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We consider functionals measuring the dispersion of a d-dimensional distribution which are based on the volumes of simplices of dimension k ≤ d formed by k + 1 independent copies and raised to some power δ. We study properties of extremal measures that maximize these functionals. In particular, for positive δ we characterize their support and for negative δ we establish connection with potential theory and motivate the application to space-filling design for computer experiments. Several illustrative examples are presented.

Introduction

Let X be a compact subset of R d and M be the set of probability measures on the Borel subsets of X . We shall consider the class of functionals ψ k,δ : M -→ R + defined by ψ k,δ (µ) = Ψ k,δ (µ, . . . , µ) ,

where Ψ k,δ (µ 1 , . . . , µ k+1 ) = . . . V δ k (x 1 , . . . , x k+1 ) µ 1 (dx 1 ) . . . µ k+1 (dx k+1 ) , for some δ in R and k ∈ {1, . . . , d}, with V k (x 1 , . . . , x k+1 ) the volume of the kdimensional simplex (its length when k = 1 and area when k = 2) formed by the k + 1 vertices x 1 , . . . , x k+1 in R d . The volume V k (x 1 , . . . , x k+1 ) can be computed by the formula

V k (x 1 , . . . , x k+1 ) = 1 k! |det(A)| 1/2 , with A = X X , X = [(x 2 -x 1 ) (x 3 -x 1 ) • • • (x k+1 -x 1 )] , (2) 
where the matrix X has size d × k. Define the potential of µ at x ∈ R d by

P k,δ,µ (x) = Ψ k,δ (µ, . . . , µ, δ x ) , (3) 
where δ x is the delta-measure at x and µ appears k times on the right-hand side.

Note that max x∈X P k,δ,µ (x) ≥ ψ k,δ (µ) for all µ in M since P k,δ,µ (x) µ(dx) = ψ k,δ (µ).

The case δ = 2 corresponds to an extension of the notion of Wilk's generalized variance and is considered in [START_REF] Pronzato | Extended generalised variances, with applications. Bernoulli[END_REF]. In this paper we investigate properties of the functional (1) for general δ.

The case δ > 0

When δ is positive we are interested in the maximization of the functional ψ k,δ (µ), µ ∈ M , and properties of an extremal measure µ * where the maximum is attained.

Functionals based on powered distances: k = 1

For k = 1, the functional ψ k,δ (•) defined by (1) corresponds to

ψ 1,δ (µ) = E{ x 1 -x 2 δ }
where x 1 and x 2 are supposed to be i.i.d. with the measure µ. Properties of measures that maximize ψ 1,δ (µ) for δ > 0 are investigated in [START_REF] Björck | Distributions of positive mass, which maximize a certain generalized energy integral[END_REF]. In particular, it is shown there that for any δ > 0 the mass of an optimal measure is concentrated on the boundary of X and that the support only comprises the extreme points of the convex hull of X when δ > 1. Also, the optimal measure is unique for δ < 2; it is supported at no more than d + 1 points when δ > 2.

We can give a more precise statement than in Theorem 2 of [START_REF] Björck | Distributions of positive mass, which maximize a certain generalized energy integral[END_REF] for 0 < δ ≤ 2, using the concavity of ψ 1,δ (•), which follows from results discussed in [START_REF] Schilling | Bernstein Functions: Theory and Applications[END_REF] and is based on the fact that B(λ) = λ α is a Bernstein function for all 0 < α ≤ 1. Indeed, using concavity of ψ 1,δ (•), the measure µ * is extremal (i.e., it maximizes ψ 1,δ (µ) with respect to µ ∈ M ) if and only if the directional derivative

F ψ 1,δ (µ; ν) = lim α→0 + ψ 1,δ [(1 -α)µ + αν] -ψ 1,δ (µ) α satisfies F ψ 1,δ (µ * k ; ν) ≤ 0 for all ν ∈ M . Direct calculation gives F ψ 1,δ (µ; ν) = 2 P 1,δ,µ (x) ν(dx) -ψ 1,δ (µ) (4) 
and we thus obtain the following.

Theorem 1 For any 0 < δ ≤ 2, the measure µ * maximizes ψ 1,δ (µ) with respect to µ ∈ M if and only if

max x∈X P 1,δ,µ * (x) = ψ 1,δ (µ * ) .
Equivalently, µ * minimizes max x∈X [P 1,δ,µ (x) -ψ 1,δ (µ)] with respect to µ ∈ M .

In connection with the statement of the theorem, we may notice that the extremal measure µ * does not necessarily minimize max x∈X P 1,δ,µ (x), see [START_REF] Björck | Distributions of positive mass, which maximize a certain generalized energy integral[END_REF]Th. 14].

In the next section we show how some of the properties that hold for k = 1 can be generalized to the functionals ψ k,δ (•) with k ≥ 2.

2.2 Functionals based on powered volumes: k ≥ 2

A necessary condition for optimality

First note that the existence of an extremal measure follows from the continuity of

V k (x 1 , . . . , x k+1 ) in each x i , see [2, Th. 1].
Similarly to the case k = 1, we can compute the second order derivative of the functional ψ k,δ (•). Indeed, for any µ 0 , µ 1 in M , we have

∂ 2 ψ k,δ [(1 -α)µ 0 + αµ 1 ] ∂α 2 α=0 = k(k + 1) [Ψ k,δ (µ 0 , . . . , µ 0 , µ 1 , µ 1 ) + Ψ k,δ (µ 0 , . . . , µ 0 ) -2Ψ k,δ (µ 0 , . . . , µ 0 , µ 1 )] , = k(k + 1) P k,δ (x, y) [µ 0 -µ 1 ](dx)[µ 0 -µ 1 ](dy) ,
where P k,δ (x, y) = . . . V δ k (x 1 , . . . , x k-1 , x, y) µ 0 (dx 1 ) . . . µ 0 (dx k-1 ). The proof is by direct calculation, using the symmetry of the kernel V δ k (x 1 , . . . , x k+1 ) in [START_REF] Audze | New approach for planning out of experiments[END_REF]. For k = 1, P 1,δ (x, y) = x -y δ , and ψ 1,δ (•) for δ ≤ 2 is concave as discussed above. For δ = 2, concavity of ψ [START_REF] Pronzato | Extended generalised variances, with applications. Bernoulli[END_REF] for any k ∈ {1, . . . , d}. We are not aware of any similar result for k > 1 and δ = 2, so that we have no guarantee that ψ k,δ (•), even raised to some power less than 1, is concave for δ = 2. Therefore, we can only give a necessary condition of optimality for a measure µ * maximizing ψ k,δ (•). A similar result for k = 1 is Theorem 2 in [START_REF] Björck | Distributions of positive mass, which maximize a certain generalized energy integral[END_REF].

1/k k,2 (•) is proved in
Theorem 2 For any 0 < δ, if the measure µ * maximizes ψ k,δ (µ) with respect to µ ∈ M , then

max x∈X P k,δ,µ * (x) = ψ k,δ (µ * ) and P k,δ,µ * (x) = ψ k,δ (µ * ) on the support of µ * .
The proof relies on a straightforward extension of (4) to k ≥ 1:

F ψ k,δ (µ; ν) = (k + 1) P k,δ,µ (x) ν(dx) -ψ k,δ (µ) .

Support of extremal measures

Below we indicate some properties concerning the support of extremal measures that generalize those in Section 2.1.

Theorem 3 For any δ > max{0, k + 1 -d}, the support of any measure µ * k maximizing ψ k,δ (µ) is a subset of the boundary of X .

Proof For δ > 1, we can simply use the convexity property of the L 2 norm and multilinearity of the determinant. Indeed, from Binet-Cauchy formula, the squared volume V 2 k (x 1 , . . . , x k+1 ) can be written as

V 2 k (x 1 , . . . , x k+1 ) = 1 (k!) 2 1≤i1<i2<•••<i k ≤d det 2      {x 1 } i1 • • • {x k+1 } i1 . . . . . . . . . {x 1 } i k • • • {x k+1 } i k 1 • • • 1      . ( 5 
)
Each determinant in the right-hand side of ( 5) is linear in x 1 , so that, when δ > 1, V δ k (x 1 , . . . , x k+1 ) is a strictly convex function of x 1 . This implies that the potential

P k,δ,µ * k (x 1
) is strictly convex in x 1 . We then follow similar arguments to those in the proof of [START_REF] Björck | Distributions of positive mass, which maximize a certain generalized energy integral[END_REF]Th. 3]. Suppose that x 1 is an interior point of X , and consider a sphere S(x 1 , r) centered at x 1 with radius r included in X . Strict convexity of P k,δ,µ * k (•) implies that P k,δ,µ * k (x 1 ) is strictly smaller than the mean value of P k,δ,µ * k (x) on S(x 1 , r). From Theorem 2, this mean value is less than or equal to ψ k,δ (µ * ), and x 1 cannot be support point of µ * k . For δ ≤ 1, the proof uses subharmonicity of P k,δ,µ * k (•) as in [START_REF] Björck | Distributions of positive mass, which maximize a certain generalized energy integral[END_REF]Th. 3]. We only need to prove that for fixed x 2 , . . . , x k+1 , V δ k (x 1 , . . . , x k+1 ) is a strictly subharmonic function of x 1 . From Lemma 2, see Appendix, we have

d i=1 ∂ 2 V δ k (x 1 , . . . , x k+1 ) ∂{x 1 } 2 i = δ(δ + d -k -1) V δ k (x 1 , x 2 , . . . , x k+1 ) (1 k A -1 1 k ) ,
with A defined in (2) and

1 k = (1, . . . , 1) ∈ R k . The right-hand side is strictly positive when δ > k + 1 -d.
Theorem 4 For any δ > 1 and any k ∈ {1, . . . , d}, any measure µ * k maximizing ψ k,δ (µ) is supported on extreme points of the convex hull of X .

Proof As shown in the proof of Theorem 3, the potential P k,δ,µ * k (x) is a strictly convex function of x when δ > 1. Suppose that x 0 ∈ X is not an extreme point of the convex hull of X . Then, x 0 can be written as a linear combination of such points z j with strictly positive weights summing to one. The potential P k,δ,µ * k (x 0 ) is then strictly less than the weighted sum of potentials at the z j , which, from Theorem 2, are all less than or equal to ψ k,δ (µ * ). By the same theorem, x 0 cannot be in the support of µ * k .

3 The case δ ≤ 0

When δ < 0, we are interested in the minimization of the functional

ψ k,δ (µ) = E{V δ k (x 1 , . . . , x k+1 )}, µ ∈ M . Equivalently, we can consider the maximization of ψ 1/δ k,δ (µ), the continuous extension of which at δ = 0 is exp (E{log[V k (x 1 , . . . , x k+1 )]}). We thus define D k,δ (µ) = E{V δ k (x 1 , . . . , x k+1 )} 1/δ for δ = 0 , exp (E{log[V k (x 1 , . . . , x k+1 )]}) for δ = 0 .
The results in Sections 2 have shown that when δ > 0 the support of a measure that maximizes D k,δ is sometimes finite and is always included in the boundary of X when k ≤ d -1. The situation is quite different for δ ≤ 0, the case we investigate in this section.

In the case k = 1, the investigation of the properties of extremal measures µ *

1,δ

and optimal values D * 1,δ = D 1,δ (µ * 1,δ ) is one of the main concerns of potential theory, see e.g., [START_REF] Saff | Logarithmic potential theory with applications to approximation theory[END_REF]. This is equivalent to studying the asymptotic behavior of the so-called Fekete points, defined as follows. Given a natural number n and a real δ ≤ 0, the n points X n = (x 1 , . . . , x n ) ∈ X n are called Fekete points when they maximize

D 1,δ (X n ) =   2 n(n -1) 1≤i<j≤n x i -x j δ   1/δ (6)
for δ < 0 and

D 1,0 (X n ) = exp    2 n(n -1) 1≤i<j≤n log ( x i -x j )    (7)
for δ = 0, or equivalently minimize the s-energy, s = -δ, defined by

E (s) (X n ) = 1≤i<j≤n x i -x j -s for s > 0 and by E (0) (X n ) = 1≤i<j≤n log x i -x j -1 for s = 0.
We shall denote by F (s) n a set of n Fekete points, s ≥ 0. For instance, when X = [-1, 1], then the set F (0) n is uniquely defined and coincides with the zeros of (1 -x 2 )P n-1 (x), where P n-1 is the Legendre polynomial of degree n -1. One may note that F (0) n corresponds to the support of a D-optimal design measure for polynomial regression of degree n -1 on [-1, 1], see, e.g., [3, p. 89].

The (logarithmic) transfinite diameter of X is defined by

τ (0) (X ) = lim n→∞ exp - 2 n(n -1) E (0) (F (0) n ) (8) 
where the convergence to the limit in ( 8) is monotonic (in the sense that the exponential term in non-increasing with n). The logarithmic potential associated with

µ ∈ M is P (0) µ (z) = log(1/ z -t ) µ(dt)
, the corresponding energy is defined by

I (0) (µ) = P (0) µ (z) µ(dz) = log 1 z -t µ(dt) µ(dz) .
Similarly, the transfinite diameter of order s > 0 is

τ (s) (X ) = lim n→∞ 2 n(n -1) E (s) (F (s) n ) -1 , the s-potential for µ is P (s) µ (z) = z -t -s µ(dt)
, with associated energy

I (s) (µ) = P (s) µ (z) µ(dz) = 1 z -t s µ(dt) µ(dz) .
The minimum energy problem involves the determination of

I (s) * (X ) = inf{I (s) (µ) : µ ∈ M } .
The logarithmic capacity of X , denoted by cap (0) (X ), is defined by cap

(0) (X ) = exp{-I (0) * (X )}; its s-capacity for s > 0 is cap (s) (X ) = [I (s) * (X )] -1 . If cap (0) (X ) > 0, then the extremal measure µ * 1,0 exists with cap (0) (X ) = D 1,0 (µ * 1,0 ). Also, for any s > 0, if cap (s) (X ) > 0 then µ * 1,-s exists and cap (s) (X ) = [D 1,-s (µ * 1,-s )] s .
One of the main results in potential theory is that the capacity of X coincides with its transfinite diameter: cap (s) (X ) = τ (s) (X ) for all compact sets X . It also coincides with sup µ∈M D 1,0 (µ) when s = 0 and with sup µ∈M [D 1,-s (µ)] s when s > 0. When cap (s) (X ) > 0, which happens in particular when X is a compact subset of R d and 0 ≤ s < d, then µ * 1,-s exists, it is called s-energy equilibrium measure and is the weak limit of a sequence of empirical measures associated with Fekete points. Even if cap (s) (X ) = 0 and no measure µ exists with I (s) (µ) < ∞, it is still interesting to study the limiting behaviour of empirical measures of Fekete points, see [START_REF] Hardin | Discretizing manifolds via minimum energy points[END_REF].

Fekete point are extremely difficult to construct, except for a few particular cases. When s = 0, Fekete points necessarily lie on ∂ ∞ (X ), the outer boundary of X . This implies that the extreme (equilibrium) measure µ * 1,0 is supported on

∂ ∞ (X ) too. Consequently, cap (0) (X ) = cap (0) (∂ ∞ (X )). If the outer boundary ∂ ∞ (X ) is a continuum, then supp(µ * 1,0 ) = ∂ ∞ (X ). In general, ∂ ∞ (X ) \ supp(µ * 1,0 ) has capacity zero. Example 1: d = 1, X = [0, 1]. The extremal measure µ *
1,0 has the arcsine density

π 0 (t) = 1 π t(1 -t)
on [0, 1] and cap (0) (X ) = 1/4. More generally, the measure µ * 1,δ maximizing D 1,δ (µ) with δ ∈ (-1, 0] corresponds to the Beta distribution on [0, 1] with density

π δ (t) = 1 B[(1 -δ)/2, (1 -δ)/2] 1 [t(1 -t)] δ+1
, see, e.g., [START_REF] Zhigljavsky | A new approach to optimal design for linear models with correlated observations[END_REF]. This distribution is uniform for δ = -1, with E (0) (F

n ) growing as n 2 log n, and, as mentioned in [START_REF] Hardin | Discretizing manifolds via minimum energy points[END_REF], the limiting distribution of Fekete points is uniform for every δ ≤ -1.

Example 2: X = B d (0, ρ). As indicated in [START_REF] Hardin | Discretizing manifolds via minimum energy points[END_REF], the extremal measure µ * 1,δ maximizing D 1,δ (•) is uniquely defined for -d < δ ≤ 0 (as the |δ|-energy equilibrium measure). From [6, p. 163], -d < δ < 2 -d, it has the density

ϕ δ (x) = C (ρ 2 -x 2 ) (d+δ)/2 , x ∈ B d (0, ρ) , where C = R δ π -d/2 Γ (1 -δ/2)/Γ (1 -(d + δ)/2). For 2 -d ≤ δ ≤ 0, µ *
1,δ is uniform on the sphere S d (0, ρ). For δ ≤ -d, any sequence of Fekete points is asymptotically uniformly distributed in B d (0, ρ), with E (-δ) (F

(-δ) n
) growing as n 2 log n for δ = -d and as n 1-δ/d for δ < -d, see [START_REF] Hardin | Discretizing manifolds via minimum energy points[END_REF].

To the best of our knowledge, no theory is available which would cover the case k > 1. In the next section we only present results concerning a particular example which illustrate the difference with the case k = 1.

4 Particular case: X = B d (0, ρ) Take X = B d (0, ρ), the closed ball of R d centered at the origin 0 with radius ρ.

Case δ = 2. Let µ 0 be the uniform measure on the sphere S d (0, ρ) (the boundary of B d (0, ρ)). Then, the covariance matrix V µ0 = xx µ 0 (dx) is proportional to the identity matrix

I d , V µ0 = ρ 2 I d /d. Take k = d. We have max x∈X x ∇ ψ d,2 [V µ0 ]x = (d + 1)ρ 2d d d-1 d! = trace{V µ0 ∇ ψ d,2 [V µ0 ]} , where ∇ ψ d,2 [V µ ] = [(d + 1)/d!] det(V µ )V -1 µ
is the gradient of ψ d,2 (µ) considered as a function of V µ , see [START_REF] Pronzato | Extended generalised variances, with applications. Bernoulli[END_REF]. From Theorem 4.1 in the same paper, this implies that µ 0 maximizes ψ d,2 (µ). Let µ d be the measure that allocates mass 1/(d + 1) at each vertex of a d regular simplex having its d + 1 vertices on S d (0, ρ), with squared volume ρ 2d (d + 1) d+1 /[d d (d!) 2 ]. We also have V µ d = ρ 2 I d /d, so that µ d also maximizes ψ d,2 (•). In view of [START_REF] Pronzato | Extended generalised variances, with applications. Bernoulli[END_REF]Remark 4.2], µ 0 and µ d maximize ψ k,2 for all k in {1, . . . , d}.

Let now µ k be the measure that allocates mass 1/(k + 1) at each vertex of a k regular simplex P k , centered at the origin, with its vertices on S d (0, ρ). The squared volume of P k equals ρ 2k (k + 1) k+1 /[k k (k!) 2 ]. Without any loss of generality, we can choose the orientation of the space so that V µ k is diagonal, with its first k diagonal elements equal to ρ 2 /k and the other elements equal to zero. Note that ψ k ,2 (µ k ) = 0 for k > k. Direct calculations give

ψ k,2 (µ k ) = k + 1 k! ρ 2k k k ≤ ψ k (µ 0 ) = k + 1 k! d k ρ 2k d k ,
with equality for k = 1 and k = d, the inequality being strict otherwise. Figure 1 presents the efficiency [ψ k,2 (µ k )/ψ k,2 (µ 0 )] 1/k as a function of k when d = 20. Case δ > 2. We can show that for any δ > 2 the measure µ maximizes ψ d,δ (•) if and only if it coincides with one of the measures µ d introduces above.

The proof follows closely that of Theorem 7 in [START_REF] Björck | Distributions of positive mass, which maximize a certain generalized energy integral[END_REF] which concerns the case k = 1. We have

ψ d,δ (µ) = V δ-2 d (x 1 , . . . , x d+1 ) V 2 d (x 1 , . . . , x d+1 ) µ(dx 1 ) . . . µ(dx d+1 ) ≤ max x1,...,x d+1 V δ-2 d (x 1 , . . . , x d+1 ) V 2 d (x 1 , . . . , x d+1 ) µ(dx 1 ) . . . µ(dx d+1 ) . (9) Since V * d = max x1,...,x d+1 V d (x 1 , . . . , x d+1 ) = ρ d (d + 1) (d+1)/2 /[d d/2 d!]
and the uniform measure µ 0 on the sphere S d (0, ρ) is extremal for ψ d,2 (•), we get

ψ d,δ (µ) ≤ ρ 2d (d + 1) d+1 d d (d!) 2 δ/2-1 ψ d,2 (µ 0 ) = ρ dδ (d + 1) (d+1)δ/2-d (d!) δ-1 d dδ/2 .
On the other hand, this is exactly the value ψ d,δ (µ d ). Therefore, for the measure µ to be extremal we need to have equality in [START_REF] Pronzato | Design of computer experiments: space filling and beyond[END_REF], which requires that V d (x 1 , . . . , x d+1 ) = V * d for all (k + 1)-tuples that contribute to the integral. This forces the extremal measure to have the form indicated.

Consider the case d = 2, ρ = 1. Figure 2 presents the potential P 2,δ,µ2 (x(t)) with x(t) = (cos(t), sin(t)) as a function of t ∈ [0, 2π] for δ = 1 (left) and δ = 4 (right), with µ 2 allocating weight 1/3 at each of the three points (1, 0), (cos(2π/3), sin(2π/3)) and (cos(4π/3), sin(4π/3)). The value of ψ 2,δ (µ 2 ) is indicated in dashed line. The figure illustrates the fact that µ 2 is extremal for ψ 2,4 (•) but is not extremal for ψ 2,1 (•) since the necessary condition of Theorem 2 is violated. The analytic forms for the potentials are P 2,1,µ2 (x(t)) = ( √ 3/18)+( √ 3/9) cos(t)+(1/3) sin(t) for 0 ≤ t ≤ 2π/3 and P 2,4,µ2 (x(t)) = 57/128 + (3/16) cos(3t) for 0 ≤ t ≤ 2π. Uniform measure on the circle S 2 (0, 1). Assume that k = d = 2, X = B(0, 1), and consider the uniform measure µ S on S 2 (0, 1), which is optimal for δ = 2.

Consider n-point sets X n containing the points x j = (cos(2πj/n), sin(2πj/n)), j = 0, . . . , n -1, with empirical measure converging to µ S . The empirical version of (1) is

ψ 2,δ (X n ) = 2 (n -1)(n -2) n-2 i=1 n-1 j=i+1 V δ 2 (x 0 , x i , x j ) .
Direct calculations give By considering the potential P 2,δ,µ S (•) at the origin 0 for δ close to zero, we can show that the necessary condition of Theorem 2 for µ S being optimal is violated for δ < 0. Indeed, we have

ψ 2,1 (X n ) = 3 n 2(n -1)(n -2) cot(π/n) = 3 2 π 1 + 3 n + O n -2 ψ 2,2 (X n ) = 3 n 2 2 3 (n -1)(n -2) ψ 2,3 (X n ) = 35 32 π 1 + 3 n + O n -2 ψ 2,4 (X n ) = 45 n 2 2 7 (n -1)(n -2) ψ 2,5 (X n ) = 3003 2560 π 1 + 3 n + O n -2 ψ 2,6 (X n ) = 105 n 2 2 8 (n -1)(n -2) ψ 2,8 (X n ) = 17325 n 2 2 15 (n -1)(n -2)
ψ 2,δ (µ S ) = 1-(2 log 2) δ +c 1 δ 2 +O(δ 3 ) , P 2,δ,µ S (0) = 1-(2 log 2) δ +c 2 δ 2 +O(δ 3 ) , with c 1
2.1946 and c 2 1.3721, so that P 2,δ,µ S (0) < ψ 2,δ (µ S ) for all δ = 0. However, for negative δ, ψ 2,δ (•) should be minimized, the necessary condition for optimality of µ * becomes P 2,δ,µ * (x) ≥ ψ 2,δ (µ * ) for any x ∈ B(0, 1), and is thus violated for µ S at x = 0. Although µ S is not optimal for negative δ, ψ 2,δ (µ S ) remains finite for δ > -2/3. If X is reduced to the circle S 2 (0, 1), then the n-point sets X n are Fekete points (in the usual sense, for k = 1) and can be considered as generalized Fekete points for k = 2. One can show that ψ

2,δ (X n ) = O(n -(2+3δ) ) for δ < -2/3.
On the other hand, for k = 1, the measure µ S is optimal for 0 ≤ δ ≤ 2 and ψ 1,δ (µ S ) is finite for all δ > -1; lim n→∞ E (1) 

(X n )/(n 2 log n) = 1 and E (-δ) (X n ) grows like n 1-δ (ψ 1,δ (X n ) grows like n -(1+δ) ) for δ < -1.

Generalized Fekete points and design criteria for computer experiments

For a n-point sample, or design, X n = {x 1 , . . . , x n }, n ≥ k + 1, as extensions of ( 6) and ( 7), we define

D k,δ (X n ) =   n k + 1 -1 1≤j1<j2<•••<j k+1 ≤n V δ k (x j1 , . . . , x j k+1 )   1/δ , δ = 0 , and 
D k,0 (X n ) = exp    n k + 1 -1 1≤j1<j2<•••<j k+1 ≤n log V k (x j1 , . . . , x j k+1 )    .
The functions D 1,δ (•) with δ ≤ 0 have been suggested as criteria to be maximized for the construction of space-filling designs for computer experiments. An optimal design X * n,1,δ maximizing D 1,δ (X n ) is a set of Fekete points, as defined in Section 3. In particular, D 1,-2 (•) corresponds to the energy criterion considered in [START_REF] Audze | New approach for planning out of experiments[END_REF]; see also [START_REF] Morris | Exploratory designs for computational experiments[END_REF][START_REF] Pronzato | Design of computer experiments: space filling and beyond[END_REF]. Lemma 1 Take δ ≤ 0, k ∈ {1, . . . , d}, and consider a design X n with D k,δ (X n ) > 0. Then, for any k ∈ {1, . . . , k}, the projection of X n on any (d+1-k )-dimensional linear subspace contains at least n/k + n(mod k ) distinct elements.

Proof Take k ∈ {1, . . . , k}, any (k -1)-dimensional subspace of R d contains k points at most since otherwise one could find k + 1 points in the same (k -1)dimensional subspace, contradicting the property D k,δ (X n ) > 0. Consider the projection p i of one point x i of X n on a (d + 1 -k )-dimensional linear subspace. There are necessarily k points at most in X n , including x i itself, that yield the same projection p i .

One may notice the difference with the usual projection properties considered in design for computer experiments, where only projections onto fixed canonical subspaces are considered. For instance, Latin hypercube design [START_REF] Mckay | A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[END_REF] ensures that all projections on coordinate axes have exactly n points; however, it does not protect against all points lying on a single line.

Letting δ tend to -∞ in D 1,δ (•) yields maximin-distance optimal design, see [START_REF] Johnson | Minimax and maximin distance designs[END_REF], equivalent to the solution of a sphere-packing problem. More generally, for a given sample X n , we define

D k,-∞ (X n ) = min 1≤j1<j2<•••<j k+1 ≤n V k (x j1 , . . . , x j k+1 ) . ( 10 
) Then, D k,-∞ (X n ) ≤ D k,δ (X n ) for any δ ∈ R, with lim δ→-∞ D k,δ (X n ) = D k,-∞ (X n ). Also, if X * n,k,δ ∈ X n maximizes D k,δ (•) and X * n,k,-∞ ∈ X n
is a maximin-optimal design that maximizes D k,-∞ (•), then we have the following bound on the maximinefficiency of

X * n,k,δ , D k,-∞ (X * n,k,δ ) D k,-∞ (X * n,k,-∞ ) ≥ n k + 1 1/δ
, see [START_REF] Pronzato | Design of Experiments in Nonlinear Models[END_REF]Chap. 8]. In general, D 1,δ (•) with δ not too small is easier to optimize than D 1,-∞ (•), see, e.g., [START_REF] Audze | New approach for planning out of experiments[END_REF][START_REF] Morris | Exploratory designs for computational experiments[END_REF]; one may expect the same to be true for k > 1. Notice that from the discussion in Section 3, it is recommended to choose δ ≤ -d to obtain designs evenly spread over X when maximizing D 1,δ (•). Also note that, contrary to D 1,-∞ (X n ) which only depends on the relative distances between neighboring pairs of points, the value of D k,-∞ (X n ) with k > 1 is influenced by the respective positions of points whatever their relative distances, see Lemma 1.

Example 3. We report the maximin optimal designs we have calculated for values of n between 5 and 8 for d = 2 and X = [0, 1] 2 . Note that we have in fact equivalence classes of optimal designs, considering symmetries ({x} i → 1 -{x} i , i = 1, 2) and a permutation of coordinates; only one representant is indicated. We represent designs as matrices, with column i corresponding to coordinates of the i-th design point. Maximin-distance optimal designs (k = 1) can be found for instance at http://www.packomania.com/. We have used the following procedure to determine maximin optimal designs for D 2,-∞ (•): (i) a global random search algorithm, initialized at a random Latin hypercube design, generates a first design X n ; (iii) the configuration of the best design obtained after several repetitions of steps (i) and (ii) is used to determine analytically the optimal design having this configuration. Although we only proved local optimality, we conjecture that the designs presented are indeed optimal for D 2,-∞ (•). Proof We have

∂det(A) ∂{x 1 } i = det(A) trace A -1 ∂A ∂{x 1 } i ∂ 2 det(A) ∂{x 1 } 2 i = -det(A) trace A -1 ∂A ∂{x 1 } i A -1 ∂A ∂{x 1 } i + det(A) trace 2 A -1 ∂A ∂{x 1 } i + det(A) trace A -1 ∂ 2 A ∂{x 1 } 2 i , where ∂A/∂{x 1 } i = -[1 k ∆ i + ∆ i 1 k ] and ∂ 2 A/∂{x 1 } 2 i = 21 k 1 k , with ∆ i = ({x 2 - x 1 } i , . . . , {x k+1 -x 1 } i ) ∈ R k . This gives ∂ 2 det(A) ∂{x 1 } 2 i = 2 det(A) 1 k A -1 1 k (1 -∆ i A -1 ∆ i ) + (1 k A -1 ∆ i ) 2 . Noting that d i=1 ∆ i ∆ i = A, we have d i=1 ∆ i A -1 ∆ i = trace(I k ) = k and obtain d i=1 ∂det(A) ∂{x 1 } i 2 = det 2 (A) d i=1 trace 2 A -1 ∂A ∂{x 1 } i = det 2 (A) d i=1 trace 2 A -1 [1 k ∆ i + ∆ i 1 k ] = 4 det 2 (A) 1 k A -1 1 k and d i=1 ∂ 2 det(A) ∂{x 1 } 2 i = 2 det(A) 1 k A -1 1 k (d + 1 -k) . Now, ∂det α (A) ∂{x 1 } i = α det α-1 (A) ∂det(A) ∂{x 1 } i ∂ 2 det α (A) ∂{x 1 } 2 i = α(α -1) det α-2 (A) ∂det(A) ∂{x 1 } i 2 + α det(A) α-1 ∂ 2 det(A) ∂{x 1 } 2 i ,
which finally gives [START_REF] Pronzato | Extended generalised variances, with applications. Bernoulli[END_REF].

A subgradient-type algorithm to maximize D k,-∞ (•). Consider a design X n = (x 1 , . . . , x n ), with each x i ∈ X , a convex subset of R d , as a vector in R n×d . The function D k,-∞ (•) defined in [START_REF] Pronzato | Design of Experiments in Nonlinear Models[END_REF] is not concave (due to the presence of min), but is Lipschitz and thus differentiable almost everywhere. At points X n where it fails to be differentiable, we consider any particular gradient from the subdifferential, ∇ D k,-∞ (X n ) = ∇v j1,...,j k+1 (X n ) where x j1 , . . . , x j k+1 are such that V k (x j1 , . . . , x j k+1 ) = D k,-∞ (X n ) and where ∇v j1,...,j k+1 (X n ) denotes the usual gradient of the function V k (x j1 , . . . , x j k+1 ). Our subgradient-type algorithm then corresponds to the following sequence of iterations, where the current design X (t) n is updated into

X (t+1) n = P X X (t) n + γ t ∇ D k,-∞ (X (t) n ) ,
where P X [•] denotes the orthogonal projection on X and γ t > 0, γ t 0, t γ t = ∞, t γ 2 t < ∞. Direct calculation gives ∂v j1,...,j k+1 (X n ) ∂{x j } = 0 if j ∈ {j 1 , . . . , j k+1 } 

Fig. 1

 1 Fig. 1 Efficiency [ψ k,2 (µ k )/ψ k,2 (µ 0 )] 1/k as a function of k when d = 20

Fig. 2

 2 Fig.2Potential P 2,δ,µ 2 (x(t)), with x(t) = (cos(t), sin(t)), as a function of t ∈ [0, 2π] (solid line) and value of ψ 2,δ (µ 2 ) (dashed line) for δ = 1 (left) and δ = 4 (right); µ 2 allocates weight 1/3 at each point of an equilateral triangle with vertices on S 2 (0, 1)

Figure 3

 3 Figure 3 presents ψ 2,δ (µ S ) as a function of δ ∈ [0, 8]. The stars indicate the exact values obtained from the expressions above.

Fig. 3 ψ

 3 Fig. 3 ψ 2,δ (µ S ) as a function of δ ∈ [0, 8], for µ S uniform on S 2 (0, 1)

  ii) a local maximization (subgradient-type method, see Appendix) initialized at X

Fig. 4

 4 Fig. 4 Optimal designs for D 2,-∞ (•) for n from 5 to 8; a = 3/7 in X * 6,2,-∞ ; the circles have radius D 1,-∞ (Xn)/2
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The maximin-distance optimal design (k = 1) with n = 5 points is

√ 2/2 0.70711. For k = 2, we get D 2,-∞ (X * 5,1,-∞ ) = 0 since the presence of a central point produces two alignements of three points. On the other hand, the optimal design that we have obtained for D 2,-∞ (•) is

For n = 6, there exists a continuum of maximin optimal designs X * 6,2,-∞ , of the form

all with D 2,-∞ (X * 6,2,-∞ ) = 1/8. Notice that X * 5,2,-∞ and X * 6,2,-∞ do not contain any central point.

For n = 7, we have obtained 

n,1,-∞ )/2 since the designs X n are not maximin-distance optimal. On the other hand, any triplet of design points forms a triangle with area at least D 2,-∞ (X * n,2,-∞ ). Note that for each n equality is achieved for several triplets of points. For instance, when n = 5, the area of the four triangles ABE, ADE, CDE and BCD on Figure 4 

where 1 k = (1, . . . , 1) ∈ R k .