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Sound Event Detection in Remote Health Care – Small Learning

Datasets and Over Constrained Gaussian Mixture Models

Jugurta Montalvão, Dan Istrate, Joan Mouba and Jerôme Boudy

Abstract—The use of Gaussian Mixture Models
(GMM), adapted through the Expectation Minimiza-
tion (EM) algorithm, is not rare in Audio Analy-
sis for Surveillance Applications and Environmental
sound recognition. Their use, at a first glance, is
founded on the good qualities of GMM models when
aimed at approximating Probability Density Func-
tions (PDF) of random variables. But in some cases,
where models are to be adapted from small sample
sets of specific and locally recorded signals, instead
of large but generic databases, a problem of balance
between model complexity and sample size may play
an important role. From this perspective, we show,
through simple sound classification experiments, that
constrained GMM, with fewer degrees of freedom,
as compared to GMM with full covariance matrices,
provide better classification performances. Moreover,
pushing this argument even further, we also show
that a Parzen model (seen here as an over-constrained
GMM) can do even better than usual GMM, in terms
of classification error ratio.

I. INTRODUCTION

Acoustic Event Detection and Classification is a recent
sub-area of computational auditory scene analysis [1]
where particular attention has been paid to automatic
surveillance systems [2], [3], [4]. More specifically, the
use of audio sensors in surveillance and monitoring ap-
plications has proven to be particularly useful for the
detection of distress situation events, mainly when the
person suffers from cognitive illness. The recent research
work in medicine has concluded that some persons with
mild cognitive impairment will develop Alzheimer in the
future. The efficient detection and recognition of the
distress situation is one part of the socially assistive
robotics technology [5] aimed at providing affordable
personalized cognitive assistance.

In recent works, it has been shown that automatic
detection of relevant events for remote healthcare can
be done in a rather conventional way, through the anal-
ysis of short segments (less than 50 ms, typically) of
digitalized signals from microphones strategically placed
into rooms where the subject to be monitored lives (e.g.
places in the house of a elderly person under medical

J. Montalvão is with Faculty of Electrical Engineering, Univer-
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care). These short segments of sounds are then processed
and features are extracted, much like what is done in
speech or speaker recognition. Indeed, features such as
Mel Frequency Cepstral Coefficients (MFCC) [6] and
Matching Pursuit (MP) [7], along with Gaussian Mixture
Models (GMM), are not rarely deployed for this kind of
task.

Signals to be detected in healthcare scenarios show
high variability from one instance to another, even for
supposedly equivalent acoustic sources (intra-class vari-
ability). For instance, one can easily notice, through
simple experiments, that door clapping sounds strongly
depend on the door size, on the material the door is
made of, and even on the room acoustics. This high
variability explains indeed why recognition rates rapidly
fall with increasing number of classes, as discussed in [7],
and it rises a relevant question concerning adaptation
of general classifiers to specific scenarios. More precisely,
once a classifier was trained to recognize some classes of
relevant sounds, one straightforward approach to adapt
this classifier to a specific environment (e.g. a given
apartment or house) is the adjustment of the universal
class models to the specificities of the new environment,
through some few new sound recordings locally acquired.
But for very irregular classes of sounds, where new
instances (new recordings) may strongly deviate from
previously learnt universal model, this adaptation may
be equivalent to obtaining a new model, instead of an
incremental adaptation. In such cases, usual probabilistic
models based on Gaussian mixtures (i.e. GMM), whose
mixture parameters are found through the well-known
Expectation-Maximization (EM) algorithm [8], demand
a certain amount of new training signals to properly
work. The acquisition of new training samples in loco,
for model adjustment, may become cumbersome, even if
this number is just, for instance, 10 new recordings per
class. It is noteworthy that, in the literature, models are
usually trained with much more than 10 recordings per
class.

By contrast, if a classifier is able enough to properly
learn a model from a few samples (recordings) per class,
then the need for a universal model may be dropped in
favor of full model learning in loco, from few recordings
made in each new environment.

Probabilistic models are typically based on Probability
Density Function (PDF) estimation from limited data
sets, which is a classical problem in pattern recognition
[9]. From this perspective, in this work, we focus on



the problem of how to obtain useful GMM based PDF
approximations, even when datasets are too small.

Our approach is greatly simplified if we define model
regularization in a wide point of view, from which Parzen
models with Gaussian kernels are regarded as over-
regularized GMM, as explained in Section II. Signal
segmentation is explained in Section III whereas, in
Section IV, we gather experimental evidences that the
tradeoff between model degree of freedom and amount
of data for model adaptation may be a key for useful
probabilistic classifier, even with very small datasets.
Finalli, in Section V, we briefly analyze our claims as a
contribution to improve remote healthcare applications.

II. PDF ESTIMATION AND MODEL

REGULARIZATION

PDF estimation from limited data sets is a classical
problem in pattern recognition for which many approxi-
mated solutions are presented in literature [9], [11]. Prob-
ably the most widely used PDF model is GMM, along
with EM algorithm for parameter adaptation (learn-
ing). It is worth noting that, though the EM is not
the fastest algorithm for GMM optimization [10], it is
usually simpler to apply, which can partially explain
its widespread popularity in many application fields.
However, in addition to its possibly poor convergence
rate (depending on the data distribution and the initial
estimates of its parameters), it also presents the following
drawbacks [11]:

(a) Its likelihood-based criterion presents a multitude
of useless global maxima;

(b) Convergence to parameter values associated with
singularities is more likely to occur with small data sets,
and when centers are not well separated. Indeed, it is
well-known that likelihood is often unrepresentative in
high dimensional problems, which can be true in some
low-dimensional problems as well [12]. In order to cope
with these drawbacks, model regularization is the usual
solution, through which, the searching throughout the
parameter space is constrained.

Therefore, as far as regularization approaches lead
to parametric constraints, we propose a wide point of
view from which any reduction imposed to the mixture
freedom degree is regarded as a kind of model regu-
larization. Accordingly, regularization strategies can be
roughly split into four categories, namely:

(I) The most usual approach to regularization is based
on the addition of a term to the unconstrained criterion
function, which expresses constraints or desirable prop-
erties of solutions.

(II) For models obtained via clustering-like algorithms
(including the EM, which can be loosely seen as a
soft clustering algorithm [11]), a straightforward regu-
larization approach is that of averaging estimates from
many independent initializations. In [13], for instance,
two approaches to GMM regularization are compared:
one based on averaging (category II), and the other

based on an explicit regularization term (category I).
Both provided improved models (if compared to the
unconstrained one), with similar performances.

(III) For Mixture Models, regularization can be easily
obtained by imposing constraints on the mixture compo-
nent parameters (e.g. by imposing constraints or lower
bounds on the covariance matrix of Gaussian kernels in
GMM).

(IV) Conexionist models (e.g. artificial neural net-
works) can also be regularized, or partially regularized by
pruning [14], though it is not always explicitly referred
to as a regularization procedure. This includes Radial
Basis Functions Neural Networks, which are structurally
related to GMM.

Thanks to this wide regularization concept, the non-
parametric Parzen method [9], [11] can loosely be re-
garded as a mixture model based method with strongly-
constrained mixture components (category III). Thanks
to this strong constraint on the Gaussian placement, the
Parzen approach gives an instantaneous PDF approxi-
mation (no iterations) but, in spite of its simplicity, it
is known that, under some constraints on the Parzen
window width parameter, the convergence of the esti-
mated PDF with the actual one is guaranteed, when the
number of samples tends to infinity [11]. In other words,
many small isotropic (radial basis) Gaussian kernels,
with identical dispersion, can virtually approximate any
PDF “shape”. This corresponds to a trade from kernel
complexity (elliptical kernels, for instance, typically ob-
tained via the EM approach) to kernel number.

Although EM and Parzen approaches come from differ-
ent paradigms – namely, parametric and nonparametric
PDF estimation, respectively – they share a striking
structural similarity, whenever the Parzen method is
based on Gaussian kernels. In both cases, the actual
PDF is approximated by a Mixture of Gaussians. How-
ever, Gaussian Mixture Models provided by the Parzen
method are intrinsically regularized, for kernel centers
cannot move (structural regularization - category IV)
and identical radial dispersions are imposed on all kernels
(parametric regularization - category III). In this paper,
we propose a useful point of view from which both kinds
of PDF estimates – i.e. GMM learnt via EM and Parzen
– are seen as Gaussian Mixture Models (GMM), with
different levels of regularization. More precisely, starting
from GMM with unconstrained covariance matrices (full
covariance matrices), we can obtain several levels of
parametric regularization, through the replacement of
full covariance (Level 0) matrices with:

• Level 1: one diagonal covariance matrix for each
Gaussian in the Mixture;

• Level 2: one scalar covariance matrix for each Gaus-
sian in the Mixture;

• Level 3: the same scalar covariance matrix for
all Gaussian in the Mixture; On this third level
of parametric model regularization (category III),
we impose identical and isotropic Gaussian kernels



throughout the mixture. Structurally, we are very
close to the Parzen model with Gaussian kernels. In
fact, the only remaining difference is that Gaussian
centers cannot move during adaptation/learning of
the Parzen model. Therefore, Parzen models can
be seen as the result of a fourth level of GMM
regularization, namely:

• Level 4: similar to Level 3, but Gaussian centers
are not allowed to move during model adapta-
tion/learning (i.e. the Parzen model).

III. SIGNAL SEGMENTATION AND

SHORT-TIME ANALYSIS

Raw signals are represented by samples, s(n) ∈ ℜ,
where n ∈ ℵ. In this work, samples are regularly taken at
16KHz. We assume that each raw signal, corresponding
to each recorded file in our database (see Section IV),
contains, at least, one relevant event corresponding to
one of those sound sources (arbitrarily limited here to
6):

1) Glass Breaking
2) Screaming
3) Door Clapping
4) Step Sound
5) Cough
6) Metal object fall

Therefore, we first use an algorithm to detect a single
event and crop the corresponding subset of samples,
ss(k), where k ∈ {kbegin, ..., kend}. This segmentation
task is done here by a very simple algorithm, based
on power measurement, which can be summarized as
follows:

1) s(n) ← s(n)/σs (σs stands for the estimated stan-
dard deviation of s(n))

2) p(n) ← s(n)2 (noisy instantaneous power estima-
tion)

3) pf(1)← 2 (pf stands for the lowpass-filtered power
estimation)

4) for k = 2 to N
if (p(k) > pf (k − 1))

pf (k)← 0.005p(k) + 0.995pf(k − 1)
else

pf (k)← 0.001p(k) + 0.999pf(k − 1)
end

end
5) kbegin takes the value of k for which pf (k) first

crosses level 2.1 (2.0 is the expected steady level for white
noise).

6) kend takes the value of k for which pf (k) crosses
min(pf ) + 0.1.

In other words, this algorithm just filters the noisy in-
stantaneous power estimation with a nonlinear low-pass
IIR filter, which is more reactive to power increments (in
order to detect fast attacks of our target noises). Thus,
it uses two level-crossing detectors to segment the signal
to be analyzed. Figure 1 illustrates this segmentation
procedure for a signal containing three step sounds (class

4). It is worth noting that only the first step sound is
segmented.

Fig. 1. Signal segmentation through power contour – note that
only the first relevant part of the signal is taken.

In spite of its simplicity, this algorithm is able to
satisfactorily segment targeted sounds even at very low
Signal to Noise Ratio (SNR), if noise has an almost
stationary power through time.

Afterwards, segmented intervals of sound, ss(k), for
each sound file in the database, are short-time analyzed.
That is to say that windows of 500 consecutive samples
(approx. 31 ms at 16KHz) are taken as signal vectors
to be projected in a new space of reduced dimension.
For MFCC based analysis, each 500-dimensional vector
is mapped into a 24-dimensional space, each dimension
corresponding to one Mel-Cepstral Coefficient.

IV. EXPERIMENTAL RESULTS

In this Section, we present experimental results ob-
tained with a subsets of the sound database gathered
in the framework of the (European) CompanionAble
Project (http://www.companionable.net/ ), by D. Is-
trate and fellows. This subset contains:

• Class 1: 574 files with door clapping sounds
• Class 2: 88 files with glass breaking sounds
• Class 3: 22 files with step sounds
• Class 4: 73 files with screaming sounds (males and

females)
• Class 5: 41 files with cough sounds
• Class 6: 12 files with sounds of metal object falls

All files in this subset were recorded at a sampling rate
of 16KHz, and only a single channel (monaural sound)
of each record is used in this work.

Only five files, from each class, are arbitrarily chosen
to represent the classes (training samples). They are
then processed (MFCC projection of short-time over-
lapping windows), and obtained 24-D vectors of coeffi-
cients, x, are seen as instances of 6 multivariate ran-
dom variables, X1, . . . , X6, corresponding to 6 classes
of sound. Moreover, we use these instances to estimate
the underlying PDF associated to each random variable,
fX1

(x), . . . , fX6
(x).



As for the PDF estimation, all models are given by:

fXi
(x) =

M∑

i=1

αig(x|ci,Ri) (1)

where Θ = [α1, . . . , αM , c1, . . . , cM ,R1, . . . ,RM ] stands
for the mixture parameter vector, and g(x|ci,Ri) corre-
sponds to the i-th Gaussian kernel of the mixture, with
mean vector and covariance matrix given by ci and Ri,
respectively. We further impose that 0 ≤ αi ≤ 1 and∑M

i=1
αi = 1.

This parametric model includes the Parzen model with
Gaussian kernels, whenever the following restrictions on
the parameter vector are imposed:

Θ = [αi = 1/M, ci = xi,Ri = σ2
I] (2)

where i = 1, . . . , M .
These restrictions lead to a Gaussian Mixture Model

equivalent to that obtained by the nonparametric Parzen
method, where each Gaussian kernel center, ci, is directly
given by a sample vector. Applying these restrictions to
Equation 1 yields:

fXi
(x) = (1/M)

M∑

i=1

g(x|xi, σ
2
I) (3)

Consequently, as we can observe in Equation 2, under
such strong constraints, the only free parameter of the
model is σ, the Gaussian radial dispersion.

This is a single scalar parameter, and optimizing Θ

through likelihood maximization, in this case, is equiv-
alent to find the value of σ that maximizes likelihood,
which can be easily done by simple exhaustive one-
dimensional (1D) search, through cross-validation ap-
proach [11]. By contrast, free parameters in Equation
1, corresponding to conventional GMM, are adapted
through EM.

In both cases – with conventional GMM or Parzen
models –, any new sound is classified by comparing
the averaged likelihood of each model for a given set
of patterns (extracted from a recorded sound). More
precisely, as far as we do not accept a no-classification
result (reject class), we just pick-up the class associated
to the highest averaged likelihood as a pointer to the
class from which the analyzed sound is more likely to
come from.

Five experiments were carried out, from unconstrained
GMM (Level 0 - see Section II for further details) to
over-constrained GMM (Level 4 - Parzen models). These
experiments were designed to highlight the impact of
constraint/regularization, in an increasing way, of GMM
on performance assessment. Concerning GMM structure,
the number of Gaussians is fixed at 8 (empirically opti-
mized from available data). Another important imple-
mentation aspect is that Gaussian centers, in EM algo-
rithm, are initialized with points taken at random from
the training set. Consequently, we keep initialization of
both GMM and Parzen models as similar as possible. It

TABLE I

Averaged Classification Error Ratio, model training with

5 randomly chosen files, and tested with other 7 files

Mixture Model av. error ratio (%) 95% conf. interval
GMM, full 77.4% ±2.3%

GMM, diag. 66.7% ±1.0%
GMM, scalar 34.3% ±8.7%

GMM, single scalar 32.8% ±9.0%
Parzen models 16.7% ±6.1%

TABLE II

Number of free parameters per model, in 24-D parameter

space

Mixture Model parameters to be adapted
GMM, full cov. mat. 625M

GMM, diagonal cov. mat. 49M

GMM, scalar cov. mat. 26M

GMM, single scalar cov. mat. 25M + 1
Parzen models 1

contrasts with a rather popular approach where K-means
algorithm is used to initialize EM.

Table I presents our results, in terms of error ratios,
for Gaussian mixtures under four levels of regularization
1, including the Parzen model as an over-regularized
mixture.

It is clear that increased regularization improves clas-
sification performance, and we believe that the huge
amount of free parameters in usual GMM (i.e. with full or
diagonal covariance matrices), as compared to the limited
amount of data for model training, mainly explains
the performance gain of more constrained (wide-sense
regularized) models. To further highlight the decreasing
degree of freedom in each model, we explicitly present
their respective number of parameters to be adapted,
per level of parametric and structural regularization. All
models lay in a 24-D space, and M stands for the number
of Gaussian kernels:

V. CONCLUSIONS

In this preliminary work, we present evidences that
traditional GMM adapted with EM algorithms may not
be a suitable PDF model to be rained with a small
amount (recorded sounds) of training samples. Though
it was presented through experiments with a reduced
number of classes, we may easily recognize that it comes
from a wider and quite older discussion concerning PDF
estimation in pattern recognition domain, not always
taken into account in practical applications. Here, we
compared Gaussian Mixture Models with 5 levels of
parametric and structural wide-sense regularization (as
proposed in Section II), from GMM with full covariance
matrices to Parzen model with Gaussian kernels (seen

1Regularization in a wide sense, as defined in Section II.



here as an over-constrained GMM). By comparing per-
formances with these models, we gave one illustration,
through simple experiments, that even if both GMM
and Parzen models are theoretically able to converge
to the true PDF to be estimated, under training data
”shortage”, they provide remarkably different error ratios.
What we observe through our experiments is that, with
a reduced number of instances for the model training,
the path taken by the Parzen model seems to be more
performing, in terms of classification.

Thus, what we claim here is that it is a clear matter
of model regularization: the more regularized, the better,
if the number of training patterns are too limited, and
we highlight that training data “shortage”is indeed a fre-
quent condition met in healthcare applications, since one
needs to train specific sound models for each new envi-
ronment to be monitored (e.g. care receiver’s house, flat).
Moreover, combined to incremental training strategies,
this approach can offer a good and fast existing sound
models adaptation for a given environment presenting
some time variabilities.
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