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Polynomials with bounds and numerical

approximation

Bruno Després∗

September 26, 2016

Abstract

We discuss the generation of polynomials with two bounds -an upper
bound and a lower bound- on compact sets C = [0, 1]d ⊂ Rd in view on
numerical approximation and scientific computing. We show that a com-
position formula based on a weighted 4-squares Euler identity generates
all such polynomials in dimension d = 1. It yields a new algebraic or
compositional approach to the classical problem related to polynomials
with minimal uniform norm. Higher dimensions are discussed by means
of the 8-squares Degen identity and tensorization, and the connection with
quaternions algebras is made explicit. Various numerical results illustrate
the potentialities of this approach and some implementation details are
provided.

1 Introduction

This work presents algorithms of algebraic nature for the generation of polyno-
mials with two bounds on compact sets and explore the use of such methods for
the numerical approximation of simple functions. As far as the author is aware,
it is the very first time that the compositional algebraic properties presented
below of polynomials with two bounds -an upper bound and a lower bound- are
discussed in view of their use in numerical analysis and scientific computing.
A first model problem in dimension d = 1 writes: Generate all polynomials with
two bounds

pn ∈ Un ≡ {pn ∈ Pn(x), such that 0 ≤ pn(x) ≤ 1 ∀x ∈ [0, 1]} . (1)

Generate means more precisely in the context of this work: construct a algorithm
(a loop) easy to implement on a computer which parametrizes all polynomials
in Un. Polynomials with one bound are denoted as

pn ∈ P+
n ≡ {pn ∈ Pn(x), such that 0 ≤ pn(x) ∀x ∈ [0, 1]} . (2)

∗Sorbonne Universités, UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions,
F-75005, Paris, France.
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So pn ∈ Un if and only if pn ∈ P+
n and 1 − pn ∈ P+

n . Simpler subsets of
Un exist based on convex combinations qn =

∑n
j=0 αjuj where the coefficients

satisfy 0 ≤ αj and
∑n
j=0 αj = 1. The generating polynomials uj can be ei-

ther the basis of the monomials xj , or the basis of the Berstein polynomials
Bn,j(x) = n!

j!(n−j)!x
j(1−x)n−j , or the basis of the rescaled Tchebycheff polyno-

mials
Tj(2x−1)+1

2 . However none of these subsets is able to generate all polyno-
mials in Un only by convex combinations.

The set P+
n has attracted considerable attention in the mathematical liter-

ature since more than a century. One can refers to classical textbooks such as
[9, 19, 15, 26] (and therein) for a comprehensive expository of the theory of poly-
nomials and their extremal properties. A classical result is the Lukacs theorem
[26]. We will provide for self-conciseness a simple proof of this result, differ-
ent in spirit from the one of [28]. The proof is based on a basic compositional
proof which will be generalized later to Un. The set Un is related to a famous
problem, which is to characterize polynomials with minimal uniform norm, we
refer for example to the comprehensive chapter 8.1.2 in [19]. But instead of
Tchebycheff who added a constraint so as to define the family of Tchebycheff
polynomials Tn, of Bernstein who defined the non orthogonal basis Bn,j , and
of [29, 20, 22] who provide necessary improved sharp estimates based on the
Tchebycheff inequality for the coefficients of pn ∈ Un, we will give a necessary
and sufficient criterion based a composition formula which is an adaptation of
the four-squares Euler identity. This is developed in the remark 3.2 and it pro-
vides an explanation why the formulas proposed in his article are original with
respect to the immense literature on the topic. Indeed the four-squares Euler
identity can be rephrased as a quaternion algebra, so very different to real or
complex algebras, as in the classical approach on the topic [26, 19].

Our interest in the set Un stems from its underlying considerable (but some-
how non explicit) role in scientific computing and non linear approximation. To
the classical considerations on computer aided design [19, 23, 24] with Bernstein
and Bézier curves we add other examples. Our first one is the theory of limiters
developed for the numerical approximation of conservation laws [12, 27, 16]
intends to guarantee that a high order polynomial approximation of a given
function f respects some maximum principle even if f has very low regularity
(f can be discontinuous at shocks). The fundamental reason is that non linear
equations need control of various L∞ bounds to be numerical tractable. Another
example [15, 8] is the optimal control of polynomial systems and non negative
polynomials in P+

n . We refer to [11] for algorithmic issues in the context of
compress sensing. A third example is from reduced modeling, typically with
POD techniques [17], and from interpolation on a sparse grid [14]. Uncertainty
quantification intrusive techniques are also highly demanding in terms of having
polynomial approximations with a priori unconditional respect of the maximum
principle [21, 7].

The basis of the algorithms is a weighted version of the four-squares Euler
identity which extends to the eight-squares Degen identity. This is related to
classical issues in algebraic geometry for which we refer to [25, 2] and therein,
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a domain which goes far beyond the expertise of the author and which is not
exactly the topic of [19]. It seems nevertheless that the use of such methods
(related to quaternions [10], quaternions algebras and quaternions basis, one
can refer to the expository paper [6] and therein) for the generation of signed
polynomials on convex sets has not been addressed in the literature. In a dif-
ferent direction we quote the recent works [4] on issues in scientific computing
with quaternions and octonions.

The main theoretical results obtained in this work can be summarized as
follows.

Theorem 1.1. Let n ∈ 2N being even. There exists a smooth function from
R3n/2 onto Un.

The proof is by a constructive algorithm justified in theorem 2.5 and corollary
2.6. The algorithms illustrated in the second part of this work are all based on
various generalizations of this constructive algorithm.

The next result explains the asymptotic best error of approximation. The
norm of a uniform convergence is noted as usual ‖f‖ = max0≤x≤1 |f(x)| for
f ∈ C0[0, 1]. Even if elementary, this is a remarkable result since the constant
2 is independent of n.

Theorem 1.2. Assume f ∈ C0[0, 1] and 0 ≤ f(x) ≤ 1 for 0 ≤ x ≤ 1. Then

inf
pn∈Un

‖f − pn‖ ≤ 2 inf
gn∈Pn

‖f − gn‖. (3)

The organization of this work is as follows. Section 2 is dedicated to the
presentation of algorithms for the generation of polynomials with one bound
and with two bounds. The algorithms are based on composition formulas jus-
tified by various generalizations with convenient weights of the four-squares
Euler identity. The main theorems are proved, theorem 2.5 shows that the loop
based on a weighted four-square Euler identity generates all polynomials in Un
and theorem 1.2 gives the fundamental estimate in uniform norm: it has, for
0 ≤ f ≤ 1, the same asymptotic accuracy than the classical approximation with
polynomials in Pn. The loops for polynomials of many variables in C = [0, 1]d

are addressed in section 3. The Hurwitz theorem yields the standard limitation
on many squares identity. This is why an extension with the Degen identity is
proposed which extends to higher dimensions by tensorization. The link with
quaternions algebras and quaternions basis is made explicit in remark 3.2.
Numerical exploration of the possibilities offered by these algorithms is per-
formed in section 4 within a Matlab based test code. Some formulas are pro-
vided for the calculation of the exact gradients with respect to the parameters
which define the polynomials. It yields an explicit formula for the derivative
p′n(x) for pn ∈ Un. The numerical test show good accuracy and stability of the
methods. Perspectives are evoked in the final section 5.

Notations. Since we are ultimately interested in application of polynomials
with bounds to scientific computing, we privilege natural notations convenient
for immediate implementation, where pn(x, y, . . . ) simply means a polynomial
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of the real variables x, y, . . . of degree less or equal to n, and Pn in dimension
d = 1 refers to Pn(x). We use p, a, b, . . . , for polynomials when the context
makes the notation non ambiguous.

2 Polynomials with bounds in dimension d = 1

The starting point of our analysis is the Lukacs theorem [26, 15, 29, 19] which
is a representation theorem for non negative polynomial pn ∈ P+

n .

Theorem 2.1 (Lukacs theorem). Consider pn ∈ P+
n . Two cases occur.

• Either n = 2m ∈ 2N, then there exists am ∈ Pm and bm−1 ∈ Pm−1 such that

pn = a2m + b2m−1w w(x) = x(1− x). (4)

• Or n + 1 = 2m ∈ 2N, then there exists am−1 ∈ Pm and bm−1 ∈ Pm−1 such
that

pn = a2m−1w1 + b2m−1w2 w1(x) = x, w2(x) = 1− x. (5)

Since P+
n ⊂ P+

n+1 ⊂ P+
n+2, the two representations formulas apply for any

polynomial. The representations are non unique: for example one can always
consider −am instead of am which a trivial case of non uniqueness of the rep-
resentation; another example of the non uniqueness writes as 1 = 10 + 02w =
(1− 2x)2 + 22w(x).

To obtain a self contained work, we begin with a simple proof of the first
representation (4). The proof is representative of the methods used in this work.
Consider two polynomials pn and qn′ with the first representation{

pn = a2m + b2m−1w, n = 2m
qn′ = α2

m′ + β2
m′−1w, n′ = 2m′.

Consider the composition{
An+n′ = amαm′ + bm−1βm′−1w,
Bn+n′−1 = amβm′−1 − bm−1αm′

(6)

and define
P2n+2n′ = A2

n+n′ +B2
n+n′−1w ∈ P+

2n+2n′ .

The so-called Bramagupta-Fibonacci formula yields

(amαm′ + bm−1βm′−1w)
2

+ (amβm′−1 − bm−1αm′)2 w

=
(
a2m + b2m−1w

) (
α2
m′ + β2

m′−1w
)
,

that is
P2n+2n′ = pnqn′ (7)

which shows that the product of two polynomials which admit the first repre-
sentation (4) also admits the first representation (4). It yields a simple proof of
the first part of the Lukacs theorem.
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Proof of the Lukacs theorem. For convenience, the proof is in three parts.
• Start with a polynomial pn ∈ P+

n , with degree exactly n = 2m for simplicity
and write the decomposition with the roots zi ∈ C

pn(x) = kΠn
i=1 (x− zi) , k ∈ R.

Since pn is real, the non real roots have their complex conjugate in the list of
roots. Since pn(x) ≥ 0 for 0 ≤ x ≤ 1, all real real roots zi ∈ (0, 1) have a even
degree. So one can always group the roots two by two (and group on of these
products with the multiplicative constant k) such that

pn(x) = Π
m=n/2
i=1 qi(x) (8)

where qi ∈ P+
2 for all i. A basic reasoning1 with second order polynomial shows

the existence of ai ∈ P1 and bi ∈ R such that

qi = a2i + b2iw ∈ P+
2 . (9)

So pn is the product of second order polynomials which all admit the first rep-
resentation (4). It is sufficient to compose these polynomials one after another
with the algebra (6-7) to obtain the claim.
• If the degree of pn is odd, that is n = 2m + 1, one can always isolate a real
root x0 ∈ R− (0, 1), so that

pn(x) = k(x− x0)Πn−1
i=1 (x− zi) , k ∈ R

and the zi are all other roots. Since x− x0 has a constant sign over (0, 1), one
has that x − x0 ∈ P+

2 . Copying the previous proof yields that pn admits the
first representation (4) pn = a2m+1 + b2mw.
• To prove that last formula, it is sufficient to start from pn ∈ P+

n and to consider
p̂n(x) = xpn(x) ∈ P+

n+1. One has that p̂n(x) = â2m(x) + b2m−1(x)x(1− x) where
âm and bm−1 have convenient degree. So

xpn(x) = â2m(x) + b2m−1(x)x(1− x).

It shows that âm has the root 0, so one can write âm(x) = xam−1. Therefore
xpn(x) = x2a2m−1(x) + b2m−1(x)x(1 − x). It yields the second representation
formula after simplification by x, and the proof is ended.

1Let p ∈ P+
2 with p(x) = a + bx + cx2. So p(0) = a ≥ 0 and p(1) = a + b + c ≥ 0. Set

q(x) =
√
a +

(√
a + b + cx−

√
a
)
x so that q(0)2 = p(0) and q(1)2 = p(1). By construction

there exists d ∈ R such that p(x)− q(x)2 = dx(1− x). It remains to show that d = e2, which
yields the representation p(x) = q(x)2 + e2(x− x2).

Case 1: for simplicity assume that a > 0 and a + b + c > 0 and set x∗ =
√
a/(
√
a +√

a + b + c) ∈ (0, 1). Therefore q(x∗) = 0. Then p(x∗) = dx∗(1−x∗) ≥ 0 with x∗(1−x∗) > 0
shows that d ≥ 0. Case 2: if a = 0 and a + b + c > 0, then one has that p(0) = 0 and
necessarily p′(0) ≥ 0. At the same time q(0) = 0 and q′(0) = 0 by construction. One observes
that p(x)− q(x)2 = dx(1− x) yields p′(0) = d [x(1− x)]′ (0) = d. So one also get that d ≥ 0.
Case 3: the case a > 0 and a + b + c = 0 is treated by symmetry from the previous case.
Case 4: finally if a = a + b + c = 0, then p(x) = dx(1− x), so d = 4p(1/2) ≥ 0.
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2.1 Generalisation to polynomials in Un

To simplify the notations, we will disregard the index which refers to the max-
imal degree of the polynomials. Let us consider p ∈ Un. Since p ∈ P+

n the
Lukacs theorem yields the representation

p = a2w1 + b2w2 (10)

where a and b are polynomials with convenient degree and w1 and w2 are the
weights of the representation formula that has been chosen. In the first case
w1(x) = 1 and w2(x) = x(1−x). In the second case w1(x) = x and w2(x) = 1−x.

Considering that p ∈ Un, one has also that 1− p ∈ P+
n , that is

1− p = c2w3 + d2w4 (11)

where c and d are polynomials with convenient degree. The weights w3 and w4

are a priori equal to w1 and w2. Nevertheless one could think of using the first
representation formula in (10) and the second representation formula in (11):
in this case the weights w1,2,3,4 are all different. By summation, one sees that
p ∈ Un if and only there exists polynomials a, b, c, d such p = a2w1 + b2w2 and

1 = a2w1 + b2w2 + c2w3 + d2w4. (12)

In view of the algebra developed in the previous section, a natural question is
to determine if there is a composition formula like (6-7), but for polynomials
which satisfy (12). The answer to this question is connected to the celebrated
four-squares Euler identity written under the form

Â2 + B̂2 + Ĉ2 + D̂2 =
(
â2 + b̂2 + ĉ2 + d̂2

)(
α̂2 + β̂2 + γ̂2 + δ̂2

)
(13)

where 
Â = âα̂+ b̂β̂ + ĉγ̂ + d̂δ̂

B̂ = âβ̂ − b̂α̂+ ĉδ̂ − d̂γ̂
Ĉ = âγ̂ − b̂δ̂ − ĉα̂+ d̂β̂

D̂ = âδ̂ + b̂γ̂ − ĉβ̂ − d̂α̂.

(14)

We introduce the weights by setting

â =
√
w1a, b̂ =

√
w2b, ĉ =

√
w3c, d̂ =

√
w4d, (15)

α̂ =
√
w1α, β̂ =

√
w2β, γ̂ =

√
w3γ, δ̂ =

√
w4δ, (16)

and
Â =

√
w1A, B̂ =

√
w2B, Ĉ =

√
w3C, D̂ =

√
w4D. (17)

Let us start from (a, b, c, d) and (α, β, γ, δ) which satisfy (12): use the chain
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(15-16), then (14), then (17) to get the final expressions of (A,B,C,D)

A =
√
w1aα+

√
w2

2

w1
bβ +

√
w2

3

w1
cγ +

√
w2

4

w1
dδ,

B =
√
w1aβ −

√
w1bα+

√
w3w4

w2
cδ −

√
w3w4

w2
dγ,

C =
√
w1aγ −

√
w2w4

w3
bδ −

√
w1cα+

√
w2w4

w3
dβ,

D =
√
w1aδ +

√
w2w3

w4
bγ −

√
w2w3

w4
cβ −

√
w1dα.

(18)

It can be rewritten as 
A
B
C
D

 = M


a
b
c
d

 (19)

where M is a 4×4 matrix. A fundamental property is that (A,B,C,D) satisfies
(12) provided it holds already for (a, b, c, d) and (α, β, γ, δ).

The issue is that (A,B,C,D) are not necessarily polynomials, since the
square root of fractions of polynomial weights show up in (18). To investigate
the constraints brought by the weights, we simplify M by keeping only the
weights. One obtains the 4× 4 matrix of the weights

W =



√
w1

√
w2

2

w1

√
w2

3

w1

√
w2

4

w1√
w1

√
w1

√
w3w4

w2

√
w3w4

w2

√
w1

√
w2w4

w3

√
w1

√
w2w4

w3

√
w1

√
w2w3

w4
b
√

w2w3

w4

√
w1

 . (20)

In the general case the coefficients of this matrix cannot be expressed in polyno-
mial form. Therefore the issue is to obtain good combinations of weights such
that W has polynomial entries. We detail below two natural solutions.

2.2 Solution with the first representation formula (4)

One takes the first representation formula (4) for p and 1− p. So w1 = w3 = 1
and w2 = w4 = w. In this case one gets a matrix of weights with polynomial
entries

W =


1 w 1 w
1 1 1 1
1 w 1 w
1 1 1 1

 .
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The system (18) can be recast as
A = aα +wbβ +cγ +wdδ,
B = aβ −bα +cδ −dγ,
C = aγ −wbδ −cα +wdβ,
D = aδ +bγ −cβ −dα.

(21)

Lemma 2.2. Assume (a, b, c, d) ∈ Pn × Pn−1 × Pn × Pn−1 and (α, β, γ, δ) ∈
Pm×Pm−1×Pm×Pm−1. Then (A,B,C,D) ∈ Pn+m×Pn+m−1×Pn+m×Pn+m−1.

Proof. Obvious since the degree of the weight w(x) = x(1−x) is equal to 2.

Let us note

Un =
{

(a, b, c, d) ∈ Pn × Pn−1 × Pn × Pn−1 such that 1 = a2 + b2w + c2 + d2w
}
.

By abuse of notation, any element in this set will be referred to as a polynomial
in Un.

Lemma 2.3. Take (α, β, γ, δ) = (a, b, c, d) ∈ Un. Then (A,B,C,D) = (1, 0, 0, 0).

Proof. Obvious

This lemma can be rephrased by saying that U∞ = ∪n∈NUn is endowed with
a group structure and that an element is its own inverse. The next natural
question is to determine if one can generate polynomials in Un by composition
of polynomials with lesser degree, as in formula (8) in the proof of the Lukacs
theorem. Let us first examine the simplest non trivial case which corresponds
to U1.

Lemma 2.4. The polynomials (a, b, c, d) ∈ U1 can be written as
a(x) = x cos θ + (1− x) cosϕ,
b = R cosµ,

c(x) = x sin θ + (1− x) sinϕ,
d = R sinµ,

(22)

where the angles (θ, ϕ, µ) ∈ R3 are arbitrary and R = 2 sin
(
θ−ϕ
2

)
.

Proof. Since w(0) = 0, one has that a(0)2 + c(0)2 = 1. That is a(0) = cosϕ and
c(0) = sinϕ for some ϕ ∈ R. Similarly w(1) = 0 so one can write a(1) = cos θ
and c(1) = sin θ for some θ ∈ R. Since a and c are first order polynomials, one
gets a(x) = x cos θ + (1 − x) cosϕ and c(x) = x sin θ + (1 − x) sinϕ. A direct
expansion yields that

1 =
(
a2 + b2w + c2 + d2w

)
(x)

= (x cos θ + (1− x) cosϕ)
2

+ (x sin θ + (1− x) sinϕ)
2

+ (b2 + d2)(x− x2)

= x2 + (1− x)2 + (b2 + d2 + 2 cos θ cosϕ+ 2 sin θ sinϕ)(x− x2)

8



= 1− 2(x− x2) + (b2 + d2 + 2 cos(θ − ϕ))(x− x2)

= 1 + (b2 + d2 + 2 cos(θ − ϕ)− 2)(x− x2).

Therefore b2+d2 = 2−2 cos(θ−ϕ) = 4 sin2
(
θ−ϕ
2

)
from which the representation

of b and d in the claim (22) is deduced. The proof is ended.

Theorem 2.5. Let n ≥ 1. Any polynomial in Un can be obtained with a repeated
use of the formula (21) applied to at most n polynomials in U1.

Proof. Consider (21) and assume that (A,B,C,D) ∈ Un with n ≥ 2 is given.
We will construct (α, β, γ, δ) ∈ U1 and (a, b, c, d) ∈ Un−1 which all satisfy (21).
It will prove the theorem by descending iteration on n. The proof proceeds in
several elementary steps.
• A first remark is that (21) can be inverted for (α, β, γ, δ) ∈ U1 since

α βw γ δw
β −α −δ γ
γ wδ −α −wβ
δ −γ β −α




α βw γ δw
β −α δ −γ
γ −wδ −α wβ
δ γ −β −α

 = I4

with I4 the identity matrix. One finds that (21) is equivalent to
a = Aα+ wBβ + Cγ + wDδ,
b = Aβ −Bα− Cδ + Cγ,
c = Aγ + wBδ − Cα− wCβ,
d = Aδ −Bγ + Cβ −Dα.

(23)

So the cornerstone of the proof amounts to showing that there exists (α, β, γ, δ) ∈
U1 such that (a, b, c, d) ∈ Un−1.
• For n ≥ 2, denote the dominant coefficients of the polynomials as

A(x) = Anx
n +An−1x

n−1 + . . .
B(x) = Bn−1x

n−1 + . . .
C(x) = Cnx

n +Cn−1x
n−1 + . . .

D(x) = Dn−1x
n−1 + . . .

Since 1 = A2 +B2w +C2 +D2w and w(x) = x− x2, the dominant coefficients
at order 2n and 2n− 1 satisfy by identification

A2
n−B2

n−1+C2
n−D2

n−1 = 0 and 2AnAn−1+B2
n−1+2CnCn−1+D2

n−1 = 0. (24)

If A2
n + C2

n = 0, then Bn−1 = Dn−1 = 0. So A,C ∈ Pn−1 and B,D ∈ Pn−2. In
this case one takes (α, β, γ, δ) = (1, 0, 0, 0) so that (a, b, c, d) = (A,−B,−C,−D)
and there is nothing more to prove. So we consider below the main case where
A2
n + C2

n > 0.
• Define 

α(x) = ε(Anx+An−1),
β = εBn−1,
γ(x) = ε(Cnx+ Cn−1),
δ = εDn−1

9



where ε > 0 is a scaling parameter to be chosen. A direct expansion yields

α(x)2 + β2w + γ(x)2 + δ2w = ε2
[(
A2
n −B2

n−1 + C2
n −D2

n−1
)
x2

+
(
2AnAn−1 +B2

n−1 + 2CnCn−1 +D2
n−1
)
x+

(
A2
n−1 + C2

n−1
)]

that is
α(x)2 + β2w + γ(x)2 + δ2w = ε2

(
A2
n−1 + C2

n−1
)
.

IfA2
n−1+C2

n−1 = 0 then (24) shows that 0 = B2
n−1+D2

n−1 = A2
n+C2

n which is ex-

cluded at this stage of the discussion. So one can take ε =
(
A2
n−1 + C2

n−1
)− 1

2 >
0. It insures that (α, β, γ, δ) ∈ U1.
• Let us now determine the dominant coefficients of a and c given by (23). An
expansion yields

a(x) = ε
(
A2
n −B2

n−1 + C2
n −D2

n−1
)
xn+1

+ε
(
2AnAn−1 +B2

n−1 + 2CnCn−1 +D2
n−1
)
xn + low order terms

and
c(x) = ε (AnCn −Bn−1Dn−1 − CnAn +Dn−1Bn−1)xn+1

+ε (AnCn−1 +An−1Cn +Bn−1Dn−1 − CnAn−1 − Cn−1An −Dn−1Bn−1)xn

+ low order terms.

Since these four dominant terms vanish, a, c ∈ Pn−1.
• By construction a2 + b2w + c2 + d2w = 1, that is

(b2 + d2)w = 1− a2 − c2 ∈ P2n−2.

Since w(x) = x−x2, the dominant terms of b and d have maximal degree n−2.
That is b, d ∈ Pn−2.
• It proves that one can determine (α, β, γ, δ) ∈ U1 so that (a, b, c, d) ∈ Un−1
is one degree less than (A,B,C,D) ∈ Un. By descending iteration it ends the
proof.

Corollary 2.6. There exists a parametrization of U2n with 3n real coefficients.

Proof. Indeed U1 is parametrized with 3 angles. By composition Un is parametri-
zed with 3n angles. So U2n which consists of p = a2 + b2w with (a, b, c, d) ∈ Un
can also be parametrized with 3n angles. The proof is ended.

2.3 A solution for the second representation formula (5)

The extension to the second representation formula appears to be trickier and
probably less efficient for practical computations since the parametrization of
U2n+1 needs more parameters than U2n+2. The algebra is as follows.
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The weights are w1(x) = w3(x) = x and w2(x) = w4(x) = 1 − x and the
matrix of weights recasts as

W =


√
w1

√
w2

2

w1

√
w1

√
w2

2

w1√
w1

√
w1

√
w1

√
w1

√
w1

√
w2

2

w1

√
w1

√
w2

2

w1√
w1

√
w1

√
w1

√
w1

 .

The entries are not polynomials because
√
w1 =

√
x, so it is not possible to use

directly the system (21). Nevertheless one observes that by taking the square

W 2 =


z 4w2 z 4w2

4w1 z 4w1 z
z 4w2 z 4w2

4w1 z 4w1 z

 , z = 2w1 + 2w2, (25)

which has now polynomials entries. It indicates that two successive uses of the
weighted-four-squares Euler identity generate polynomials.

Let us denote

Vn =
{

(a, b, c, d) ∈ P 4
n such that 1 = a2w1 + b2w2 + c2w1 + d2w2

}
. (26)

Lemma 2.7. Assume (a, b, c, d) ∈ Vn, (α1, β1, γ1, δ1) ∈ Vm and (α2, β2, γ2, δ2) ∈
Vp. Then two successive uses of (18) yield (A,B,C,D) ∈ Vn+m+p+1.

Proof. The algebra can be rewritten as in (19) where the entries of the matrix
M = (mij)1≤i,j≤4 are given in functions of (α1, β1, γ1, δ1) and (α2, β2, γ2, δ2)

m11 = (α1α2 + γ1γ2)w1 + (β1β2 + δ1δ2)w2,
m22 = (α1α2 − γ1γ2)w1 + (β1β2 − δ1δ2)w2,
m33 = (α1α2 + γ1γ2)w1 − (β1β2 + δ1δ2)w2,
m44 = (α1α2 − γ1γ2)w1 − (β1β2 − δ1δ2)w2,
m12 = (α1β2 − β1α2 − γ1δ2 + δ1γ2)w2,
m13 = (α1γ2 − γ1α2)w1 + (β1δ2 + δ1β2)w2,
m14 = (α1δ2 + β1γ2 + γ1β2 + δ1α2)w2,
m21 = (β1α2 − α1β2 + δ1γ2 − γ1δ2)w1,
m23 = (β1γ2 − α1δ2 − δ1α2 + γ1β2)w1,
m24 = (α1γ2 + γ1α2)w1 + (β1δ2 + δ1β2)w2,
m31 = (γ1α2 − α1γ2)w1 + (−δ1β2 + β1δ2)w2,
m32 = (γ1β2 + δ1α2 + α1δ2 + β1γ2)w2,
m34 = (γ1δ2 + δ1γ2 − α1β2 − β1α2)w2,
m41 = (δ1α2 + γ1β2 − β1γ2 − α1δ2)w1,
m42 = −(γ1α2 + α2γ1)w1 + (δ1β2 + β1δ2)w2,
m41 = (δ1γ2 + γ1δ2 + β1α2 + α1β2)w1.

(27)

It yields the claim since all terms have degree m+p+1. The proof is ended.
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This algebra does not have a clear classical group structure and is less elegant
than the previous one. No similar algebra has been found so far in the literature,
even for example in [6] and therein. Nevertheless it can be used to generate
polynomials with higher and higher degree by iterations with (α1, β1, γ1, δ1) ∈ V0
and (α2, β2, γ2, δ2) ∈ V0.

Lemma 2.8. The polynomials (a, b, c, d) ∈ V0 can be written as

a = cos θ, b = cosϕ, c = sin θ, d = sinϕ (28)

where the real angles θ and ϕ are arbitrary.

Proof. Obvious.

All numerical tests so far are a clear indication that the composition (19)-
(27) with (α1, β1, γ1, δ1) ∈ V0 and (α2, β2, γ2, δ2) ∈ V0 generates all possible
polynomials in Vn. We remark that 4 parameters (that is four angles) are needed
to increase the degree by 1. Therefore this parametrization is less efficient than
the previous one which needs only 3 parameters to increase the degree by 1 and
will not be discussed further except in the numerical section.

2.4 Accuracy of the approximation

The next result is an elementary but fundamental inequality for best approx-
imation of a real valued continuous function by polynomial in Un. This is
given for completeness because the numerical algorithms described in the last
section are based on such estimates. Much more can be found in classical text-
books [19, 3] and therein. The norm of a uniform convergence is noted as usual
‖f‖ = max0≤x≤1 |f(x)| for f ∈ C0[0, 1].

Proof of theorem 1.2. Any polynomial gn ∈ Pn satisfies ‖gn − 1/2‖ ≤ ‖f − 1/2‖+
‖f − gn‖ ≤ 1/2 + ‖f − gn‖. Define

pn = 1/2 +
1

1 + 2‖f − gn‖
(gn − 1/2) .

By construction ‖pn−1/2‖ ≤ 1
1+2‖f−gn‖‖gn−1/2‖ ≤ 1/2, so pn ∈ Un. One has

the identity

f − pn = f − 1

2
− 1

1 + 2‖f − gn‖
(gn − 1/2)

=

(
1− 1

1 + 2‖f − gn‖

)
(f − 1/2) +

1

1 + 2‖f − gn‖
(f − gn)

=
2‖f − gn‖

1 + 2‖f − gn‖
(f − 1/2) +

1

1 + 2‖f − gn‖
(f − gn)

from which one gets the triangular inequality ‖f − pn‖ ≤ ‖f − gn‖+ ‖f − gn‖ =
2‖f − gn‖. Taking the infimum ends the proof.
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So, for a function 0 ≤ f ≤ 1, the best approximation in the uniform norm
with polynomial in Un has the same asymptotic accuracy than the best ap-
proximation with polynomials in Pn. Various bounds can be derived by char-
acterizing the convergence of infgn∈Pn

‖f − gn‖ with respect to n. For example
spectral convergence O(n−m) for all m is achieved if f ∈ C∞[0, 1]. For all
1 ≤ p ≤ ∞, standard interpolation and/or regularization techniques [9] show
the convergence in Lp(0, 1) for f ∈ Lp(0, 1) and 0 ≤ f ≤ 1.

3 Higher dimensions

It is well known that the characterization of polynomials of many variables which
are non negative over a compact set in Rd poses fundamental problems, most of
them linked to the 17th Hilbert problem [25, 2]. In relation with applications,
we refer to the recent and comprehensive textbook [15]. We also note that many
different representations of non negative polynomials exist, but none of them
seems definitely superior to the others for applications.

That is why we restrict the presentation to the main features of the gener-
ating formulas over the academic square C = [0, 1]d. In the context of this work
generating formulas are related to augmented versions of a weighted four-squares
Euler relation but the Hurwitz theorem brings an important restriction.

3.1 Hurwitz theorem and Degen identity

One could ask about generalization of the classical four-squares Euler relation
to n-squares identities. Such formulas exist but only for n = 1, 2, 4, 8: this is
the Hurwitz theorem. For n = 8, the solution is given in the form of the Degen
identity

(a2 + b2 + c2 + d2 + e2 + f2 + g2 + h2)(m2 + n2 + o2 + p2 + q2 + r2 + s2 + t2)

= (am−bn−co−dp−eq−fr−gs−ht)2+(bm+an+do−cp+fq−er−hs+gt)2

+(cm−dn+ao+bp+gq+hr−es−ft)2+(dm+cn−bo+ap+hq−gr+fs−et)2

+(em−fn−go−hp+aq+br+cs+dt)2+(fm+en−ho+gp−bq+ar−ds+ct)2

+(gm+hn+eo−fp−cq+dr+as−bt)2+(hm−gn+fo+ep−dq−cr+bs+at)2.

It is convenient to rewrite it as an Euler identity with complex numbers. We
define (i2 = −1)

u = a+ ib, v = c+ id, w = e+ if, z = g + ih (29)

and
α = m+ in, β = o+ ip, γ = q + ir, δ = s+ it. (30)

The Degen identity rewrites as

|A|2 + |B|2 + |C|2 + |D|2 =
(
|u|2 + |v|2 + |w|2 + |z|2

) (
|α|2 + |β|2 + |γ|2 + |δ|2

)
(31)
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with 
A = uα− v∗β − wγ∗ − z∗δ,
B = vα+ u∗β + zγ∗ − w∗δ,
C = wα− zβ∗ + u∗γ + v∗δ,
D = zα∗ + wβ − vγ + uδ.

(32)

3.2 Polynomials with bounds

In order to generate non negative polynomials, one can start from the possible
representation (this is arbitrary)

p(x, y) = a(x, y)2w1(x) + c(x, y)2w2(x) + e(x, y)2w3(y) + g(x, y)2w4(y) (33)

with w1(x) = x, w2(x) = 1 − x, w3(y) = y and w4(y) = 1 − y, and a, c, e, g
polynomials with respect to x and y. By construction p(x, y) ≥ 0 for all 0 ≤
x, y ≤ 1. Many other representations are possible, see [15].

Let us impose that p(x, y) ≤ 1 for all 0 ≤ x, y ≤ 1 by writing (this is still
arbitrary)

1−p(x, y) = b(x, y)2w1(x)+d(x, y)2w2(x)+f(x, y)2w3(y)+h(x, y)2w4(y). (34)

By summation one obtains a weighted 8-squares relation

1 =
(
a(x, y)2 + b(x, y)2

)
w1(x) +

(
c(x, y)2 + d(x, y)2

)
w2(x)

+
(
e(x, y)2 + f(x, y)2

)
w3(y) +

(
g(x, y)2 + h(x, y)2

)
w4(y).

Define (u, v, w, z) as in (29). One obtains

1 = |u|2w1(x) + |v|w2(x) + |w|2w3(y) + |z|2w4(y).

Using the approach used successfully in dimension d = 1, we modify the Degen
identity with the weights w1,2,3,4 which are now all different. The algebraic
similarity of (14) with (32) shows that, after introducing the weights, one obtains
a form similar to (18) but with complex numbers. The matrix of weights W
obtained after simplification is still (20). It means that we have to analyze W
with four different weights. In general the entries of W cannot be polynomials.
A similar situation has been encountered in dimension d = 1 with the second
representation formula and it was sufficient to take the square of W to generate
a matrix with polynomial entries, see (25). In the new situation one finds that
the two first coefficients of W 2 = (hij)1≤i,j≤4 are

h11 = w1 + w2 + w3 + w4, h12 = 2w2 + 2

√
w2w3w4

w1
, . . .

Therefore even taking the square does not yield a polynomial matrix for general
weights, because the structure of the weights brings rigidity to the method. A
convenient solution is nevertheless the following.
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Lemma 3.1. Consider the weights w1 = 1, w2(x) = 1−x2, w3(y) = 1−y2 and
a redundant fourth weight w4(x, y) = w2(x)w3(y) which is function of x and y.
Then W has polynomial entries.

Proof. Indeed a direct calculation shows that W =


1 w2 w3 w2w3

1 1 w3 w3

1 w2 1 w2

1 1 1 1

.

With these weights one modifies (32) which becomes
A = uα −v∗βw2 −wγ∗w3 −z∗δw2w3,
B = vα +u∗β +zγ∗w3 −w∗δw3,
C = wα −zβ∗w2 +u∗γ +v∗δw2,
D = zα∗ +wβ −vγ +uδ.

(35)

The solutions of this system are endowed with a weighted 8-squares identity
written as a weighted complex-4 squares identity

|A|2 + |B|2w2 + |C|2w3 + |D|2w2w3 (36)

=
(
|u|2 + |v|2w2 + |w|2w3 + |z|2w2w3

) (
|α|2 + |β|2w2 + |γ|2w3 + |δ|2w2w3

)
.

It shows that (35) preserves identities like

1 = |α|2 + |β|2w2 + |γ|2w3 + |δ|2w2w3 (37)

which models polynomials with bounds on the square. Let us note

Un =
{

(α, β, γ, δ) ∈ Pn(x, y)× Pn−1(x, y)2 × Pn−2(x, y) such that (37) holds
}

and
U2n = {p ∈ P2n(x, y) : ∃(α, β, γ, δ) ∈ Un

such that p = Real(α)2 + Real(β)2w2 + Real(γ)2w3 + Real(δ)2w2w3

}
.

Remark 3.2 (Links with Quaternions algebras). In a different context [6]
and in the language of quaternions i2 = j2 = k2 = ijk = −1, this struc-
ture can be reformulated as a quaternions algebra with the quaternion basis
(1, w2i, w3j, w2w3k) over the field of polynomials, with the key property that the
product of the second and third element yields the third one, that is w2i×w3j =
w2w3k. It is is worthwhile to note that (21) can also be rewritten in terms
of the quaternion basis

(
1, (1− x2)i, j, (1− x2)k

)
. There are other possibilities

with different combination of weights such as
(
1, (1− x)i, (1 + x)j, (1− x2)k

)
.

On the contrary, the algebra (25)-(28) does not have a clear formulation in
terms of a quaternion algebra. In the two first cases, the polynomials in Un are
also called unit quaternions.
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The next step in the construction is the finding of complex valued polyno-
mials (α, β, γ, δ) with minimal degree which satisfy (37). This problem shows
issues in order to decide of a convenient parametrization, a necessary task in
view of efficient implementation. This is where a even greater simplification can
be introduced in the search of such polynomials, adding the requirement that
the polynomials are independent either with respect to x or with respect to y.

Lemma 3.3. Elementary solutions of (37) with low degree are

either α = eiθx+ eiϕ(1− x), β = Reiµ, γ = δ = 0, (38)

or α = eiθy + eiϕ(1− y), γ = Reiµ, β = δ = 0, (39)

where the angles θ, ϕ, µ ∈ R are arbitrary and R = 2 sin
(
θ−ϕ
2

)
.

Proof. Obvious from (22).

3.3 Tensorization in higher dimensions

The solution developed so far in (37-38-39) can be reinterpreted as a tensoriza-
tion procedure. It immediately yields a formal theoretical extension of the
generation of polynomials with bounds on the hypercube C = [0, 1]d ⊂ Rd in
any dimension. We restrict hereafter the presentation to the main idea.

Let
j = (j1, . . . , jd) ∈ Jd ≡ {0, 1}d

be a multi-integer which is one corner of the hypercube. Its length is |j| =∑d
k=1 jk ≤ d. We consider complex valued polynomials αj (indexed by j) in the

variables x = (x1, . . . , xd). We take the weights wk = xk − x2k for 1 ≤ k ≤ d.

The notation wj stems for wj = Πd
k=1w

jk
k . We consider the relation∑

j∈Jd

wj|αj(x)|2 = 1 (40)

which is a generalization of (37).

Lemma 3.4. One has the rearrangement∑
j∈Jd

wj|αj(x)|2 =
∑

j′∈Jd−1

w(0,j′)
(
|α(0,j′)|2 + w1|α(1,j′)|2

)
. (41)

Proof. Obvious.

Similar rearrangements can be written in any direction after a preliminary
permutation of the directions. It shows that a simple four square identity can
be used to generate sequences with preserve the value of |α(0,j′)|2 + w1|α(1,j′)|2
for all j′ provided one uses polynomials like (38) which leave invariant by com-
position the value of |α(0,j′)|2 +w1|α(1,j′)|2. Therefore these sequences preserve∑

j∈Jd
wj|αj(x)|2. The evaluation of this structure for practical calculations on

a computer goes far beyond the scope of this work, and so is left for future
research.
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4 Application to numerical approximation

We use the simplicity of the parametrization offered by the different formulas
discussed previously to generate polynomials with bounds on a computer and
to compute a numerical solution to various problems of interest formulated as
minimization problems.

4.1 Implementation issues

We firstly discuss some implementation issues. The tests have been performed
within a Matlab test code, mainly with the procedure which corresponds to the-
orem 2.5. Implementation is as easy with the second representation procedure
(see results in the right part of figure 3) and in dimension d = 2 (results in
section 4.4).

4.1.1 Exact algebra

In Matlab, it is possible in dimension d = 1 to use exact manipulations of
polynomials which are treated as arrays. Some results where the parameters
α(k), ϕ(k), µ(k) are randomized are given in figure 1. Note that the random-
ization of the parameters brings a destructive phenomenon which lessens the
effective degree of the polynomials. The respect of the bounds is perfect for the
first three results.

However an instability is visible for the last one. This is systematically
observed for high degree and is due to a conditioning issue with high order
terms. Indeed the function xn tends to zero almost everywhere when n tends
to infinity. At the same time the coefficient may tend to infinity.

An example is the rescaled Tchebycheff polynomial

T̂n(x) =
cos(n arccos(x)) + 1

2
= 2n−1xn + low order terms.

It is clear that the accuracy of the numerical computation of 2n−1xn is weak for
large n.

4.1.2 Evaluation at given points

The other procedure for the numerical evaluation of polynomials with bounds
uses the fact that it can be coded at quadrature points with isometries.

Define the diagonal matrix

D(x) =

 1 0 0 0
0 1 x− x2 0
0 0 0 x− x2


which is non negative for 0 ≤ x ≤ 1. Take α = x cos θ+(1−x) cosϕ, β = R cosµ,
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Figure 1: Results with exact polynomial calculations with degree n = 2, 100, 200
on the left figure and n = 300 on the right figure. The last result shows an
instability: the lower bound is not respect due to bad conditioning.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1

p

x

’pol300’

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1

p

x

’pol2000’

Figure 2: Polynomials computed at equi-distributed quadrature points with
n = 300 and n = 1000.

γ = x sin θ + (1− x) sinϕ, δ = R sinµ with R = 2 sin
(
θ−ϕ
2

)
. Define

Rk(x) = R(x; θk, ϕk, µk) with R(x; θ, ϕ, µ) =


α β γ δ
β −α δ −γ
γ −δ −α β
δ γ −β −α

 .

Denote θk, ϕk, µk the parameters at step k for 1 ≤ k ≤ n. The loop with yields
the numerical value of (a, b, c, d)(x) at step N rewrites

a(x)
b(x)
c(x)
d(x)

 = Rn(x)Rn−1(x) . . . R2(x)R1(x)X0, X0 =


1
0
0
0

 . (42)

The numerical value computed at the end of the loop writes

p(x) = a(x)2 + c(x)2(x− x2), p ∈ U2n. (43)
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The stability of the loop (42) is insured by the property

Rk(x)tD(x)Rk(x) = D(x) (44)

which means that D
1
2 (x)Rk(x)D−

1
2 (x) is an isometry for 0 < x < 1. Two

results are displayed in figure 2 with a polynomial degree 2n = 300 (which was
unstable with the previous implementation) and with a total degree equal to
2n = 2000. Stability is now achieved unconditionally with respect to n.

4.2 Calculation of the exact gradients

It is of interest to develop a numerical procedure for the exact calculation of the
gradient of p(x) with respect of the parameters (θr, ϕr, µr)1≤r≤n. Such methods
provide an exact gradient which accelerates gradient algorithms for finding the
minimum of certain differentiable cost functions. To explain the procedure we
consider the calculation of ∂αrp(x) where 1 ≤ r ≤ n is arbitrary. The procedure
is the same for ∂ϕr

p(x) and ∂µr
p(x).

One has

∂αrp(x) = ∂αra(x) (2a(x)) + ∂αrc(x)
(
2c(x)(x− x2)

)
where

∂αr


a(x)
b(x)
c(x)
d(x)

 = Rn(x) . . . Rr+1(x)∂αrRr(x)Rr−1(x) . . . R1(x)X0.

An efficient procedure for the calculation of derivatives for all r is as follows.
Firstly one computes an adjoint vector

Yad =


aad(x)
bad(x)
cad(x)
dad(x)

 = R1(x)−tR2(x)−t . . . Rn−1(x)−tRn(x)−t


2a(x)

0
2c(x)(x− x2)

0


(45)

where Rk(x)−t = D(x)Rk(x)D(x)−1 as a consequence of (44). Let 〈, 〉 denotes
the scalar euclidian product in R4.

Lemma 4.1. One has the formula

∂αrp(x) = 〈∂αrRk(x)Xr−1, Yr〉 (46)

where

Xr−1 = Rr−1(x) . . . R1(x)X0 and Yr = Rr(x)t . . . R1(x)tYad. (47)

Remark 4.2. The interest of the formula (46) is that the partial derivatives
are computed for all 1 ≤ r ≤ n with a cost approximatively 3 times the cost of
the evaluation of the polynomial p itself. This counting corresponds to the three
loops described in (46)-(47). This extra-cost is therefore independent of n.
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Proof. By definition of the adjoint vector, one has

Yr = Rr(x)t . . . R1(x)tR1(x)−t . . . Rn(x)−t


2a(x)

0
2c(x)(x− x2)

0



= Rr+1(x)−t . . . Rn(x)−t


2a(x)

0
2c(x)(x− x2)

0

 .

Plug in (46). It yields

〈∂αrRk(x)Xr−1, Yr〉 = 〈∂αr . . . Rn(x) . . . Rr+1(x)Rk(x)Rr−1(x) . . . R1(x)X0, Yad〉 .

The proof is ended.

A similar technique can be used for the exact computation of the derivative
p′(x).

Lemma 4.3. One has the formula

p′(x) = c2(x)(1− 2x) +

n∑
r=1

〈∂xRk(x)Xr−1, Yr〉 . (48)

Proof. Obvious from the proof of the previous lemma.

Remark 4.4. We notice that this formula can be used to obtain an estimate of
the derivative ‖p′n‖ in the absolute norm. Such estimates are clearly related to
the Markov [18] and Bernstein [1] inequalities. We refer to the corresponding
chapter in [19] and to [13]. This is left for further studies.

4.3 Minimization of functionals

All problems considered below are written like

Find pn ∈ Un such that J(pn) ≤ J(qn) ∀qn ∈ Un

where J is some functional. For example it can be the L2 norm between qn and

a given objective function f : in this case J(qn) =
(∫ 1

0
|f(x)− qn(x)|2dx

) 1
2

. We

also use the L1 norm, typically for a discontinuous objective function. The L∞

norm is less appealing, because it might slow down the rate of convergence of al-
gorithms. Such problems correspond to the calculation of a best approximation
of f by polynomials in Un.

The initial problem is discretized with quadrature points xi and with α ∈
R3n which is the vector that contains all the angles for the generation of the
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polynomials with bounds. The result is written as qn(xi;α). The functional
J(qn) is in practice discretized as

Jh(α) =
∑
i

ωiJ(qn(xi;α)), α ∈ R3n.

Matlab is used for the numerical calculations of minimizers

Jh(α∗) ≤ Jh(α) ∀α ∈ R3n.

An important feature is that even if J is convex, Jh may be non convex because
the parametrization α 7→ p(α) is non convex. Moreover also that p(α) and
Jh(α) are 2π periodic for all variables

Jh(α) = Jh(α+ 2πm) ∀m ∈ Z3n.

We rely on the Matlab function fminunc to determine the minimum of Jh.
Actually Jh may have local minima α1, α2, . . . : we systematically run the
calculation between 1 and 5 times and keep the best candidate. It is possible to
run fminunc with exact calculation of the gradient of the functional by either
using the procedure described in lemma 4.1 or asking fminunc to compute an
approximation of the gradients by itself. The CPU time is not reported because
the implementation is not optimal and it is related to the Matlab function
fminunc, whom complexity and rate of convergence change if one provides the
exact gradient or not. It is sufficient to know that the CPU time is, depending
on the problem, between 5s and 2 minutes on a MacBookAir. Of course a 2D
problem with a lot of quadrature points increases a lot this CPU time.
Finally once a discrete minimizer is determined, the result is plot on a grid
with a number of visualization points which may be larger than the number of
quadrature points.

4.3.1 Minimization of Lp-based functionals

We firstly consider the L2 norm between p(α) and the Runge function properly
rescaled in the bounds [0, 1] as

f1(x) =
26

25

(
1

1 + 25(2x− 1)2
− 1

26

)
.

Three computations are performed with n = 2, 4, 6, α ∈ R3n and p ∈ P2n. For
each n the functional Jh is evaluated with n + 1 equi-distributed quadrature
points. In terms of complexity it corresponds to Lagrange interpolation on a
uniform grid. The calculation is performed with exact gradients. The result is
displayed in figure 3. One observes that the oscillations are controlled near the
endpoints of the interval and the numerical convergence is achieved.

Next we change the objective function which is the rescaled Tchebycheff
polynomial

f2(x) =
T20(x) + 1

2
.
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Figure 3: Minimization of a discrete L2 norm between the Rescaled Runge
function ad polynomials with bounds, n = 4, 8, 12.

We use 21 equi-distribued quadratures points. The calculation are performed
with a polynomial degree p ∈ U10 and p ∈ U20. The results displayed in figure
5 show that the numerical solution is the exact one for n = 20 (note that the
final plot is evaluated on a grid with 400 points to reach good resolution for the
oscillatory part on the right of the profile).

A second series of similar test is performed with the rescaled Tchebycheff
polynomial

f3(x) =
T21(x) + 1

2
with 22 quadrature points, and with the generation of polynomial with bounds
based on the second representation formula: see (26). The numerical solution
with n = 10 is the exact one.

In the next test, the objective function is a step function

f4(x) = 0 for x < 0.4 and z(x) = 1 for 0.4 < x.

The number of quadrature points is 25. The degree of the polynomials is 8, 16
and 24. The convergence in a discrete L1 norm is observed. Here we do not use
the exact gradient to accelerate the descent method since the L1 norm is not
differentiable. The accuracy in L1 norm is satisfactory and the respect of the
bounds is perfect.

4.3.2 Minimization of integrals with polynomial weights

The next tests minimize functionals like

J(pn) =

∫ 1

0

(t− λn(x)) pn(x)dx, pn ∈ Un (49)
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Figure 4: On the left: minimization of a discrete L2 norm between the rescaled

Tchebycheff polynomial T20(x)+1
2 and polynomials with bounds, n = 10, 20; the

numerical solution is exact for n = 20. On right: same problem for T21(x)+1
2

and the polynomials based on the set V5 and V10; the numerical solution is also
exact for V10 which corresponds to polynomials of maximal degree equal to 21.

where λn ∈ Pn is given and t may vary. A reference is provided by a recent
work [8] where it is proved that pn has not less than n + 1 points of contact
counted with order of multiplicity (this is similar to one-sided L1 minimization
for which we refer to [3]) for almost all t. We use this theoretical property to
check the accuracy of the approximation. We remark that the optimal solution
pn has the natural tendency to vanish where t − λn(x) > 0 and to be equal to
1 where t − λn(x) < 0, which is clearly a good strategy to minimize the cost
function (49).

A numerical result representative of all the tests is the following. Take

λ2(x) = T2(2x− 1)− t+ x and t = 0.3.

A first numeral simulation yields the function displayed on figure 6, the nu-
merical value of the cost function is J(p1n) ≈ −0.16737. This function does
not have the required number of contacts on the figure. But another minimum
is captured by numerical simulations with another starting point, for which
J(p2n) ≈ −0.188478 < J(p1n): its total order of contact is large enough (equal
to 2n+ 1 = 7 since n = 3) and this is in accordance with the theory. No other
minimum with lower value of the cost have been obtained by simulations, so it is
the best candidate. See figure 7. Note that the exact calculation of the deriva-
tive p′n(x) is convenient to count without ambiguity the number of derivatives
which vanish at points of contact.

4.4 Approximation in dimension d = 2

The 2D implementation is based on the loop (35) with the basic polynomials of
lemma 3.3 and has been coded in complex algebra.
We display in figure 8 the result of numerical tests with a cost function which
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Figure 5: Minimization of the discrete L1 between a step function and polyno-
mials in bounds of degree 8, 16 and 24. One observes the convergence of the
numerical profile to the objective function.

is the L2 distance between pn and the objective function

f5(x, y) =
T8((2x+ y)/3) + 1

2
.

One observes clear convergence when increasing n (up to 16). For n = 16 the
numerical value of the cost function is ≈ 0.0195. The number of quadrature
points used to discretize the cost function is 11× 11 is all tests.

The next result concerns the minimization of the discrete L2 distance to the
objective function

f6(x, y) = H(2x+ y) with H the Heaviside function.

The L2 distance is better in terms of the smoothness and speed of convergence
with the respect to the L1 distance. The number of quadrature points is 11×11
and n = 10 then 20. One observes good accuracy in figure 9.

5 Perspectives

The connections between on the one hand the algebraic properties of the four-
squares Euler identity and on the other hand the algorithmic use on a computer
of polynomials with two bounds in numerical analysis and scientific computing
raise many questions which could be the subject of future researches. The fol-
lowing non exhaustive list reflects the own interests of the author.
- In view of a simpler implementation, one could ask wether convenient interpo-
lation techniques are possible within Un. The point is that the loops discussed
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Figure 6: Plot of λ2(x)− t and of a local minimum p1n with J(p1n) ≈ −0.16737.
The total order of contact if 1 + 2 + 2 = 5.

so far are by composition, so very different from the usual summation formulas
used in interpolation [3].
- In a similar vein, it would be valuable to use these polynomials to address
maximum principle properties for the discretization of non linear equations.
The usual way is in a first stage to approximate a function (a flux typically for
a finite volume scheme) with polynomials in Pn, in a second stage to inquire
about the verification on a local maximum principle, and in the final stage to
use limiters [12] to clip the polynomials near extrema. With the set Un the
respect of the maximum principle is a priori.
- Since the loops which generate the polynomials can be coded only at quadra-
ture points, one could think of using them to explore new sparse composition
algorithms for having a polynomial approximation of a given function in very
high dimension. An appealing idea is probably to couple such loops with sparse
grid techniques [14].

Acknowledgements. The author thanks E. Trelat for bringing his exper-
tise in polynomial optimization and related computations and G. Poette for
many discussions on the interest of signed polynomials for uncertainty quantifi-
cation.
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