or the one used in Section 3.3. For example, it is shown in Section 3.3 that the implicit GFSCM allows performing 
the computation with a much larger time step in comparison to its explicit counterparts.

Finally, the global time step restriction can be computed with the following relation:

1

1t
=

1

1tconv
+

1

1tvisc
+

1

1tsurf_tens
(99)

3. Numerical results

Relevant benchmarks have been designed to assess and compare the four different numerical methods discussed in this 
paper: DFM, GFPM, GFCM and GFSCM.

In the first benchmark, computations of a spherical bubble rising under gravity are performed for a range of Reynolds 
number varying from 20 to 100.

The second benchmark consists of numerical simulations of bubble shape-oscillations in the absence of gravity. Such 
a physical problem is characterized by an oscillation Reynolds number which compares the oscillations frequency to the 
damping rate. The accuracy of the simulations is evaluated from comparisons with the theoretical prediction of the fre-
quency and the damping rate of the oscillations for Reynolds numbers varying from 20 to 300. In addition, a study of the 
spatial convergence of the simulations is carried out in order to determine how mesh-grid requirements evolve when the 
Reynolds number is varied.

Finally, the third benchmark focuses on the rise of a non-spherical bubble in a very viscous liquid as in Refs. [2,6,26].
These three benchmarks consist of axisymmetric computations.

3.1. A spherical bubble rising under gravity

Currently, performing well-resolved simulations of bubbly flows or droplet sprays is a challenge for the direct numerical 
simulation of two-phase flows. Many issues must be overcome to achieve such ambitious targets. One can expect that the 
development of High Performance Computing hardware and software will allow performing simulations involving a growing 
number of bubbles or drops. However well-resolved 3D simulations remain costly and a particular attention must be paid to 
the development and the assessment of accurate numerical methods to solve the fluid dynamics equations. In particular, a 
computation which is efficient to describe accurately the dynamics with half the number of grid cells on a bubble diameter 
makes possible to compute eight times more bubbles with the same computational resources. Actually, the gain would even 
be significantly greater since, for explicit methods, a larger time step can be used on a coarser grid. The test-case proposed 
in this section allows us to assess the different discretizations of the viscous terms. Simulations are performed with an 
axisymmetric coordinate system. The radial and axial sizes of the computational domain are defined relatively to the bubble 
radius Rbubble: lr = 8Rbubble and lz = 4lr . Considering a spherical bubble, reference results on the drag coefficient are provided 
by boundary-fitted numerical simulations from [19] when Re∞ ≤ 50 or by Moore’s theory [18] for higher Reynolds numbers. 
Our computations are performed for low Bond numbers to preserve bubble sphericity. It is worth mentioning that the case 
of a rising spherical bubble is particularly advised to assess the discretization of the viscous terms because, in this situation, 
the drag force mainly depends on viscous dissipation and not on pressure effects, unlike the case of a strongly deformed 
bubble.

The physical properties of liquid and gas are kept identical to water and air for all simulations presented in this section: 
ρliq = 1000 kgm−3 , µliq = 0.00113 kgm−1 s−1 , ρgas = 1.226 kgm−3 , µgas = 1.78 × 10−5 kgm−1 s−1 . Simulation conditions 
are summarized in Table 2 for five configurations corresponding to Re∞ = 20, 40, 60 for a Bond number Bo = 0.025, and to 
Re∞ = 80, 100 for Bo = 0.0125. Bubbles are initially static and evolve under gravity until the terminal velocity is reached. 
The boundaries of the computational domain are defined as walls (except on symmetry axis) and set sufficiently far from 
the bubble to have a negligible influence on the results.

Simulations are performed with three different mesh grids (32 × 128, 64 × 256, 128 × 512, 256 × 1024), which describe 
respectively one bubble diameter with 8, 16, 32 or 64 mesh points. Fig. 2 shows a snapshot of the interface location and the 
fully-developed vorticity in the frame moving with the bubble for the case Re∞ = 60 with the thinnest grid. Results of all 
the simulations are summarized in Tables 3, 4, 5, 6 and 7, which correspond respectively to computations carried out using 
the Ghost Fluid Conservative viscous Method (GFCM), explicit and implicit Ghost-Fluid Semi-Conservative viscous Method (GFSCM), 
Ghost-Fluid Primitive viscous Method (GFPM) and Delta-Function Method (DFM). Many conclusions can be drawn from these 
tables. First, all methods fail to provide accurate results on the coarsest grid regardless the value of Re∞: this mesh is clearly 
insufficient to capture accurately viscous effects. When the intermediate grid is used, the GFCM and the explicit and implicit 
GFSCM provides very good results: whatever Re∞ , deviations between reference results and numerical simulations are less 
or equal to 3% (except for Re∞ = 80 when the explicit GFSCM is used). The GFPM also provides acceptable results on this



Table 2

Bubble radius, gravity acceleration, surface tension and final time of simulation for a spherical bubble rising at 
various Reynolds numbers.

Re∞ = 20 Re∞ = 40 Re∞ = 60 Re∞ = 80 Re∞ = 100

Rbubble (µm) 19.55 44.65 70.45 98.95 127.9

gz (m s−2) −9144.4 −1755.2 −705.6 −357.5 −213.9

σ (Nm−1) 0.56 0.56 0.56 1.12 1.12

t f (s) 0.0004 0.00135 0.002375 0.0048 0.007

Fig. 2. Streamlines, interface location and vorticity field (s−1) in the moving frame of a rising spherical bubble at Re∞ = 60 (grid 128 × 512) using the 
GFCM.

Table 3

Error on the terminal Reynolds number of rising bubbles for different computational grids with the explicit GFCM.

Grids Re∞ = 20 Re∞ = 40 Re∞ = 60 Re∞ = 80 Re∞ = 100

32× 128 −22.0% −34.0% −38.8% −63.0% −67.4%

64× 256 +2.5% +1.8% −1.3% −1.3% −3.0%

128× 51 +0.5% +0.8% −1.0% +1.9% +1.9%

256× 1024 −0.9% −0.4% −1.95% −1.02% −0.65%

Table 4

Error on the terminal Reynolds number of rising bubbles for different computational grids with the explicit 
GFSCM.

Grids Re∞ = 20 Re∞ = 40 Re∞ = 60 Re∞ = 80 Re∞ = 100

32× 128 −23.5% −32.5% −39.0% −62.5% −67.0%

64× 256 −0.5% +2.5% +1.3% +4.3% +3.0%

128× 512 −3.5% +0.6% 0.7% +5.4% +6%

256× 1024 −2.15% +3.25% +4.2% +6.75% +8.2%

Table 5

Error on the terminal Reynolds number of rising bubbles for different computational grids with the implicit 
GFSCM.

Grids Re∞ = 20 Re∞ = 40 Re∞ = 60 Re∞ = 80 Re∞ = 100

32× 128 −18.6% −25.0% −30.2% −52.9% −55.1%

64× 256 −1.2% 1.5% −0.1% 2.0% 0.9%

128× 512 −3.7% 0.1% −0.2% 3.2% 3.9%

256× 1024 −4.2% 3% 4% 6.25% 7.6%



Table 6

Error on the terminal Reynolds number of rising bubbles for different computational grids with the explicit GFPM.

Grids Re∞ = 20 Re∞ = 40 Re∞ = 60 Re∞ = 80 Re∞ = 100

32× 128 −16.7% −24.6% −31.5% −52.3% −56.8%

64× 256 0.5% −1.2% −4.5% −4.8% −6.6%

128× 512 0.1% −0.3% −2.6% −1.0% −1.6%

256× 1024 −0.7% −0.67 −2.6% −1.3% −1.4%

Table 7

Error on the terminal Reynolds number of rising bubbles for different computational grids with the explicit DFM.

Grids Re∞ = 20 Re∞ = 40 Re∞ = 60 Re∞ = 80 Re∞ = 100

32× 128 −39.5% −46.1% −53.8% −75.8% −81.6%

64× 256 −16.5% −18.3% −21.7% −29.3% −31.8%

128× 512 −7.5% −7.9% −9.9% −10.5% −10.9%

256× 1024 −4.3% −4.65% −6.6% −6.04% −6.05%

grid since the discrepancy between numerical simulations and reference solutions is less than 7%; the error increases with 
the Reynolds number, which is probably due to the difficulty to calculate accurately boundary layers that becomes thinner 
at high Re∞ . By contrast, the DFM provides a lower accuracy than the other methods with errors on Re∞ which vary from 
15% to 30% and increase with Re∞ . Finally, considering results obtained with the most refined grids, it clearly appears that 
both the GFCM and the GFPM have converged to the correct solution. The explicit and implicit GFSCM provide results with 
larger errors than the two previous methods with errors varying between 2% and 8%. The DFM seems to converge slowly 
towards the theoretical solution and still shows deviations varying from 4% to 6% (according to Re∞) with 64 mesh points 
on a bubble diameter.

3.2. Shape oscillations of a bubble

Considering small-amplitude-shape-oscillations of a bubble in the absence of gravity, theoretical solutions of the lin-
earized Navier–Stokes equations for an incompressible flow exist and give expressions for the frequency and the damping 
rate of the oscillations [17,22]. We have took advantage of this to design an accurate and stringent test-case for direct 
numerical simulations. While the oscillation frequency depends essentially on capillary effects, we have focused on the 
damping rate in order to test the accuracy of different numerical approaches about viscosity. Like in the previous sec-
tion, simulations are performed with an axisymmetric coordinate frame. The dimensions of the computational field are: 
lr = 4Rbubble , lz = 2lr . Wall boundary conditions are used on all domain borders (except on symmetry axis) and confinement 
effects have been checked to be negligible. Densities and viscosities, corresponding to an air/water system, are the same as 
in Section 3.2, and the surface tension is σ = 0.07 Nm−1 . We propose a parametric study by varying the Reynolds number 

of oscillation, by Reosc =
√

σ Rbubbleρliq

µliq
, from 20 to 300. (Note that the Reynolds number of oscillation is the inverse of the 

Ohnesorge number.)
In our simulations, the initial condition corresponds to a deformed interface described by a Legendre polynomial of order 

2 with the following Level Set function

φ(r, θ, t = 0) = r − Rbubble

[

1+ εP2(cos θ)
]

, (100)

where (r, θ) are the spherical coordinates, P2(cos θ) = 1
2 (3 cos2 θ − 1) and ǫ is the dimensionless initial amplitude of the 

deformation, chosen low enough (ε = 0.075) to maintain the oscillations in the linear regime. The computed shape of the 
interface is extracted at each time step and decomposed into spherical harmonics in order to obtain the time evolution of 
amplitude a2(t) of harmonic l = 2:

r(θ, t) = Rbubble + a2(t)P2(cos θ). (101)

Then, the frequency ω2 and the damping rate β2 of the oscillations are obtained from a2(t) since

a2(t) = εRbubble cos(ω2t)e
−β2t (102)

The values issued from the simulations are compared with the theoretical values ωth
2 and βth

2 that are computed by solving 
numerically the characteristic equation given by Prosperetti (eq. (33) of Ref. [22]). The damping rate is a global parameter 
that requires an accurate calculation of the viscous terms all over the computation domain.

Snapshots of the interface location and vorticity are shown in Fig. 3 and Fig. 4 for Reosc = 20 and Reosc = 200, respec-
tively. It is clear from these figures that the vorticity is localized inside the bubble, whereas the flow remains potential 
outside. For a shape-oscillating bubble, both the frequency and the damping rate are mainly controlled by the potential flow 
in the liquid phase. The asymptotic development of the damping rate given by Miller and Scriven [17] shows that, for a 
bubble, the viscous dissipation in the boundary layers is responsible for only 1 to 3% of the total dissipation in a present 



Fig. 3. Velocity field, interface location and vorticity field (s−1) of an oscillating bubble at Reosc = 20 (grid 256× 512) using the GFCM.

Fig. 4. Velocity field (ms−1), interface location and vorticity field (s−1) of an oscillating bubble at Reosc = 200 (grid 256× 512) using the GFCM.

Table 8

Error on the damping rate β2 for an oscillating bubble with different computational grids with the explicit GFCM.

Grids Reosc = 20 Reosc = 50 Reosc = 100 Reosc = 200 Reosc = 300

64× 128 1.49% 1.47% 9.75% 23.16% 41.72%

128× 256 −0.20% 0.32% 1.99% 7.30% 13.71%

256× 512 −0.31% 0.08% 0.70% 2.55% 5.36%

range of Reosc , i.e. between 20 and 300. The rest of the viscous dissipation comes from the potential flow in the liquid 
phase.

For each Reynolds number of oscillation, a test has been computed with four different numerical methods (GFCM, explicit 
GFSCM, GFPM and DFM) and for three different mesh grids (64 ×128), (128 ×256) and (256 ×512), which describe a bubble 
diameter with 32, 64 and 128 mesh points, respectively. The results of the simulations are summarized in Tables 8, 9, 10 and 
11, where the deviation of the numerical simulations relative to the theoretical predictions have been reported. The error 
on the frequency of oscillation is very small (<1%) whatever the numerical method and the mesh grids; it has therefore 



Table 9

Error on the damping rate β2 for an oscillating bubble with different computational grids with the explicit GFSCM.

Grids Reosc = 20 Reosc = 50 Reosc = 100 Reosc = 200 Reosc = 300

64× 128 −4.57% −7.16% −0.30% 13.06% 31.04%

128× 256 −3.90% −7.58% −6.47% 0.38% 8.78%

256× 512 −2.69% −7.52% −12.13% −4.21% −0.77%

Table 10

Error on the damping rate β2 for an oscillating bubble with different computational grids with the explicit GFPM.

Grids Reosc = 20 Reosc = 50 Reosc = 100 Reosc = 200 Reosc = 300

64× 128 2.88% 3.11% 10.39% 22.34% 39.62%

128× 256 0.23% 0.68% 1.66% 5.90% 11.70%

256× 512 −0.10% −0.00% −1.04% 1.31% 3.52%

Table 11

Error on the damping rate β2 for an oscillating bubble with different computational grids with the explicit DFM.

Grids Reosc = 20 Reosc = 50 Reosc = 100 Reosc = 200 Reosc = 300

64× 128 5.63% 5.56% 7.07% −1.66% −9.57%

128× 256 2.63% 2.75% 1.56% −1.07% −4.54%

256× 512 0.82% 1.02% −0.10% −2.10% −4.35%

Fig. 5. Temporal evolution of amplitude of mode 2 at Reosc = 100. Comparisons between theory (from Ref. [20]) and numerical simulations with the GFCM 
and the GFSCM. Time is normalized by the theoretical period of oscillation of mode 2, T th

2 .

not been reported. A detailed analysis of the errors on the damping rate leads to the following conclusions. First, the GFCM 
and the GFPM accurately match with the exact solution when refined grids are used. Both methods present comparable 
abilities on this test-case, with errors less than 2% in the range 20 ≤ Reosc ≤ 200 (the GFPM is just slightly better than 
the GFCM). For the highest Reynolds numbers of oscillation considered, the error seems to decrease monotonously and the 
order of convergence can be roughly estimated to 1.5. That is not surprising considering that, even if the discretization of 
viscous terms remains of the second order far from the interface, the subcell viscosity interpolation in the cells that are 
crossed by an interface is only of the first order. The DFM also provides good results in this case and converges well, but 
exhibits a different behavior than the GFCM or the GFPM. For example, when coarse grids are used, the error is relatively 
low (between 5 and 10%) whatever the Reosc , contrary to the two previous methods where the error was clearly increasing 
with Reosc to become larger than 20% at the highest Reosc . The rate of convergence of the DFM is not as clear as for the 
GFCM or the GFPM. Finally, the explicit GFSCM provides poor results with errors up to 12% in some cases with the thinnest 
grid. Although this discrepancy is not negligible, a more detailed analysis of the temporal signal a2(t), presented in Fig. 5 for 
the most disadvantageous case for the GFSCM (Reosc = 100, grid 256 × 512), allows us to realize that this underestimation 
of 12% of the damping rate does not induce a so significant difference compared to the other methods.

In addition, it is worth mentioning that the GFCM has been successfully used in Ref. [13] to simulate the shape oscilla-
tions of rising drops and bubbles in order to determine the effect of the rising motion on the frequency and the damping 
rate of the oscillations.



Table 12

Errors of the different numerical methods with the grid (128 ×
512) on the terminal Reynolds number of a deformed rising bub-
ble (Re∞ = 19.6).

Numerical method Measured Re∞ Error on Re∞

Explicit GFCM 18.79 −4.1%

Implicit GFSCM 18.25 −6.9%

Explicit GFPM 18.59 −5.2%

Explicit DFM 18.73 −4.4%

Fig. 6. Streamlines and interface location in the moving frame of a rising deformed bubble at Re∞ = 19.6 (grid 128× 512) using the GFCM.

3.3. Deformed rising bubble at Re∞ = 19.6

To complete the assessment of the different numerical methods, we propose a third test-case which consists in com-

puting the rise of a bubble in a very viscous liquid. This test-case is based on experimental data [7] and has already been 
used for the validation of numerical simulations, see Refs. [2,6,26] for example. Its interest lies in the strong deformation of 
the bubble, which involves the development of a recirculation zone in the bubble wake. Here, unlike the case of a spherical 
rising bubble, the drag force results both from pressure and viscous effects. Simulations are performed in axisymmetric co-
ordinates and the computational domain is defined by lr = 8Rbubble and lz = 4lr . We used the following physical properties 
for the fluids: ρliq = 875.5 kgm−3 , µliq = 0.118 kgm−1 s−1 , ρgas = 1 kgm−3 , µgas = 0.001 kgm−1 s−1 , σ = 0.0332 Nm−1 , 
gz = −9.81 ms−2 , Rbubble = 0.0061 m.

All results obtained for this test-case are summarized in Table 12, the simulations being carried out with a grid (128 ×
512), which counts 32 points in a bubble diameter. We compare the GFCM, GFPM, DFM and implicit GFSCM. A snapshot 
of interface location and streamlines around and inside the bubble are plotted in Fig. 6; it clearly shows the existence of a 
recirculation zone in the bubble wake. Temporal evolutions of the Reynolds number have been plotted in Fig. 7 to describe 
the results obtained during the transient stage. The reference terminal rising velocity issued from experiments corresponds 
to Re∞ = 19.6. We observe that all methods provide satisfactory results with errors on the Reynolds number varying from 
4.1% for the GFCM to 6.9% for the GFSCM. We can conclude that all tested methods have a comparable accuracy for this 
test-case. Fig. 8 highlights the interest of the implicit GFSCM on a simulation where the time step restriction due to viscosity 
(96) is dominant.

This time step restriction can be removed if the implicit GFSCM is used. Therefore the numerical stability is maintained 
by imposing the time step restriction due to capillary forces (97) and the modified time step restriction due to the viscosity 
jump (98) which have both comparable values in this case.

The cost of a temporal iteration is approximately the same for an explicit discretization or the implicit GFSCM. Indeed, 
the linear systems resulting from the implicit discretization of the viscous terms are diagonally dominant due to the other 
time step restrictions. Therefore, their solutions are computed much faster than for the pressure Poisson equation. Thus, for 
the simulations which are considered in Fig. 8 the implicit GFSCM will run 10 to 20 faster than an explicit version of the 
GFSCM, GFCM, GFPM or DFM.



Fig. 7. Temporal evolution of the Reynolds number for the different numerical methods for a deformed rising bubble at Re∞ = 19.6 (grid 128× 512).

Fig. 8. Time step evolution with the mesh size for the deformed rising bubble. Comparison between the implicit GFSCVM and the explicit GFCVM.

4. Conclusions

In this paper, we have proposed an extensive study to assess different numerical methods for the computation of the 
viscous terms in the framework of direct numerical simulation of two-phase flows with Level-Set methods. An important 
feature of this work is to provide the theoretical evidence that the Delta-Function Method described by Sussman et al. in [24], 
the original Ghost-Fluid Method for incompressible two-phase flows proposed by Kang et al. in [10], and another version of 
the Ghost-Fluid Method proposed later by Sussman et al. in [26] are formally equivalent. For sake of clarification, these three 
methods are respectively renamed in this paper the Delta-Function Method (DFM), the Ghost-Fluid Primitive viscous Method

(GFPM), and the Ghost-Fluid Conservative viscous Method (GFCM). It is shown that all these different methods result from 
different choices of the predictive velocity EV ∗ , but they all lead to solve the same set of formal equations. Thanks to this 
proof, we have designed a novel method to compute viscous effects in two-phase flows, which is named the Ghost-Fluid 
Semi-Conservative viscous Method (GFSCM). The main interest of this new method lies in its ease of implementation for the 
implicit temporal integration of the viscous terms.

Next, the respective accuracy of these different methods has been compared from many simulations based on three 
relevant test-cases: a spherical bubble rising at different Reynolds numbers, damped shape-oscillations of a bubble, and the 
rise of a non-spherical bubble at low Reynolds number. Important conclusions have been drawn from these benchmarks. 
The GFCM and the GFPM succeed all tests and clearly appear as the most accurate methods, with comparable results. The 
DFM presents a poor efficiency in the case of a spherical rising bubble because of its slow spatial convergence, but works 
well for the other tests. Finally, the GFSCM provides results in simulations with rising bubbles but less satisfactory results 
for bubble shape oscillations, with a precision on the damping rate of about 10%. Nevertheless, thanks to its simplicity to 



compute an implicit discretization of the viscous terms and its ability to treat the case of discontinuous velocities at the 
interface (due for example to mass transfers or phase changes), this approach is promising to deal with challenging complex 
problems for which slight inaccuracies can be tolerated.
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