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ABSTRACT of a “reference-based” contrast [2]. Itis intermediatenssin

: . - . the two methods and different from both.
This paper introduces a new method to maximize kurtosis-

based contrast functions. Such contrast functions appear i
the problem of blind source separation of convolutively@aix 2. MODEL AND ASSUMPTIONS

sources: the corresponding methods recover the sources one . . . . . :
by one using a deflation approach. The proposed maximizaVe consider an observeég-dimensional discrete time signal

tion algorithm is based on the particular nature of the criX(") (wheren & Z holds implicitly in the whole paper) which
terion. The method is similar in spirit to a gradient ascen{S 91ven by the following convolutive mixing model:
method, but differs in the fact that a “reference” contrasick N

tion is considered at each line search. The convergenceof th x(n) = Z M(k)s(n — k) = {M}s(n)

method to a stationary point of the criterion can be proved. ez

The theoretical result is illustrated by simulation. M(n) represents th€ x N matrix impulse response of the

Index Terms— Blind Source Separation, Contrast Func-linear time invariant (LTI) mixing system an(n) is a N-
tion, Deflation, Higher-Order Statistics, Reference Syste dimensional signal which components are referred to as the
Optimization, Convergence sources The objective of source separation is to find an in-
verse separating LTI system. Our approach will be an itezati
one where the sources are extracted one by one. Accordingly,
1. INTRODUCTION we consider d x @ row filter, which impulse response will
be denotedv(n). In case of successful separation, the output

The problem of blind source separationin amulti-inputhiul - ot {he separator corresponds to one of the sources and i give
output convolutive context has found interesting solwion by:

through the optimization of so-called contrast functions.
A'mong the possiblle approaches, the source signals can be y(n) = Zw(k,)x(n — k) (1)
either separated simultaneously or extracted one by one by
optimizing for each a multi-input/single-output separgti
criterion such as the constant modulus criterion or the kurWhen the separation is performed using the observed signals
tosis contrast. In this paper, we consider the latter amproa x(n) only, the problem is referred to as thénd source sep-
which is often combined with a deflation procedure to extracaration (BSS) problem. To be able to solve the BSS problem,
all the sources [1, 4, 5]. we introduce the following classical assumption:

Contrast functions referred to as “reference-based” have . )
been recently proposed [3]. They are particularly appeaI-Al'_ The source signals;(n),i & {1""’N} are St‘.}
ing because they are quadratic with respect to the searched 2?12?:}/(’) SftLoc-)rrT:jeea:ncL?:SIZTtsre(z((i:stszﬁz \;v:tehnuonr:t_;/:rr(ljan':ci(_e.
parameters. They are an interesting alternative to the well L . '
known kurtosis contrast functions [4], but they should bedus nally, they are statistically mutually independent.
cautiously, generally requiring a “fixed-point” like itdi@an to
improve the separation quality [3]. 3. SEPARATION CRITERIA

In this paper, we propose a novel algorithm to maximize .
a kurtosis based contrast function. The proposed method {shas been proved in [4, 5] that the criteri unfa{fl\;fl\zi%y :
inspired from [2], but it is neither a gradient optimizatioh is a contrast function under assumptiaf: this means by
the kurtosis contrast function [4], nor a gradient optirtima  definition that when maximized with respect to the sepagatin
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filter, this criterion leads to extraction of one source sigin ~ 4.2. Convergence result
this paper, we propose a new method to maximize this kurt
sis contrast function.

Our approach s tightly related to the concept of “referenc
based” contrast functions [3]. We introduce a so-called “re
erence signal” which is given by the output of another @

LTI separating filter denoted biyw }.

0‘I-'he proposed algorithm shows strong similarities with a
steepest ascent algorithm: it can indeed be easily noticed
Fhat we have the symmet@(w,v) = Z(v,w) and that the
criteria introduced in Section 3 are linked by the relation
J(w) =Z(w,w). It then easily follows that:

ViZ(w,v) =VoZ(v,w) and:
) = v - B 2 (vix) (@) V7 (w) = 2V1T(w, w) = 2VaT(w, )

kEZ

3)

Hence, according to (3), the algorithm moves from one
In this paper, the reference signal is viewed as an efficiengoint to another moving along a gradient direction of the
way to exploit the properties of the kurtosis contrast fiorct  criterion 7. The noticeable difference is that during the
It is introduced for the purpose of facilitating the optimiz one-dimensional optimization, the considered criterien i
tion: this is in contrast to former works, where the refeenc 7(w, v) with v fixed instead of7(w). The convergence of
signal could be interpreted as arpriori information. Let us  the algorithm to a satisfying solution point hence requires
introduce the following criteria: justification. The following assumption is required:

2 A2. Thesources;(n),i € {1,..., N} are temporally inde-
pendent and identically distributed (i.i.d.) Moreovegyh

T(w) = ‘Cum{yvy*vy,y*}

212
E{ly(n)?} have fourth-order cumulants which are all of the same
Cum {y, y*, z, z*} sign.
I(w,v) = ‘
E{ly(n)[*}E{|z(n)[*} Then we can state:

The criterion7 is the well-known kurtosis contrast func- Proposition 1 Assume that the sequern(eg, )xcn is obtained
tion [4, 5] whereaqd corresponds to so-called “reference con-according to the algorithnflg.0 and that allvy, & € N are
trasts” which have been recently introduced [3]. contained in a compact set. Then, under assumpiidrany
convergent subsequence(of,) ey cOnverges to a point*
such thatv 7 (v*) = 0.

The proof of Proposition 1 is based on the Zangwill's con-
4.1. Algorithm vergence theorem [6]. Due to lack of space, it is skipped and
postponed to a later publication.

4. OPTIMIZATION METHOD

We now introduce our new algorithm for maximization of the
kurtosis based contragt. First, we need to define a gradi-
ent operatoV and a partial gradient operato¥s, (respec-
tively V) with respect to (w.r.t.) the first (respectively sec- proposition 1 asserts the convergence of the algorithm to a
ond) argument. More precisely, J (w) is the vector com-  stationary point of the criteriof. However, similarly to the
posed of all partial derivatives of (w), whereasv1Z(w,v)  behavior of a steepest ascent algorithm, filters correspgnd
(respectivelyV,Z(w, v)) is the vector of partial derivatives to minima or saddle-points of the criterion should never be
of Z(w,v) w.rt. w (respectivelyv). The algorithm is the obtained in practice. It appears in the proof that the afyori
following one: yields a filterv* which maximizes7(v). Since it is known
that any local maximum of the criterion corresponds to a sep-
arating filter [4], it follows thatthe filters obtained with our

4.3. Comments

Algorithm Alg.0

e Initialize vy. algorithm are always separating ones in practiddnfortu-
nately, in order to be able to state a general result, it is too
e Fork =0,1,2,... repea(MOy: strong to require that the algorithm yields a separatingrfilt
(MO) + Setdy, = ViZ(vVi, Vi), The previqgs arguments however fully justify the impor&nc
of Proposition 1.
* q = argmax, Z(vi+adyg, vi) and set The previous result can also be understood from a differ-
Vit = Vi + agdy. ent point of view: one can see that at each step, the algorithm

Alg.0 maximizesw — Z(w,vy) along a gradient direction.

The convergence property is cited next: it relies on theThis can be interpreted as a one-dimensional maximizafion o
particular nature of the criteri@ andZ. Further improve- a*“reference-based” contrast along the gradient direclibe
ments and practical consideration will be addressed in Seproposed algorithm can thus be understood as an interreediat
tion 5. method lying between the following two methods:



e a gradient ascent on the kurtosigw): the difference  Using these notations it is straightforward to see that tiee p
is that a “reference-based” criterion is considered incessed output and the “reference” signal defined in equsation
Alg.0 during each one-dimensional optimization. (1) and (2) can be written as:

e a gradient ascent on a “reference-based” contrast y(n) = wx(n) and: z(n) = vx(n).
Z(w,v) with fixed “reference’v [2]. In [2] is v kept
unchanged during the whole optimization, whereadNow denote byR = E{x(n)x(n)} the covariance matrix
here on the contraryy is updated after each one- of x(n) and define the matri&€(v) component-wise by

dimensional optimization. . .
_ _ _ _ (C(v));; = Cum{z;(n), zj(n), 2(n), 2" (n)}.
According to the latter point of view, the idea that the refer

ence signal may contaipriori information on the separator wherez;(n),z;(n) are the componentsandj of x(n) re-
re-enters, since the original “reference¥igand corresponds spectively. Similarly to [2], we obtain:
to the initialization point of algorithrlg.0.

H
Note finally that for many sources, assumptid@ is I(w,v) = [Z(w,v)> where:Z(w,v) = wC(v)w
quite reasonable: in particular, it holds systematicalet - T T wRw!
in Ehe context of d|g’|’tal commumca_uons. Since the vayd|.t Then,V1Z(v, w) corresponds to the complex gradient vector
of “reference-based” contrast functions has been proved in 9T )
. L = -Z=_ given below:
more general context, the above explanations indicate how= 9w
ever that the result of Proposition 1 is likely to remain true . N
without assumptio®2. This will be illustrated by computer o1 _ (3_1) _ Zf(w V)g with:
simulations in Section 6.2. ow* ow 0w
I _wCv) . i WR
5. IMPROVEMENTS AND IMPLEMENTATION w ~ wRwi W Cw )m

Due to the scaling indeterminacy, it is common in BSS toAt the kth iteration of steMO) of the algorithmd,, is given
impose the constrairit{|y(n)|*} = 1. This can be done by the above equations wheveandw are replaced by, .
by introducing a re-normalizing step. Since the criteria inFinally, as explained in [2], the parameteg is a root of the
Section 3 are normalized so as to satiBfyw, v) = Z(w,v)  polynomialasa? + aia + ag where:

and 7 (Aw) = J(w) for A # 0, the re-normalization step

introduced below does not alter the convergence property ofaz = d;, C(v,,)d{ R[v,Rd}’] — R[v,C(v,)d} |d, Rd;]

the algorithm: a1 = d,C(v;)dy v Rvf — v, C(v,)vi'd,Rd;’
Algorithm Alg.1 ao = R[v;, C(v;)di v, Rvf! — v, C(v,, v/ R[v,Rd}]

* Initialize vo The value ofx; in (MO) is given by the root corresponding to

e Fork=0,1,2,...repeaf{MO-R) the greatest value &f(v;, + ady, v;,).
One can notice that, similarly to “reference-based” con-
(MO)  * Setdy = ViZ(v, Vi), trasts in [3],Z(w, v, ) depends quadratically om. It follows

that the one-dimensional optimization step is easier te per

* ap = argmaxe I(vi+ade, vi) andsetl ¢ a0 a classical gradient ascent method.

Vi1 = Vi + apdy.

(R) Set:viy = W 6. SIMULATIONS AND DISCUSSION

Practically, we are only able to consider FIR separators 0.1. Validity and comparison

given lengthD. The conditions under which such a separa- . dth lidity of algorithrl giff

tor exists can be found in [1, 3]. The vectors of the impulseWe ;)rst tefste t Ieval_lty 0 agolrlt A ?ld qud fiferent

response can then be concatenated in the followingQp ~ "umber of samplesi. = 3 complex value e 7QA'X|4
sources have been generated taking valuds’f/* e=*"/4,

vector. et3m/4 ¢=37/41 with equal probabilityl /4. They have been
w2 (w(o) w(l) ... w(D- 1)) mixed by mixing filters with randomly driven coefficients,
lengthL = 3, and@ = 4 sensors. The results are reported in
We definev £ (v(0),v(1),...,v(D — 1)) similarly and the  Table 1. A comparison has been made with former methods,
QD x 1 column vector: in particular a gradient maximization of the same criterion

. . . T and the results given by a reference based contrast function
x(n) £ (x(n)" x(n-1T ... x(n-D+1)T)". [2]. Both the average and median values of the mean square



error (MSE) over 1000 Monte-Carlo realizations are repbrte separation Source number
in Table 1. It can be observed that the result given by a gradi- method 1st 2nd 3rd
ent maximization and by algorithilg.1 are similar, which kurtosis 0.0265 0.0330 0.0604
illustrates the validity of our method. mean | ref. contrast|| 0.0856 0.1133 0.1779
Alg.1 0.0220 0.0431 0.1009
separation Number of samples kurtosis || 0.0248 0.0155 0.0203
method 1000 5000  1000Q median| ref. contrast| 0.0674 0.0887 0.1284
kurtosis 0.0031 0.0030 0.0028 Alg.1 0.0199 0.0174 0.0468
mean | ref. contrast| 0.3752 0.1286 0.0842
Alg.1 0.0032 0.0030 0.0028 Table 2. Average and median (1000 realizations) MSE for the
Kurtosis 0.0008 0.0007 0.0007 separation of sources not satisfying A.2 (2 uniform sources
median | ref. contrast| 0.2926 0.0603 0.031¢  and 1 doubly exponential, N=3, Q=4, L=3, 5000 samples)
Alg.1 0.0009 0.0007 0.0007
Table 1. Average (1000 realizations) MSE for different con- T x T *
trast function and optimization methods. (QAM4, N=3, Q=4, 05 05 x
L=3) 0 0
-0.5 5 ] -0.5 X X
-1 -1 x x
6.2. Influence of assumptiorA2 o 0 ' o 0 '
Although we are unable so far to prove Proposition 1 wher 2 2
AssumptionA2 is relaxed, we can expect that it remains valid 1 -~ 1 %
in a much broader context as explained in Section 4.3. Th 0 ;' & 0 € §
following situations have been tested: % "
Different signs of the sources’ cumulants: We gen- o Rt o »

erated two zero-mean, unit variance, uniformly distribyte 2, o 2 2, 0 2
i.i.d. sources (cumulant value -1.2) and one unit-varianc
Laplace i.i.d. source (cumulant value +3). The successive

sources have been retrieved using a deflation approach. They 1. Typical separation result of two CPM sources (N=2,

separation results and average MSE values are gatheredd:3 | =5). Original sources (top) and separated sourcés (bo
Table 2. The values indicate that the method seems stitl valitom).

in this case.
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