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Abstract
Mann et al. [11] designed the first algorithm computing a maximal matching that is a 2

3 -
approximation of the maximum matching in 2O(n) moves. However, the complexity tightness
was not proved. In this paper, we exhibit a sub-exponential execution of this matching algorithm
: this algorithm can stabilize after at most Ω(2

√
n) moves under the central daemon.
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1 Introduction

In graph theory, a matching M in a graph is a set of edges without common vertices. A
matching is maximal if no proper superset ofM is also a matching. A maximum matching is a
maximal matching with the highest cardinality among all possible maximal matchings. In this
paper, we present a self-stabilizing algorithm for finding a maximal matching. Self-stabilizing
algorithms [3, 4], are distributed algorithms that recover after any transient failure without
external intervention i.e. starting from any arbitrary initial state, the system eventually
converges to a correct behavior. The environment of self-stabilizing algorithms is modeled by
the notion of daemon. A daemon allows to capture the different behaviors of such algorithms
accordingly to the execution environment. Three major types of daemons exist: the sequential,
the synchronous and the distributed ones. The sequential daemon means that exactly one
eligible process is scheduled for execution at a time. The synchronous daemon means that
every eligible process is scheduled for execution at a time. The distributed daemon means
that any subset of eligible processes is scheduled for execution at a time. In an orthogonal
way, a daemon can be fair (meaning that every eligible process is eventually scheduled for
execution) or adversarial (meaning that the daemon only guarantees global progress, i.e. at
any time, at least one eligible process is scheduled for execution).

2 Related Works

Matching problems have received a lot of attention in different areas. Dynamic load balancing
and job scheduling in parallel and distributed networks can be solved by algorithms using
a matching set of communication links [2, 5]. Moreover, the matching problem has been
recently studied in the algorithmic game theory. Indeed, the seminal problem relative to
matching introduced by Knuth is the stable marriage problem [10]. This problem can be
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modeled as a game with economic interactions such as two-sided markets [1] or as a game
with preference relations in a social network [7].

Several self-stabilizing algorithms have been proposed to compute maximal matching
in unweighted or weighted general graphs. For an unweighted graph, Hsu and Huang [9]
gave the first algorithm and proved a bound of O(n3) on the number of moves under a
sequential adversarial daemon. The complexity analysis is completed by Hedetniemi et al.
[6] to O(m) moves. Manne et al. [11] presented a self-stabilizing algorithm for finding a
2/3-approximation of a maximum matching. The complexity of this algorithm is proved to
be O(2n) moves under a distributed adversarial daemon.

3 Model

A system consists of a set of processes where two adjacent processes can communicate with
each other. The communication relation is typically represented by a graph G = (V,E)
where |V | = n and |E| = m. Each process corresponds to a node in V and two processes u
and v are adjacent if and only if (u, v) ∈ E. The set of neighbors of a process v is denoted
by Γ(v) and is the set of all processes adjacent to v.

We consider one communication model : the state model. In the state model, each process
maintains a set of local variables that makes up the local state of the process. A process
can read its local variables and the local variables of its neighbors, but it can write only
in its own local variables. A configuration C is a set of the local states of all processes in
the system. Each process executes the same algorithm that consists of a set of rules. Each
rule is of the form of < guard >→< command >. The guard is a boolean function over
the variables of both the process and its neighbors. The command is a sequence of actions
assigning new values to the local variables of the process.

A rule is enabled in a configuration C if the guard is true in C. A process is activable
in a configuration C if at least one of its rules is enabled. An execution is an alternate
sequence of configurations and transitions E = C0, A0, . . . , Ci, Ai, . . ., such that ∀i ∈ N∗,
Ci+1 is obtained by executing the command of at least one rule that is enabled in Ci (a
process that executes such a rule makes a move). More precisely, Ai is the non empty set of
enabled rules in Ci that has been executed to reach Ci+1 such that each process has at most
one of its rules in Ai. An atomic operation is such that no change can takes place during
its run, we usually assume an atomic operation is instantaneous. In the case of the state
model, such an operation corresponds to a rule. We use the following notation : Ci → Ci+1.
An execution is maximal if it is infinite, or it is finite and no process is activable in the last
configuration. All algorithm executions considered in this paper are assumed to be maximal.

A daemon is a predicate on the executions. We consider only the most powerful one: the
distributed daemon that allows all executions described in the previous paragraph.

An algorithm is self-stabilizing for a given specification, if there exists a sub-set L of
the set of all configurations such that : every execution starting from a configuration of L
verifies the specification (correctness) and starting from any configuration, every execution
reaches a configuration of L (convergence). L is called the set of legitimate configurations.
A configuration is stable if no process is activable in the configuration. Both algorithms
presented here, are silent, meaning that once the algorithm stabilized, no process is activable.
In other words, all executions of a silent algorithm are finite and end in a stable configuration.
Note the difference with a non silent self-stabilizing algorithm that has at least one infinite
execution with a suffix only containing legitimate configurations, but not stable ones.

[bookmarks=false]hyperref We consider the following matching algorithm given by Mann et
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al. []. This algorithm, denotedM+, computes a maximal matching that is a 2
3 -approximation

of the maximum matching in 2O(n) moves. However, the complexity tightness was not proved.
In this paper, we exhibit a sub-exponential execution of this matching algorithm.

4 Algorithm M+ given by Mann et al. []

The algorithmM+ operates on an undirected graph G = (V,E), where every node v ∈ V
has a unique identifier. M+ assumes that there exists an underlying maximal matching
algorithm, which has reached a stable configuration where a stable maximal matching M
has been built. Based on M ,M+ builds a 2

3−approximation of the maximum matching. To
perform that, nodes search for augmenting paths of length three.

An augmenting path is a path in the graph, starting and ending in an unmatched node,
and where every other edge is either unmatched or matched; i.e. for each consecutive pair
of edges, exactly one of them must belong to the matching Let us consider the example in
Figure ??.(a). In this figure, v and u are matched nodes and x, y are unmatched nodes. The
path (y, u, v, x) is a 3-augmenting path.

Once an augmenting path is detected, nodes rearrange the matching accordingly, i.e.
transform this path with one matched edge into a path with two matched edges (see
Figure ??.(b)). This transformation leads to the deletion of the augmenting path and
increases by one the cardinality of the matching. The algorithm will stabilize when there
are no augmenting paths of length three left. Thus the hypothesis of Karps’s theorem [8]
eventually holds, giving a 2

3−approximation of the maximum matching.

y u v x y u v x

(a) A 3-augmenting path
(one matched edge)

(b) The path after being expoited.
(two matched edges)

Figure 1 How to exploit a 3-augmenting path ?

The underlying stable maximal matching M is locally expressed by variables mv for each
node v. These variables are defined as follows:
∀v ∈ V : (mv = null) ⇔ (∀(a, b) ∈ M,a 6= v ∧ b 6= v) – In this case, v is called a single

node and we note v ∈ σ(V ).
∀v ∈ V : (∃u ∈ V, mv = u)⇔ ((v, u) ∈M) – In this case, v is called a matched node and

we note v ∈ µ(V ).

In AlgorithmM+, node v keeps track of four variables, the pointer pv is used to define
the final matching. The variables αv, βv are used to detect augmenting path and contains
neighbors of v that are single. Also, sv is a boolean variable used for the augmenting path
transformation.

Thus two neighboring nodes v, u are matched in the final stable solution if and only if
either (pv = u ∧ pu = v) or if (pv = null ∧ pu = null ∧mv = u ∧mu = v).
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SingleNode
if (pv = null ∧ Lowest{u ∈ Γ(v) | pu = v} 6= null) ∨ pv /∈ µ(Γ(v)) ∪ {null} ∨

(pv 6= null ∧ ppv 6= v)
then pv := Lowest{u ∈ Γ(v) | pu = v}

AlgorithmM+ - Rule for nodes in σ(V ).

Update
if pv /∈ σ(Γ(v)) ∪ {null} ∨

((αv, βv) 6= BestRematch(v)∧ (pv = null ∨ ppv /∈ {v, null}))
then (αv, βv) := BestRematch(v)

(pv, sv) := (null, false)

MatchFirst
Let x = AskFirst(v,mv)

if x 6= null ∧ (pv 6= x ∨ sv 6= (ppv = v))
then pv := x

sv := (ppv = v)

MatchSecond
Let y = AskSecond(v,mv)

if y 6= null ∧ smv = true ∧ pv 6= y

then pv := y

ResetMatch
if AskFirst(v,mv) = AskSecond(v,mv) = null ∧ (pv, sv) 6= (null, false)
then (pv, sv) := (null, false)

AlgorithmM+ - Rules for nodes in µ(V ).

BestRematch(v)
a := Lowest {u ∈ σ(Γ(v)) ∧ (pu = null ∨ pu = v)}
b := Lowest {u ∈ σ(Γ(v)) \ {a} ∧ (pu = null ∨ pu = v)}
return (a, b)

AskFirst(v, u)
if αv 6= null ∧ αu 6= null ∧ 2 ≤ Unique({αv, βv, αu, βu}) ≤ 4

if αv < αu ∨ (αv = αu ∧ βv = null) ∨ (αv = αu ∧ βu 6= null ∧ v < u)
return αv

return null

AskSecond(v, u)
if AskFirst(u, v) 6= null

return Lowest({αv, βv} \ {αu})
return null

AlgorithmM+ - Functions
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For each edge (v, u) in M , matched nodes v and u are going to:
1. Detect augmenting path: first, every pair of matched nodes v, u will try to find single

neighbors to which they can rematch. These single neighbors have to be available, meaning
they should not be involved in another augmenting path exploitation, i.e. a single node x
is available if px = null. We will say that x is a candidate for v if x is an available single
neighbor of v. Moreover v and u have to have a sufficient number of candidates to detect
a 3-augmenting path: each node should have at least one candidate and the sum of the
number of candidates for v and u should be at least 2. The BestRematch predicate is
used to compute candidates in variables α and β, and the condition below (in AskFirst
predicate) is used to ensure the number of candidates is sufficiently high. (Unique(A)
returns the number of unique elements in the multi-set A).

αu 6= null ∧ αv 6= null ∧ 2 ≤ Unique({αu, βu, αv, βv}) ≤ 4

2. Try to exploit this augmenting path :
a. The AskFirst node starts: exactly one of v and u will attempt to match with one of

its candidates.
b. The AskSecond node continues: only when the first node succeeds will the second node

also attempt to match with one of its candidates.
i. If this also succeeds, the rematching is considered complete.
ii. Otherwise the rematch built by the AskFirst node is deleted and candidates α and

β are computed again, allowing then the detection of new augmenting paths.

Now, we give a possible execution of Algorithm M+ under a distributed adversarial
daemon. Fig. 1.(a) shows the initial state of the execution. The topology is a path of
seven vertices and the identifiers of the nodes are indicated below. The underlying maximal
matching represented by bold edges contains two edges (24, 2) and (9, 8). Then nodes 24, 2,
9 and 8 are matched nodes (in µ(V )) and nodes 15, 10 and 7 are single nodes (in σ(V )). We
illustrate the use of the p-values by an arrow and the absence of the arrow means that the
p-value of the node equals to null.

At the beginning, there are two augmenting paths. Nodes 9 and 8 have already started to
exploit their augmenting path. We are going to exhibit an execution where this augmenting
path will be reset while the other one will be fully exploited.

In the initial configuration, we assume that all α-values and β-values are defined as
follows: (α8, β8) = (7, null), (α9, β9) = (10, null) and (α24, β24) = (α2, β2) = (null, null).
We also assume all s-values are well defined: s8 = true and s9 = s2 = s24 = false. At this
step, node 9 waits for an answer of node 10. Nodes 2 and 24 have two unique candidates for
a rematching.

At the beginning of the execution, all α-values and β-values for all nodes are well defined
except for nodes 2 and 24 because BestRematch(2) = (10, null), BestRematch(24) = (15, null).
Nodes 2 and 24 execute a Update move. After these moves, (α24, β24) = (15, null) and
(α2, β2) = (10, null).

Since 2 ≤ Unique({α2, β2, α24, β24}) ≤ 4, nodes 2 and 24 detect a 3-augmenting path
and start to exploit this augmenting path. Since AskFirst(2, 24) = 10 (which implies
AskFirst(24, 2) = null), node 2 may execute a MatchFirst move. Let us assume it does and
then it points to node 10, as seen in Figure 1.(b). Since both nodes 9 and 2 are pointing to node
10, node 10 can choose the node to match with from these two nodes. Note that at this point,
node 10 is the only enabled node. Figure 1.(c) shows the configuration obtained after node
10 makes this choice executing a SingleNode move: since Lowest{u ∈ Γ(10) | pu = 10} = 2,



6 The Mann et al. self-stabilizing 2
3−approximation matching algorithm is sub-exponential.

7891015 24 2

(a) Initial configuration.

7891015 24 2

(e) Node 15 executes a SingleNode move.

7891015 24 2

(b) Node 2 executes a MatchFirst move.

7891015 24 2

(f) Node 9 executes a Update move.

7891015 24 2

(c) Node 10 executes A SingleNode move.

7891015 24 2

(g) Node 8 executes a ResetMatching move

7891015 24 2

(d) Node 24 executes a MatchSecond move.

7891015 24 2

(h) Node 7 executes a SingleNode move.

Figure 2 An execution of AlgorithmM+

node 10 points to node 2. Now, node 24 is eligible to execute a MatchSecond move and, since
BestRematch(9) has changed, node 9 is eligible to execute an Update move.

Let us assume node 24 is activated (see Figure 1.(d) for configuration after this move).
It then points to node 15 thus, node 15 can accept the proposition executing a SingleNode
move. So, it does it and it sets p15 = 24. Figure 1.(e) shows after this moves.

Since p10 6= 9 and (α9, β9) 6= BestRematch(9), node 9 can execute an Update move.
Figure 1.(f) shows the configuration obtained after this move: (α9, β9) = (null, null) and
(p9, s9) = (null, false). This will cause AskFirst(8, 9) = AskSecond(8, 9) = null. Then
node 8 executes a ResetMatch move (see configuration after this move Figure 1.(g)). This will
cause node 7 to execute a SingleNode move and sets p7 = null as seen in Figure 1.(h). The
system then has reached a stable configuration. Thus, the size of the matching is increasing
by one and only one augmenting path has been fully exploited.

4.1 Description of Algorithm M+

In order to build an instance, we will focus on edges in the maximal matching M . We will
define a state for these edges according to the p-values.

I Definition 1 (Edges in state On or in state Off ). Let e = (u, v) be an edge in the maximal
matching M . Let x (resp. y) be the single node adjacent to u (resp. v). Edge e is said to be
in state Off if pu = null, pv = null, px = null and py = null. Moreover edge e is said to be
in state On if pu = y, px = v, pv = x and py = null. Edge e is said to be in state Almost On
if pu = y, px = v, pv = x and py /∈ {null, u}.

y u v x y u v x y u v x

State Off State On State almost On

Figure 3 Edges in state Off and On : the arrows drawn represent the local variables p· of nodes.

An example of Definition 1 can be seen in Figure ??. Moreover, in Figure 1.(a), edge
(24, 2) is in state Off while edge (9, 8) is in state On.

The states of edges represent the detection process step of the 3-augmenting path. Now,
we will exhibit an execution to switch edge (u, v) from state Off to state On.
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I Lemma 2. Let e = (u, v) be an edge in the maximal matching M and in state Off. Let y
(resp. x) be the single node adjacent to u (resp. v) with Ident(x) < Ident(y).

If y = Lowest{BestRematch(u)}, x = Lowest{BestRematch(v)} and v ≤ Lowest{w ∈
Γ(x)|px = w}, then there exists a finite execution to switch edge (u, v) from state Off to state
On. Moreover the only nodes executing a move in this execution are {x, u, v}.

Proof: We describe a finite execution to switch edge (u, v) from state Off to state On. Nodes
u and v belong to a 3-augmenting path since px = py = null. If αu 6= y, then node u executes
a Update move : (αu, βu) = (y, null) because py = null. If αv 6= x, then node v executes a
Update move : (αv, βv) = (x, null) because px = null and v = Lowest{w ∈ Γ(x)|px = w}.

Thus, the variables αu and αv are well defined : αu = y and αv = x. Ident(x) < Ident(y)
impliesAskFirst(v, u) = x andAskFirst(u, v) = null because 2 ≤ Unique({αu, βu, αv, βv}) ≤
4. Thus node v executes a MatchFirst move: pv = x. Since v = Lowest{w ∈ Γ(x)|pw = x}
by the hypothesis of this lemma, node x chooses node v to match with by executing a
SingleNode move. Finally, node u is eligible to execute a MatchSecond move and it then
points to node y (because y = Lowest{BestRematch(u)}). �

Note that Figures 1.(a)- 1.(d) represent an execution to switch edge (24, 2) from state Off
to state On: nodes 15 and 10 are respectively nodes y and x for the execution of Lemma 3.
Now, Now, we will exhibit an execution to switch edge (u, v) from state Almost On to state
Off.

I Lemma 3. Let e = (u, v) be an edge in the maximal matching M and in state Almost On.
Let y (resp. x) be the single node adjacent to u (resp. v) with Ident(x) < Ident(y). There
exists a finite execution to switch edge (u, v) from state Almost On to state Off. Moreover
the only nodes executing a move in this execution are {x, y, u, v}.

Proof: A finite execution to switch edge (u, v) from state Almost On to state Off is described.
Since edge (u, v) is in state Almost On, py 6∈ {u, null} and so (αu, βu) 6= BestRematch(u).
Node u executes a Update move. After this move, (pu, su) = (null, false). The fact that
αu = null will cause AskFirst(v, u) = AskSecond(v, u) = null. Then node v executes a
ResetMatch move: pv = null. Then node x is actived by executing a SingleNode move and it
sets px = null. Finally, node v can execute a Update move, and thus (αv, βv) = (null, null).
�

Note that in Figure 1.(e), edge (9, 8) is in state Almost On. Figures 1.(f)-1.(h) represent
the execution of Lemma 3 in order that edge (9, 8) will be in state Off.

4.2 Complexity of Algorithm M+

We describe an execution corresponding to count from 0 to 2N − 1, where N is an arbitrary
integer. This execution occurs in a graph denoted by GN with Θ(N2) nodes. GN is composed
in N sub-graphs, each of them representing a bit. The whole graph then represents an
integer, coding from theses N bits. GN has 2 kind of nodes: the nodes represented by circles
(• -nodes) and those represented by squares (� -nodes). The • -nodes are used to store bits
value and hence an integer. The � -nodes are used to implement the “+1” operation as we
count from 0 to 2N − 1.

4.2.1 Example:
As an illustration, graph G4 is shown in Figure ??. In this example, the bold edges are those
that belong to the maximal matching M computed by algorithmM and arrows represent
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the local variable p of the 2/3-approximation algorithm. A node having no outgoing arrow
has its p variable equals to null.

78910111213141516171819202122

28

27

26

25

24

236

5

4

2

13

Bit 0 = 0Bit 1 =1Bit 2 =0Bit 3 =0

Figure 4 Graph G4 encoding 0010

As we said, the •-nodes are used to encode the N bits. Each bit i is encoded with the
local state of the 4 following nodes: b(i, 1), b(i, 2), b(i, 3), b(i, 4). These nodes are then named
b(i, k), for “the kth node of the bit i”. For instance, node 10 is the fourth node of the bit 1,
thus 10 is called b(1, 4). In the following, we will refer to these four nodes as the ith bit-block.

A binary value can be associated to each bit-block according to the p-values of each nodes
in the bit-block. We will formally define this association later, but we can already say that
in this example, according to the p-value of all the nodes in the 4 bit-blocks, G4 encodes the
binary integer 0010.

4.2.2 Definition of the graph GN :
In the following, we formally describe the graph GN = (VN , EN ).
1. VN = V •N ∪ V �

N where
V •N =

⋃
0≤i<N

{b(i, k)|k = 1, 2, 3, 4}

V �
N =

⋃
0≤j<i<N

{r1(i, j), r2(i, j)}

2. EN = E•N ∪ E�
N where

E•N =
⋃

0≤i<N

{(b(i, k), b(i, k + 1))|k = 1, 2, 3}

E�
N =

⋃
0≤j<i<N

{(b(i, 1), r1(i, j)) , (r1(i, j), r2(i, j)) , (r2(i, j), b(j, 4))}

Figure 2 gives a partial view of the graph GN corresponding to the ith bit-block.
Our execution is based on the maximal matching M computed by the algorithmM:

M = {(b(i, 2), b(i, 3))|0 ≤ i < N} ∪ {(r1(i, j), r2(i, j))|0 ≤ j < i < N}

This maximal matching M is encoded with the m-variable. Then we have:

mb(i,2) = b(i, 3),mb(i,3) = b(i, 2),mr1(i,j) = r2(i, j) and mr2(i,j) = r1(i, j)

This matching is an 1
2 -approximation of the maximum matching and the algorithm M+

updates this approximation building a 2
3 -approximation of the maximum matching based on

M . This 2
3 -approximation is encoded with the p-variable inM+. We also use the variable p

to encode a bit associated to a bit-block. The two following definitions give this association:

I Definition 4 (Bit-block encoding). In graph GN , let {b(i, 1), b(i, 2), b(i, 3), b(i, 4)} be the
ith bit-block, for some 0 ≤ i < N . This bit-block encodes the value 1 (resp. 0) if the edge
(b(i, 2), b(i, 3)) is in state On (resp. Off).
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b(i,4) b(i,3) b(i,2) b(i,1) b(i-1,4) b(i-2,4) b(0,4)

ith bit-block

r1(i,i-1) r2(i,i-1)

r1(i,i-2)

r1(i,0) r2(i,0)

r2(i,i-2)r2(i+2,i)

r2(N-1,i)

r2(i+1,i)

Figure 5 A partial view of graph GN

Note that the value is not always defined. We can associate an integer ω to such a configuration
of the graph.

I Definition 5 (ω-configuration). Let ω be represented the integer such that ω < 2N , a
configuration is said to be an ω-configuration if for any integer i ≤ N , the ith bit of ω is the
value encoded by the ith block of nodes.

Figure ?? shows a 3-configuration.

4.2.2.1 Identifiers:

In order to exhibit our execution counting from 0 to 2N − 1, we need to be able to switch
edges between on and off. This can be done executing the guarded rules ofM+. Since this
algorithm uses identifiers, we need some properties on identifiers of nodes in GN . The ident
function gives the identifier associated to a node in VN . We assume each node has a unique
identifier. These identifiers must satisfy the three following properties:

I Property 1 (Identifiers order). Let b(i, k), b(i′, k′), b(i, 2) and b(i, 3) be nodes in V •N , and
r1(i, j) and r2(i, j) be nodes in V �

N . We have:
1. ident(b(i, k)) > ident(b(i′, k′)) if (i > i′) ∨ (i = i′ ∧ k > k′)
2. ident(b(i, 2)) < ident(r1(i, j))
3. ident(b(i, 3)) > ident(r2(j, i))

Note that in graph GN , it exists an ident function that satisfies Property 1. For instance,
the property holds for the following naming:
Let c = |V •N | and s = |V �

N |
2 . There are c nodes of kind b, s nodes of kind r1 and s nodes of

kind r2 as well.
Nodes of kind r2 are named from 1 to s
Nodes of kind b are named from s+ 1 to s+ c such that:

∀i, 0 ≤ i < N,∀k ∈ {1, 2, 3, 4} : ident(b(i, k)) = s+ i+ k

Nodes of kind r1 are named from s+ c+ 1 to s+ c+ s

Figure ?? shows graph G4 with such a naming.
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4.2.2.2 Counting from 0 to 2N − 1:

We will build an execution containing all ω-configurations with 1 ≤ ω < 2N To to this, we
will build an execution from ω-configuration to (ω + 1)-configuration using “+1” operation.
This allows for the counting from 0 to 2N − 1. As we said before, the nodes in V �

N are used
to implement the “+1” operation. To do that, we need to be able to switch bit from 0 to
1 and from 1 to 0, in a clever way. To switch from 0 to 1 is easier than to switch from 1
to 0. The nodes in V �

N are used to implement the switch from 1 to 0. The main scheme
is the following: let us consider a binary integer x. The ’+1’ operation consists in finding
the rightmost 0 in x. Then all 1 at the right of this 0 have to switch to 0 and this 0 has to
switch to 1 (if x = x′011 . . . 1 then x+ 1 = x′100 . . . 0). Let us assume that 0 is the ith bit
of x. The ith bit-block has to switch from 0 to 1 during the ’+1’ operation. Afterwards,
each jth bit-block, with 0 ≤ j < i, has to switch from 1 to 0. To perform this switch, we use
vertices in V �

N .
We will now describe a piece of the execution, starting on the configuration represented

on Figure ??. The graph drawn in this figure encodes integer (0010). We illustrate the use
of the p-values by an arrow and the absence of the arrow means that the p-value of the node
equals to null. First, we will focus on vertices in the 0th bit-block. Edge (b(0, 2), b(0, 3))
belongs to the underlying maximal matching represented by bold edges and is in state Off.
Lemma 2, describes an execution from the 0010-configuration represented on Figure ?? to
the 0011-configuration represented on Figure ??. Moreover, Figures ??, ??, ??, ?? and ??
illustrate the transformation from 0011-configuration to 0111-configuration in graph G4.

I Theorem 6. Let ω be an integer such that ω < 2N − 1. There exists a finite execution to
transform an ω-configuration into an (ω + 1)-configuration.

Proof: Let i be the integer such that the i− 1 first bits of ω equal to 1 and the value of its
ith bit to 0. This implies that the ith bit of ω + 1 bits is the first bit equal to 1.

We distinguish two cases : i = 0 and i > 0.
In the case where i = 0, edge (b(0, 2), b(0, 3)) is in state Off by definition. Since the 0th

bit of integer ω + 1 is equal to 1, (b(0, 2), b(0, 3)) is in state On in (ω + 1)-configuration. By
Property 1, we have Ident(b(0, 1)) < Ident(b(0, 4)) and by definition of edge in state Off,
pb(0,1) = pb(0,4) = null. Note that b(0, 2) ≤ Lowest{w ∈ Γ(b(0, 1))|pb(0,1) = w}. Since nodes
b(0, 3) and b(0, 2) only have one Single node as neighbour, the hypotheses of Lemma 2 are
satisfied From Lemma 2 , there exists an execution to switch edge (b(0, 2), b(0, 3)) from state
Off to state On. At the end, the least significant bit of the integer correspond to this current
configuration is set to 1. So we obtain a (ω + 1)-configuration.

Bit 0 = 1Bit 1 =1Bit 2 =0Bit 3 =0

Figure 6 After turning on the 0th bit-block, G4 encodes 0011.

In the case where i > 0, for every integer j from 0 to i− 1, edge (b(j, 2), b(j, 3)) is in state
On and edge (b(i, 2), b(i, 3)) is in state Off.

More precisely, we can execute the following sequence of moves :
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1. For each integer j, 1 ≤ j ≤ i − 1, edge (r1(i, j), r2(i, j)) is in state Off. Note that
node r1(i, j) (resp. r2(i, j)) is adjacent to one Single node b(i, 1) (resp. b(j, 4)). Since
b(j, 4) ≤ Lowest{w ∈ Γ(r2(i, j))|pr2(i,j) = w}, the hypotheses of Lemma 2 are satisfied.
Thus from Lemma 2, we can exhibit an execution to switch edges (r1(i, j), r2(i, j)) from
state Off to state On. The configuration shown in Figure ?? that corresponds to this
step.

Figure 7 After activating the � -nodes of the 3rd bit-block, G4 does not encode any integer.

2. Now, for each integer j, 1 ≤ j ≤ i − 1, edge (b(j, 2), b(j, 3)) is in state Almost on.
From Lemma 3, (since Ident(b(j, 1)) < Ident(b(j, 4))) an execution to switch edge
(b(j, 2), b(j, 3)) from state Almost on to state Off is performed. The configuration shown
in Figure ?? that corresponds to this step.

Figure 8 Starting to turn off the 0th and 1st bit-blocks.

3. Edge (b(i, 2), b(i, 3)) is still in state off. Using the same argument of step (1), from Lemma
2, we can exhibit an execution to switch edges (b(i, 2), b(i, 3)) from state Off to state On.

Figure 9 Starting to turn on the 3rd bit-block.

4. Now, for each integer j, 1 ≤ j ≤ i− 1, edge (r1(i, j), r2(i, j)) is now in state Almost on.
From Lemma 3, an execution to switch edge (r1(i, j), r2(i, j)) from state Almost on to
state Off.

At the end of this execution, the configuration still verifies the two conditions, and the
i− 1 first bits of ω are set to 0 and the ith to 1. So we obtain a (ω + 1)-configuration. �

From now, we can construct an instance from which an execution having Ω(2
√

n) moves
can be built.
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Bit 0 = 0Bit 1 =0Bit 2 =1Bit 3 =0

Figure 10 Ending to turn off the 0th and 1st bit-blocks and to turn on the 3rd bit-block. G4

encodes 0100.

I Corollary 7. AlgorithmM+ can stabilize after at most Ω(2
√

n) moves under the central
daemon.

Proof: To prove the corollary, we can exhibit an execution of Ω(2
√

n) moves. Let N be an
integer. The initial configuration is a 0-configuration in graph GN .

We can build an execution that contains all the ω-configurations for every value ω,
1 ≤ ω ≤ 2N . By applying Theorem 6, this execution can be split into 2N parts corresponding
to the execution from ω-configuration to (ω + 1)-configuration, for 1 ≤ ω ≤ 2N . Thus, this
execution has O(2N ) configurations. Since graph GN has O(N2) vertices, this execution has
O(2

√
n) configurations and the corollary holds.

�

5 Conclusion

The algorithm designed by Mann et al. [11] computes a maximal matching that is a
2
3 -approximation of the maximum matching in 2O(n) moves. In this work, we exhibit a
sub-exponential execution of this matching algorithm. An open question is to adapt this
algorithm in order to stabilize in polynomial moves.
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