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Abstract—This paper discusses an implementation of runtime
verification for embedded software running on a System-on-
Programmable-Chip (SoPC) composed of a micro-controller and
a FPGA. The goal is to verify at runtime that the execution of the
software on the micro-controller conforms to a set of properties.
To do so, a minimal instrumentation of the software is used
to send events to a set of monitors implemented in the FPGA.
These monitors are synthesised from a formal specification of the
expected behavior of the system expressed as a set of past-time
linear temporal logic (ptLTL) formulas.

I. INTRODUCTION

Traditional techniques used to improve the correctness of

embedded software include program verification (proof, model

checking) and testing. Program verification offers a complete

coverage of the system at early design stages, so it is usually

not able to detect defects introduced during later stages (com-

pilation, link, etc.). Testing operates on the “real” system but

does not offer a complete coverage of the possible behaviours

of the system. Thus, none of them offers a full coverage of

the system lifecycle. In particular, the operational phase is not

covered by these techniques.

For a number of embedded systems such as totally au-

tonomous systems or safety-critical systems, it is important

to have the capacity to detect and react to faults occurring

at runtime. To achieve this goal, these systems can use

well-known fault-tolerant design techniques such as runtime

monitoring for fault detection or triple modular redundancy for

recovery. The main drawback of these techniques is their cost,

both in terms of consumption of runtime resources (space,

energy, computation time, memory) and engineering.

In this paper, we describe a runtime monitoring technique to

detect fault occurring at runtime in System-on-Programmable-

Chip (SoPC). A SoPC integrates one, or more, hardcore pro-

cessor combined with a programmable logic circuit. Examples

of SoPC on the market include Xilinx Zynq [3] or Microsemi

Smartfusion [1]. In these architectures, the programmable

logic circuit is rather used to implement hardware accelerators.

Our idea is to use this circuit to implement safety devices.

This approach should allow to limit the consumption of

runtime resources. In this paper, we focus on a first type of

safety devices: runtime monitors. To limit the cost in term of

engineering, we rely on a fully automatised chain to synthesise

these monitors, using the algorithms and tools developed in the

framework of the runtime verification theory.

The paper is organised as follow : in Section 2, we give an

overview of runtime verification, runtime monitoring, and we

presents some related works; in Section 3, we provide some

background on the past-time linear temporal logic (ptLTL)

used to formally specify the monitored properties; in Section

4 we discuss the design and implementation of the runtime

monitoring framework; in Section 5, we present a small case

study. Lastly, we highlight some future works and conclude

the paper in Section 6.

II. OVERVIEW

A. Runtime Verification and Runtime Monitoring

Runtime Verification (RV) is usually classified as a

lightweight formal methods dedicated to the synthesis of

runtime monitors from specifications [10]. Specifications are

usually given in the form of temporal logic formulas and

transformed step by step into a monitor. This monitor can be

used to analyse the execution trace of a system and to decide

if this trace conforms or not to the specification. The analysis

can be performed either at runtime or offline. In this paper,

we are interested in runtime analysis. We use RV techniques

to synthesise monitors. Then we plug these monitors in a

Runtime Monitoring framework.

As illustrated in Figure 1, a Runtime Monitoring framework

is composed of three main components:

      Runtime Monitoring Framework

Application

Instrumentation Post-treatment

Observater
State

Identifier
Verifier

Events

True

False

States

VerdictObservations

Fig. 1. Architecture of a runtime monitoring framework

● The observer extracts relevant information from the ob-

servation of the execution of the monitored system in the

form of a stream of events;

● The state identifier is used to build the state of the system

from the event stream. The sequence of states is the

execution trace;

● The checker computes a verdict from the input trace.

All these components can be implemented either as soft-

ware, hardware, or a mix of both.
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A software implementation is straightforward but requires

the instrumentation of the system by adding relevant code.

This instrumentation has a cost, especially in term of execution

time and memory footprint [8]. Thus, in an embedded system

with severe resource constraints, a software implementation

might not be affordable. Moreover, a software implementation

presents the disadvantage of sharing common failure case with

the monitored system.

A hardware implementation consists in plugging a dedicated

hardware device. This device is able to observe at least read-

/write operations on the system bus between the cores, memory

and peripherals. It can then relay these signals to the monitors,

also implemented as circuits. This allows to circumvent the

limitations listed above by approaching a zero overhead on

software execution and by enforcing spacial isolation between

the application and the monitors. However, it requires to use a

fully dedicated hardware platform (ASIC or FPGA). Even in

this case, it is difficult to achieve a complete observability of

the system without using an emulator [5]. Lastly, the properties

used to design the monitors must be expressed in terms of low

level signals, which can be cumbersome for complex software.

In this paper, we explore a hybrid approach based on a

minimal instrumentation of the application software used to

send signals to a hardware monitoring framework.

B. Related works

P2V [11], [12] is a compiler that translates a specification

expressed in PSL (Property Specification Language) into mon-

itors written in Verilog code. P2V performs the verification of

a software program, written in C language, that is executed

on a processor which is synthesised into a FPGA (soft-

core). To generate a monitor from a PSL property, P2V uses

information generated by the C compiler to understand the

mapping between C and machine code. This allows not to

instrument the software. Therefore, P2V provides a runtime

verification solution with zero-overhead in software. However,

in term of computation power and energy consumption, soft-

core are not as efficient as hardcore. Then, in an industrial

context, soft-core are rarely used.

A second work [15] presents a runtime verification approach

for micro-controller binary code. This approach uses the ptLTL

logic to express the specifications to verify. The target system

and monitors are synthesised into a FPGA. This allows to

observe passively the system bus in order to compute a verdict

about a specification. This work is focused on the runtime

verification of micro-controller code. The target system is a

soft-core. Thus, this method presents the same features as the

previous work.

In [13], authors presents the BusMOP framework which

generates monitors for the runtime monitoring of bus activities.

Monitors are synthesised into a FPGA which is plugged on

a PCI (Peripheral Component Interconnect) bus in order to

check communications between each peripheral. Properties to

check are expressed in extended regular expression (ERE)

and ptLTL. The aim of this framework is to monitor COTS

(Commercial-Off-The-Shel) peripheral by spying passively the

PCI bus. Thus, their approach has zero CPU runtime overhead.

More recently, [5] introduces an approach for the runtime

verification of multicore SoCs. An external emulator of the

system is used. This emulator, called hidICE, replicates the

SoC bus master cores. It is synchronised with the SoC to

observe data which can change the program flow: periph-

eral data, clock, interrupts and bus wait states. From the

emulation, program counter and instructions of each core

are rebuilt. These information is sent to a trace analyser

which generates a trace composed of propositions. Monitors

take these propositions to evaluate the given specifications.

Monitors are designed from a Linear-time Temporal Logic

(LTL) property. This approach has been evaluated on FPGAs

with soft-cores, however the authors expect that their approach

will be supported on SoPC with hard-cores. We can note that

the aim of their approach is to provide a runtime verification

framework to use during the development phase and it cannot

to be used for the operational phase of the system.

C. Contributions

In this paper, we provide the following contributions: first,

we discuss on the design and implementation of the architec-

ture of a runtime monitoring mechanism for SoPC platforms.

To the best of our knowledge, this is the first work exploring

RV for SoPC. Some implementation choices might be specific

to our target architecture but we believe that the discussion

is general enough to be useful in a broader context. Second,

we describe a chain that, given a specification in the form of

a temporal logic formula, generates monitors in the form of

HDL programs that can be hosted in our runtime monitoring

framework. Third, we show the feasibility of our approach on

a small case study.

III. BACKGROUND

A. Choice of a specification language

As shown in the section II-B, several specification languages

can be used to express properties that can be used to generate

runtime monitors, including LTL, PSL and ptLTL. LTL is an

infinite trace linear future time temporal logic [14]. PSL is a

specification language for hardware design that also includes

an infinite trace linear time temporal logic with both future

and past time modalities [4]. ptLTL is a finite trace linear past

time temporal logic [9]. In this paper we choose to use ptLTL.

Comparing expressiveness, PSL is strictly more expressive

than LTL which is in turn strictly more expressive than ptLTL.

However, in the context of runtime verification, we do not

need all the expressive power of LTL or PSL because we deal

only with finite traces. There exists LTL or PSL formulas in

which the satisfaction can not be deduced on a finite trace.

These formulas are not amenable to runtime verification. On

the other hand, all ptLTL formulas are amenable to runtime

verification.

Moreover, as noted in [9], ptLTL semantics can be defined

recursively in a way that the satisfaction of a formula and a

trace can be computed along the trace looking only one step

backward. From this definition, as explained in section IV-C,

it is straightforward to deduce an efficient hardware imple-

mentation of a satisfaction algorithm for ptLTL.
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Further arguments on the interest of using ptLTL in the

context of runtime verification can be found in [16].

B. Syntax and semantics of ptLTL
ptLTL extends propositional logic with the following tem-

poral past-time operators:

⊙F : previously F
⊡F : always F in the past

⟐F : eventually F in the past

F1SsF2: F1 strong since F2

F1SwF2: F1 weak since F2

These ptLTL operators are similar to LTL operators : previ-

ously is analogous to next, always in the past is analogous to

always, eventually in the past is analogous to eventually and

strong/weak since is analogous to strong/weak until.
In addition of these operators, it is suitable to introduce

monitoring operators which are used to help the requirement

specification writing. These operators do not add expressive-

ness to ptLTL, in fact, these operators can be expressed by the

use of the standard ptLTL operators:

start F : ↑ F = F ∧ ¬⊙ F
end F : ↓ F = ¬F ∧⊙F
strongly in [F1F2] : [F1;F2)s = ¬F2 ∧ ((⊙¬F2)SsF1)
weakly in [F1F2] : [F1;F2)s = ¬F2 ∧ ((⊙¬F2)SwF1)

The semantics of a ptLTL formula is defined over a trace

associated with an execution of a system. Let AP be a set

of atomic propositions. Let λ be a labelling function mapping

a state of the system to a subset of AP . Let s be a state

of the system. We note σ = λ(s). When an event occurs in

the system, it triggers transition from state si to state si+1.

A trace of the system after n events is the finite sequence

t = σ1σ2...σn. We let ti denote the prefix ti = σ1σ2...σi of t
for 1 ≤ i ≤ n.

Let p be a proposition in AP , F , F1, F2 be ptLTL formulas

and t = σ1σ2...σn a trace in 2AP ∗. The semantics of a ptLTL

formula over t is defined as follows:
t ⊧ p iff p ∈ σn ,

t ⊧ ¬F iff t /⊧ F ,

t ⊧ F1 ∧ F2 iff t ⊧ F1 and t ⊧ F2 ,

t ⊧ ⊙F iff n > 1 and tn−1 ⊧ F ,

t ⊧ ⟐F iff t ⊧ F or (n > 1 and tn−1 ⊧ ⟐F ) ,

t ⊧ ⊡F iff t ⊧ F and (n > 1 implies tn−1 ⊧ ⊡F ) ,

t ⊧ F1SsF2 iff t ⊧ F2 or (n > 1 and

t ⊧ F1 and tn−1 ⊧ F1SsF2) ,

t ⊧ F1SwF2 iff t ⊧ F2 or (t ⊧ F1 and (n > 1 implies

tn−1 ⊧ F1SsF2).

C. An example of ptLTL specification
In [2], patterns about property specification for finite-state

verification are given. Let us take as example one of this

pattern and express it in a ptLTL formula.
We consider the following pattern where P, Q and R are

atomic propositions: ”Always P is false after Q until R”. This

is illustrated on the Figure 2:
The ptLTL formula which expresses this pattern is:

F = ⊡([Q,R)s → ¬P )

Q QR
t

¬ P ¬ P

Fig. 2. Diagram of the example

IV. IMPLEMENTATION

In this section, we will focus on the implementation of

a runtime monitoring framework into a system based on a

SoPC, then a system which integrates a micro-controller and

a FPGA fabric. The application runs on the micro-controller

and the monitor is implemented into the FPGA. As illustrated

in Figure 3 the micro-controller and the FPGA communicate

through interrupt signals and a communication bus.

Application

(including code
instrumentation)

Microcontroller FPGA Fabric

Hardware
Monitor

Dara registers

Interrupts

Communication bus

Fig. 3. Architecture of the SoPC hardware platform

The communication bus between the micro-controller and

the FPGA allows the micro-controller to access data, control

and status registers in the FPGA. Data registers can be used

to receive information from the application. The interrupt

controller on the other way allows to send a verdict from a

monitor to the micro-controller. The interrupt handler has the

responsibility to manage the outcome of a verdict.
Figure 4 gives an overview of the framework. Events are

generated by the application and transmitted to the FPGA in

order to be stored in the register file. Then, the State Identifier

analyses the events in order to compute a trace. Finally,

the ptLTL checker verifies that the trace respects the ptLTL

property and sends back the related verdict to the system.

Microcontroller

State
Identifier

ptLTL
Checker

register file

events state

verdict

Fig. 4. Overview of the runtime monitoring framework

This runtime monitoring framework raises some questions :

● How to observe the system with the application instru-

mentation?

● How to identify the states?

● How to generate the ptLTL checker from a property?

● How to synchronize the monitor and the application?

A. Observation of the application
Our framework provides two mechanisms to enable the

observation of the application by the verification module. Both

relies on a set of data registers implemented in the FPGA.
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The first mechanism consists in mapping application vari-

ables to FPGA registers. The main advantage is that we do not

need to add any instruction to the code of the application. The

main drawback is that any access to such a variable (including

read access) requires a data transfer through the communica-

tion bus between the microprocessor and the FPGA. These

transfers are usually slower than transfer to SRAM banks.

The second mechanism consists in adding dedicated instruc-

tion in the code of the application to write data to FPGA

registers. The main advantage is that we pay the price of a

data transfer to the FPGA only when needed. Moreover, for

fixed size data such as boolean values, it allows to minimize

the usage of registers by mapping several data to a single

register.

We have to study thoroughly both approaches in order to

provide the designer with relevant informations when facing

the choice to use one of these approaches.

B. State identification

The state identification is performed by the analysis of the

registers which are written by the monitored application. This

analysis is used to update the value of each atomic proposition.

The design of state identifiers relies on the formalisation of

the atomic propositions which can be specified as:

● The comparison between the values of two registers or

between the value of a register and a constant.

● The occurrence of a software event.

● The access of a specific state that is given by the use of

a FSM (Finite-State Machine).

1) Comparator: It performs a comparison between two

data. A data is either the value of a monitored variable or

a constant. At least one of these data is a monitored variable.

This design is similar to the comparator design of [15].
2) Event detector: The event detector is a sequential system

to detect the occurrence of a software event. The event to

monitor is a bit of the software event register (noted Event).
A D flip-flop delays the event of 1 cycle (Event−1) and a

comparator between Event and Event−1 gives the result of

the occurrence of the event (Figure 5).

E1 != E2

D

Event
Atomic proposition

Event
-1

Fig. 5. Design of an event detector

3) Finite-state machines: A FSM can be used to compute

more complex atomic propositions. In this case the value

of an atomic proposition is defined according to the current

state of the FSM. The triggering conditions for each transition

are composed of the occurrence of software events. We can

note that the use of FSM allows to define complex atomic

propositions which leads to simplify the specification.

C. ptLTL Checker

The ptLTL checker is the hardware structure which allows

to compute a ptLTL formula. It is based on the satisfaction

algorithm which is deduced directly from the ptLTL semantics

[9]. The satisfaction of a ptLTL formula is realised by the

computation of each sub-formulas.

The memory used for the satisfaction of a ptLTL formula is

proportional to the number of sub-formulas, and the compu-

tation time is proportional to the depth of the ptLTL formula.

The recursive semantics gives directly the HDL code of each

ptLTL operation. Let us take the example F ∶= [a; b)s → c:
”The observation of a implies that c is true until the observa-

tion of b”. It is straightforward to identify the hardware design

in Figure 6:

Fig. 6. Design of the ptLTL checker

Where c denotes the state of the operator output for one

step backward.

The latency of the ptLTL checker is proportional to the

depth of the ptLTL formula. To have a coherent verdict, the

latency must to be lower than the clock period. Otherwise

the solution is to split the ptLTL checker using D-flip-flop.

In this way the verdict is coherent however the verification is

performed in several clock period.

We assume that the depth of ptLTL formula from which the

ptLTL checker is generated will respect this constraint.

D. Synchronisation

The verdict of the runtime monitoring is computed on the

FPGA in parallel with the execution of the application. With-

out synchronisation, the application continues its execution

and the verdict may be given too late. Thus, the architecture

shall include a synchronisation mechanism. Two approaches

are possible:

● blocking approach: When an event is set by the applica-

tion, the application waits until the end of the verification.

If the verdict is false, the interrupt request is received be-

fore to execute the next instruction. This method ensures

the reliability of the execution but generates an overhead

on the execution time of the software.

● non blocking approach: The application resumes its ex-

ecution without waiting for the completion of the verifi-

cation. If the verdict is false, the application can execute

some instructions before the interrupt request.

The two approaches have advantages and are complemen-

tary. A trade-off between reliability and performance can be

chosen by the designer. Our implementation supports both

approaches. We have to study thoroughly this trade-off in order

to provide the designer with relevant informations when facing

this choice.

The blocking approach can be implemented either in soft-
ware or in hardware.

The software blocking approach is the simplest to imple-

ment. It uses a status bit in the FPGA. When a data register

of the FPGA is written, the status bit is unset. The application



5

polls the status bit while the verification is being performed,

. Once the verdict is computed, the status bit is set and the

application can resume.

The hardware blocking approach is possible if the com-

munication protocol provides a synchronization signal to ac-

knowledge a transfer. As long as this signal has not been set,

the transaction is in progress and the bus master is in a wait

state. Thus synchronisation can be achieved by delaying the

signal after the completion of the computation of the verdict.

The delay is dependent on the computation time of the verdict.

As illustrated by Figure 7, this can be done with a timer. This

is the solution used by our framework.

By setting the delay of the timer to 0, we obtain a non
blocking approach.

Bus
Interface

Identification

reg_0

reg_n

ptLTL
Checker

Verdict

Timer

transfersynchro

μC

clk

Fig. 7. Design of the synchronisation mechanism

E. Tool support

A Python program is currently under development. This

program will enable to generate the VHDL code of the monitor

from ptLTL formulas and description of atomic propositions.

The program will be a free software.

V. CASE STUDY

A. Presentation of the target platform: The SmartFusion 2
(SF2)

The SF2 [1] is a SoPC which integrates a 166 MHz ARM

Cortex M3 processor and a flash-based FPGA fabric. The

application code to verify runs on the processor and the FPGA

fabric is used to implement the hardware monitors.

The communication between the processor and the FPGA is

conformed to the AMBA bus specification. This open standard

bus specification has been introduced by ARM Ltd. and gives

rules to manage the communication between each peripherals

in a SoC. The SF2 uses two different buses based on the

AMBA specification:

● Advance High-performance Bus (AHB): it allows high

performance pipelined operations and burst transfers (i.e.
connection with an on-chip memory).

● Advance Peripheral Bus (APB): it is used with periph-

erals with low bandwidth that do not require pipelined

operation nor burst.

The register interface in this case study is based on the APB

specification.

The APB is a synchronous communication protocol based

on the master/slave model where there is one master and

several slaves peripherals. In our case, APB master is located

in the MSS (Micro-controller SubSystem) and the APB slave

is located in the FPGA fabric. An APB transfer is performed

in at least two cycles.

This protocol provides a signal which allows to synchronise

the running application with the verification hardware. When

this signal is set to ’1’ the APB transfer is extended, then the

running application is in a waiting state until the PREADY

signal is set to ’0’.

B. Overview of the example application

The software architecture of the proof-of-concept appli-

cation to verify is shown in Figure 8. This small example

is extracted from an industrial case-study of the automotive

domain [7].

The application is composed of three tasks (T0, T1 and T2).

These tasks communicate through two buffers (b0 and b1). We

define:

● sij the operation which indicates that the task Ti sends a

message to the buffer bj .

● rij the operation which indicates that the task Ti receives

a message to the buffer bj .

T1

T2
T0 b0

b1

s00

s11

r20

r10 r21

Fig. 8. Software architecture of the application

In this architecture, tasks T0 produces data (coming from

some other task not shown here). Task T1 performs a compu-

tation based on the data produced by T0. Task T2 performs a

coherency check on the output of T1. To perfom this check,

it has to know the input values of T1. Thus, both inputs of T2

needs to be correlated.

We say that buffer b0 and b1 are synchronised at time t
when the value currently stored in b1 has been computed by

T1 using the value currently stored in b0. This property is

associated with atomic proposition synchro.

We define two other atomic propositions:

● Readstart: true during a cycle, when T2 read its first

input;

● Readend: true during a cycle, when T2 read its second

input;

We can now formally express the property that we want to

monitor:

F = ⊡([Readstart;Readend)s → Synchro)

C. Instrumentation of the application

We have to instrument the application and design the state

identifier layer in order to identify the truth value of the three

atomic propositions Synchro, Readstart and Readend.

For Synchro: the application is instrumented to send events

s00, r10 and s11 to the application. To process these events,

we use the Moore machine described Figure 9. In the current

version of our framework, this machine has to be hand-coded.

As explained in [6], the instrumentation code can be added

either at the application level or inside the kernel of the RTOS.

The later solution is preferred because it allows to execute
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q0

1
start

q1

0

q2

0

r10, s11

s00

s00, s11

r10

s00

r10

s11

Fig. 9. Moore machine to compute the truth value of Synchro.

atomically the sending of the event and the corresponding

action.

For Readstart: the application is instrumented to send an

event when task T2 reads its first input. As explained above the

atomic proposition Readstart is true for a cycle whenever this

event occurs. Thus to compute the truth value of Readstart
we use the event detector block described Figure 5. Let

us underline that this design behaves correctly because the

application can not generate two events in two consecutive

cycles. This is impossible because sending an event through

the APB bus takes two cycles.

For Readend: we use the same design as for Readstart with

an event generated by the application when task T2 reads its

second input.

The overall design is illustrated Figure 10.

Fig. 10. Overall design of the verifier.

D. Implementation

We have implemented this verifier using our framework

on the SF2 platform. The FPGA of the SF2 is composed

of 56340 4-LUT (4 input Look-Up-Table) and DFF (D Flip-

Flop). The verifier uses 71 4-LUT and 79 DFF. This is a

very small footprint corresponding to less than 0.20% of the

resources. Even in the case of a realistic application where

the verifier will have to check more properties, the footprint

should stay low. This should allow to use most of the resources

of the FPGA to implement classical accelerators alongside the

verifier.

VI. CONCLUSIONS AND FUTURE WORKS

This paper present a hardware implementation framework

for runtime verification or embedded systems. We have ex-

plained the architecture of the framework and illustrated its

use on a very simple example extracted from an industrial

case-study. In the future we have to study realistic applications

to gain a better understanding of the design choices offered by

the framework. One of the target for this work is the kernel

of Trampoline RTOS.
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