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Velocity Aided Attitude Estimation for Aerial Robotic Vehicles Using
Latent Rotation Scaling

Guillaume Allibert1 and Robert Mahony2,3 and Moses Bangura2

Abstract— Flight performance of aerial robotic vehicles is
critically dependent on the quality of the state estimates
provided by onboard sensor systems. The attitude estimation
problem has been extensively studied over the last ten years and
the development of low complexity, high performance, robust
non-linear observers for attitude has been one of the enabling
technologies fueling the growth of small scale aerial robotic
systems. The velocity aided attitude estimation problem, that
is simultaneous estimation of attitude and linear velocity of
an aerial platform, has only been tackled using the non-linear
observer approach in the last few years. Prior contributions
have lead to non-linear observers for which either there is
no stability analysis or for which the analysis is extremely
complex. In this paper, we propose a simple relaxation of
the state space, allowing scaled rotation matrices R ∈ R3×3

such that RXT = uI where X = uR̂ and u > 0 is a
positive scalar, along with additional observer dynamics to force
u → 1 asymptotically. With this simple augmentation of the
observer state space, we propose a non-linear observer with a
straightforward Lyapunov stability analysis that demonstrates
almost global asymptotic convergence along with local expo-
nential convergence. Simulations as well as experimental results
are provided to demonstrate the performance of the proposed
observer.

I. INTRODUCTION

Inertial Measurement Units (IMU) are the fundamental
sensor systems for estimation of orientation of aerospace
vehicles such as spacecrafts, aircrafts and missiles [6]. Most
orientation estimators are based on the principle of observing
in the body-fixed frame vectorial directions that are known
in the inertial frame. For micro-aerial vehicles such as
quadrotors, the two most commonly used vectorial mea-
surements are earth’s gravity and magnetic fields. In earlier
work, Hamel et. al [7] showed that a measurement of the
gravitational vector along with angular velocity can be used
to estimate roll and pitch angles and gyroscope biases. This
approach has been applied extensively in practice for attitude
estimation on quadrotor vehicles using accelerometers to
estimate gravity, even though in this case the assumptions
do not hold exactly [14] due to inertial accelerations of the
vehicle. Global Positioning Systems (GPS) can be employed
to estimate motion and hence acceleration of the vehicle [9],
however, high rate absolute position and velocity measure-
ments are a luxury that most mobile robots operating in
urban and indoor environments lack. Recent research into
the aerodynamics of quadrotor vehicles have shown that the
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horizontal drag force generated when a quadrotor moves
is proportional to the horizontal body-fixed frame velocity
[4], [5], [13]. This force corresponds to the horizontal
acceleration of the accelerometers and can be measured by
the IMU [14]. This measurement can be combined with body
mounted gyroscope measurements to obtain an estimate of
the horizontal velocity of the quadrotor vehicle [1], [10].
Work by [4] provides the ability to also measure vertical
velocity of the airframe and the combination provides a noisy
measurement of the body-fixed frame velocity of the vehicle.

In this paper, we consider the problem of designing a non-
linear observer for velocity aided attitude, that is estimating
the full body-fixed frame velocity along with the attitude of
a quadrotor vehicle. The paper takes a similar approach to
the recent paper by the authors [2], by estimating a matrix
that is more general than the full rotation matrix in order to
simplify the Lyapunov stability analysis. In this paper, only a
single degree of freedom is added to the observer state; that
is we estimate a scaled rotation X = uR for R ∈ SO(3) and
u ∈ R+, rather than estimating a rotation in SO(3) directly.
It is, of course, trivial to recover the best estimate rotation
R̂ = X/||X||2 during evolution of the filter for use in vehicle
avionics system. The relaxation of the observer state with
a single latent degree of freedom provides the freedom that
enables us to undertake a straightforward Lyapunov observer
design and stability analysis. The observer is proved to be
almost globally exponentially stable; that is the estimate
X(t)→ R(t) converges exponentially to the true attitude in
both magnitude and direction for almost all initial conditions.
In practice, with perturbations due to signal noise, this leads
to global practical exponentially stable. A key benefit of the
latent variable dynamics is that the magnitude of the estimate
||X||2 = u→ 1 is known to converge exponentially to unity,
and the error ||X||2−1 becomes an excellent measure of the
transient convergence of the observer. The resulting observer
is low-complexity, robust and can be tuned to have good
performance. The performance of the proposed observer is
verified by simulation and experimentally on an open-source
autopilot [15] controlling a quadrotor vehicle flying in closed
loop velocity control in laboratory conditions.

The paper has four sections in addition to the present
introduction. In Section II, we introduce the model and some
mathematical definitions. Section III presents the proposed
observer and provides a stability proof for its performance
while Section IV presents some simulation results to verify
the performance of the proposed observer and in Section V,
we present experimental results of the proposed observer.



II. BACKGROUND

Consider a body-fixed frame denoted {B} attached to the
vehicle and an inertial frame {A} fixed to the ground. A
rigid body moving inside the earth’s gravity field satisfies
[12]

V̇ = −Ω× V + gR>−→e 3 + a, (1a)

Ṙ = RΩ×, (1b)

where V ∈ {B} ≡ R3 denotes the linear velocity of the
body-fixed frame{B} and Ω ∈ {B} ≡ R3 denotes the
angular velocity of the body frame {B} with respect to
the inertial frame {A} expressed in {B}. The gravitational
acceleration expressed in the inertial frame {A} is given by
g−→e 3 where −→e 3 = [0; 0; 1] is the unit vector in the z-axis.
The specific acceleration a is the sum of all non-gravitational
forces applied to the body divided by its mass and expressed
in the body-fixed frame {B}. Let R ∈ SO(3) denote the
rotation matrix representing the orientation of the body-fixed
frame {B} with respect to the inertial frame {A}. The linear
operator (.)× maps any vector in R3×1 to its corresponding
skew-symmetric matrix in so(3) such that x×y is equal to
the cross product x× y for all x, y ∈ R3×1.

Assume that the vehicle is equipped with an Inertial Mea-
surement Unit (IMU), which consists of a 3-axis gyroscope,
a 3-axis accelerometer and a barometer. The gyroscope
provides the measurement of the angular velocity Ω and
the accelerometer measures the specific acceleration a ∈
{B}. Additionally, we assume that the linear velocity V
of the body-fixed frame {B} expressed in the body-fixed
frame, can be measured. From a practical point of view, Vx
and Vy measurements can be obtained using accelerometer
measurements and a model of aerodynamic drag coefficient
[1], [10], [14]. For Vz , we propose a simple pre-filter based
on barometer altitude measurements and accelerometer to
estimate Vz . The estimates of the linear body-fixed frame
velocity obtained in this way depend directly on the ac-
celerometer and are extremely noisy. It is crucial to denoise
the signals using some observer before the velocity estimate
can be used. The experimental section §V provides plots
of typical measurements and filter outputs that indicate the
importance of the role of the observer.

III. OBSERVER

In this section, a non-linear observer for estimating the
body-fixed frame velocity is proposed. We assume that the
full measurement of the body-fixed frame velocity V ∈ {B}
is available. If the IMU is also equipped with a magne-
tometer, then it can be used to provide an additional vector
direction measurement directly

mB = R>mA ∈ {B},

where mA ∈ {A} is the inertial “known” magnetic field. In
practice, the magnetic field measurement is often corrupted
by onboard magnetic fields and cannot be used for attitude
estimation. For this reason, we will initially develop the
proposed observer in the case where the magnetic field is
not available.

The goal of the observer design is to provide estimates
V̂ ∈ R3 and R̂ ∈ SO(3) of the body-fixed frame velocity
and attitude of the vehicle. We will distinguish between
the true velocity V̊ (t) and the measured velocity V (t),
that is corrupted by noise although the non-linear observer
framework does not explicitly model the noise, that is,
deterministic stability analysis is based on the relationship
V (t) = V̊ (t).
Assumption 1 Assume that the trajectory of the vehicle is
sufficiently smooth such that Ω(t), Ω̇(t), V̇ (t) and V̈ (t) are
bounded signals.
Theorem 1 Consider system (1) with Ω, a and V measured
and k1, k2 > 0 two positive scalar gains. Consider the
observer

˙̂
V=−Ω×V̂+gX>−→e 3+a−k1(V̂ −V ), V̂ (0)=V (0), (2a)

X = uR̂, (2b)

u̇ = −gk2Ṽ >R̂>−→e 3, u(0) = 1, (2c)

˙̂
R = R̂Ω× −

gk2
u

(R̂Ṽ ×−→e 3)×R̂, R̂(0) = I3, (2d)

where X is thought of as a scaled rotation matrix. Suppose
that Assumption 1 is satisfied, then the following properties
hold :

1) for almost all initial conditions, the estimate V̂ (t) →
V̊ (t) and R̂>−→e 3 → R>−→e 3;

2) the equilibrium (Ṽ , R̃>−→e 3) = (0,−→e 3) is locally expo-
nentially stable.

Proof: Define a velocity error and a rotation error

Ṽ = V̂ − V,
R̃ = RR̂>.

The time derivative of Ṽ is given by
˙̃V = −Ω× Ṽ + (X −R)>g−→e 3 − k1Ṽ . (3)

Define a candidate Lyapunov function

L :=
1

2
Ṽ >Ṽ︸ ︷︷ ︸
LA

+
1

2k2
||(X −R)>−→e 3||2︸ ︷︷ ︸

LB

. (4)

Using (2a), the time derivative of LA is

L̇A = gṼ >(X −R)>−→e 3 − k1Ṽ >Ṽ . (5)

Define y := (X−R)>−→e 3 and ∆ = − gk2u (R̂Ṽ ×−→e 3) ∈ R3,
one has

ẏ = (u̇R̂+ u
˙̂
R−RΩ×)>−→e 3,

= (u̇R̂+ u∆×R̂+ (X −R)Ω×)>−→e 3,

= (u̇R̂> + uR̂>∆>×)−→e 3 − Ω×y.

From here, the derivative of LB along trajectories of the
system is given by

L̇B =
1

k2
y>ẏ,

=
1

k2
((X −R)>−→e 3)>(u̇R̂> + uR̂>∆>×)−→e 3,

=
1

k2
(u−→e >3 ∆×R̂+ u̇−→e >3 R̂)y. (6)



Consequently, the time derivative of L becomes

L̇ =gṼ>(X −R)>−→e 3+
1

k2
(u−→e >3 ∆×R̂+ u̇−→e >3 R̂)y−k1Ṽ>Ṽ ,

=
1

k2
(gk2Ṽ

>R̂>+u−→e >3 ∆×+u̇−→e >3 )R̂y − k1Ṽ >Ṽ . (7)

Recall the expressions for u̇ and ∆ and note that

u∆>×
−→e 3 + u̇−→e 3 = −gk2R̂Ṽ .

From this, it is straightforward to see that
L̇ = −k1Ṽ > Ṽ ≤ 0. (8)

Since the time derivative of L̇ is semi-negative definite and

L is positive definite, then Ṽ and X are bounded. In view of
(3) and Assumption 1, one deduces that ˙̃V is bounded and
it follows that L̈ is also bounded. This is sufficient to ensure
that L̇ is uniformly continuous along trajectories of the
system. Applying Barbalat’s lemma ensures the convergence
of L̇ → 0 and the convergence of Ṽ to 0 follows.

The same procedure is performed to prove that ¨̃V is
bounded (since Ω̇, ˙̃V , Ẋ and ˙̂

R are bounded) and conse-
quently to demonstrate the uniform continuity of ˙̃V . Bar-
balat’s lemma ensures the convergence of ˙̃V to 0. This in turn
implies, from (3), the convergence of gX>−→e 3 to gR>−→e 3.
Finally, substituting X = uR̂, one sees that uR̂>−→e 3 →
R>−→e 3. Taking norms, one has |u−→e 3| → 1, that is u
converges to unity. It follows that R̂>−→e 3 → R>−→e 3 by
continuity and consequently, R̃>−→e 3 → −→e 3 .

We go on to prove Property 2. Close to the equilibrium
points (Ṽ , R̃>−→e 3) = (0,−→e 3), one can write

Ṽ ≈ 0 + δṼ ,

u ≈ 1 + δu,

R̂ ≈

 1 −δψ δθ
δψ 1 −δφ
−δθ δφ 1

 .

From ∆, u̇ and the previous equations, one has

∆ = gk2

−δṼyδṼx
0

 ,

u̇ = −gk2δṼz,

and consequently, ˙̃V=−Ω×Ṽ+(X −R)>g−→e 3−k1Ṽ verifies

δ ˙̃V = −Ω× δṼ + g(X −R)>−→e 3 − k1δṼ ,
= −Ω× δṼ + g(uR̂>R− I)R>−→e 3 − k1δṼ ,

=

−k1 Ω3 −Ω2

−Ω3 −k1 Ω1

Ω2 −Ω1 −k1

 δṼ + g

−δθδφ
δu

 . (9)

If we note ξ1 = [δṼx; δṼy; δṼz]
> and ξ2 = [−δθ; δφ; δu]>,

the previous equation can be written as

ξ̇1 = (−k1I3 − Ω×)ξ1 + gξ2.

From previous equations, it is straightforward to verify that

ξ̇2 = −gk2

δṼxδṼy
δṼz

 ,

= −gk2ξ1. (10)

We can conclude from (9) and (10) that the linearised system
of (2) is given by

ξ̇ = A(t)ξ, (11)

with

A(t) =


−k1 Ω3 −Ω2 g 0 0
−Ω3 −k1 Ω1 0 g 0
Ω2 −Ω1 −k1 0 0 g
−gk2 0 0 0 0 0

0 −gk2 0 0 0 0
0 0 −gk2 0 0 0

 ,

and ξ = [ξ1; ξ2]. From here, we have to prove that the
origin of the linear time varying system given by (11) is
uniformly exponentially stable. The following proof is based
on the results obtained in [11, Theorem 1], which establish
sufficient conditions for exponential stability of linear time
varying system having the form(

ẋ
ẏ

)
=

(
A(t) B>(t)
−C(t) 0

)(
x
y

)
,

which corresponds to (11). By identification, one obtains
A(t) = −k1I3×3 − Ω×,B(t) = gI3×3, C(t) = gk2I3×3.

We have to verify the two assumptions of Theorem 1 of
[11]. The first one is easily verified since |B| and |∂B∂t |
remain bounded. The second assumption is also satisfied
since P = k2I3×3 and Q = 2k1k2I3×3 are symmetric,
constant and positive definite matrices satisfying the required
relations given by PB> = C> and −Q = A>P +PA+ Ṗ .
Finally, it remains to prove that B is uniformly persistently
exciting which can be verified for any positive number µ and
T > µ

g2 since for all time t > 0, one has∫ T+t

t

B(τ)B>(τ)dτ = g2TI3×3 > µI3×3.

From here, the application of Theorem 1 of [11] ensures
the uniform exponential stability of the origin of (11). This
concludes the proof.

Consider now the case where the IMU is equipped with a
magnetometer. In the same spirit of [8] and under assumption
1, the second result of the paper is stated.
Theorem 2 Consider the observer in Theorem (1) under the
same assumptions. The dynamics of R̂ is now given by

˙̂
R = R̂Ω× −

gk2
u

(R̂Ṽ ×−→e 3)×R̂+

k3R̂(((mB ×m̂B)>X>−→e 3)X>−→e 3)×, R̂(0) = I3, (12a)

with m̂B = R̂>mB and k3 a positive scalar. Then, the
following property holds:

1) for almost all initial conditions, the estimate V̂ (t) →
V̊ (t) and R̂>−→e 3 → R>−→e 3;

2) the equilibrium (Ṽ , R̃) = (0, I) is locally exponentially
stable and almost globally asymptotically stable. Thus,



for almost all initial conditions (V̂ (0), R̂(0)), the tra-
jectory (V̂ (t), R̂(t)) converges to the system trajectory
(V̊ (t), R(t)).
Proof: Consider the same candidate Lyapunov function

as (4). The time derivative of the term LA does not change.
Define Ψ = (((mB× m̂B)>X>−→e 3)X>−→e 3) ∈ R3, the time
derivative of the term LB becomes

L̇B =
1

k2
y>ẏ,

=
1

k2
(u−→e >3 ∆×R̂+ u̇−→e >3 R̂+ u−→e >3 R̂Ψ×︸ ︷︷ ︸

T3

)y, (13)

where the term T3 is the only change on (6). Replacing Ψ
by its definition in the previous equation, one obtains

T3 =
1

k2

−→e >3 uR̂︸︷︷︸
X

Ψ×y,

=
1

k2

−→e >3 X(((mB × m̂B)>X>−→e 3)︸ ︷︷ ︸
α

X>−→e 3)×y,

=
α

k2

−→e >3 X(X>−→e 3)×︸ ︷︷ ︸
=0

y. (14)

We conclude that the term T3 is equal to zero and conse-
quently, the innovation term Ψ does not perturb the previous
results obtained in Theorem 1.
We now prove Property 2. The time derivative of R̃ satisfies

˙̃R = ṘR̂> +R
˙̂
R>,

= R̃∆>× +RΨ>×R
>R̃. (15)

As a result of Proposition 1, one ensures the convergence of
Ṽ to 0, R̂>−→e 3 → R>−→e 3 and u to unity. Consequently, we
deduce that R̃−→e 3 → −→e 3. It follows that the zero dynamics
of R̃ converges to

˙̃R = R̃∆>× +RΨ>×R
>R̃,

→ RΨ>×R
>R̃,

→ −k3R(((mB × m̂B)>X>−→e 3)X>−→e 3)×R
>R̃,

→ −k3u2(((mA × R̃mA)>R̃−→e 3)R̃−→e 3)×R̃,

→ −k3(((mA × R̃mA)>−→e 3)−→e 3)×R̃. (16)

Close to the equilibrium R̃ = I , we write R̃ as

R̃ ≈ (I + δR̃) =

 1 −δψ̃ 0

δψ̃ 1 0

0 0 1

 ,

since R̃−→e 3 → −→e 3 and the zero dynamics (16) satisfies

vex( ˙̃R) =

 0
0

δ̇ψ̃

 = −

 0
0

k3(m2
A1 +m2

A2)δψ̃

 , (17)

where mA1 and mA2 are the two first entries of mA and
vex is the inverse of the (·)× operator that maps a skew
matrix to its associated vector velocity representation. This
last result clearly indicates the local exponential stability of
the equilibrium. This concludes the proof.

Remark 1 The innovation term Ψ is chosen orthogonal to
R̂−→e 3 in order to obtain global decoupling of roll and pitch
estimation from magnetometer measurements.

Remark 2 It is important to note that in both observers, the
scale factor u converges to unity. This scale factor can be
viewed as performance criterion of the observer. As one can
see in the simulation section, in the presence of perturbations
or unmodelled effects, the value of u can deviate from unity.
When the velocity estimates are used in a control scheme, the
scale factor can be used as a measure to switch to another
control loop in order to avoid bad control performances
or a crash in the worst case scenario. Further results are
shown in the experimental section where initially as the filter
converges V̂ = V̊ so too is u→ 1. During this time, the filter
results are suboptimal.

IV. SIMULATION

In this section, we illustrate through simulation results
the observer proposed in Theorem 1. Results highlight the
performance of the proposed observer but also a measure
of performance of the filter can be made based on the
value of u. Simulations are performed for a model of the
quadrotor aerial vehicle used in the experimental section.
For the presented simulation, initial conditions are chosen
such that the initial error variables satisfy V̂ (0) = [0; 0; 0],
u(0) = 1 and R̂(0) = I3×3.
The time evolution of the body velocity estimation errors
as well as the scale u are plotted. Partial rotation errors
given by ((R̂−R)>−→e 3)>−→e i for i ∈ (1, 2, 3) where −→e 1 =
[1; 0; 0] and −→e 2 = [0; 1; 0] are also given. From results (see
Figure 1), one observes that convergence is obtained for all
variables with good convergence rates.
In order to show that the scale u can be used as a per-
formance criteria of the filter, we add on each velocity
estimate a constant step error between 2 and 3 seconds of
the simulation. As expected, these perturbations are quickly
rejected by the filter. One can see that the u value deviates
from 1 at two instances during this time interval thus clearly
indicating that the velocity estimation is not optimal at these
times.
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V. EXPERIMENTATION

In this section we demonstrate the performance of the
velocity aided filter (Theorem 1) by using it on a quadrotor
platform in velocity control mode. The quadrotor uses the
32bit open-source autopilot, PX4 [15] on which the filter
was implemented. The section describes how the body-fixed
frame velocity measurements can be obtained onbard the
autopilot and the resulting filter output evaluated against
ground truth obtained from a Vicon motion capture system
[16] to demonstrate the performance of the filter.

A. Body fixed-frame velocity measurements

If the accelerometer measurement is denoted ā, T ∈ R is
the total exogenous force produced by the rotors, D ∈ R3 is
the drag force in {B}, then (1a) can be rewritten as

V̇ = −Ω× V + gR>−→e 3 −
T

m
−→e 3 −

D

m
,

knowing that the accelerometer measures external forces,

ā = − T
m
−→e 3 −

D

m
,

= − 1

m

(
D
T

)
.

Given that D>−→e 3 = 0 [2] and the drag force is expressed
as

D = −T

c̄ 0 0
0 c̄ 0
0 0 0

V,

where c̄ > 0 is the drag coefficient.
Using T = mā>−→e 3, the following measurement equa-

tions are obtained
āx = āz c̄V̄x, āy = āz c̄V̄y,

where V̄x, V̄y represent the measurements of the translational
linear velocities. To obtain the velocity measurement in
the vertical direction (V̄z), [4], [2] proposed the concept
of using aerodynamic power. Given that the PX4 is fitted
with a barometer, we therefore do not use the aerodynamic
power approach. If the barometer measures altitude z̄, ẑ
is an estimate of the height from these measurements and
v ∈ R3 is the velocity of the vehicle in the inertial frame,
v̄zm are pseudo velocity measurements, then we propose the
following complementary filter for the estimation of v̄z , the
measured vehicle velocity in −→e 3 in inertial frame

˙̂z = v̄mz − k4 (ẑ − z̄) , (18a)

˙̄vmz = −→e >3
(
R̂ā
)

+ g − βaz − k5 (ẑ − z̄) , (18b)

β̇az = k6 (ẑ − z̄) , (18c)

where k4, k5, k6 are positive scalar gains and βaz ∈ R is an
estimate of the bias. From a flight test, results comparing the
barometer measured heights (z̄) to the estimated heights (ẑ)
and ground truth Vicon height measurements are shown in
Figure 2. The results also show the obtained estimate of the
vertical velocity from the barometer measurements compared
to that obtained using Vicon. These results show the validity

of the estimated vertical velocity of the filter (18) to ground
truth Vicon measurements. Hence with the obtained ˙̂z from
the barometer, the measurement v̄z = ˙̂z is obtained.

Assuming that the attitude of the vehicle is such that R̂ =
R, then with v̄z , V̄x and V̄y known, the simple algebraic
relationship v̄ = R̂V̄ is used to obtain V̄z . Hence with all
elements of V̄ = (V̄x, V̄y, V̄z)

> known, they are then used
as measurements to the filter proposed in Theorem 1.
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Fig. 2: Estimation of height and vertical velocity in inertial
frame using onboard barometric sensor. The results show
that the computed estimated velocity (red) matches the
ground truth Vicon velocity (blue) measurements despite a
slight drift in barometer height measurements with time as
indicated by the raw barometer (green) and filtered/estimated
(red) measurements compared to Vicon measurements (blue).
B. Experimental results

In order to compare the estimated attitude to ground truth
measurements obtained from Vicon, one needs to ensure
that the −→e 1 direction of the onboard filter aligns with the
−→e 1 direction from Vicon attitude measurements. Hence, we
propose the following additional innovation term for the filter
equation (12a)

∆v = −kvicon2 R̂(−→e 1 × R̂R̂>v −→e 1)×R̂, (19)

where Rv is the attitude measured by Vicon and kvicon2 ∈
R3 is a positive definite gain matrix. Flying the quadrotor
in closed loop velocity control mode with the controller
proposed in [3] and using a mobile phone to set the desired
translational velocties while we manually control the force
in the vertical direction, the results for the estimated attitude
and velocities are shown in Figure 3.

From these results and looking at the velocities, it is
clearly evident that the observer achieved its intended pur-
pose of smoothening out the noise despite the data recorded
at half the operating frequency of the filter (200Hz). Looking
at Figure 4, the latent scaling factor u, it is easily seen
that u → 1 after 20s hence after this time the estimation
is optimal and therefore the filtered velocities can be used in
closed loop velocity control with u ≈ 1, ∀t > 20. As seen in
the high level of noise at this point, the vehicle is armed and
then flown. Figure 3 also shows a comparison of the resulting
estimated attitude to ground truth Vicon measurements in Eu-
ler angles. The results show the equivalence of the estimated
to ground truth Vicon attitude measurements. It is worth
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Fig. 3: Results of the output of the filter. In the first set of
plots, we show the output of measured V̄ (blue) to estimated
V̂ (red) and ground truth (black) linear velocities with data
recorded onboard the autopilot. The resulting attitude from
the flight is also shown and compared to Vicon ground truth.
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Fig. 4: Convergence of the latent scaling factor u→ 1.
noting that the onboard estimated yaw using magnetometer
measurements aligns with the measured Vicon attitude. This
is as a result of the innovation term (19).

VI. CONCLUSION

In this paper, the problem of designing a non-linear
observer for velocity aided attitude, that is estimating the
full body-fixed frame velocity along with the attitude of
quadrotor vehicles is presented. The proposed observer is
low-complexity, robust and can be tuned easily to have good
performance. Rigorous stability analysis based on Lyapunov
theory demonstrates almost global asymptotic convergence
along with local exponential convergence. The originality of

the proposed approach lies in adding only one degree of
freedom into the observer state. Moreover, a performance
criterion, very useful when velocity estimates are used in
control loop can be obtained easily using the value of
the scale u. Simulation results are presented to provide a
clear picture of the performance of the proposed observer.
Experimental results also show that the proposed scheme is
effective even when the input to the observer is extremely
noisy and can be used in closed loop velocity control.
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