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ABSTRACT

This paper introduces a new method to maximize kurtosis-
based contrast functions. Such contrast functions appear in
the problem of blind source separation of convolutively mixed
sources: the corresponding methods recover the sources one
by one using a deflation approach. The proposed maximiza-
tion algorithm is based on the particular nature of the cri-
terion. The method is similar in spirit to a gradient ascent
method, but differs in the fact that a “reference” contrast func-
tion is considered at each line search. The convergence of the
method to a stationary point of the criterion can be proved.
The theoretical result is illustrated by simulation.

Index Terms— Blind Source Separation, Contrast Func-
tion, Deflation, Higher-Order Statistics, Reference System,
Optimization, Convergence

1. INTRODUCTION

The problem of blind source separation in a multi-input/multi-
output convolutive context has found interesting solutions
through the optimization of so-called contrast functions.
Among the possible approaches, the source signals can be
either separated simultaneously or extracted one by one by
optimizing for each a multi-input/single-output separating
criterion such as the constant modulus criterion or the kur-
tosis contrast. In this paper, we consider the latter approach,
which is often combined with a deflation procedure to extract
all the sources [1, 4, 5].

Contrast functions referred to as “reference-based” have
been recently proposed [3]. They are particularly appeal-
ing because they are quadratic with respect to the searched
parameters. They are an interesting alternative to the well-
known kurtosis contrast functions [4], but they should be used
cautiously, generally requiring a “fixed-point” like iteration to
improve the separation quality [3].

In this paper, we propose a novel algorithm to maximize
a kurtosis based contrast function. The proposed method is
inspired from [2], but it is neither a gradient optimizationof
the kurtosis contrast function [4], nor a gradient optimization

of a “reference-based” contrast [2]. It is intermediate between
the two methods and different from both.

2. MODEL AND ASSUMPTIONS

We consider an observedQ-dimensional discrete time signal
x(n) (wheren ∈ Z holds implicitly in the whole paper) which
is given by the following convolutive mixing model:

x(n) =
∑

k∈Z

M(k)s(n − k) , {M}s(n)

M(n) represents theQ × N matrix impulse response of the
linear time invariant (LTI) mixing system ands(n) is a N -
dimensional signal which components are referred to as the
sources. The objective of source separation is to find an in-
verse separating LTI system. Our approach will be an iterative
one where the sources are extracted one by one. Accordingly,
we consider a1 × Q row filter, which impulse response will
be denotedw(n). In case of successful separation, the output
of the separator corresponds to one of the sources and is given
by:

y(n) =
∑

k∈Z

w(k)x(n − k) (1)

When the separation is performed using the observed signals
x(n) only, the problem is referred to as theblind source sep-
aration(BSS) problem. To be able to solve the BSS problem,
we introduce the following classical assumption:

A1. The source signalssi(n), i ∈ {1, . . . , N} are sta-
tionary, zero-mean random processes with unit variance.
Their fourth order cumulants exist and are non-zero. Fi-
nally, they are statistically mutually independent.

3. SEPARATION CRITERIA

It has been proved in [4, 5] that the criterion
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is a contrast function under assumptionA1: this means by
definition that when maximized with respect to the separating



filter, this criterion leads to extraction of one source signal. In
this paper, we propose a new method to maximize this kurto-
sis contrast function.

Our approach is tightly related to the concept of “reference-
based” contrast functions [3]. We introduce a so-called “ref-
erence signal” which is given by the output of another1 × Q
LTI separating filter denoted by{v}.

z(n) =
∑

k∈Z

v(k)x(n − k) , {v}x(n) (2)

In this paper, the reference signal is viewed as an efficient
way to exploit the properties of the kurtosis contrast function.
It is introduced for the purpose of facilitating the optimiza-
tion: this is in contrast to former works, where the reference
signal could be interpreted as ana priori information. Let us
introduce the following criteria:

J (w) =
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The criterionJ is the well-known kurtosis contrast func-
tion [4, 5] whereasI corresponds to so-called “reference con-
trasts” which have been recently introduced [3].

4. OPTIMIZATION METHOD

4.1. Algorithm

We now introduce our new algorithm for maximization of the
kurtosis based contrastJ . First, we need to define a gradi-
ent operator∇ and a partial gradient operators∇1 (respec-
tively ∇2) with respect to (w.r.t.) the first (respectively sec-
ond) argument. More precisely,∇J (w) is the vector com-
posed of all partial derivatives ofJ (w), whereas∇1I(w,v)
(respectively∇2I(w,v)) is the vector of partial derivatives
of I(w,v) w.r.t. w (respectivelyv). The algorithm is the
following one:

Algorithm Alg.0

• Initialize v0.

• Fork = 0, 1, 2, . . . repeat(M0):

(M0) ∗ Setdk = ∇1I(vk,vk),

∗ αk = arg maxα I(vk+αdk,vk) and set:
vk+1 = vk + αkdk.

The convergence property is cited next: it relies on the
particular nature of the criteriaJ andI. Further improve-
ments and practical consideration will be addressed in Sec-
tion 5.

4.2. Convergence result

The proposed algorithm shows strong similarities with a
steepest ascent algorithm: it can indeed be easily noticed
that we have the symmetryI(w,v) = I(v,w) and that the
criteria introduced in Section 3 are linked by the relation
J (w) = I(w,w). It then easily follows that:

∇1I(w,v) = ∇2I(v,w) and:

∇J (w) = 2∇1I(w,w) = 2∇2I(w,w)
(3)

Hence, according to (3), the algorithm moves from one
point to another moving along a gradient direction of the
criterion J . The noticeable difference is that during the
one-dimensional optimization, the considered criterion is
I(w,v) with v fixed instead ofJ (w). The convergence of
the algorithm to a satisfying solution point hence requires
justification. The following assumption is required:

A2. The sourcessi(n), i ∈ {1, . . . , N} are temporally inde-
pendent and identically distributed (i.i.d.) Moreover, they
have fourth-order cumulants which are all of the same
sign.

Then we can state:

Proposition 1 Assume that the sequence(vk)k∈N is obtained
according to the algorithmAlg.0 and that allvk, k ∈ N are
contained in a compact set. Then, under assumptionA2, any
convergent subsequence of(vk)k∈N converges to a pointv∗

such that∇J (v∗) = 0.

The proof of Proposition 1 is based on the Zangwill’s con-
vergence theorem [6]. Due to lack of space, it is skipped and
postponed to a later publication.

4.3. Comments

Proposition 1 asserts the convergence of the algorithm to a
stationary point of the criterionJ . However, similarly to the
behavior of a steepest ascent algorithm, filters corresponding
to minima or saddle-points of the criterion should never be
obtained in practice. It appears in the proof that the algorithm
yields a filterv∗ which maximizesJ (v). Since it is known
that any local maximum of the criterion corresponds to a sep-
arating filter [4], it follows thatthe filters obtained with our
algorithm are always separating ones in practice. Unfortu-
nately, in order to be able to state a general result, it is too
strong to require that the algorithm yields a separating filter.
The previous arguments however fully justify the importance
of Proposition 1.

The previous result can also be understood from a differ-
ent point of view: one can see that at each step, the algorithm
Alg.0 maximizesw 7→ I(w,vk) along a gradient direction.
This can be interpreted as a one-dimensional maximization of
a “reference-based” contrast along the gradient direction. The
proposed algorithm can thus be understood as an intermediate
method lying between the following two methods:



• a gradient ascent on the kurtosisJ (w): the difference
is that a “reference-based” criterion is considered in
Alg.0 during each one-dimensional optimization.

• a gradient ascent on a “reference-based” contrast
I(w,v) with fixed “reference”v [2]. In [2] is v kept
unchanged during the whole optimization, whereas
here on the contrary,v is updated after each one-
dimensional optimization.

According to the latter point of view, the idea that the refer-
ence signal may containa priori information on the separator
re-enters, since the original “reference” isv0 and corresponds
to the initialization point of algorithmAlg.0.

Note finally that for many sources, assumptionA2 is
quite reasonable: in particular, it holds systematically true
in the context of digital communications. Since the validity
of “reference-based” contrast functions has been proved ina
more general context, the above explanations indicate how-
ever that the result of Proposition 1 is likely to remain true
without assumptionA2. This will be illustrated by computer
simulations in Section 6.2.

5. IMPROVEMENTS AND IMPLEMENTATION

Due to the scaling indeterminacy, it is common in BSS to
impose the constraintE{|y(n)|2} = 1. This can be done
by introducing a re-normalizing step. Since the criteria in
Section 3 are normalized so as to satisfyI(λw,v) = I(w,v)
andJ (λw) = J (w) for λ 6= 0, the re-normalization step
introduced below does not alter the convergence property of
the algorithm:

Algorithm Alg.1

• Initialize v0

• Fork = 0, 1, 2, . . . repeat(M0-R):

(M0) ∗ Setdk = ∇1I(vk,vk),

∗ αk = arg maxα I(vk+αdk,vk) and set:
vk+1 = vk + αkdk.

(R) Set:vk+1 =
vk+1

(E{{vk+1}x(n)})1/2

Practically, we are only able to consider FIR separators of
given lengthD. The conditions under which such a separa-
tor exists can be found in [1, 3]. The vectors of the impulse
response can then be concatenated in the following1 × QD
vector:

w ,
(

w(0) w(1) . . . w(D − 1)
)

We definev , (v(0),v(1), . . . ,v(D − 1)) similarly and the
QD × 1 column vector:

x(n) ,
(

x(n)T
x(n − 1)T . . . x(n − D + 1)T

)T
.

Using these notations it is straightforward to see that the pro-
cessed output and the “reference” signal defined in equations
(1) and (2) can be written as:

y(n) = wx(n) and: z(n) = v x(n).

Now denote byR , E{x(n)x(n)H} the covariance matrix
of x(n) and define the matrixC(v) component-wise by

(C(v))i,j = Cum{xi(n), x∗
j (n), z(n), z∗(n)}.

wherexi(n), xj(n) are the componentsi andj of x(n) re-
spectively. Similarly to [2], we obtain:

I(w,v) = |Ĩ(w,v)|2 where:Ĩ(w,v) =
wC(v)wH

wRwH

Then,∇1I(v,w) corresponds to the complex gradient vector
d = ∂I

∂w
∗

given below:

∂I

∂w∗
=

(

∂I

∂w

)∗

=

(

2Ĩ(w,v)
∂Ĩ

∂w

)∗

with:

∂Ĩ

∂w
=

w
∗
C(v)

wRwH
− (w∗

C(v)wH)
w

∗
R

(wRwH)2

At thekth iteration of step(M0) of the algorithm,dk is given
by the above equations wherev andw are replaced byvk.
Finally, as explained in [2], the parameterαk is a root of the
polynomiala2α

2 + a1α + a0 where:

a2 = dkC(vk)dH
k ℜ[vkRd

H
k ] −ℜ[vkC(vk)dH

k ]dkRd
H
k

a1 = dkC(vk)dH
k vkRv

H
k − vkC(vk)vH

k dkRd
H
k

a0 = ℜ[vkC(vk)dH
k ]vkRv

H
k − vkC(vk)vH

k ℜ[vkRd
H
k ]

The value ofαk in (M0) is given by the root corresponding to
the greatest value ofI(vk + αdk,vk).

One can notice that, similarly to “reference-based” con-
trasts in [3],I(w,vk) depends quadratically onw. It follows
that the one-dimensional optimization step is easier to per-
form than in a classical gradient ascent method.

6. SIMULATIONS AND DISCUSSION

6.1. Validity and comparison

We first tested the validity of algorithmAlg.1. For different
number of samples,N = 3 complex valued i.i.d. QAM4
sources have been generated taking values in{eıπ/4, e−ıπ/4,
e+ı3π/4, e−ı3π/4}with equal probability1/4. They have been
mixed by mixing filters with randomly driven coefficients,
lengthL = 3, andQ = 4 sensors. The results are reported in
Table 1. A comparison has been made with former methods,
in particular a gradient maximization of the same criterionJ
and the results given by a reference based contrast function
[2]. Both the average and median values of the mean square



error (MSE) over 1000 Monte-Carlo realizations are reported
in Table 1. It can be observed that the result given by a gradi-
ent maximization and by algorithmAlg.1 are similar, which
illustrates the validity of our method.

separation
method

Number of samples
1000 5000 10000

kurtosis 0.0031 0.0030 0.0028
mean ref. contrast 0.3752 0.1286 0.0842

Alg.1 0.0032 0.0030 0.0028
kurtosis 0.0008 0.0007 0.0007

median ref. contrast 0.2926 0.0603 0.0316
Alg.1 0.0009 0.0007 0.0007

Table 1. Average (1000 realizations) MSE for different con-
trast function and optimization methods. (QAM4, N=3, Q=4,
L=3)

6.2. Influence of assumptionA2

Although we are unable so far to prove Proposition 1 when
AssumptionA2 is relaxed, we can expect that it remains valid
in a much broader context as explained in Section 4.3. The
following situations have been tested:

Different signs of the sources’ cumulants: We gen-
erated two zero-mean, unit variance, uniformly distributed,
i.i.d. sources (cumulant value -1.2) and one unit-variance
Laplace i.i.d. source (cumulant value +3). The successive
sources have been retrieved using a deflation approach. The
separation results and average MSE values are gathered in
Table 2. The values indicate that the method seems still valid
in this case.

Non i.i.d. sources: We considered Continuous Phase
Modulation (CPM) source signals, which are non i.i.d. and
of particular interest in a communication application. In ad-
dition, the general scalar filtering ambiguity that generally re-
mains when separating non i.i.d. sources has been charac-
terized in the case of a kurtosis-based contrast function [1].
It could hence be promising to test our optimization method
with CPM sources. A typical source separation result is given
on Figure 1: it illustrates that our method seems to perform
similarly to the kurtosis based method [1]. Note that the sep-
aration quality of the second source is much worse than the
first one: this is a classical drawback of deflation methods.
All previously proposed solutions [1] can be used to avoid
this problem.
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