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We consider a measure ψk of dispersion which extends the notion of Wilk’s generalised
variance for a d-dimensional distribution, and is based on the mean squared volume of
simplices of dimension k ≤ d formed by k + 1 independent copies. We show how ψk can
be expressed in terms of the eigenvalues of the covariance matrix of the distribution, also
when a n-point sample is used for its estimation, and prove its concavity when raised
at a suitable power. Some properties of dispersion-maximising distributions are derived,
including a necessary and sufficient condition for optimality. Finally, we show how this
measure of dispersion can be used for the design of optimal experiments, with equivalence
to A and D-optimal design for k = 1 and k = d respectively. Simple illustrative examples
are presented.
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1. Introduction

The idea of dispersion is fundamental to statistics and with different terminology,
such as potential, diversity, entropy, information and capacity, stretches over a wide
area. The variance and standard deviation are the most prevalent for a univariate
distribution, and Wilks generalised variance is the term usually reserved for the
determinant of the covariance matrix, V , of a multivariate distribution. Many other
measures of dispersion have been introduced and a rich area comprises those that
are order-preserving with respect to a dispersion ordering; see Shaked (1982); Oja
(1983); Giovagnoli and Wynn (1995). These are sometimes referred to as measures of
peakness and peakness ordering, and are related to the large literature on dispersion
measures which grew out of the Gini coefficient, used to measure income inequality
(Gini, 1921) and diversity in biology, see Rao (1982a), which we will discuss briefly
below.

In the definitions there are typically two kinds of dispersion, those measuring
some kind of mean distance, or squared distance, from a central value, such as
in the usual definition of variance, and those based on the expected distance, or
squared distance, between two independent copies from the same distribution, such
as the Gini coefficient. It is this second type that will concern us here and we will
generalise the idea in several ways by replacing distance by volumes of simplices
formed by k independent copies and by transforming the distance, both inside the
expectation and outside. This use of volumes makes our measures of dispersion
sensitive to the dimension of the subspace where the bulk of the data lives in.
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2 L. Pronzato et al.

The area of optimal experimental design is another which has provided a range
of dispersion measures. Good designs, it is suggested, are those whose parameter
estimates have low dispersion. Typically, this means that the design measure, the
spread of the observation sites, maximises a measure of dispersion and we shall
study this problem.

We think of a dispersion measure as a functional directly on the distribution.
The basic functional is an integral, such as a moment. The property we shall stress
for such functionals most is concavity: that a functional does not decrease under
mixing of the distributions. A fundamental theorem in Bayesian learning is that
we expect concave functionals to decrease through taking of observations, see Sec-
tion 2.2 below.

Our central result (Section 3) is an identity for the mean squared volume of sim-
plices of dimension k, formed by k+1 independent copies, in terms of the eigenvalues
of the covariance matrices or equivalently in terms of sums of the determinants of
k-marginal covariance matrices. Second, we note that after an appropriate (exte-
rior) power transformation the functional becomes concave. We can thus (i) derive
properties of measures that maximise this functional (Section 4.1), (ii) use this
functional to measure the dispersion of parameter estimates in regression problems,
and hence design optimal experiments which minimise this measure of dispersion
(Section 4.2).

2. Dispersion measures

2.1. Concave and homogeneous functionals

Let X be a compact subset of Rd, M be the set of all probability measures on the
Borel subsets of X and φ : M −→ R+ be a functional defined on M . We will be
interested in the functionals φ(·) that are (see Appendix for precise definitions)

(a) shift-invariant,
(b) positively homogeneous of a given degree q, and
(c) concave: φ[(1 − α)µ1 + αµ2] ≥ (1 − α)φ(µ1) + αφ(µ2) for any α ∈ (0, 1) and

any two measures µ1, µ2 in M .

For d = 1, a common example of a functional satisfying the above properties,
with q = 2 in (b), is the variance

σ2(µ) = E(2)
µ − E2

µ =
1

2

∫ ∫
(x1 − x2)2 µ(dx1)µ(dx2) ,

where Eµ = E(x) =
∫
xµ(dx) and E

(2)
µ =

∫
x2 µ(dx). Concavity follows from

linearity of E
(2)
µ , that is, E

(2)
(1−α)µ1+αµ2

= (1−α)E
(2)
µ1 +αE

(2)
µ2 , and Jensen’s inequality

which implies E2
(1−α)µ1+αµ2

≤ (1− α)E2
µ1

+ αE2
µ2

.
Any moment of µ ∈M is a homogeneous functional of a suitable degree. How-

ever, the variance is the only moment which satisfies (a) and (c). Indeed, the shift-
invariance implies that the moment should be central, but the variance is the only
concave functional among the central moments, see Appendix. In this sense, one of
the aims of this paper is a generalisation of the concept of variance.

In the general case d ≥ 1, the double variance 2σ2(µ) generalises to

φ(µ) =

∫ ∫
‖x1−x2‖2 µ(dx1)µ(dx2) = 2

∫
‖x−Eµ‖2 µ(dx) = 2 trace(Vµ) , (2.1)

where ‖·‖ is the L2-norm in Rd and Vµ is the covariance matrix of µ. This functional,
like the variance, satisfies conditions (a)-(c) with q = 2.
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Extended generalised variances 3

The functional (2.1) is the double integral of the squared distance between two
random points distributed according to the measure µ. Our main interest will be
concentrated around the general class of functionals defined by

φ(µ) = φ[k],δ,τ (µ) =

(∫
. . .

∫
V δ
k (x1, . . . , xk+1)µ(dx1) . . . µ(dxk+1)

)τ
, k ≥ 2

(2.2)
for some δ and τ in R+, where Vk(x1, . . . , xk+1) is the volume of the k-dimensional
simplex (its area when k = 2) formed by the k+ 1 vertices x1, . . . , xk+1 in Rd, with
k = d as a special case. Property (a) for the functionals (2.2) is then a straightfor-
ward consequence of the shift-invariance of Vk, and positive homogeneity of degree
q = k δτ directly follows from the positive homogeneity of Vk with degree k. Con-
cavity will be proved to hold for δ = 2 and τ ≤ 1/k in Section 3. There, we show
that this case can be considered as a natural extension of (2.1) (which corresponds
to k = 1), with φ[k],2,τ (µ) being expressed as a function of Vµ, the covariance matrix
of µ. The concavity for k = τ = 1 and all 0 < δ ≤ 2, follows from the fact that
B(λ) = λα, 0 < α ≤ 1, is a Bernstein function, which will be discussed briefly
below. The functionals (2.2) with δ = 2 and τ > 0, 1 ≤ k ≤ d, can be used to define
a family of criteria for optimal experimental design, concave for τ ≤ 1/k, for which
an equivalence theorem can be formulated.

2.2. Quadratic entropy and learning

In a series of papers (Rao, 1982a,b, 1984, 2010) C.R. Rao and co-workers have
introduced a quadratic entropy which is a generalised version of the k = 2 functional
of this section but with a general kernel K(x1, x2) in Rd:

QR =

∫ ∫
K(x1, x2)µ(dx1)µ(dx2) . (2.3)

For the discrete version

QR =

N∑
i=1

N∑
j=1

K(xi, xj) pi pj ,

Rao and co-workers developed a version of the Analysis of Variance (ANOVA),
which they called Anaysis of Quadratic Entropy (ANOQE), or Analysis of Diversity
(ANODIV). The Gini coefficient, also used in the continuous and discrete form is a
special case with d = 1 and K(x1, x2) = |x1 − x2|.

As pointed in (Rao, 1984, Chap. 3), a necessary and sufficient condition for the
functional QR to be concave is∫ ∫

K(x1, x2)ν(dx1)ν(dx2) ≤ 0 (2.4)

for all measures ν with
∫
ν(dx) = 0. The discrete version of this is

N∑
i=1

N∑
j=1

K(xi, xj) qi qj ≤ 0

for any choice of real numbers q1, . . . , qN such that
∑N
i=1 qi = 0. Schilling et al.

(2012) discuss the general problem of finding for what class of continuous functions
B(·) of ‖x1 − x2‖2 does the kernel K(x1, x2) = B

(
‖x1 − x2‖2

)
satisfy (2.4): the

solution is that B(·) must be a so-called Bernstein function. We do not develop
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4 L. Pronzato et al.

these ideas here, but note that B(λ) = λα is a Bernstein function for all 0 < α ≤ 1.
This is the reason that, above, we can claim concavity for k = 1 and all 0 < δ ≤ 2
in (2.2).

Hainy et al. (2014) discuss the link to embedding and review some basic results
related to Bayesian learning. One asks what is the class of functionals ψ on a
distribution µ(θ) of a parameter in the Bayesian statistical learning such that for all
µ(θ) and all sampling distributions π(x|θ) one expects to learn, in the preposterior
sense: ψ(µ(θ)) ≤ Eνψ(π(θ|X)), with X ∼ ν. The condition is that ψ is convex, a
result which has a history but is usually attributed to DeGroot (1962). This learning
is enough to justify calling such a functional a generalised information functional,
or a general learning functional. Shannon information falls in this class, and earlier
versions of the result were for Shannon information. It follows that wherever, in this
paper, we have a concave functional then its negative is a learning functional.

3. Functionals based on squared volume

In the rest of the paper we focus our attention on the functional

µ ∈M −→ ψk(µ) = φ[k],2,1(µ) = E{V 2
k (x1, . . . , xk+1)} ,

which corresponds to the mean squared volume of simplices of dimension k formed
by k + 1 independent samples from µ. For instance,

ψ2(µ) =

∫ ∫ ∫
V 2

2 (x1, x2, x3)µ(dx1)µ(dx2)µ(dx3) , (3.1)

with V2(x1, x2, x3) the area of the triangle formed by the three points with co-
ordinates x1, x2 and x3 in Rd, d ≥ 2. Functionals φ[k],δ,τ (µ) for δ 6= 2 will be
considered in another paper, including the case of negative δ and τ in connection
with space-filling design for computer experiments.

Theorem 3.1 of Section 3.1 indicates how ψk(µ) can be expressed as a function
of Vµ, the covariance matrix of µ, and shows that φ[k],2,1/k(·) satisfies properties
(a), (b) and (c) of Section 2.1. The special case of k = d was known to Wilks (1932,
1960) in his introduction of generalised variance, see also van der Vaart (1965).
The connection with U-statistics is exploited in Section 3.3, where an unbiased
minimum-variance estimator of ψk(µ) based on a sample x1, . . . , xn is expressed in
terms of the empirical covariance matrix of the sample.

3.1. Expected squared k-simplex volume

Theorem 3.1. Let the xi be i.i.d. with the probability measure µ ∈M . Then, for
any k ∈ {1, . . . , d}, we have

ψk(µ) =
k + 1

k!

∑
i1<i2<···<ik

det[{Vµ}(i1,...,ik)×(i1,...,ik)] (3.2)

=
k + 1

k!

∑
i1<i2<···<ik

λi1 [Vµ]× · · · × λik [Vµ] , (3.3)

where the λi[Vµ] denote the eigenvalues of the covariance matrix Vµ and all ij belong

to {1, . . . , d}. Moreover, the functional ψ
1/k
k (·) is shift-invariant, homogeneous of

degree 2 and concave on M .

The proof uses the following two lemmas, see Appendix.
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Lemma 3.1. Let the k+ 1 vectors x1, . . . , xk+1 of Rk be i.i.d. with the probability
measure µ, k ≥ 2. For i = 1, . . . , k + 1, denote zi = (x>i 1)>. Then

E

{
det

[
k+1∑
i=1

ziz
>
i

]}
= (k + 1)! det[Vµ] .

Lemma 3.2. The matrix functional µ 7→ Vµ is Loewner-concave on M , in the
sense that, for any µ1, µ2 in M and any α ∈ (0, 1),

V(1−α)µ1+αµ2
� (1− α)Vµ1

+ αVµ2
, (3.4)

where A � B means that A−B is nonnegative definite.

Proof of Theorem 3.1. When k = 1, the results follow from ψ1(µ) = 2 trace(Vµ),
see (2.1). Using Binet-Cauchy formula, see, e.g., (Gantmacher, 1966, vol. 1, p. 9),
we obtain

V 2
k (x1, . . . , xk+1) =

1

(k!)2
det




(x2 − x1)>

(x3 − x1)>

...
(xk+1 − x1)>


[(x2 − x1) (x3 − x1) · · · (xk+1 − x1)]


=

1

(k!)2

∑
i1<i2<···<ik

det2

 {x2 − x1}i1 · · · {xk+1 − x1}i1
...

...
...

{x2 − x1}ik · · · {xk+1 − x1}ik



=
1

(k!)2

∑
i1<i2<···<ik

det2


{x1}i1 · · · {xk+1}i1

...
...

...
{x1}ik · · · {xk+1}ik

1 · · · 1

 ,
where {x}i denotes the i-th component of vector x. Also, for all i1 < i2 < · · · < ik,

det2


{x1}i1 · · · {xk+1}i1

...
...

...
{x1}ik · · · {xk+1}ik

1 · · · 1

 = det

k+1∑
j=1

zjz
>
j


where we have denoted by zj the k+1-dimensional vector with components {xj}i` , ` =
1, . . . , k, and 1. When the xi are i.i.d. with the probability measure µ, using Lemma 3.1
we obtain (3.2), (3.3). Therefore

ψk(µ) = Ψk[Vµ] =
k + 1

k!
Ek{λ1[Vµ], . . . , λd[Vµ]} ,

with Ek{λ1[Vµ], . . . , λd[Vµ]} the elementary symmetric function of degree k of the d
eigenvalues of Vµ, see, e.g., (Marcus and Minc, 1964, p. 10). Note that

Ek[Vµ] = Ek{λ1[Vµ], . . . , λd[Vµ]} = (−1)kad−k ,

with ad−k the coefficient of the monomial of degree d − k of the characteristic
polynomial of Vµ; see, e.g., (Marcus and Minc, 1964, p. 21). We have in particular
E1[Vµ] = trace[Vµ] and Ed[V µ)] = det[Vµ]. The shift-invariance and homogeneity of

degree 2 of ψ
1/k
k (·) follow from the shift-invariance and positive homogeneity of Vk
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6 L. Pronzato et al.

with degree k. Concavity of Ψ
1/k
k (·) follows from (Marcus and Minc, 1964, p. 116)

(take p = k in eq. (10), with E0 = 1). From López-Fidalgo and Rodŕıguez-Dı́az

(1998), the Ψ
1/k
k (·) are also Loewner-increasing, so that from Lemma 3.2, for any

µ1, µ2 in M and any α ∈ (0, 1),

ψ
1/k
k [(1− α)µ1 + αµ2] = Ψ

1/k
k {V(1−α)µ1+αµ2

}

≥ Ψ
1/k
k [(1− α)Vµ1

+ αVµ2
]

≥ (1− α)Ψ
1/k
k [Vµ1 ] + αΨ

1/k
k [Vµ2 ]

= (1− α)ψ
1/k
k (µ1) + αψ

1/k
k (µ2) . �

The functionals µ −→ φ[k],2,τ (µ) = ψτk(µ) are thus concave for 0 < τ ≤ 1/k,
with τ = 1/k yielding positive homogeneity of degree 2. The functional ψ1(·) is a
quadratic entropy QR, see (2.3), or diversity measure (Rao, 2010); ψd(µ) is pro-

portional to Wilks generalised variance. Functionals ψ
1/2
2 (·), see (3.1), and more

generally ψ
1/k
k (·) for k ≥ 2, can also be considered as diversity measures.

From the well-known expression of the coefficients of the characteristic polyno-
mial of a matrix V , we have

Ψk(V ) =
k + 1

k!
Ek(V ) (3.5)

=
k + 1

(k!)2
det


trace(V ) k − 1 0 · · ·
trace(V 2) trace(V ) k − 2 · · ·
· · · · · · · · · · · ·

trace(V k−1) trace(V k−2) · · · 1
trace(V k) trace(V k−1) · · · trace(V )

 ,
see, e.g., (Macdonald, 1995, p. 28), and the Ek(V ) satisfy the recurrence relations
(Newton identities):

Ek(V ) =
1

k

k∑
i=1

(−1)i−1 Ek−i(V ) E1(V i) , (3.6)

see, e.g., (Gantmacher, 1966, Vol. 1, p. 88) and López-Fidalgo and Rodŕıguez-Dı́az
(1998). Particular forms of ψk(·) are

k = 1 : ψ1(µ) = 2 trace(Vµ) ,

k = 2 : ψ2(µ) =
3

4
[trace2(Vµ)− trace(V 2

µ )] ,

k = 3 : ψ3(µ) =
1

9
[trace3(Vµ)− 3 trace(V 2

µ )trace(Vµ) + 2 trace(V 3
µ )] ,

k = d : ψd(µ) =
d+ 1

d!
det(Vµ) .

3.2. Other concave homogeneous functionals

From the proof of Theorem 3.1, any Loewner-increasing, concave and homogeneous
functional of the covariance matrix Vµ satisfies all properties (a)-(c) of Section 2.1.
In particular, consider Kiefer’s Φp-class (Kiefer, 1974), defined by

ϕp(µ) = Φp(Vµ) =


λmax(Vµ) for p =∞ ,
{ 1
d trace(V pµ )}1/p for p 6= 0,±∞ ,

det1/d(Vµ) for p = 0 ,
λmin(Vµ) for p = −∞ ,

(3.7)
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Extended generalised variances 7

with the continuous extension ϕp(µ) = 0 for p < 0 when Vµ is singular. Notice that

ϕ1(·) and ϕ0(·) respectively coincide with ψ1(·) and ψ
1/d
d (·) (up to a multiplicative

scalar).
The functionals ϕp(·) are homogeneous of degree 2, and concave for p ∈ [−∞, 1],

see, e.g., (Pukelsheim, 1993, Chap. 6). However, by construction, for any p ≤ 0,
ϕp(µ) = 0 when µ is concentrated in a q-dimensional subspace of Rd, for any q < d,
whereas ϕp(µ) > 0 for p > 0 and any q > 0. The family of functionals (3.7) is
therefore unable to detect the true dimensionality of the data. On the other hand,
ψk(µ) = 0 for all k > q when rank Vµ = q.

3.3. Empirical version and unbiased estimates

Let x1, . . . , xn be a sample of n vectors of Rd, i.i.d. with the measure µ. This
sample can be used to obtain an empirical estimate (ψ̂1)n of ψk(µ), through the
consideration of the

(
n
k+1

)
k-dimensional simplices that can be constructed with the

xi. Below we show how a much simpler (and still unbiased) estimation of ψk(µ) can
be obtained through the empirical variance-covariance matrix of the sample. See
also Wilks (1960, 1962).

Denote

x̂n =
1

n

n∑
i=1

xi ,

V̂n =
1

n− 1

n∑
i=1

(xi − x̂n)(xi − x̂n)> =
1

n(n− 1)

∑
i<j

(xi − xj)(xi − xj)> ,

respectively the empirical mean and variance-covariance matrix of x1. Note that
both are unbiased. We thus have

(ψ̂1)n =
2

n(n− 1)

∑
i<j

‖xi − xj‖2 = 2 trace[V̂n] = Ψ1(V̂n) ,

and the estimator (ψ̂1)n is an unbiased estimator of ψ1(µ). For k ≥ 1, consider the
empirical estimate

(ψ̂k)n =

(
n

k + 1

)−1 ∑
j1<j2<···<jk+1

V 2
k (xj1 , . . . , xjk+1

) . (3.8)

It satisfies the following.

Theorem 3.2. For x1, . . . , xn a sample of n vectors of Rd, i.i.d. with the measure
µ, and for any k ∈ {1, . . . , d}, we have

(ψ̂k)n =
(n− k − 1)!(n− 1)k

(n− 1)!
Ψk(V̂n) , (3.9)

and (ψ̂k)n forms an unbiased estimator of ψk(µ) with minimum variance among all
unbiased estimators.

This result generalises the main result of van der Vaart (1965) to k ≤ d, see
Corollary 2.1 in that paper. The proof is given in Appendix.

Using the notation of Theorem 3.1, since Ek(V ) = (−1)kad−k(V ), with ad−k(V )
the coefficient of the monomial of degree d − k of the characteristic polynomial of
V , for a nonsingular V we obtain

Ek(V ) = det(V ) Ed−k(V −1) , (3.10)
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8 L. Pronzato et al.

see also (López-Fidalgo and Rodŕıguez-Dı́az, 1998, Eq. 4.2). Therefore, we also have

(ψ̂d−k)n =
(n− d+ k − 1)!(n− 1)d−k

(n− 1)!

(d− k + 1)k!

(k + 1)(d− k)!
det(V̂n) Ψk(V̂ −1

n ) , (3.11)

which forms an unbiased and minimum-variance estimator of ψd−k(µ). Note that
the estimation of ψk(µ) is much simpler through (3.9) or (3.11) than using the direct
construction (3.8).

One may notice that Ψk(V̂1) is clearly unbiased due to the linearity of Ψ1(·), but

it is remarkable that Ψk(V̂n) becomes unbiased after a suitable scaling, see (3.9).

Since Ψk(·) is highly nonlinear for k > 1, this property would not hold if V̂n were
replaced by another unbiased estimator of Vµ.

The value of (ψ̂k)n only depend on V̂n, with E{(ψ̂k)n} = ψk(Vµ), but its vari-
ance depends on the distribution itself. Assume E{V 4

k (x1, . . . , xk+1)} < ∞. From

(Serfling, 1980, Lemma A, p. 183), the variance of (ψ̂k)n satisfies

var[(ψ̂k)n] =
(k + 1)2

n
ω +O(n−2) ,

where ω = var[h(x)], with h(x) = E{V 2
k (x1, x2, . . . , xk+1)|x1 = x}. Obviously,

E[h(x)] = ψk(µ) and calculations similar to those in the proof of Theorem 3.1
give

ω =
1

(k!)2

∑
I,J

det[{Vµ}I×I ] det[{Vµ}J×J ] (3.12)

×
[
E
{

(Eµ − x)>I {Vµ}−1
I×I(Eµ − x)I(Eµ − x)>J {Vµ}−1

J×J(Eµ − x)J
}
− k2

]
,

where I and J respectively denote two sets of indices i1 < i2 < · · · ik and j1 <
j2 < · · · < jk in {1, . . . , d}, the summation being over all possible such sets. Simpli-
fications occur in some particular cases. For instance, when µ is a normal measure,
then

ω =
2

(k!)2

∑
I,J

det[{Vµ}I×I ] det[{Vµ}J×J ]

× trace
[
{Vµ}−1

J×J{Vµ}J×I{Vµ}
−1
I×I{Vµ}I×J

]
.

If, moreover, Vµ is the diagonal matrix diag{λ1, . . . , λd}, then

ω =
2

(k!)2

∑
I,J

β(I, J)
∏
I

λi
∏
J

λj ,

with β(I, J) denoting the number of coincident indices between I and J (i.e., the
size of I ∩ J). When µ is such that the components of x are i.i.d. with variance σ2,
then Vµ = σ2Id, with Id the d-dimensional identity matrix, and

E
{

(Eµ − x)>I {Vµ}−1
I×I(Eµ − x)I(Eµ − x)>J {Vµ}−1

J×J(Eµ − x)J
}

=

E


(∑
i∈I

z2
i

)∑
j∈J

z2
j

 ,

where the zi = {x− Eµ}i/σ are i.i.d. with mean 0 and variance 1. We then obtain

ω =
σ4k

(k!)2
(E{z4

i } − 1)βd,k ,
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where

βd,k =
∑
I,J

β(I, J) =

k∑
i=1

i

(
d

i

)(
d− i
k − i

)(
d− i− (k − i)

k − i

)

=
(d− k + 1)2

d

(
d

k − 1

)2

.

Example 1 We generate 1, 000 independent samples of n points for different
measures µ. Figure 1 presents a box-plot of the ratios (ψ̂k)n/ψk(µ) for various
values of k and n = 100 (left), n = 1, 000 (right), when µ = µ1 uniform in [0, 1]10.
Figure 2 presents the same information when µ = µ2 which corresponds to the
normal distribution N (0, I10/12) in R10. Note that Vµ1

= Vµ2
but the dispersions

are different in the two figures. The fact that the variance of the ratio (ψ̂k)n/ψk(µ)
increases with k is due to the decrease of ψk(µ), see Figure 3-left. Note that the

values of ψk(µ) and empirical mean of (ψ̂k)n are extremely close. Figure 3-right

presents the asymptotic and empirical variances of (ψ̂k)n/ψk(µ) as functions of k.
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Figure 1. Box-plot of (ψ̂k)n/ψk(µ) for different values of k: µ is uniform in [0, 1]10, n = 100 (Left)
and n = 1, 000 (Right) — 1,000 repetitions; minimum, median and maximum values are indicated,
together with 25% and 75% quantiles.
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Figure 2. Same as in Figure 1 but for µ normal N (0, I10/12).

Other properties of U-statistics apply to the estimator (ψ̂k)n, including almost-
sure consistency and the classical law of the iterated logarithm, see (Serfling, 1980,

Section 5.4). In particular, (ψ̂k)n is asymptotically normal,
√
n[(ψ̂k)n − ψk(µ)]

d→
N (0, (k + 1)2ω) with ω given by (3.12). This is illustrated in Figure 4-left below
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Figure 3. Left: ψk(µ) (dots and solid line) and empirical mean of (ψ̂k)n (triangles and dashed
line); Right: asymptotic (dots and solid line) and empirical (triangles and dashed line) variances

of (ψ̂k)n/ψk(µ); µ is normal N (0, I10/12), n = 100, 1,000 repetitions.

for µ uniform in [0, 1]10, with n = 1, 000 and k = 3. The distribution is already
reasonably close to normality for small values of n, see Figure 4-right for which
n = 20.
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Figure 4. Dots: empirical distribution of (ψ̂k)n (histogram for 10,000 independent repetitions);
solid line: asymptotic normal distribution N (ψk(µ), (k + 1)2ω/n); µ is uniform in [0, 1]10 and
k = 3; left: n = 1, 000; right: n = 20.

4. Maximum-diversity measures and optimal
designs

In this section we consider two types of optimisation problems on M related to the
functionals ψk(·) introduced in Theorem 3.1. First, in Section 4.1, we are interested
in the characterisation and construction of maximum-diversity measures; that is,
measures µ∗k ∈ M which maximise ψk(µ) = Ψk(Vµ). The existence of an optimal
measure follows from the compactness of X and continuity of Vk(x1, . . . , xk+1) in
each xi, see (Björck, 1956, Th. 1); the concavity and differentiability of the functional

ψ
1/k
k (·) allow us to derive a necessary and sufficient condition for optimality.
In Section 4.2 we consider the problem of optimal design of experiments, where

the covariance matrix V is the inverse of the information matrix M(ξ) for some
regression model.
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4.1. Maximum-diversity measures

4.1.1. Necessary and sufficient condition

Since the functionals ψ
1/k
k (·) are concave and differentiable, for all k = 1, . . . , d, we

can easily derive a necessary and sufficient condition for a probability measure µ∗k
on X to maximise ψk(µ), in the spirit of the celebrated Equivalence Theorem of
Kiefer and Wolfowitz (1960).

Denote by ∇Ψk [V ] the gradient of Ψk(·) at matrix V (a matrix of the same size
as V ) and by Fψk(µ; ν) the directional derivative of ψk(·) at µ in the direction ν;

Fψk(µ; ν) = lim
α→0+

ψk[(1− α)µ+ αν]− ψk(µ)

α
.

From the expression (3.5) of Ψk(V ), we have

∇Ψk [V ] =
k + 1

k!
∇Ek [V ] ,

where ∇Ek [V ] denotes the gradient of Ek(·) at V , which, using (3.6), can be shown
by induction to satisfy

∇Ek [V ] =

k−1∑
i=0

(−1)i Ek−i−1(V )V i , (4.1)

see López-Fidalgo and Rodŕıguez-Dı́az (1998). We thus obtain in particular

k = 1 : ∇Ψ1 [V ] = 2 Id ,

k = 2 : ∇Ψ2 [V ] =
3

2
[trace(V ) Id − V ] ,

k = 3 : ∇Ψ3 [V ] =
1

3
[trace2(V )− trace(V 2)] Id −

2

3
trace(V )V +

2

3
V 2 ,

k = d : ∇Ψd [V ] =
d+ 1

d!
det(V )V −1 .

Using the differentiability of Ψk(·), direct calculation gives

Fψk(µ; ν) = trace

{
∇Ψk [Vµ]

dV(1−α)µ+αν

dα

∣∣∣∣
α=0

}
,

with

dV(1−α)µ+αν

dα

∣∣∣∣
α=0

=

∫
[xx>−(Eµx

>+xE>µ )] ν(dx)−
∫
xx> µ(dx)+2EµE

>
µ . (4.2)

Notice that dV(1−α)µ+αν/dα
∣∣
α=0

is linear in ν.

Then, from the concavity of ψ
1/k
k (·), µ∗k maximises ψk(µ) with respect to µ ∈M

if and only if ψk(µ∗k) > 0 and Fψk(µ∗k; ν) ≤ 0 for all ν ∈M , that is

trace

{
∇Ψk [Vµ∗k ]

dV(1−α)µ∗k+αν

dα

∣∣∣∣
α=0

}
≤ 0 , ∀ν ∈M . (4.3)

We obtain the following.

Theorem 4.1. The probability measure µ∗k such that ψk(µ∗k) > 0 is ψk-optimal,
that is, maximises ψk(µ) with respect to µ ∈M , k ∈ {1, . . . , d}, if and only if

max
x∈X

(x− Eµ∗k)>
∇Ψk [Vµ∗k ]

Ψk(Vµ∗k)
(x− Eµ∗k) ≤ k . (4.4)
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Moreover,

(x− Eµ∗k)>
∇Ψk [Vµ∗k ]

Ψk(Vµ∗k)
(x− Eµ∗k) = k (4.5)

for all x in the support of µ∗k.

Proof. First note that the Newton equations (3.6) and the recurrence (4.1) for
∇Ek [·] imply that trace(V∇Ψk [V ]) = kΨk(V ) for all k = 1, . . . , d.

The condition (4.4) is sufficient. Indeed, suppose that µ∗k such that ψk(µ∗k) > 0
satisfies (4.4). We obtain∫

(x− Eµ∗k)>∇Ψk [Vµ∗k ](x− Eµ∗k) ν(dx) ≤ trace
{
Vµ∗k∇Ψk [Vµ∗k ]

}
for any ν ∈M , which gives (4.3) when we use (4.2). The condition is also necessary
since (4.3) must be true in particular for δx, the delta measure at any x ∈X , which
gives (4.4). The property (4.5) on the support of µ∗k follows from the observation
that

∫
(x− Eµ∗k)>∇Ψk [Vµ∗k ](x− Eµ∗k)µ∗k(dx) = trace

{
Vµ∗k∇Ψk [Vµ∗k ]

}
.

Note that for k < d, the covariance matrix Vµ∗k of a ψk-optimal measure µ∗k is not
necessarily unique and may be singular; see, e.g., Examples 2 and 3 in Section 4.1.3.
Also, ψk(µ) > 0 implies that ψk−1(µ) > 0, k = 2, . . . , d.

Remark 4.1. As a natural extension of the concept of potential in case of order-
two interactions (k = 1), we call Pk,µ(x) = ψk(µ, . . . , µ, δx) the potential of µ at x,
where

ψk(µ1, . . . , µk+1) =

∫
. . .

∫
V 2
k (x1, . . . , xk+1)µ1(dx1) . . . µk+1(dxk+1) .

This yields Fψk(µ; ν) = (k + 1) [ψk(µ, . . . , µ, ν) − ψk(µ)], where µ appears k times
in ψk(µ, . . . , µ, ν). Therefore, Theorem 4.1 states that µ∗k with ψk(µ∗k) > 0 is ψk-
optimal if and only if ψk(µ∗k, . . . , µ

∗
k, ν) ≤ ψk(µ∗k) for any ν ∈ M , or equivalently

Pk,µ∗k(x) ≤ ψk(µ∗k) for all x ∈X .
It can be shown that for any measure µ ∈ M , minx∈X Pk,µ(x) is reached for

x = Eµ, which extends the result of Wilks (1960) about the minimum property of
the internal scatter.

Remark 4.2. Consider Kiefer’s Φp-class of orthogonally invariant criteria and
their associated functional ϕp(·), see (3.7). From a result in (Harman, 2004), if a
measure µp optimal for some ϕp(·) with p ∈ (−∞, 1] is such that Vµp is proportional
to the identity matrix Id, then µp is simultaneously optimal for all orthogonally
invariant criteria. A measure µp having this property is therefore ψk-optimal for all
k = 1, . . . , d.

Remark 4.3. Using (3.10), when V is nonsingular we obtain the property

Ψk(V ) =
(k + 1)(d− k)!

(d− k + 1)k!
det(V ) Ψd−k(V −1)

which implies that maximising Ψk(V ) is equivalent to maximising log det(V ) +
log Ψd−k(V −1). Therefore, Theorem 4.1 implies that µ∗k with nonsingular covari-
ance matrix Vµ∗k maximises ψk(µ) if and only if

max
x∈X

(x− Eµ∗k)>

[
V −1
µ∗k
− V −1

µ∗k

∇Ψd−k [V −1
µ∗k

]

Ψd−k(V −1
µ∗k

)
V −1
µ∗k

]
(x− Eµ∗k) ≤ d− k ,

with equality for x in the support of µ∗k. When k is large (and d− k is small), one
may thus check the optimality of µ∗k without using the complicated expressions of
Ψk(V ) and ∇Ψk [V ].
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4.1.2. A duality property

The characterisation of maximum-diversity measures can also be approached from
the point of view of duality theory.

When k = 1, the determination of a ψ1-optimal measure µ∗1 is equivalent to the
dual problem of constructing the minimum-volume ball B∗d containing X . If this
ball has radius ρ, then ψ1(µ∗1) = 2ρ2, and the support points of µ∗1 are the points
of contact between X and B∗d ; see (Björck, 1956, Th. 6). Moreover, there exists an
optimal measure with no more than d+ 1 points.

The determination of an optimal measure µ∗d is also dual to a simple geometrical
problem: it corresponds to the determination of the minimum-volume ellipsoid E ∗d
containing X . This is equivalent to a D-optimal design problem in Rd+1 for the
estimation of β = (β0, β

>
1 )>, β1 ∈ Rd, in the linear regression model with intercept

β0 + β>1 x, x ∈X , see Titterington (1975). Indeed, denote

Wµ =

∫
X

(1 x>)>(1 x>)µ(dx) .

Then E ∗d+1 = {z ∈ Rd+1 : z>W−1
µ∗d
z ≤ d + 1}, with µ∗d maximising det(Wµ), is

the minimum-volume ellipsoid centered at the origin and containing the set {z ∈
Rd+1 : z = (1 x>)>, x ∈ X }. Moreover, E ∗d corresponds to the intersection
between E ∗d+1 and the hyperplane {z}1 = 1; see, e.g., Shor and Berezovski (1992).
This gives ψd(µ

∗
d) = (d + 1)/d! det(Wµ∗d

). The support points of µ∗d are the points
of contact between X and E ∗d , there exists an optimal measure with no more than
d(d+ 3)/2 + 1 points, see Titterington (1975).

The property below generalises this duality property to any k ∈ {1, . . . , d}.

Theorem 4.2.

max
µ∈M

Ψ
1/k
k (Vµ) = min

M,c: X⊂E (M,c)

1

φ∞k (M)
,

where E (M, c) denotes the ellipsoid E (M, c) = {x ∈ Rd : (x − c)>M(x − c) ≤ 1}
and φ∞k (M) is the polar function

φ∞k (M) = inf
V�0: trace(MV )=1

1

Ψ
1/k
k (V )

. (4.6)

The proof is given in Appendix. The polar function φ∞k (·) possesses the prop-
erties of what is called an information function in (Pukelsheim, 1993, Chap. 5); in
particular, it is concave on the set of symmetric non-negative definite matrices. This
duality property has the following consequence.

Corollary 4.1. The determination of a covariance matrix V ∗k that maximises
Ψk(Vµ) with respect to µ ∈ M is equivalent to the determination of an ellipsoid
E (M∗k , c

∗
k) containing X , minimum in the sense that M∗k maximises φ∞k (M). The

points of contact between E (M∗k , c
∗
k) and X form the support of µ∗k.

For any V � 0, denote by M∗(V ) the matrix

M∗(V ) =
∇Ψk [V ]

kΨk(V )]
=

1

k
∇log Ψk [V ] . (4.7)

Note that M∗(V ) � 0, see (Pukelsheim, 1993, Lemma 7.5), and that

trace[VM∗(V )] = 1 ,
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see the proof of Theorem 4.1. The matrix V � 0 maximises Ψk(V ) under the
constraint trace(MV ) = 1 for some M � 0 if and only if V [M∗(V ) − M ] = 0.
Therefore, ifM is such that there exists V∗ = V∗(M) � 0 such thatM = M∗[V∗(M)],

then φ∞k (M) = Ψ
−1/k
k [V∗(M)]. When k < d, the existence of such a V∗ is not

ensured for all M � 0, but happens when M = M∗k which maximises φ∞k (M) under
the constraint X ∈ E (M, c). Moreover, in that case there exists a µ∗k ∈ M such
that M∗k = M∗(Vµ∗k), and this µ∗k maximises ψk(µ) with respect to µ ∈M .

Consider in particular the case k = 1. Then, M∗(V ) = Id/trace(V ) and φ∞1 (M) =
λmin(M)/2. The matrix M∗k of the optimal ellipsoid E (M∗k , c

∗
k) is proportional to

the identity matrix and E (M∗k , c
∗
k) is the ball of minimum-volume that encloses X .

When k = 2 and Id � (d−1)M/trace(M), direct calculations show that φ∞2 (M) =

Ψ
−1/2
2 [V∗(M)], with

V∗(M) = [Id trace(M)/(d− 1)−M ] [trace2(M)/(d− 1)− trace(M2)]−1 ;

the optimal ellipsoid is then such that trace2(M)/(d−1)− trace(M2) is maximised.

4.1.3. Examples

Example 2 Take X = [0, 1]d, d ≥ 1 and denote by vi, i = 1, . . . , 2d the 2d vertices

of X . Consider µ∗ = (1/2d)
∑2d

i=1 δvi , with δv the Dirac delta measure at v. Then,
Vµ∗ = Id/4 and one can easily check that µ∗ is ψ1-optimal. Indeed, Eµ∗ = 1d/2,
with 1d the d-dimensional vector of ones, and maxx∈X (x−1d/2)>(2 Id)(x−1d/2) =
d/2 = trace{Vµ∗∇Ψ1 [Vµ∗ ]}. From Remark 4.2, the measure µ∗ is ψk-optimal for all
k = 1, . . . , d.

Note that the two-point measure µ∗1 = (1/2)[δ0+δ1d ] is such that Vµ∗1 = (1d 1
>
d )/4

and ψ1(µ∗1) = d/2 = ψ1(µ∗), and is therefore ψ1-optimal too. It is not ψk-optimal
for k > 1, since ψk(µ∗1) = 0, k > 1.

Example 3 Take X = Bd(0, ρ), the closed ball of Rd centered at the origin 0
with radius ρ. Let µ0 be the uniform measure on the sphere Sd(0, ρ) (the boundary
of Bd(0, ρ)). Then, Vµ0

is proportional to the identity matrix Id, and trace[Vµ0
] = ρ2

implies that Vµ0
= ρ2Id/d. Take k = d. We have Eµ0

= 0 and

max
x∈X

(x− Eµ0)>∇Ψd [Vµ0 ](x− Eµ0) =
(d+ 1)ρ2d

dd−1d!
= trace{Vµ0∇Ψd [Vµ0 ]} ,

so that µ0 is ψd-optimal from (4.4).
Let µd be the measure that allocates mass 1/(d + 1) at each vertex of a d reg-

ular simplex having its d + 1 vertices on Sd(0, ρ), with squared volume ρ2d(d +
1)d+1/[dd(d!)2]. We also have Vµd = ρ2Id/d, so that µd is ψd-optimal too. In view
of Remark 4.2, µ0 and µd are ψk-optimal for all k in {1, . . . , d}.

Let now µk be the measure that allocates mass 1/(k + 1) at each vertex of a k
regular simplex Pk, centered at the origin, with its vertices on Sd(0, ρ). The squared
volume of Pk equals ρ2k (k+1)k+1/[kk(k!)2]. Without any loss of generality, we can
choose the orientation of the space so that Vµk is diagonal, with its first k diagonal
elements equal to ρ2/k and the other elements equal to zero. Note that ψk′(µk) = 0
for k′ > k. Direct calculations based on (3.5) give

ψk(µk) =
k + 1

k!

ρ2k

kk
≤ ψk(µ0) =

k + 1

k!

(
d

k

)
ρ2k

dk
,

with equality for k = 1 and k = d, the inequality being strict otherwise.
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4.2. Optimal design in regression models

In this section we consider the case when V = M−1(ξ), where M(ξ) is the informa-
tion matrix

M(ξ) =

∫
T
f(t)f>(t) ξ(dt)

in a regression model Yj = θ>f(tj) + εj with parameters θ ∈ Rd, for a design
measure ξ ∈ Ξ. Here Ξ denotes the set of probability measures on a set T such
that {f(t) : t ∈ T} is compact, and M−1(ξ) is the (asymptotic) covariance matrix

of an estimator θ̂ of θ when the design variables t are distributed according to ξ.
The value ψk(µ) of Theorem 3.1 defines a measure of dispersion for θ̂, that depends
on ξ through Vµ = M−1(ξ). The design problem we consider consists in choosing
ξ that minimises this dispersion, as measured by Ψk[M−1(ξ)], or equivalently that
maximises Ψ−1

k [M−1(ξ)].

4.2.1. Properties

It is customary in optimal design theory to maximise a concave and Loewner-
increasing function of M(ξ), see (Pukelsheim, 1993, Chap. 5) for desirable properties
of optimal design criteria. Here we have the following.

Theorem 4.3. The functions M −→ Ψ
−1/k
k (M−1), k = 1, . . . , d, are Loewner-

increasing, concave and differentiable on the set M+ of d × d symmetric positive-
definite matrices. The functions Ψk(·) are also orthogonally invariant.

Proof. The property (3.10) yields

Ψ
−1/k
k (M−1) =

(
k + 1

k!

)−1/k
det1/k(M)

E1/k
d−k(M)

(4.8)

which is a concave function of M , see Eq. (10) of (Marcus and Minc, 1964, p. 116).
Since Ψk(·) is Loewner-increasing, see López-Fidalgo and Rodŕıguez-Dı́az (1998),

the function M −→ Ψ
−1/k
k (M−1) is Loewner-increasing too. Its orthogonal invari-

ance follows from the fact that it is defined in terms of the eigenvalues of M .

Note that Theorems 3.1 and 4.3 imply that the functions M −→ − log Ψk(M)
and M −→ log Ψk(M−1) are convex for all k = 1, . . . , d, a question which was left
open in (López-Fidalgo and Rodŕıguez-Dı́az, 1998), and that M −→ Ψk(M−1) is
convex, see (Rodŕıguez-Dı́az and López-Fidalgo, 2003).

As a consequence of Theorem 4.3, we can derive a necessary and sufficient con-

dition for a design measure ξ∗k to maximise Ψ
−1/k
k [M−1(ξ)] with respect to ξ ∈ Ξ,

for k = 1, . . . , d.

Theorem 4.4. The design measure ξ∗k such that M(ξ∗k) ∈M+ maximises ψ̃k(ξ) =

Ψ
−1/k
k [M−1(ξ)] with respect to ξ ∈ Ξ if and only if

max
t∈T

f>(t)M−1(ξ∗k)
∇Ψk [M−1(ξ∗k)]

Ψk[M−1(ξ∗k)]
M−1(ξ∗k)f(t) ≤ k (4.9)

or, equivalently,

max
t∈T

{
f>(t)M−1(ξ∗k)f(t)− f>(t)

∇Ψd−k [M(ξ∗k)]

Ψd−k[M(ξ∗k)]
f(t)

}
≤ k . (4.10)

Moreover, there is equality in (4.9) and (4.10) for all t in the support of ξ∗k.
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Proof. From (4.8), the maximisation of ψ̃k(ξ) is equivalent to the maximisation of
Lk(ξ) = log ψ̃k(ξ) and φ̃k(ξ) = log det[M(ξ)]− log Ψd−k[M(ξ)]. The proof is similar
to that of Theorem 4.1 and is based on the following expressions for the directional
derivatives of these two functionals at ξ in the direction ν ∈ Ξ,

FLk
(ξ; ν) = trace

(
1

k
M−1(ξ)

∇Ψk [M−1(ξ)]

Ψk[M−1(ξ)]
M−1(ξ) [M(ν)−M(ξ)]

)
and

Fφ̃k(ξ; ν) = trace

({
M−1(ξ)−

∇Ψd−k [M(ξ)]

Ψd−k[M(ξ)]

}
[M(ν)−M(ξ)]

)
,

and on the property trace{M∇Ψj [M ]} = jΨj(M).

In particular, consider the following special cases for k (note that Ψ0(M) =
E0(M) = 1 for any M).

k = d : φ̃d(ξ) = log det[M(ξ)] ,

k = d− 1 : φ̃d−1(ξ) = log det[M(ξ)]− log trace[M(ξ)]− log 2 ,

k = d− 2 : φ̃d−2(ξ) = log det[M(ξ)]

− log
{

trace2[M(ξ)]− trace[M2(ξ)]
}
− log(3/4) .

The necessary and sufficient condition (4.10) then takes the following form:

k = d : max
t∈T

f>(t)M−1(ξ∗k)f(t) ≤ d ,

k = d− 1 : max
t∈T

{
f>(t)M−1(ξ∗k)f(t)− f>(t)f(t)

trace[M(ξ∗k)]

}
≤ d− 1 ,

k = d− 2 : max
t∈T

{
f>(t)M−1(ξ∗k)f(t)

−2
trace[M(ξ∗k)]f>(t)f(t)− f>(t)M(ξ∗k)f(t)

trace2[M(ξ∗k)]− trace[M2(ξ∗k)]

}
≤ d− 2 .

Also, for k = 1 condition (4.9) gives

max
t∈T

f>(t)
M−2(ξ∗1)

trace[M−1(ξ∗1)]
f(t) ≤ 1

(which corresponds to A-optimal design), and for k = 2

max
t∈T

trace[M−1(ξ∗2)]f>(t)M−2(ξ∗2)f(t)− f>(t)M−3(ξ∗2)f(t)

trace2[M−1(ξ∗2)]− trace[M−2(ξ∗2)]
≤ 1 .

It is well known that a D-optimal design measure maximising ψ̃d(ξ) minimises
the (squared) volume of confidence ellipsoids E , and that an A-optimal measure
maximizing ψ̃1(ξ) minimises the sum of squared lengths of the principal axes of E ,
see, e.g., (Pronzato and Pázman, 2013, Lemma 5.1). More generally, as discussed
in (Rodŕıguez-Dı́az and López-Fidalgo, 2003), the criteria ψ̃k(ξ) have interpreta-
tions in terms of confidence ellipsoids E : a design measure ξ∗k that maximises ψ̃k(ξ)
minimises the sum of the squared volumes of the projections of E on its principal
k-dimensional linear subspaces.

Finally, note that a duality theorem, in the spirit of Theorem 4.2, can be formu-

lated for the maximisation of Ψ
−1/k
k [M−1(ξ)]; see (Pukelsheim, 1993, Th. 7.12) for

the general form a such duality properties in optimal experimental design.
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Extended generalised variances 17

Table 1. Efficiencies Effk(ξ∗j ) for j, k = 1, . . . , d in Example 5.

Eff1 Eff2 Eff3

ξ∗1 1 0.9770 0.9449
ξ∗2 0.9654 1 0.9886
ξ∗3 0.8889 0.9848 1

4.2.2. Examples

Example 4 For the linear regression model on θ0 + θ1 x on [−1, 1], the optimal
design for ψ̃k(·) with k = d = 2 or k = 1 is

ξ∗k =

{
−1 1
1/2 1/2

}
,

where the first line corresponds to support points and the second indicates their
respective weights.

Example 5 For linear regression with the quadratic polynomial model θ0 + θ1 t+
θ2 t

2 on [−1, 1], the optimal designs for ψ̃k(·) have the form

ξ∗k =

{
−1 0 1
wk 1− 2wk wk

}
,

with w3 = 1/3, w2 = (
√

33− 1)/16 ' 0.2965352 and w1 = 1/4. Define the efficiency
Effk(ξ) of a design ξ as

Effk(ξ) =
ψ̃k(ξ)

ψ̃k(ξ∗k)
.

Table 1 gives the efficiencies Effk(ξ∗j ) for j, k = 1, . . . , d = 3. The design ξ∗2 , opti-

mal for ψ̃2(·), appears to make a good compromise between A-optimality (which
corresponds to ψ̃1(·)) and D-optimality (which corresponds to ψ̃3(·)).

Example 6 For linear regression with the cubic polynomial model θ0 + θ1 t +
θ2 t

2 + θ3 t
3 on [−1, 1], the optimal designs for ψ̃k(·) have the form

ξ∗k =

{
−1 −zk zk 1
wk 1/2− wk 1/2− wk wk

}
,

where

z4 = 1/
√

5 ' 0.4472136 , w4 = 0.25 ,
z3 ' 0.4350486 , w3 ' 0.2149859 ,
z2 ' 0.4240013 , w2 ' 0.1730987 ,

z1 =
√

3
√

7− 6/3 ' 0.4639509 , w1 = (4−
√

7)/9 ' 0.1504721 ,

with z3 satisfying the equation 2z6 − 3z5 − 45z4 + 6z3 − 4z2 − 15z + 3 = 0 and

w3 =
5 z6 + 5 z4 + 5 z2 + 1−

√
z12 + 2 z10 + 3 z8 + 60 z6 + 59 z4 + 58 z2 + 73

12(z6 + z4 + z2 − 3)
,

with z = z3. For k = d− 2 = 2, the numbers z2 and w2 are too difficult to express
analytically. Table 2 gives the efficiencies Effk(ξ∗j ) for j, k = 1, . . . , d. Here again the
design ξ∗2 appears to make a good compromise: it maximises the minimum efficiency
mink Efff (·) among the designs considered. One may refer to Rodŕıguez-Dı́az and
López-Fidalgo (2003) for more examples, including polynomials of degree up to 6.
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18 L. Pronzato et al.

Table 2. Efficiencies Effk(ξ∗j ) for j, k = 1, . . . , d in Example 6.

Eff1 Eff2 Eff3 Eff4

ξ∗1 1 0.9785 0.9478 0.9166
ξ∗2 0.9694 1 0.9804 0.9499
ξ∗3 0.9180 0.9753 1 0.9897
ξ∗4 0.8527 0.9213 0.9872 1

Appendix

Shift-invariance and positive homogeneity Denote by M the set of proba-
bility measures defined on the Borel subsets of X , a compact subset of Rd. For any
µ ∈ M , any θ ∈ Rd and any λ ∈ R+, respectively denote by T−θ[µ] and Hλ−1 [µ]
the measures defined by:

for any µ-measurable A ⊆X , T−θ[µ](A + θ) = µ(A ) , Hλ−1 [µ](λA ) = µ(A ) ,

where A + θ = {x + θ : x ∈ A } and λA = {λx : x ∈ A }. The shift-invariance of
φ(·) then means that φ(T−θ[µ]) = φ(µ) for any µ ∈ M and any θ ∈ Rd, positive
homogeneity of degree q means that φ(Hλ−1 [µ]) = λq φ(µ) for any µ ∈M and any
λ ∈ R+. �

The variance is the only concave central moment For q 6= 2, the q-th central
moment ∆q(µ) =

∫
|x−Eµ|q µ(dx) is shift-invariant and homogeneous of degree q,

but it is not concave on M . Indeed, consider for instance the two-point probability
measures

µ1 =

{
0 1

1/2 1/2

}
and µ2 =

{
0 101
w 1− w

}
,

where the first line denotes the support points and the second one their respective
weights. Then, for

w = 1− 1

404

201q−1 − 202q + 405

201q−1 − 101q + 102

one has ∂2∆q[(1 − α)µ1 + αµ2]/∂α2
∣∣
α=0
≥ 0 for all q ≥ 1.84, the equality being

obtained at q = 2 only. Counterexamples are easily constructed for values of q
smaller than 1.84. �

Proof of Lemma 3.1 We have

E

{
det

[
k+1∑
i=1

ziz
>
i

]}
= (k + 1)! det

[
E(x1x

>
1 ) Eµ

E>µ 1

]
= (k + 1)! det[Vµ] ,

see for instance (Pronzato, 1998, Theorem 1). �

Proof of Lemma 3.2 Take any vector z of the same dimension as x. Then
z>Vµz = varµ(z>x), which is a concave functional of µ, see Section 2.1. This implies
that z>V(1−α)µ1+αµ2

z = var(1−α)µ1+αµ2
(z>x) ≥ (1−α)varµ1(z>x)+αvarµ2(z>x) =

(1−α)z>Vµ1z+αz>Vµ2z, for any µ1, µ2 in M and any α ∈ (0, 1). Since z is arbitrary,
this implies (3.4). �

Proof of Theorem 3.2 The estimate (3.8) forms a U-statistics for the estimation
of ψk(µ) and is thus unbiased and has minimum variance, see, e.g., (Serfling, 1980,
Chap. 5). We only need to show that it can be written as (3.9).
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We can write

(ψ̂k)n =

(
n

k + 1

)−1

×
∑

j1<j2<···<jk+1

1

(k!)2

∑
i1<i2<···<ik

det2


{xj1}i1 · · · {xjk+1

}i1
...

...
...

{xj1}ik · · · {xjk+1
}ik

1 · · · 1

 ,

=

(
n

k + 1

)−1
1

(k!)2

∑
i1<i2<···<ik

det

 n∑
j=1

{zj}i1,...,ik{zj}>i1,...,ik

 ,

where we have used Binet-Cauchy formula and where {zj}i1,...,ik denotes the k + 1
dimensional vector with components {xj}i` , ` = 1, . . . , k, and 1. This gives

(ψ̂k)n =

(
n

k + 1

)−1
nk+1

(k!)2

∑
i1<i2<···<ik

det

 1

n

n∑
j=1

{zj}i1,...,ik{zj}>i1,...,ik

 ,

=

(
n

k + 1

)−1
nk+1

(k!)2

×
∑

i1<i2<···<ik

det

[
(1/n){

∑n
j=1 xjx

>
j }(i1,...,ik)×(i1,...,ik) {x̂n}i1,...,ik

{x̂n}>i1,...,ik 1

]
,

=

(
n

k + 1

)−1
nk+1

(k!)2

∑
i1<i2<···<ik

det

[
n− 1

n
{V̂n}(i1,...,ik)×(i1,...,ik)

]
,

and thus (3.9). �

Proof of Theorem 4.2
(i) The fact that maxµ∈M Ψ

1/k
k (Vµ) ≥ minM,c: X⊂E (M,c) 1/φ∞k (M) is a consequence

of Theorem 4.1. Indeed, the measure µ∗k maximises Ψ
1/k
k (Vµ) if and only if

(x− Eµ∗k)>M∗(Vµ∗k)(x− Eµ∗k) ≤ 1 for all x in X . (4.11)

Denote M∗k = M∗(Vµ∗k), c∗k = Eµ∗k , and consider the Lagrangian L(V, α;M) for
the maximisation of (1/k) log Ψk(V ) with respect to V � 0 under the constraint
trace(MV ) = 1: L(V, α;M) = (1/k) log Ψk(V )− α[trace(MV )− 1] . We have

∂L(V, 1;M∗k )

∂V

∣∣∣∣
V=Vµ∗

k

= M∗k −M∗k = 0

and trace(M∗kVµ∗k) = 1, with Vµ∗k � 0. Therefore, Vµ∗k maximises Ψk(V ) under
the constraint trace(M∗kV ) = 1, and, moreover, X ⊂ E (M∗k , c

∗
k) from (4.11). This

implies

Ψ
1/k
k (Vµ∗k) = max

V�0: trace(M∗kV )=1
Ψ

1/k
k (V )

≥ min
M,c: X⊂E (M,c)

max
V�0: trace(MV )=1

Ψ
1/k
k (V ) = min

M,c: X⊂E (M,c)

1

φ∞k (M)
.

(ii) We prove now that minM,c: X⊂E (M,c) 1/φ∞k (M) ≥ maxµ∈M Ψ
1/k
k (Vµ). Note

that we do not have an explicit form for φ∞k (M) and that the infimum in (4.6) can
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be attained at a singular V , not necessarily unique, so that we cannot differenti-
ate φ∞k (M). Also note that compared to the developments in (Pukelsheim, 1993,
Chap. 7), here we consider covariance matrices instead of moment matrices.

Consider the maximisation of log φ∞k (M) with respect to M and c such that
X ⊂ E (M, c), with Lagrangian

L(M, c, β) = log φ∞k (M) +
∑
x∈X

βx[1− (x− c)>M(x− c)] , βx ≥ 0 for all x in X .

For the sake of simplicity we consider here X to be finite, but β may denote any
positive measure on X otherwise. Denote the optimum by

T ∗ = max
M,c: X⊂E (M,c)

log φ∞k (M) .

It satisfies
T ∗ = max

M,c
min
β≥0

L(M, c, β) ≤ min
β≥0

max
M,c

L(M, c, β)

and maxM,c L(M, c, β) is attained for any c such that

Mc = M
∑
x∈X

βx x/(
∑
x∈X

βx) ,

that is, in particular for

c∗ =

∑
x∈X βx x∑
x∈X βx

,

and for M∗ such that 0 ∈ ∂ML(M, c∗, β)
∣∣
M=M∗

, the subdifferential of L(M, c∗, β)
with respect to M at M∗. This condition can be written as∑

x∈X

βx (x− c∗)(x− c∗)> = Ṽ ∈ ∂ log φ∞k (M)
∣∣
M=M∗

,

with ∂ log φ∞k (M) the subdifferential of log φ∞k (M),

∂ log φ∞k (M) = {V � 0 : Ψ
1/k
k (V )φ∞k (M) = trace(MV ) = 1} ,

see (Pukelsheim, 1993, Th. 7.9). Since trace(MV ) = 1 for all V ∈ ∂ log φ∞k (M),

trace(M∗Ṽ ) = 1 and thus
∑
x∈X βx (x − c∗)>M∗(x − c∗) = 1 . Also, Ψ

1/k
k (Ṽ ) =

1/φ∞k (M∗), which gives

L(M∗, c∗, β) = − log Ψ
1/k
k

[∑
x∈X

βx (x− c∗)(x− c∗)>
]

+
∑
x∈X

βx − 1 .

We obtain finally

min
β≥0

L(M∗, c∗, β)

= min
γ>0, α≥0

{
− log Ψ

1/k
k

[∑
x∈X

αx (x− c∗)(x− c∗)>
]

+ γ − log(γ)− 1

}
,

= min
α≥0
− log Ψ

1/k
k

[∑
x∈X

αx (x− c∗)(x− c∗)>
]

= − log Ψ
1/k
k (V ∗k ) ,

where we have denoted γ =
∑
x∈X βx and αx = βx/γ for all x. Therefore T ∗ ≤

− log Ψ
1/k
k (V ∗k ), that is, log

[
minM,c: X⊂E (M,c) 1/φ∞k (M)

]
≥ log Ψ

1/k
k (V ∗k ). �
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