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PREFACE.

THE present treatise is the outcome of a suggestion made to

me some years ago by Mr R. R. Webb that I should assist
him in the preparation of a work on Elasticity. He has unfor-
tunately found himself unable to proceed with it, and I have
therefore been obliged to take upon myself the whole of the work
and the whole of the responsibility. I wish to acknowledge at the
outset the debt that I owe to him as a teacher of the subject, as
well as my obligation for many valuable suggestions chiefly with
reference to the scope and plan of the work, and to express my
regret that other engagements have prevented him from sharing
more actively in its production.

The division of the subject adopted is that originally made by
Clebsch in his classical treatise, where a clear distinction is drawn
between exact solutions for bodies all whose dimensions are finite
and approximate solutions for bodies some of whose dimensions
can be regarded as infinitesimal. The present volume contains the
general mathematical theory of the elastic properties of the first
class of bodies, and I propose to treat the second class in another
volume. At Mr Webb’s suggestion, the exposition of the theory is
preceded by an historical sketch of its origin and development.
Anything like an exhaustive history has been rendered unnecessary
by the work of the late Dr Todhunter as edited by Prof. Karl
Pearson, but it is hoped that the brief account given will at once
facilitate the comprehension of the theory and add to its interest.
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Readers of the historical work referred to will appreciate the
difficulty of giving within a reasonable compass a complete account
of all the valuable researches that have been made; and the aim
of this book is rather to present a connected account of the
theory in its present state, and an indication of the way in which
that state has been attained, avoiding on the one hand merely
analytical developments, and on the other purely technical details.

The first five chapters are occupied with the general theory,
including the analysis of strain and stress, stress-strain relations,
the strength of materials, and a number of general theorems. In
the analysis of strain I have thought it best to follow Thomson
and Tait’s Natural Philosophy, beginning with the geometrical or
rather algebraical theory of finite homogeneous strain, and passing
to the physically most important case of infinitesimal strain. In
the deduction of the general equations of equilibrium or small
motion I have set out from the equations that must be satisfied by
a finite portion of the mass. The discussion of the stress-strain
relations rests upon Hooke’s Law as an axiom generally verified in
experience, and on Sir W, Thomson (now Lord Kelvin’s) thermo-
dynamical investigation of the existence of the energy-function.
To understand the work that has been done upon @olotropic
bodies requires some knowledge of Crystallography, and a short
sketch of that subject is given. The theory of elastic crystals
adopted is that which has been elaborated by the researches of
F. E. Neumann and W. Voigt. To understand the nature of the
application of the theory of elasticity to practical problems it is
necessary to have some knowledge of the behaviour of bodies more
than infinitesimally strained, and I have given a short sketch of
what is known in regard to technical elasticity. The conditions of
rupture or rather of safety of materials are as yet so little under-
stood that it seemed best to give a statement of the various
theories that have been advanced without definitely adopting any
of them. In most of the problems considered in the text Saint-
Venant’s “greatest strain” theory has been provisionally adopted.
In connexion with this theory I have endeavoured to give precision



PREFACE, vii

to the term “factor of safety ”. Among general theorems I have
included an account of the deduction of the theory from Boscovich’s
point-atom hypothesis. This is rendered necessary partly by the
controversy that has raged round the number of independent
elastic constants, and partly by the fact that there exists no single
investigation of the deduction in question which could now be
accepted by mathematicians.

Chapter VL. treats of Saint-Venant’s theory of the equilibrium
of beams. In spite of the work of Prof Pearson it seems not yet
to be understood by English mathematicians that the cross-
sections of a bent beam do not remain plane. The old-fashioned
notion of a bending moment proportional to the curvature resulting
from the extensions and contractions of the fibres is still current.
Against the venerable bending moment the modern theory has
nothing to say, but it is quite time that it should be generally
known that it is not the whole stress, and that the strain does not
consist simply of extensions and contractions of the fibres. In
explaining the theory I have followed Clebsch’s mode of treatment,
generalising it so as to cover some of the classes of solotropic
bodies treated by Saint-Venant.

Chapter VII. contains a short account of the theory of
curvilinear coordinates with applications to Elasticity. I regret
that the theory was written out before I had seen M. Ossian
Bonnet’s researches on the subject, in which the kinematical
method adopted was largely anticipated.

The remaining chapters are occupied with the principal
analytical problems presented by elastic theory. The theory leads
in every special case to a system of partial differential equations,
and the solution of these subject to conditions given at certain
bounding surfaces is required. The general problem is that of
solving the general equations with arbitrary conditions at any
given boundaries. In discussing this problem I have made
extensive use of the researches of Prof Betti of Pisa, whose
investigations are the most general that have yet been given, and
appear to admit of considerable further development. The case of
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a solid bounded by an infinite plane and otherwise unlimited is
investigated on the lines laid down by Signor Valentino Cerruti,
whose analysis is founded on Prof. Betti’s general method, and
some of the most important particular cases are worked out
synthetically by M. Boussinesq’s method of potentials. In this
connexion I have introduced the last-mentioned writer’s theory of
“local perturbations”, a theory which gives the key to Saint-
Venant’s “ principle of the elastic equivalence of statically equi-
pollent systems of load ”. The classical problems of the equilibrium
and vibrations of a sphere, with applications to tidal and other
problems connected with the Earth, are investigated by the
methods of Lord Kelvin and Prof. Lamb. I believe that the use
of Cartesian coordinates in these problems at once shortens and
simplifies the work. In the last chapter a few further examples of
the solution of the general equations are given. Although so
much space is devoted to analytical discussions I venture to hope
that the problems selected for treatment will be found to be those
that possess the greatest physical interest,and I consider a treatise
on the mathematical theory of Elasticity would be incomplete if it
gave no account of the principal mathematical problem associated
with the subject.

There are some matters treated by elasticians which I have
omitted. Among these are thermo-elasticity, photo-elasticity, and
the elastic solid theory of Optics. None of these subjects are so
satisfactory either in their data or in their conclusions as the part
of the theory selected, viz. the rational mechanics of Elasticity.

The choice of a suitable notation has been a matter of consider-
able difficulty. In this I have been guided partly by some remarks
in a paper of Prof. Lamb’s, and partly by the experience that there
is much less difficulty in mentally associating a simple and
unsuggestive notation with a cumbersome and suggestive one than
in using the latter.

The references given at the heads of most of the chapters are
generally to the sources from which parts of the work are taken,
but occasionally they include also investigations which follow
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totally different methods from those given in the text. They are
intended as an acknowledgement of indebtedness, and a suggestion
to the reader for further work. I have tried to avoid as far as
possible reference either to erroneous mathematics or to incon-
clusive experiments.

I have not thought it advisable to introduce collections of
examples for practice. On the other hand a number of results
are stated without proof. These are generally either of historical
interest or else of importance in the development of the subject,
but the analysis necessary to prove them would involve no point
but such as will be found in the text, or may fairly be assumed to
be known. The student without previous acquaintance with the
subject is advised in all cases to provide the required proofs. It
is hoped that he will not then fail to understand the subject for
lack of examples, nor waste his time in mere problem grinding.

In conclusion I have to express my thanks to Prof. A. G.
Greenhill, Prof. Karl Pearson, and Mr J. Larmor for their kindness
in reading the proof-sheets and for many valuable criticisms, to
Mr A. Harker for his kind assistance in the revision of the articles
on Crystallography, and to Mr C. Chree for his very careful
revision of the proofs, and for the many suggestions he has made
for the improvement of the work during its passage through
the press.

A E H LOVE

St JouN's CoLLEGE, CAMBRIDGE
April, 1892.
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HISTORICAL INTRODUCTION.

THE mathematical theory of Elasticity is occupied with an
attempt to reduce to calculation the state of strain, or relative
displacement, within a solid body which is subject to the action of
an equilibrating system of forces, or is in a state of small internal
relative motion, by the aid of experimental data and physical
axioms assumed in advance, and with endeavours to obtain results
which shall be practically important in applications to architec-
ture, engineering, and all other useful arts in which the material
of construction is solid, Its history should embrace that of the
progress of our experimental knowledge of the behaviour of
strained bodies, so far as it has been embodied in the mathe-
matical theory, of the development of our conceptions in regard
to the physical axioms necessary to form a foundation for theory,
of the growth of that branch of mathematical analysis in which
the process of the calculations consists, and of the gradual acqui-
sition of practical rules by the interpretation of analytical results,
We propose to give a sketch of such a history, so far as to include
the subject-matter of the present volume, excluding the special
problems of the equilibrium and vibrations of thin wires and
plates, and the related theories of impact and elastic stability. In
a subject ideally worked out, the progress which we should be
able to trace would be, in other particulars, one from less to more,
but we may say, that in regard to the assumed physical axioms,
progress consists in passing from more to less. Alike in the
experimental knowledge obtained, and in the analytical methods
and results, nothing that has once been discovered ever loses its
value, or has to be discarded ; but the physical axioms come to be
reduced to fewer and more general principles, so that the theory is
brought more into accord with that of other physical subjects, the

L, 1



2 HISTORICAL INTRODUCTION.

same general dynamical principles being ultimately requisite and
sufficient to serve as a basis for them all. And although, in our
subject, we find frequent retrogressions on the part of the
experimentalist, and errors on the part of the mathematician,
chiefly in adopting hypotheses not clearly established or already
discredited, in pushing to extremes methods merely approximate,
in hasty generalisations, and in misunderstandings of physical
principles, yet we observe a steady and continuous progress in all
the respects mentioned when we survey the history of our subject
from the first enquiries of Galilei to the final works of Saint-
Venant and Sir William Thomson.

The first mathematician to consider the nature of the resist-
ance of solids to rupture was QGalilei’. Although he treated
solids as inelastic, not being in possession of any law connecting
the displacements produced with the force producing them, or of
any physical hypothesis capable of yielding such a law, yet his
enquiries gave the direction which was subsequently followed by
many investigators. He endeavoured to determine the resistance
of a beam, one end of which is built into a wall, when the
tendency to break it arises from its own or an applied weight, and
he concluded that the beam tends to turn about an axis per-
pendicular to its length, and in the plane of the wall. This
problem, and, in particular, the determination of this axis is known
as Galilei’s problem.

In the history of the theory started by the question of Galilei,
undoubtedly the two great landmarks are the discovery of Hooke’s
Law in 1660, and the discovery of the general equations by
Navier in 1821. The first gave the fundamental experimental
datum, required for the foundation of the theory, the second
reduced all questions of the small strain of elastic bodies to a
matter of mathematical calculation.

In England and in France, in the latter half of the 17th
century, Hooke and Marriotte occupied themselves with the ex-
perimental discovery of what we now term stress-strain relations.
Hooke gave in 1678° the famous law of proportionality of stress
and strain which bears his name, in the words “ Ut tensio sic vis;
that is, the Power of any spring is in the same proportion with

1 See Todhunter and Pearson’s History, vol. 1. The date of Galilei’s enquiry is
1638,
2 In his work De Potentia Restitutiva. London, 1678,
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the Tension thereof”. By “spring” Hooke means, as he proceeds
to explain, any “springy body”, and by “tension” what we
should now call “extension”, or, more generally, “strain”. This
law he discovered in 1660, but did not, publish uatil 1676, and
then only under the form of an anagram ceiiinosssttuu. This
law forms the basis of the mathematical theory of Elasticity,
and we shall hereafter have to consider its generalisation, and its
present position in the light of modern experimental research.
Hooke does not appear to have made any application of it to the
consideration of Galilei’s problem. This was reserved for Marriotte®,
who in 1680 made the same experimental discovery. He remarked
that the resistance of a beam to flexure arises from the extension
and compression of its parts, some of its fibres being extended, and
others compressed. He assumed that half are extended, and half
compressed. His theory led him to assign the position of the
axis, required in the solution of Galilei’s problem, at one half the
height of the section above the base.

In the interval between the discovery of Hooke's law, and that
of the general differential equations of elasticity by Navier, the
attention of those mathematicians who occupied themselves with
our subject was chiefly directed to the solution and extension of
Galilei’s problem, and the analogous theories of the vibrations of
bars, and the stability of columns. The first investigation of any
importance is that of the elastic line by James Bernoulli® in 1705,
in which the resistance of a bent rod is assumed to arise from the
extension and compression of its fibres, and the equation of the
curve assumed by the axis is formed. The equation of the axis
practically involves that the stress across any section reduces to a
couple proportional to the curvature. This was expressly or
practically assumed (not proved) by Euler® and Daniell Bernoulli*
in their later treatment of the related problem of the vibrations of
bars. It would carry us too far into the history of special
problems to give a detailed account of the memoirs of this period
on this subject, but Prof. Pearson’s remarks® on the quasi-theologi-

! Traité du mouvement des eaux. Paris, 1686.

2 Bernoulli’s memoir is entitled ¢Veritable Hypothése de la Résistance des
Solides, avec 1a demonstration de la courbure des corps qui font ressort’, and will be
found in his collected works, vol. 11. Geneva, 1744.

3 Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes.

¢ See in particular his letter of Oct. 1742, art. 46.

5 History, vol. 1. p. 34.

12
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cal character of the arguments usually employed to reduce a
dynamical problem to mathematical analysis, will be read with
great interest by all those who study the history of the develop-
ment of human thought. Of more importance for our present
purpose is Coulomb’s® theory of flexure, given in what must be
regarded as the most scientific of all the early mathematical
memoirs dealing with Galilei’s problem. This author took account
of the equation of equilibrium obtained by resolving horizontally
the forces, which act upon the part of the beam cut off by one of
its normal sections, as well as of the equation of moments. This
enabled him to obtain the true position of the “neutral line ”, or
axis of equilibrium, and he also made a correct calculation of the
moment of the elastic forces. His theory of beams is the most
exact, that proceeds on the assumption that the stress in a bent
beam arises wholly from the extension and compression of its
fibres, and is deduced mathematically from this assumption and
Hooke’s Law. Coulomb was also the first to consider the resist-
ance of thin fibres to torsion®, and it is his account of the matter
to which Saint-Venant refers under the name l'ancienne théorie,
but his formula for this resistance was not deduced from any
elastic theory. The formula makes the torsional rigidity of a
fibre proportional to the moment of inertia of the normal section
about the axis of the fibre. Another matter to which Coulomb
was the first to pay attention was the kind of strain we now call
shear, though he only considered it in connexion with rupture.
His opinion appears to have been that rupture® takes place, when
the shear of the material is greater than a certain limit. The
shear considered is a permanent set, not an elastic strain.

Except Coulomb’s the most important work of the period, for
the general mathematical theory of elasticity, is the physical
consideration of the subject by Thomas Young. This naturalist,
(to adopt Sir William Thomson’s name for students of natural
science,) besides defining his modulus of elasticity, was the first to
consider shear* as an elastic strain. He called it “detrusion”, and

1 «Essai sur une application des régles de Mazimis et Minimis & quelques
Problémes de Statique, relatifs & I’Architecture’., Mém....par divers savans, 1776,
Pp. 350—354.

2 Histoire de I’ Académie for 1784, pp. 229—269, Paris, 1787.

8 See the memoir first quoted, Mém....par divers savans, Introduction.

4 4 course of lectures on -Natural Philosophy and the Mechanical Arts, 1807,
Lecture 1. It is in Kelland’s later edition (1845) on pp. 105 sq.



HISTORICAL INTRODUCTION. 5

noticed that the elastic resistance of a body to shear, and its resist-
ance to extension or compression, are in general different; but he
did not expressly introduce a new modulus of rigidity for this
resistance. He defined “ the modulus of elasticity of a substance”
as a column of the substance capable of producing a pressure on
its base, which is to the weight causing a certain degree of com-
pression, as the length of the substance is to the diminution of its
length. What we now call “ Young’s modulus” is the weight of
this column per unit of area of its base. This introduction of a
definite physical concept, associated with the coefficient of elas-
ticity, which descends as it were from a clear sky on the reader of
mathematical memoirs, marks an epoch in the history of the
science.

In the literature of this, the first period in the history of our
subject, there are many discussions of the physical cause of
elasticity, the philosophers, generally, either following Descartes,
and believing in space continuously filled and a subtle sther that
is in the pores of bodies, or else following the suggestion of
Newton, that all the interactions between parts of bodies can be
reduced to attracting and repelling forces between the ultimate
molecules, which operate immediately, without any intervening
mechanism. But no attempt appears to have been made to
deduce general equations of motion and equilibrium from either of
these hypotheses. At the end of the year 1820, the fruit of all
the ingenuity expended on elastic problems might be summed up
as—an inadequate theory of flexure, an erroneous theory of torsion,
an unproved theory of the vibrations of bars, and the definition of
Young’s modulus. But such an estimate would give a very
wrong impression of the value of the older researches. The recog-
nition of the fact, that there is a fundamental difference between
shear and extension, was a preliminary to a general theory of
strain; the discovery of forces across a section of a beam, producing
a resultant, was a step towards a theory of stress; the use of diffe-
rential equations for the deflexion of a bent beam and the vibra-
tions of bars and plates, was a foreshadowing of the employment
of differential equations of displacement; the suggestion of Newton
and the enunciation of Hooke’s law, offered means for the formation

1 Loc. cit. This was given in section 1x. of vol. 1. of the first edition, and

omitted in Kelland’s edition, but it is reproduced in the Miscellaneous Works of
Dr Young.
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of such equations; and the generalisation of the principle of virtual
work in the Mécanique Analytique threw open a broad path to
discovery in this as in every other branch of mathematical physics.
Physical Science had emerged from its incipient stages with
definite methods, of hypothesis and induction and of observation
and deduction, with a clear aim, to explain facts, and with a fund
of analytical processes of investigation. This was the hour for the
production of general theories, and the men were not wanting.
There are two subjects, usually included in the general theory
of elasticity, which have an extended application to other branches
of mathematieal Physics, these are the analysis of strain and the
analysis of stress. The first gives general considerations as to
the kinematical expression of the possible deformations of the
parts of any medium which can be treated as continuous, the
second gives similar considerations relative to the kind of internal
forces that can exist in such media. The foundation of both
theories was laid by Cauchy in 1827, but he appears to have
been in possession of some of the results as early as 1822,
when he communicated an account of his researches to the Paris
Academy'. Among his discoveries® must be reckoned the deter-
mination of the stress at any point in terms of six® component
stresses, and of the strain, whether finite or infinitesimal, in
terms of six component strains, the properties of the stress-
quadric, stress-ellipsoid, strain-quadric, and elongation-quadric,
and the existence of principal stresses and principal extensions.
Results equivalent to some of Cauchy’s were discovered inde-
pendently by Lamé¢, who developed somewhat the geometrical
study of distributions of stress by means of the properties of
certain quadric surfaces. Cauchy’s expressions of the six com-

1 Bulletin...Philomatique, 1823,

2 See Ezercices de Mathématiques, 1827, in which are the following memoirs:
¢De la pression ou tension dans un corps solide’, ‘Sur la condensation et la
dilatation des corps solides’, and Ezercices de Mathématiques 1828, in which is a
memoir ‘ Sur quelques theorémes relatifs & la condensation ou & la dilatation des
corps’.

3 The assumption involved in this reduetion does mot appear to have been
noticed by writers on elastic theory. The fact that a medium is possible in which
it does not hold good appears to have been first noticed in connexion with Electro-
dynamies.

4 Lamé and Clapeyron, ‘Mémoire sur 1'équilibre intérieur des corps solides
homogénes’. Mém....par divers savans, rv. 1833. The date of the memoir is at
least as early as 1828,
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ponents of finite strain are practically those of Green?, and
Saint-Venant®?, but the latter was the first to consider them
minutely. To Saint-Venant more than anyone else belongs the
credit of the adequate discussion of shear®; he was the first
mathematician to call attention to its importance as a specific
kind of strain; previously to his time the quantities we should
now call shears made their appearance simply as mathematical
expressions. Sir W, Thomson further simplified the discussion
of strain by the introduction of his strain-ellipsoid¢, and the
kinematical theory reaches its highest development in Thomson
and Tait's Natural Philosophy, Part I,

To a modern reader it might appear that the analysis of stress
and strain is a necessary preliminary to a general theory of
elasticity, but historically this was not the order in which dis-
coveries were made. The investigation of the general equations
by Navier does not depend on any such analysis; Poisson’s
investigation involves an analysis of stress, but not of strain,
Green’s an analysis of strain, but not of stress. There are in fact
three fundamental methods of arriving at these equations. The
first consists in assuming a law as to the character of intermolecular
force, and deducing the differential equations of displacement from
the equations of equilibrium of a single displaced “molecule”.
This is Navier’s method. The second method consists in forming
differential equations of equilibrium of any element in terms of
the stresses exerted upon it by the surrounding matter, and then,
by means of relations between stress and relative displacement,
eliminating the stress-components from these equations. The
required relations may be assumed, as in Cauchy’s first investi-
gation, or deduced from experiment, as by Sir G. Stokes, or
calculated from an assumed law of intermolecular force, as by
Poisson and Cauchy. The third method consists in writing down
an expression for the energy of the strained solid, and deducing

1 ¢On the Laws of Reflexion and Refraction of Light at the common surface of
two non-crystallized media’, Camb. Phil. Soc. Trans. vii. 1837, See also Math.
Papers of the late George Green, 1871,

2 ¢Mémoire sur 'd4quilibre des corps solides’, Comptes rendus, xxiv, 1847, The
expressions referred to were given by Baint-Venant in 1844, see Todhunter
and Pearson, vol. 1. art. 1614.

8 Legons de Mécanique appliquée, 1837, 1838. Bee Todhunter and Pearson,
vol. 1. arts, 1564, 1565, 1570.

¢ Thomson and Tait, Nat. Phil. Part 1. arts. 156—190.
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the equations by an application of the principle of Virtual Work.
This method is due to Green, and has been followed by Kirchhoff
and many English writers.

Navier' was the first to investigate the general equations of
equilibrium and vibrations of elastic solids. He set out from the
hypothesis which we have ascribed to Newton, that the elastic
reactions arise from variations in the intermolecular forces,
consequent upon changes in the molecular configuration. He
assumed that the force between two molecules, whose distance is
slightly increased, is proportional to the product of the increase in
the distance and some function of the initial distance. His method
consists in forming an expression for the component in any direc-
tion of all the forces, that act upon a displaced “molecule”, and
thence the equations of motion of the molecule. The equations
are thus obtained in terms of the displacements of the molecule.
The solid is assumed to be isotropic, and the equations obtained
contain a single elastic constant. Navier next formed an expres-
sion for the work done in a small relative displacement by all the
forces which act upon a molecule ; this he described as the sum of
the moments in the sense of the Mécanique Analytique of the
forces exerted by all the other molecules on a particular molecule.
He deduced, by an application of the Calculus of Variations, not
only the differential equations previously obtained, but also the
boundary-conditions that hold at the surface of the body. This
memoir is very important as the first general investigation of its
kind, but its arguments would not now be admitted. In the first
place the expression for the force between two molecules, after
displacement, is incorrect; in the second place the expression for
the component force in any direction, acting on a molecule, is
wrongly discussed”. This expression involves a triple summation,
and Navier replaced the summations by integrations. It appears
from subsequent investigations by Cauchy and Poisson that this
step is unnecessary, and, if the force between two molecules be
taken simply a function of their distance, it leads to absurd results
when worked out correctly.

Cauchy gave three ways of arriving at the equations, of which
two set out from a molecular hypothesis similar to, but not
identical with, that of Navier; viz. it is assumed that the solid

1 Mém. Acad. Sciences, vi1. Paris, 1827, The memoir was read in 1822,
2 See Todhunter and Pearson, vol. 1. arts, 266, 436, 443,
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consists of a very large number of matertal points, with a law of
force between pairs some function of their distance. In the first®
of these “molecular” memoirs an expression is formed for the forces
that act upon a single ‘molecule’, and the differential equations de-
duced ; in the case of isotropy these contain two constants. In the
second ! expressions are formed for the stresses across any plane
drawn in the solid. If the initial state be one of zero stress, and
the solid isotropic, the stress will be expressed in terms of the strain
by means of a single constant, and one of the constants of the pre-
ceding memoir must vanish. The equations are then identical
with those of Navier, but they are obtained without replacing
summations by integrations. In like manner, in the general case
of wolotropy, Cauchy finds 21 independent constants, of which
6 vanish identically if the initial state be one of zero stress.
These points were not fully explained by Cauchy. Clausius®,
however, has shewn that this is the meaning of his work.
Clausius criticises the considerations of symmetry in molecular
arrangement, by which Cauchy reduced his 15 constants to one in
the case of isotropy, but the reduction can be effected by other
methods, and the equations must be regarded as proved if the
“molecular” hypothesis be admitted.

The first memoir by Poisson* relating to the same subject
was read before the Paris Academy on April 14th, 1828. The
memoir is very remarkable for its numerous applications of the
general theory to special problems, but the treatment of the
general equations is inferior to Cauchy’s. Like Cauchy, Poisson
first obtains the equations of equilibrium in terms of stress-
components, and then estimates the stress across any plane
resulting from the intermolecular forces. The expressions for the
stresses in terms of the strains involve summations with respect to
all the molecules, situated within the region of molecular activity
of a given one. Poisson rightly decides against replacing the
summations by integrations, but he assumes that this can be done

1 ¢ Sur 1’équilibre et le mouvement d’un systéme de points matériels’. Ezercices
de Mathématiques, 1828,

2 ¢De la pression ou tension dans un systéme de points matériels’, same volume.

3 ¢« Ueber die Verinderungen, welche in den bisher gebriuchlichen Formeln fiir
das Gleichgewicht und die Bewegung elastischer fester Korper durch neuere
Beobachtungen nothwendig geworden sind’. Pogg. Ann. 76, 1849.

4 ¢Mémoire sur I’équilibre et le mouvement des corps élastiques’. Mém. Paris
Acad. v, 1829,
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for the summations with respect to angular space about the given
molecule, but not for the summations with respect to distance from
this molecule. The equations thus obtained are identical with
Navier's, The principle, on which summations may be replaced
by integrals, has been explained as follows by Cauchy!:—If the
molecular distribution be such that the number of molecules in
any volume, which contains a very large number of molecules, and
whose dimensions are at the same time small compared with the
radius of the sphere of sensible molecular activity, be proportional
to the volume, then, making abstraction of the molecules in the
immediate neighbourhood of the one considered, the actions of all
the others, contained in one of the small volumes referred to, will
be equivalent to a force through the centroid of this volume,
which will be proportional to the volume and to a function of the
distance of the particular molecule from the centroid of the
volume. The action of the remoter molecules is said to be
“regular”, and the action of the nearer ones, “irregular”; and
thus Poisson assumed that the irregular action of the nearer
molecules may be neglected, in comparison with the action of the
remoter ones, which is regular. This is Sir G. Stokes’s? descrip-
tion of Poisson’s assumption, and it is the text upon which he
founds his criticism of Poisson. Without making this assumption
Cauchy arrived at Poisson’s results,

Among later investigations of the stress-strain relations, as
given by the molecular hypothesis, we must note especially those
of Saint-Venant® In the first place he gave an ingenious proof
that, if the elastic reactions arise from changes in the molecular
configuration, and the intermolecular forces are functions of the
intermolecular distances, then, for very small strains, the stresses
must be linear functions of the strains. For in this case the term
of any stress, that arises from the force between two molecules, is
the difference of the amounts of this force in the strained and
unstrained states; and, since the force is supposed a continuous
function of the molecular configuration, this difference must be
ultimately a linear function of the variations in the intermolecular

1 In his memoir first quoted. Ezercices de Mathématiques, 1828, pp. 241—243
of the new edition. Paris, 1890.

2 Math. and Phys. Papers, vol. 1. pp. 116 8q, and Camb. Phil. Soc. Trans. viiL
1845.

8 See his edition of Moigno’s Statique, and of Navier'’s Legons, also the memoir
on ‘Torsion’ and the ¢ Annotated Clebsch’.
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distances; but these variations are linear in the strain-components
—whence the result. Saint-Venant has also given a new proof that
the constants in the expressions of the six stresses, in terms of the
six strains, reduce to 15 in the most general case, provided the
force between two molecules is in the line joining them and is a
function of their distance. This proof does not depend on the
formation of expressions such as Cauchy’s for the constants in
terms of the molecular configuration, but on a consideration of the
changes of the molecular distances involved in the existence of the
several strain-components.

Various attempts have been made to simplify or to get rid
altogether of Navier's molecular hypothesis. The first of these is
due to Cauchy®. He had proved the theorems (1) that the stress
at any point can be expressed by means of three principal stresses,
on three planes at right angles to each other, and normal to the
planes across which they act, and (2) that the strain at any point
can be reduced to three principal extensions, of three mutually
perpendicular line-elements. He made assumptions, which amount
to supposing (1) that the principal stresses are linear functions of
the principal extensions, and (2) that, in an isotropic solid, the
principal planes of stress are normal to the principal axes of
extension. These assumptions lead to the equations of equilibrium
of an isotropic solid, with two constants, in the form in which they
are now generally accepted. Of these assumptions the first is a
very special case of the generalised Hooke’s law, and must rest on
an experimental basis, but it was formulated by Cauchy without
reference to experiment. The second seems to me to be much the
most axiomatic of all the assumptions that have been proposed,
and it is difficult to reconcile any contradiction of it with the
notion of complete isotropy. Another theory of a similar character
has been given much later by Maxwell?, who proposed to assume
(1) that the sum of the principal stresses is proportional to the
sum of the principal extensions, (2) that the difference of any two
principal stresses is proportional to the difference of the two
corresponding principal extensions. The equations obtained by
this method are the same as Cauchy’s just referred to.

1 ¢«Sar les équations qui expriment les conditions d’équilibre ou les lois du
mouvement intérienr d’un corps solide’. Exercices, 1828. This memoir precedes
those in which the same author made use of the molecular method.

2 ¢<On the Equilibrium of Elastic Solids’. Edinburgh R. S. Trans, xx. 1853.



12 HISTORICAL INTRODUCTION,

Lamé, in forming the general equations, partly adopts and
partly rejects the molecular hypothesis. In the joint memoir of
this writer and Clapeyron of date 1828, Navier’s method, with all
its mistakes, was closely followed, though not attributed to its
author, In his treatise on elasticity, however, Lamé® only invokes
the molecular hypothesis to shew that the six components of stress
are linear functions of the six components of strain, and the
reduction of the constants to two, for isotropic solids, depends on
considerations of symmetry. Although this treatise is of much
later date than Green’s investigation, to be presently noticed,
Lamé seems to have been unacquainted with the method of the
latter, and his work is more closely associated with the older
school of Navier and Poisson than with the new school of Green
and his followers.

The revolution which Green effected in the elements of elastic
theory is comparable in importance with that produced by Navier’s
discovery of the general equations. Starting from what is now
called the Principle of the Conservation of Energy he propounded
a new method? of obtaining these equations. He himself stated
his principle and method in the following words :—

“In whatever way the elements of any material system may
“act upon each other, if all the internal forces exerted be multi-
“plied by the elements of their respective directions, the total sum
“for any assigned portion of the mass will always be the exact
“differential of some function. But this function being known,
“we can immediately apply the general method given in the
“ Mécanique Analytique, and which appears to be more especially
“applicable to problems that relate to the motions of systems
“composed of an immense number of particles mutually acting
“upon each other. One of the advantages of this method, of
“great importance, is that we are necessarily led by the mere
“process of the calculation, and with little care on our part, to all
“the equations and conditions which are requistte and sufficient for
“the complete solution of any problem to which it may be applied.”

The function here spoken of, with its sign changed, is the
potential energy of the strained elastic solid per unit of mass,
expressed in terms of the components of strain, and, if the function

1 Legons sur la théorie mathématique de Délasticité des corps solides, 1852,
3 Camb. Phil. Soc. Trans. vi1. and Math, and Phys. Papers. The date of Green’s
memoir is 1837.
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exist, its differential coefficients, with respect to the components
of strain, are the components of stress. Sir W. Thomson has
shewn? that the function does not in general exist, unless, either
the solid is strained at constant temperature, or the strain is effected
80 quickly that no heat is gained or lost by any element of the
solid, and that in these cases its existence is a consequence of the
second law of Thermodynamics, and not, as Green supposed, of the
principle of the conservation of energy.

Green supposed his function expressible in terms of the
components of strain, and capable of being expanded in powers
and products of these components. He therefore arranged it as a
sum of homogeneous functions of the strain-components of the
first, second, and higher degrees. Of these, it can be shewn that
the first disappears, as the potential energy must be a true
minimum when the solid is unstrained, and, as the strains are all
small, the second term will alone be of importance. From this
principle Green deduced the equations of elasticity, containing in
the general case 21 constants, which reduce to two in the case of
isotropy.

The method thus introduced by Green has been followed by
most English and German mathematicians, and has been much
developed by Kirchhoff” and Sir W, Thomson. It has received
severe criticism at the hands of Saint-Venant. Before proceed-
ing to its discussion, it will be best to notice the theories
propounded by Clebsch and Sir G. Stokes.

The latter® was the first to observe that the generalised
Hooke’s law, of the proportionality of stress and strain, is a
consequence of the experimental fact that all solids admit of being
thrown into a state of isochronous vibration. It follows from this
law, and from considerations of symmetry, that in an isotropic
solid a uniform dilatation is opposed by a hydrostatic pressure
proportional to the dilatation, and that a uniform shear of any
plane is opposed by a shearing (tangential) stress in that plane,
proportional to the shear. From these observations, the equations
of elasticity were deduced, involving two constants, Sir G.
Stokes’s memoir is remarkable. for the continuity it attempts to

} Quarterly Journal, v. 1857.

3 Vorlesungen tiber mathematische Physik, Mechanik.

8 ¢On the theories of the...Equilibrium and Motion of Elastic Solids’. Camb.
Phil. Soc. Trans. vur, 1845,
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trace from perfect fluids to perfectly elastic solids through plastic
solids, and his defence of the equations with two constants
depends partly on this supposed continuity of behaviour of
materials of different structure.

Clebsch’s theory! is interesting on account of his dispensing
with any physical hypotheses or experimental data whatsoever.
He says in effect that, as the strains are all small, and the stresses
are functions of the strains, which vanish when these vanish, the
stresses can be expanded in homogeneous functions of the strains,
of which only the terms of degree unity need be retained. Saint-
Venant has pointed out that, even if we might assume that the
stresses can be expanded in integral powers of the strains, which
is not necessarily true @ priort, we should have no right to predict
that the first powers occur in the expansion, and he remarked that
the stress-strain relation is a matter to be determined by experi-
ment, except in so far as it can be deduced from a knowledge
of the intermolecular action between the parts of the solid.

We have had frequent occasion to notice a discrepancy in the
number of elastic constants which are found in the equations
obtained from different theories. In case these equations are
deduced from a molecular hypothesis such as Navier’s, they
involve fewer constants than when they are derived by methods
like those of Green and Sir G. Stokes, and it is a very important
question whether the relations among the constants in Green’s
equations, necessary to reduce them to Navier’s equations, really
hold. The questions to be discussed are whether elastic olotropy
is to be characterised by 21 constants or 15, and whether elastic
isotropy is to be characterised by two constants or one. The two
theories are styled by Prof. Pearson® the multi-constant theory and
the rari-constant theory respectively. Among rari-constant elas-
ticians the most prominent are Navier, Poisson and Saint-Venant,
while in the writings of Cauchy and Lamé sometimes one theory
is adopted and sometimes the other. Green, without intending
it, is practically the founder of the multi-constant theory, though
it had been introduced by Cauchy in his first memoir on the
general equations. In Lamé’s treatise we have multi-constant
equations deduced from an hypothesis which ought to have
led him to rari-constancy. Sir G. Stokes was the first to insist on

1 Theorie der Elasticitiit fester Korper, 1864.
2 Todhunter and Pearson, vol. 1. arts. 921 sq.
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the importance of the discrepancy, and Sir W. Thomson has been
the most strenuous opponent of the rari-constant theory.

This theory rests on the hypothesis that the action between
two molecules is in the line joining them, and is a function of
their distance, In other words it proceeds on the assumption that
the behaviour of solid bodies is the same as it would be if they
were composed of an immense number of material points, between
which are forces of attraction or repulsion, following a certain law.
The working out of this hypothesis leads to certain relations
among the constants, by which the six components of stress, at
any point of a solid, are expressed in terms of the six components
of strain, which relations ought to admit of experimental verifica-
tion. I call these relations Cauchy’s relations, because they are
virtually included in his investigation, although they appear to
have been first formulated by Saint-Venant in his great memoir
on the torsion of prisms. The particular case of isotropy is the
best known. For this case, Navier, Poisson, and Cauchy deduced
from the molecular hypothesis equations containing a single
elastic constant, while the utmost reduction, that can be effected
without recourse to this hypothesis, leaves two independent
constants. The result which ought most easily to admit of
experimental verification is concerned with the ratio of the linear
lateral contraction to the linear longitudinal extension of a bar
under terminal tractive load. According to the rari-constant theory
this ratio must be } for all isotropic materials. According to the
multi-constant theory it depends on the material and may vary
between the extreme values 4+ and —1'. The supporters of the
rari-constant theory rely® partly on the experimental evidence,
which they hold to be definitely favourable to their view, and
partly on the value of the hypothesis from which it is deduced.
They urge, in favour of this hypothesis, the general consent that
has been accorded to it since it was first propounded by Newton,
its success in explaining the phenomena of gravitation and the
conservation of energy, and the similar success of similar
hypotheses in the kinetic theory of gases, and in the theories of
electricity and magnetism. The opponents of the theory urge
against it firstly that it rests on a hypothesis possibly doubtful,

1 See below, ch. m1., art. 28.
? See in particular Saint-Venant’s edition of Navier's Lecons sur Uapplication de
la Mécanique, where the subject is discussed at length in Appendice V.
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secondly that this hypothesis has been incorrectly worked out,
thirdly that it contradicts the results of experiment, and lastly
that the known laws of energy lead to results which are certainly
true, whether the molecular hypothesis be correct or no, and these
laws are sufficient to serve as a basis for theory,

Of these objections the first depends entirely on our view
of the world. The older theories of physics were content with
explaining phenomena by the assumption of elements acting upon
each other at a distance. A dynamical explanation of any pheno-
menon once consisted in a statement of the attracting and
repelling forces adequate to produce it. Why these forces existed,
how they arose, were questions on which science was dumb.
Modern speculations in molecular dynamics point in the direction
of a kinetic theory of matter, according to which all the interac-
tions between portions of matter are effected through the inter-
vention of a continuous medium. If we are to obtain equations of
elasticity from a supposition of this kind, without knowing the
nature of the medium and the nature of the atoms, we can only
invoke the known laws of energy, as was done by Green and Sir
W. Thomson, but we are not thereby placed in a position to prove
that the molecular hypothesis in question is not an adequate
mathematical representation of the facts.

I do not think it can be successfully contended that the
hypothesis could properly lead to any but rari-constant equations.
It is true that errors occur in the earlier writings on the subject,
which have been seized upon by the opponents of the theory, and
held to invalidate its results. There is in fact no single investiga-
tion which would be entirely acceptable to modern mathematicians,
but the explanations which Clausius has given of one of Cauchy’s
memoirs prove that that memoir might have been so written as
to shew that the hypothesis really leads to Poisson’s equations,
although not strictly by Poisson’s method of investigation. Sir W.
Thomson' has indeed endeavoured to prove that the theory is self-
contradictory. This he proposed to do by actually constructing
a model of a molecule, which shall possess @olotropy of the most
general kind supposed by Green, all the parts of the model being
made of isotropic material fulfilling Poisson’s condition. I fail to
see how an unbiassed judge could accept the model as the proof of

1 Lectures on Molecular Dynamics. Johns Hopkins University, Baltimore, 1884.
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a flaw in Cauchy’s analysis. More recently Sir W. Thomson' has
convinced himself that there exists a law of intermolecular force,
between * Boscovich point-atoms”, which would lead to rari-
constant equations for an isotropic solid, whose elements are such
atoms, so that perhaps we may regard the contention of incorrect
working out as given up.

Both sides in this controversy appeal with equal confidence
to the confirmation of their views by experimental investigations.
It would seem, at first sight, a simple matter to determine, in
some form, two moduluses of elasticity of a great number of
isotropic substances, and to observe whether their ratio is that
which it should be on the rari-constant hypothesis. The conten-
tion of the rari-constant elasticians is that the result confirms
their view, whenever reasonable care has been taken to perform
the experiments upon an isotropic elastic solid, strained within
its limits of elasticity. They reject, as worthless, experiments on
such solids as cork and india-rubber, which contain numerous
cavities of dimensions incomparably greater than those of the
sphere of molecular activity. They explain many apparent con-
tradictions of their theory, offered by experiments on wires, by
the supposition that the solid subjected to experiment was really
aolotropic; and although there are @olotropic materials whose
elastic properties are expressed on the rari-constant theory by
two constants, the formule for these are quite different from
those of biconstant isotropy. Until very recently their opponents
relied generally on experiments made on wires or thin plates
probably very molotropic, but treated as isotropic, or else on the
continuity first suggested by Sir (. Stokes in the behaviour of
different kinds of materials, ranging from perfect fluids to
perfectly elastic solids, and including such solids as cork, jelly,
and india-rubber among elastic solids. The continuity referred
to consists really in the continuously changing relative impor-
tance of set and elastic strain, in different classes of materials—
an appeal is virtually made to experiments on something else
than elastic solids to disprove a supposed property of the latter.
It seems to me unfortunate that the supporters of multi-
constancy should have taken up this line of argument, as,
at any rate since 1860, exact methods of experimental investi-

1 ¢Molecular constitution of Matter.’ Edinburgh R. 8. Proc, 1889. See also
Math. and Phys. Papers, vol. 111.
L. 2
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gation have been within their reach. Numerous researches have
in fact been made for the express purpose of discovering the
true value of Poisson’s ratio for various solids. Among them
it is true that some were not conducted with proper care, but
it is not a little remarkable that they all agree in finding
values of this ratio which differ for different materials, and
occasionally they find the ratio almost exactly equal to 4. The
first of such researches is that of Wertheim® who was led to take
up the subject by an experiment of Cagniard Latour’s on com-
pression, by which a result was obtained that appeared to be in
conflict with one found analytically by Lamé. The materials
selected by Wertheim were glass and brass, and he found that,
for both, the ratio is nearer to } than }. No great importance
can be attached to these experiments as the material was probably
not isotropic, but later experimenters have taken more care.
Kirchhoff® devised experiments on the torsion and flexure of
steel bars, using Saint-Venant’s formule. These experiments
yield a direct comparison of moduluses, and consequently the
value of Poisson’s ratio, which he found to be ‘294 for his ma-
terials. More recently experiments by M. Amagat® on the
compressibility of solids, conducted with great care, led him to
values of Poisson’s ratio which vary from about } for glass to
428 for lead, and verify Wertheim’s value for brass, these
experiments, like those of Kirchhoff, were made with full know-
ledge of the nature of the point in dispute. But perhaps the
most striking experimental evidence is that which Prof. Voigt*
has derived from his study of the elasticity of crystals. The
objection to materials possibly zolotropic, but treated as isotropic,
was got rid of when he had the courage to undertake experiments
on materials known to be zolotropic in a given manner®’. The
point to be settled is however more remote. According to Green
there exist, for a solid of the most generally ®olotropic character,
21 independent elastic constants. The molecular hypothesis, as

1 Annales de Chimie et de Physique, xxmmy. 1848,

2 Pogg. Ann. cvinr. 1859.

3 Journal de Physique, vimt, 1889,

4 Wiedemann's Annalen, xxx1. 1887, xxx1v, and xxxv. 1888, and xxxvm. 1889.

5 It may be questioned whether this can be known in the manner assumed by
Prof. Voigt following in the footsieps of F. E. Neumann, See ch, mr. of the
present work,
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worked out by Cauchy and supported by Saint-Venant, leads to
only 15 constants, so that, if the rari-constant theory be correct,
there must be 6 independent relations among Green’s 21 coefficients.
These relations I call Cauchy’s relations. Now Prof. Voigt’s
experiments were made on the torsion and flexure of prisms of
various crystals, for most of which Saint-Venant’s formule for
®olotropic rods hold good, for the others he supplied the
required formule. In the cases of Beryl and Rocksalt only were
Cauchy’s relations even approximately verified, in the seven other
kinds of crystals examined there were very considerable differences
between the coefficients which these relations would require to be
equal. The most remarkable results of this kind are those for
the regular crystal Pyrites, for which the two coefficients that
ought to be equal are respectively —483 x 10° and 1075 x 10¢
grammes’ weight per square centimetre. The latter is the prin-
cipal rigidity, or resistance to shear of planes perpendicular to an
axis of the crystal, and is considerably greater than the rigidity of
steel, the former is negative and large, being comparable with
this rigidity. Exactly similar results were obtained from numerous
experiments on rods of the material. It appears to me that a
single result of this kind, once firmly established, is sufficient to
discredit the molecular or rather point-atom hypothesis as a basis
for elastic theory.

Even if the experimental evidence were all fairly interpretable
in favour of the other side, if there were a general consensus that
Cauchy’s relations hold good, and that Poisson’s ratio is }, for
materials carefully examined, that would not amount to a proof
of the molecular hypothesis. It would still be open to us to reject
that hypothesis as not axiomatic, and in the present state of
science we must so reject it. It is futile to argue, as Saint- Venant
does, that, because some proofs of the principle of energy rest on
the assumption of central intermolecular force, therefore a system
of forces, even if it have a potential, cannot be conservative
unless the force between two molecules is central, and a function
of their distance. Unless the hypothesis were axiomatic, there
could be no reason to adopt it to-day. Modern Physics is perfectly
capable of deducing a theory of elasticity from the known laws of
energy, without the aid of a subsidiary hypothesis about inter-
molecular force, and, being in that position, it is bound to discard
the hypothesis. Such a device is merely a phase in the develop-

2—2
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ment of scientific thought, and, having served its turn as a means
of introducing generality into the subject, it must give place again
to a still more general method.

Saint-Venant as the champion of rari-constancy has repeatedly
urged an objection against Green’s method which its supporters
do not appear to have met directly. The step objected to is the
supposed possibility of expanding the emergy-function in terms
of the strain-components, and the retention of the second term.
It is true that, as a proposition in pure mathematics, the step
is unjustifiable. We have no right to assume that because one
quantity depends upon another, and the first vanishes, and has a
minimum value when the second vanishes, that, therefore, the
first can be expanded in powers of the second, and terms of the
second order occur. Many examples could be given to the contrary.
But it is different in the case of elasticity. There is a definite
physical reason, not stated by Green, and not generally stated
in that connexion by his followers, viz. :—that experiment shews
that the stress, in an elastic solid strained at constant tem-
perature, or executing small vibrations, is a linear function of
the strain, and it follows from this, analytically, that the
potential energy of strain if a function of the strains at all,
is a quadratic function of the strains, when the latter are small.
That the potential energy is a function of the strains in these
two cases is a proposition in Thermodynamics, first proved by
Sir W, Thomson.

We have just seen that the modern theory of elasticity rests
upon the generalised Hooke’s Law, as a fundamental datum given
in experience. It is therefore necessary to pay some attention to
the history of science in respect of this law. Its discovery by
Hooke and Marriotte has already been noticed, but the experi-
ments which led them to it were not of a very conclusive character.
James Bernoulli, the discoverer of the elastic line, challenged it
in 1744. The mathematicians of the 18th century assumed the
linearity of the relation between tension and extension, whenever
they needed it. For this case, Young gave precision to the law
by the introduction of his modulus. Hodgkinson’s experiments on
cast-iron led him to conclude that, for this material at any rate,
the law does not hold good. The discoverers of the general
equations of elasticity, Navier, Poisson, and Cauchy, could all have
deduced it from their molecular hypothesis if they had paid
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attention to the point, but they did not. This was reserved for
Saint-Venant and Lamé, The point was really settled in 1845,
when Sir G. Stokes remarked that the capacity of all solids to
execute isochronous vibrations proves that the stress-strain re-
lations must be linear for the very small displacements involved.
It is sufficient for the mathematical theory as at present developed
to know that the law is true for infinitesimal strains. It is a
matter of interest, for possible future developments, to know
further that, for all solids, (except cast-iron and perhaps some
other cast metals), the law represents the stress-strain relation, as
accurately as experiment can tell, for finite strains within the
elastic limits,

Now just as the generalised Hooke’s Law was introduced into
the mathematical theory from the analytical rather than the
physical side, so almost the whole machinery of coefficients of
elasticity, expressing the law, comes from the same source.
Young’s modulus, as a coefficient, is practically in the old theories
of beams, in vogue before the time of Young. The rigidity, or
coefficient of resistance to shearing strain, was in mathematical
memoirs, (of course without a name), before it was suggested by
Vicat? and defined by Navier2. The whole set of 21 coefficients
of Green’s energy-function remained unnamed till the appearance
of Rankine’s paper of 1855% But, after the introduction of A’s
and B’s to express properties of matter, the physicist has come
forward with an explanation as to what property of matter is
expressed by A or B, his work has been a nomenclature of the
A’s and B’s depending on something concrete which they really
express, or the discovery of relations between the coefficients and
some possible new set expressing simpler properties.

In the theory of isotropic solids there occur two constants at
most, say the K and % of Cauchy’s first memoir. If Poisson’s ratio
be }, k=2K. Cauchy’s equations involving these constants are ob-
tained by means of rather arbitrary assumptions. Different writers
use different constants, which can be expressed in terms of Cauchy’s,
Navier and Poisson use a single constant, and so in other writings

1 ¢Recherches expérimentales sur...la rupture’. Annales des ponts et chaussées,
Mémoires 1833,

2 In the second edition of his Legons, 1833.

3 +On Axes of Elasticity and Crystalline Forms’, Rankine’s Miscellanecous
Scientific Papers. ’
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does Cauchy. Lamé and Clapeyron use a single constant. Mean-
while Young’s modulus is already defined physically. Presently
comes Vicat with a physical definition of the rigidity. What is
the relation of these physical constants to the coefficients in the
elastic equations? There is no answer, but Green appears instead
with two new constants 4 and B which he shews depend on the
velocities of plane waves in the solid. Sir G. Stokes follows with
again two new constants, defined, this time, from physical coun-
siderations. One is Vicat’s rigidity, the other is the modulus of
compression, or the ratio of a hydrostatic pressure applied uni-
formly to a solid to the cubical compression it produces. Then
comes Lamé with his constants u and A, obtained rather in the
‘manner of Cauchy’s K and £k, easily expressible in terms of those
of Sir G. Stokes or Green, of whose writings he appears ignorant,
u is in fact the rigidity. Kirchhoff follows with his K and 6, of
which K is the rigidity and 6 a number, these are introduced like
Green’s A and B as coefficients in the energy-function. In
reading any memoir it is necessary to have some acquaintance
with six constants, the more or less arbitrary pair used by the
writer of the memoir, the modulus of compression, the rigidity,
Young’s modulus, and Poisson’s ratio.

For @olotropic solids the matter is much simplified by the
comparative smallness of the literature. Green introduced his 21
coefficients, and gave little explanation of them. Franz Neumann'
was the first to use the coefficients of Green’s energy-function to
express the elastic properties of crystals. He assumed that
crystallographic symmetry corresponds to symmetry in elastic
quality, and he thence shewed how to find the proper reductions
in the number of the constants for the holohedral forms of
the six classes of crystals, and, for systems having three planes
of symmetry, he further shewed how to express the Young’s
modulus of the material, in a given direction, in terms of the
coefficients. This theory has received much attention at the
hands of Saint-Venant?. Prof Voigt® has extended Neumann’s
work so as to include the principal hemihedral crystalline forms,

1 Vorlesungen iiber die Theorie der Elasticitit der festen Korper und des Licht-
dthers, 1885. The lectures were delivered in 1857—8.

2 ¢Mémoire sur la distribution des élasticités autour de chaque point’.
Liouville’s Journal de Mathématiques, viiz. 1863.

3 Wiedemann’s Annalen, xvi. 1882.
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and has developed the theories of flexure and torsion, so as to
obtain experimental methods for determining the constants of
crystals with high degrees of symmetry. We have already seen
how his experiments throw light on the constant controversy.
The most important of Saint-Venant’s researches, in this part
of the subject, relates to the formula, which gives Young’s
modulus for any direction in an solotropic solid with three planes
of symmetry. Neumann had shewn that the modulus in any
direction is proportional to the inverse fourth power of the
radius-vector of a certain quartic surface, the coefficients in
which are functions of the coefficients of elasticity’. Saint-
Venant proved that this radius-vector has 13 maxima and minima,
but, if certain inequalities among the elastic coefficients be ful-
filled, all but three are imaginary. It appears not unlikely that the
maxima and minima of the Young’s modulus should belong to
principal axes of symmetry only. Saint-Venant also investigated
the values of Poisson’s ratio for extension in the direction of one
axis, and contraction in that of another. He applied these re-
searches to obtain formul® that might prove useful in the case
of timber and laminated metals, which have a certain olotropic
character without being crystalline. Another matter, to which
he drew attention? was the possibility of the directions of the
principal axes of symmetry of contexture of a material, varying,
from point to point, according to a definite law, so that, when
suitable curvilinear coordinates are employed the stresses may be
expressed in terms of the strains by formule which hold for all
points, and he applied this theory to obtain results suitable for
the explanation of certain piezometer experiments by Regnault, in
which a shell of metal, forming part of the apparatus, probably
has such a kind of ®olotropy.

Two other points should be noticed in connexion with the
elastic constants. One is that they vary with the temperature.
In general a rise of temperature is accompanied by a decrease in
the values of the constants. This point has been established
chiefly by the experiments of Wertheim®, Kohlrausch¢ and Mr

1 See Saint-Venant’s ‘ Annotated Clebsch’. Note du § 16.

2 « Sur les divers genres d’homogénéité des corps solides’. Liouville’s Journal,
1865.

3 ¢Recherches sur V'élasticité . dnnales de chimie, x11. 1844.

¢ Pogg. Ann. cxur. 1870.
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Donald McFarlane!, The other is that the constants in the
equations of vibration are not identical with those in the equations
of equilibrium. This may be illustrated by a reference to Laplace’s
celebrated correction of the Newtonian velocity of sound. In the
case of vibrations, the changes of state follow the adiabatic law, no
heat being gained or lost by any element; in the case of strain
gradually produced at constant temperature, the changes of state,
following the isothermal law, differ from those that have place
in a vibrating solid. The moduluses in the two cases are called
by Sir W. Thomson kinetic and static moduluses respectively, and
the latter are a little smaller than the former, but the ratio is
very much nearer to unity for solids than for air. This point seems
to have been first investigated by Lagerhjelm? in 1827.

Before passing to the consideration of problems, it is proper
to notice some other matters connected with the general theory.
These are the thermo-elastic equations of Neumann and Duhamel,
the transformation of the equations of elasticity to orthogonal
curvilinear coordinates, the theory of the propagation of disturb-
ances by wave-motion in an unlimited elastic solid medium, and
the general theory of the free vibrations of solids.

One method by which the ordinary equations of elasticity have
been obtained is, as we have seen, to assume that an elastic solid
behaves like a system of material points, between which are forces
of attraction or repulsion, and to estimate the stress thence arising
when alterations are made in the intermolecular distances. When
the temperature is variable, the force cannot be taken simply a
function of the distance. Duhamel® assumed that there is in this
case an additional term in the force, proportional to the increase
of temperature, and he thence obtained equations for the equi-
librium of a solid strained by unequal heating. Franz Neumann*
about the same time obfained similar equations by a method,
which amounted to assuming that in a small part of a solid, so
strained, there is a uniform elastic pressure proportional to the

! Quoted by Sir W. Thomson, art. Elasticity, Encyc. Brit. and Math. and
Phys. Papers, vol. m1.

3 See Todhunter and Pearson, vol. 1. art. 370.

3 ¢ Mémoire sur le caloul des actions moléculaires développées par les change-
ments de température dans les corps solides’. Mém....par divers savans, v. 1838.

¢ :Die thermischen...Axen des Krystallsystems des Gypses’, Pogg. 4nn. xxvi,
1833, and ‘Die Gesetze der Doppelbrechung...’, 4bh. k. Akad. Wiss. Berlin, 1841 ; see
also the same author’s Vorlesungen iiber die Theorie der Elasticitit...
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temperature. The thermodynamical investigation of Sir W.
Thomson shews that these equations cannot be deduced from
known laws, and experiment appears to shew that the temperature
coefficient introduced by Neumann and Dubamel is not' constant
but a function of the strains. We must regard the thermo-elastic
equations of these writers as a provisional suggestion, destined
to give place to a theory founded on fuller experimental know-
ledge.

To Lamé belongs the credit of introducing the methods of
curvilinear coordinates into the study of physics. In a sense the
whole theory is due to him. Special cases had received treatment
before his time, but we owe to him all the fundamental general
theorems of the subject. He succeeded in transforming the equa-
tions of elasticity to orthogonal coordinates, and gave, in his Legons
sur les Coordonnées Curwilignes, the values of the strain-com-
ponents, and the equations for the stresses. He also gave the
equations determining the displacements when the solid is iso-
tropic. In elastic theory the most important cases are those of
spherical and cylindrical coordinates. These have been treated by
Mr Webb? by means of vector-differentiation depending on the
kinematical method of “moving axes” introduced by Mr R. B.
Hayward?. Other investigations have been given by Saint-Venant
and Borchardt® and Mr Larmor* has shewn how to deduce the
equations from a knowledge of the formula for the line-element,
and the energy-function.

The theory of the propagation of waves in an unlimited iso-
tropic elastic medium was first considered by Poisson, who, in his
memoir of 1828, shewed that there are two kinds of waves, one
waves of compression, and the other waves of distortion, and that
these are propagated independently with different velocities. He
also gave the now well-known integral of the equations of wave-
propagation, which expresses the motion, at any place and time,
in terms of the initial disturbance. The interpretation of this
integral was given much later by Sir G. Stokes®. Green con-

1 Messenger of Mathematics, 1882,

3 Camb. Phil. Soc. Trans. vi1. 1856,

8 Crelle-Borchardt, Lxxvi, 1873.

4 Camb, Phil. Soc. Trans. x1v. 1885,

8 ¢On the Dynamical Theory of Diffraction’. Camb. Phil. Soc. Trans, 1x. 1849,
and Math. and Phys. Papers, vol. 1.
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gidered the propagation of plane waves in an olotropic medium?,
and concluded that there are three kinds of waves which are
propagated with different velocities. When the medium is iso-
tropic the cubic equation giving these velocities has two equal
roots. The theory of wave-motion in an @olotropic medium was
given by Blanchet in two memoirs in Liouville’s Journal (v. 1840,
and vIL 1842). He integrated the equations of wave-propagation,
and interpreted his integrals so as to lead to the wave-surface
method of physical optics. A different investigation has been
given by Herr Christoffel?, All the developments of this theory
belong to physical optics. Optical phenomena lead to the hy-
pothesis of a medium in which waves of light can be propagated,
and it is a definite question whether the properties to be attri-
buted to the medium, in order that the results may be in ac-
cordance with observation, are identical with those of an elastic
solid; and it is therefore very important, for optical theory, to
have an account of the propagation of a disturbance in an elastic
solid medium. Thanks to the investigators referred to, we have
such an account.

The general theory of the free vibrations of solids is due to
Clebsch, and appeared for the first time in his treatise of 1864.
Particular problems had previously been treated by Euler, Poisson,
Kirchhoff, and others, but Clebsch appears to have been the first
to formulate true general results which apply to all solids. To
him must be attributed the extension of the notion of principal
oscillations to systems with an infinite number of degrees of
freedom, and the introduction of the corresponding normal func-
tions, with the proof of their principal properties; he also pointed
out the utility of the variational equation of motion in investi-
gating these properties, and that of the boundary-conditions in
determining periods and types. This theory was given by
Clebsch as a generalisation of Poisson’s theory of the radial
vibrations of a sphere (published in 1828), but it was no doubt
also in part suggested by the already well-known results for
strings, bars, plates, and membranes. Lord Rayleigh® went
further, in connecting the theory with the purely dynamical

1 ¢On the propagation of light in erystallized media.” Camb. Phil. Soc. Trans.
vir. 1842.

2 ¢Fortpflanzung des Stosses...’ Brioschi’s Annali di Matematica, viu. 1877.

3 Proc. Lond. Math. Soc. 1v. 1873, and Theory of Sound, vol. 1. 1877.
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treatment of small oscillations about a configuration of stable
equilibrium, and extending to it some new theorems relating
to such oscillations in a system with finite freedom.

Before the appearance of Clebsch’s treatise, a different theory
had been propounded by Lamé in his Legons sur...lélasticité.
Acquainted with Poisson’s discovery of waves of compression and
waves of distortion, he concluded that the vibrations of any solid
must fall into similar classes, and he investigated the vibrations
of various bodies on this assumption. The fact that his solutions
do not satisfy the boundary-conditions that hold at the surfaces of
his solids, is a sufficient disproof of his theory; but it was finally
disposed of when Prof Lamb shewed how to calculate all the
modes of vibration of 4 homogeneous isotropic sphere, proving that
the classes, into which they fall, do not verify Lamé’s supposition.

The general problems of the theory of elasticity may be stated
as follows :—

(1) A body of any form is subject to the action of any given
bodily forces, and surface-tractions, or has its surface deformed in
any given manner, it is required to determine the state of strain
and displacement in the interior.

(2) The body executes small vibrations, either freely, or under
the action of given periodic forces, it is required to find the modes
and periods of the small free oscillations, and the amplitude of the
forced oscillations.

We have now to consider what degree of success has attended
the efforts of mathematicians to solve these problems.

The first general solution was given by Lamé and Clapeyron in
their memoir of 1828, where there is an investigation of the
displacement produced in the interior of an isotropic solid bounded
by an infinite plane, at whose surface there is a given distribution
of load. This problem of the infinite plane has been the subject
of researches by several writers. When the load is a harmeonic
distribution of normal pressure it is not difficult to find a solution
by means of Fourier’s series, such solutions have been considered
by several writers'. Another method has been followed by M.
Boussinesq® Lamé® had noticed that certain potential functions

1 See e.g. Solutions of the Cambridge Problems..., for 1875, pp. 150 sq.

2 The researches of this author on this part of the subject commence with four
papers in the Comptes Rendus, Lxxvirn 1879, and culminate in his dpplications des
Potentiels.... Paris, 1885,

8 Legons sur.. Vélasticité, sizieme legon.
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could be applied to obtain solutions of the equations of elastic
equilibrium ; these are the “inverse potential”, 7.e. the ordinary
potential, or volume-integral of the product of a given function and
the reciprocal of the distance of any point within a certain region
from a given point, and the “direct potential” or volume-integral
containing the distance. M. Boussinesq added to these the “loga-
rithmic potential” which is the similar volume-integral containing
the logarithm of & certain function of the coordinates, and he gave,
in terms of potential functions of certain surface-distributions, a
solution of the problem of the equilibrium of a solid bounded by
an infinite plane, on which there is an arbitrary distribution of
normal pressure. The general problem was solved by Signor
Valentino Cerruti' who applied to it a general method of integrating
the equations of elastic equilibrium, devised by Prof. Betti. The
displacement at any point is expressed in terms of surface-integrals,
involving the arbitrary distribution of surface-displacement or
surface-traction. M. Boussinesq afterwards developed his theory
of potential functions, so as to obtain the solutions of Signor
Cerruti, and he considered particular cases in considerable detail.
Of these, the most interesting is the case of a solid deformed by
considerable pressure, applied in the neighbourhood of a single
point of its surface; and the consideration of this case led to a
remarkable theory of “local perturbations”, according to which the
effect of force, applied in the neighbourhood of any point of a
body, falls off very rapidly as the distance from the point increases,
and in particular the application of an equilibrating system of
forces to a small part of a solid produces an effect, which is
negligible at considerable distances from the part, so that in
estimating the effect produced at a distance, by force applied in
any manner near to a given point, the resultant only of the forces
need be taken into account, their mode of application being com-
paratively insignificant. This is of importance in connexion with
Saint-Venant’s and many other problems.

After the plane, the next surface discussed was the sphere.
This problem was first considered generally by Lamé, who gave a
complete solution, in terms of spherical harmonics, of the case
where an isotropic sphere, or spherical shell, is subject to its own

1 ¢«Ricerche intorno all’ equilibrio de’ corpi elastici isotropi’. Reale dccademia
dei Lincei, Rome, 1832,
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gravitation, and to any distribution of surface-traction. Lamé*
commenced by transforming the equations to polar coordinates.
The equations of the problem in rectangular coordinates were first
solved by Sir W. Thomson®, who applied the results to the
consideration of astronomical problems relating to the elastic
equilibrium of the earth, deformed by tide-generating forces, or
centrifugal force. In the case of the tides it was shewn that the
degree of rigidity to be attributed to the solid, in order that ocean
tides upon it may be similar to those on the earth, is very con-
siderable, and the result discredits somewhat the geological
hypothesis of the internal fluidity of the earth. The application
of the problem to test this hypothesis is however beset with
difficulties which have not yet been surmounted. The spherical
harmonic solutions of the equations of elasticity have an extended
application to other problems besides that of the equilibrium of
the sphere. They are solutions in terms of integral powers of the
coordinates, and they have been considered in this light by Mr
Chree?, who hasshewn, by means of them, how to obtain a solution
of some problems relating to the equilibrium of ellipsoids, and has
also utilised them to verify Saint-Venant's solutions for the torsion
and flexure of beams. Another application of them which has been
recently made* is to investigate the effect of flaws in diminishing
the strength of structures, verifying for the simplest case the
factor of safety 2, allowed by engineers to guard against this form of
weakness, A different solution of Lamé’s problem has been given
by Borchardt®. Instead of spherical harmonic series the displace-
ments are expressed in terms of definite integrals involving the
given surface-tractions, and a like solution has been given, by the
same writer, of the problem of the strain in a sphere deformed by
unequal heating®, setting out from the thermo-elastic equations of

1 Liouville’s Journal, x1x. 1854.

2 Phil. Trans. R. S. 1863.

3 ¢ A new solution of the equations of an isotropio elastic solid, and its applica-
tion to the theory of beams’. Quarterly Journal, 1886. See also another paper by
the same author in the same journal, 1888.

4 Larmor, Pkil. Mag. Jan. 1892,

5 ¢«Ueber Deformationen elastischer isotroper Koérper durch mechanische an
ihre Oberfliche wirkende Kriifte'. Berlin Monatsberichte, 1873,

6 « Untersuchungen iiber die Elasticitiit fester isotroper Korper in Beriicksichti-
gung der Wirme'. Berlin Monatsberichte, 1873, This paper and the one last
referred to are reprinted in Borchardt’s Gesammelte Werke.
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Neumann and Duhamel. The method of Lamé, consisting partly
in the transformation to appropriate coordinates, has been applied
by Herr Wangerin® to obtain solutions of the general equations,
for a solid bounded by a surface of revolution, for which Laplace’s
equation can be solved.

The only general method that has been devised is that of
Prof. Betti® mentioned above. He set out from a general recipro-
cal theorem, which can be stated in the form :—The whole work
done by forces of any type, acting over the displacements produced
by forces of a second type, is equal to the whole work done by the
forces of the second type, acting over the displacements produced
by those of the first. He shewed how to obtain the solution of
the equations for any arbitrary distribution of surface-displacement,
or surface-traction, in terms of the corresponding solution for
certain particular distributions. The solution, that would be
obtained by this method, puts in evidence the surface-displacement
or surface-traction arbitrarily given, and is analogous to the
solution of problems in electrostatics by means of Green’s function.
There can be little doubt that the method was suggested by
electrical theory. Prof. Betti has applied it to the sphere-problem,
and obtained results identical with those of Borchardt, and we
have seen that, in the case of the plane-problem, success attended
the application of it by Signor Cerruti.

Excepting the special problems of thin wires and plates, the
problem of the vibrations of a given solid has been solved only in
the case of the sphere and spherical shell. The radial vibrations
of the sphere were first considered by Poisson in 1828 and served
as the text on which Clebsch explained his theory of the free
vibrations of solids. The analysis of the general problem was first
completely given by Herr Jaerisch®, who shewed that the solution
could be expressed in terms of spherical harmonics and certain
functions of the radius, which are practically Bessel’s functions of
order integer+4. This result was obtained independently by
Prof. Lamb, who gave‘ an account of all the simpler modes of
vibration, the nature of the nodal divisions of the sphere when any

1 ¢« Ueber das Problem des Gleichgewichts elastischer Rotationskdrper’, Grunert’s
Archiv, Lv. 1873,

2 Il Nuovo Cimento, vi—x. 1872 gq.

3 Crelle-Borchardt, Lxxxvin, 1879.

% Proc. Lond. Math, Soc. x11t, 1882,
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normal vibration is executed, and the periods; we have already
remarked upon the utility of this solution in regard to the
general theory of the vibrations of solids.

Prior to the discovery of the general equations there existed
theories of the torsion and flexure of beams starting from Galilei’s
enquiry and a suggestion of Coulomb’s. The problems thus
proposed are among the most important for practical applications,
as most questions that have to be dealt with by engineers can, at
any rate for the purpose of a rough first approximation, be reduced
to questions of the resistance of beams. Cauchy was the first to
attempt to apply the general equations to this class of problems,
and his investigation of the torsion of a rectangular prism®, though
not correct, is historically important, as he recognised that the
normal sections do not remain plane. His result had little
influence on practice. The practical treatises of the earlier half of
the present century contain a theory of torsion with a result that
we have already attributed to Coulomb, viz.: that the resistance to
torsion is the product of an elastic constant, the amount of the
twist, and the moment of inertia of the cross-section. In Young’s
Lectures on Natural Philosophy and in Navier's Legons sur
U Application de la Mécantque this is attributed to the relative
displacement of the normal sections of a twisted prism, i.e. really
to the shear, though this is not distinctly stated by Navier, and it
is assumed that the normal sections remain plane. Again, in the
theory of flexure, the practical treatises of the time followed the
Bernoulli-Eulerian theory, attributing the resistance to flexure
entirely to extension and contraction of the fibres. To Saint-
Venant belongs the credit of bringing the problems of the torsion
and flexure of beams under the general theory. Seeing the
difficulty of obtaining general solutions, the pressing need for
practical purposes of some theory that could be applied to the
strength of structures, and the improbability of the precise mode
of application of the load to the parts of any apparatus being
known, he was led to reflect on the theories used for the solution
of special problems before the discovery of the general equations.
These reflexions led him to the discovery of the semi-inverse
method of solution, which bears his name. Some part of the
theory in vogue, and resting on special assumptions, may be true,
at least in a large majority of cases. It may be possible, by

1 Ezercices de Mathématiques, 1828.
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retaining some part of the data or conclusions of such a
theory, to restrict the generality of the equations, and so obtain
solutions—not indeed such as satisfy surface-conditions arbitrarily
given, but such as satisfy sets of surface-conditions practically
important.

The first problem to which Saint-Venant applied his method
was that of the torsion of prisms, towards the theory of which he
struggled from 1839 to 1855 when he gave it in his most famous
memoir'. For this application he assumed the general character
of the strain, viz.: that it consists of a distortion of the cross-
sections combined with a simple twist about the axis; from this
he deduced the differential equation and the boundary-condition
that must be satisfied by the displacement parallel to the
axis, and he shewed that the twisting couple may be of any given
amount that produces no set, but the tractions, of which this
couple is the resultant, must be applied to the end of the prism
in a particular manner. In cases of symmetry the differential
equation is Laplace’s equation, and Saint-Venant made use of
certain known solutions to discuss a large number of cases. The
most important results are (i) that the sections do not remain
plane, (ii) that Coulomb’s torsion-formula is inexact, and requires
for its correction a numerical factor depending on the shape of the
cross-section. In the same memoir, and in a subsequent one®, the
same author applied his new method to the problem of flexure.
He assumed that in a bent beam the axis, (or line of centroids of
normal sections,) becomes a plane curve, and the extensions or
contractions of longitudinal fibres vary as their distance from a
certain plane through this axis, also that these fibres exert no
mutual traction upon each other. The most important results are
(i) that the stress across any section reduces to a transverse force
and a bending couple, and the latter is proportional to the curva-
ture of the axis, as given by the Bernoulli-Eulerian theory; (ii)
that the normal sections do not remain plane, but the displacement
in the direction of the axis contains a term, which satisfies an
equation similar to that in the case of torsion with a different
boundary-condition. The forces applied at the end may be any
transverse force and bending couple, but these must be the resul-
tants of tractions distributed over the end in a particular manner.

1 Mém, des savants étrangers, x1v. 1855,
2 < Mémoire sur la flexion des prismes...’ Liouville’s Journal, 1. 1856.
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Both in the memoir on torsion and in that on flexure Saint-Venant
enunciates the principle called by Prof. Pearson that of the “elastic
equivalence of statically equipollent loads ”, according to which the
strain at any point of a beam, whose length is several times its
diameter, can be calculated without sensible error from the
resultant force applied at its end, provided the point be not
very near the end. We have already seen how the later re-
searches of M. Boussinesq throw light on this principle.

In 1864 appeared Clebsch’s Theorte der Klasticitdt fester
Korper, a work which, in its present form, as edited by Saint-
Venant, is the standard treatise on our subject. In this the
problem of the equilibrium of beams is styled “das de-Saint-
Venantsche Problem”, and is treated in a more general manner, It
appeared from Saint-Venant’s researches that, alike in the cases
of torsion and flexure, there is no stress in the normal section
between fibres of the beam parallel to its length. Clebsch
proposed to discover the general conditions under which this state
of things will hold. He introduced this single condition into the
equations of equilibrium, and proved that all the solutions that
could thus be obtained fell into three classes characterised
respectively by extension, torsion, and flexure. The equations to
be satisfied are Saint-Venant’s equations for the distortion of the
sections.

The theory of torsion has received development at the hands of
several writers, and we must mention especially the treatment of
the subject in Thomson and Tait’s Natural Philosophy. Here, for
the first time, it was pointed out that the problem of the torsion
of an elastic prism is mathematically identical with that of the
motion of incompressible fluid in the same prism, rotating with
angular velocity equal and opposite to the amount of the twist.
This Hydrodynamical analogy, and the known method of solving
problems in Hydrodynamics by means of conjugate functions, led
to the discovery of a remarkable series of solutions of the torsion
problem. The most important general results that can be gathered
from this theory are (i) that the resistance of beams to torsion is
seriously diminished by the existence of any concavity, or dent, or
anything approaching to a reentrant angle in the surface, and (ii)
that the correct formula® for the resistance of a beam to torsion,

1 Saint-Venant, ‘Sur une formule donnant approximativement le moment de
torsion’. Comptes Rendus, Lxxxvii. 1879,

L. 3
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when this source of weakness is not present, makes this resistance
very approximately equal to the product of an elastic constant, the
fourth power of the area, the reciprocal of the moment of inertia
about the axis, and the amount of the twist.

It is apparent that in the case of flexure the departure of the
new from the old theory is not so glaring as in the case of torsion,
the character of the resultant stress is given nearly enough by the
old theory, it is however entirely at fault in describing the
character of the strain, and consequently could not arrive at a
correct estimate of the strength of a beam subject to flexure.
This Saint-Venant’s theory enables us to do more satisfactorily.
An account of the theory, and its practical applications, is given in
Saint-Venant’s edition of the Legons de Navier (1863). Most of
these applications rest on an extension of the results for a beam
supporting an isolated load, to the case of a continuously loaded
beam. So far as I am aware, the only exact solution of the latter
problem is that which has been recently given by Prof. Pearson’,
for a particular distribution of load. The extension to be made
rests, in general, on the supposition that the linear dimensions of
the cross-section of the beam are very small in comparison with its
length, and they thus belong essentially to the theory of thin rods
and wires. We shall therefore properly postpone our considera-
tion of these extensions of Saint-Venant’s theory, until we come
to treat of that part of the subject.

1 Quarterly Journal, 1889.



CHAPTER 1.
ANALYSIS OF STRAIN.

1. WHENEVER, owing to any cause, changes take place in the
relative positions of the parts of a body, the body is said to be
strained—thus a stretched string, a compressed spring, a twisted
wire, a vibrating bell, are bodies in a state of strain.

The part of our subject which deals with the analysis of
strains—including their composition and resolution—is a branch
of kinematics, and can be investigated from a purely geometrical
point of view. For this purpose, we shall consider homogeneous
strain as a method of transformation of geometrical figures, and
shall then explain the connexion of this branch of geometry with
our subject.

2. Homogeneous Strain.

Suppose we are given any figure (collection of points) in
space, the points may be distributed either discretely or con-
tinuously, and points distributed continuously may form an

1 The following among other authorities may be consulted :

Cauchy, Ezercices de Mathématiques, Année 1827, the article ‘Sur la conden-
sation ef la dilatation des corps solides’.

8aint-Venant, Comptes Rendus xxrv. 1847. ‘Mémoire sur I’équilibre des corps
solides, dans les limites de leur élasticité, et sur les conditions de leur résistance,
quand les déplacements éprouvés par leurs points ne sont pas trés-petits’.

Thomson and Tait, Natural Philosophy, vol. 1. part 1.

Sir W. Thomson, article ‘Elasticity’, Encyclopedia Britannica, reprinted in
his Mathematical and Physical Papers, vol. 1.

Todhunter and Pearson, History of the Elasticity and Strength of Materials,
vol. 1. especially arts. 1619 sq.

Weyrauch, Theorie elastischer Kirper,

32
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aggregate of one, two, or three dimensions, according as they
lie upon a line, or upon a surface, or within a certain region of
space. We shall suppose, in general, that the figure considered is
a triply infinite series of points, filling a certain surface given in
space. The position of any point in such a series is determined
by means of its rectangular coordinates (#, y, 2), referred to a
Cartesian system of axes, and we shall in general suppose that the
origin is one of the points of the series considered. Then the
figure is said to be homogeneously strained when we make the
new position of & point correspond to its old position in such a
way that the coordinates of its new position are linear functions
of the coordinates of its old position.

Let the equations of transformation be

o =1+ ay) 2 +auy + a2
=0T+ (1 +Ax) Y + An2p oevvnvnnnnnnn. ).
5=0n@+any+(l+ay)z
Then @, ¥, 2, are the coordinates, after strain, of the point which
before strain was at (z, ¥, 2).

The equations corresponding to (1), in two dimensions, repre-
sent a transformation such that the figure corresponding to a
given one is similar to one of the orthographic projections of the
original, and the characteristic property of such transformations is
that parallel straight lines are transformed into parallel straight
lines, and all the parts of any one straight line are equally
extended. It is clear now that by such a transformation as
(1) parallel planes are transformed into parallel planes, and thence
it follows that this characteristic property of the transformation
in two dimensions holds also for homogeneous strain in three
dimensions. Again in orthographic projection any circle becomes
an ellipse, and diameters of the circle at right angles to each
other become conjugate diameters of the ellipse. In like manner
it is at once seen from equations (1) that any sphere is changed
by homogeneous strain into an ellipsoid, and three co-orthogonal
diameters of the sphere are changed into three conjugate dia-
meters of the ellipsoid. This ellipsoid is called the strain-ellipsord.
It follows that there is one set of co-orthogonal lines which remain
such after strain, viz. these are the lines that become the principal
axes of the ellipsoid. These lines are called the prencipal azes of
the strain.
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3. Extension and Shear.

Among homogeneous strains we shall note two in particular.
In the first of these, which is called stmple extension, lines parallel
to a given direction are extended and all perpendicular lines are
unaltered in length. It is clear that the equations of simple
extension parallel to the 2 axis, when lines in this direction
remain in it, are

‘”1=(1+a11)¢: Nh=Y, 51=2,
and in these a,, is the extension® parallel to a.

To see what is meant by shear, suppose all points in one plane
to remain in that plane after strain, and in their primitive
positions, and all points in any parallel plane to remain in their
plane, but to be displaced in it in directions parallel to a given
line in the first plane, and through distances proportional to their
distances from that plane: eg. suppose the planes y = const.
to move parallel to z, through distances proportional to y. This
kind of strain is called stmple shear of the planes y parallel to the
axis . The amount of sliding, per unit distance from the plane
y=0,18 called the amount of the shear. It is clear that, if s be
the amount of the shear, the equations of such a strain are

$1=$+83/, y1=3/, H=2
o) x

y Fig. 1.
1 By *“extension ” of a line we shall always mean the ratio of the increment of
length to the original length. Contraction will be treated as negative extension.
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In the figure let B be the new position of A4, and suppose AB
so chosen that the middle point of ABis on the axis of y, then
the amount of the shear is 2 tan $A0B. The angle $ AOB is
called the angle of the shear, and its tangent is half the amount of
the shear.

4. Components of Strain.

The deformation of the figure will be completely known when
we know the new length of every line in it. Since parallel lines
are equally extended, we only need to know the new lengths of
lines drawn through the origin.

Let I, m,n be the direction-cosines of a line drawn through
the origin, and r its length, #, y, z the coordinates of its other
extremity, so that

z=lr, y=mr, s=nr.
After strain let the point (z, y, z) come to (a3, 4, z). Then by
writing Ir, mr, nr for x, y, z in (1), squaring and adding we find
the new length 7, of the line given by the equation
r?=12[1 + 2 (I, + me, + n'; + mns, + nls; + Imsy)] ... (2),
where a=ay+% (e + an?+ ay®) }
81 =G + @ + (T1ais + Olos + Qi)

and e, €, 8, 8 are to be found from these by cyclical interchanges
of the suffixes 1, 2, 3.

The deformation is thus completely determined by means of
the six quantities e, €, €, 8, 8, 8. We shall call these the
components of strain.

The meaning of the quantities e, ¢, € is at once apparent, for
the extensions of lines parallel to the axes are

VA +26)—1, VA + 2e,)- 1, /(1 +2¢;) — 1.

To see the meaning of s, s,, 8, it is convenient to form an
expression for the cosine of the angle between the strained
positions of two lines through the origin.

Let (1, m, n), (', m’, n’) be the primitive directions of the lines,
then the cosine of the angle between their strained positions will
be found by taking two points (z, ¥, 2), (¢, ¥, ) one on each line,
and supposing their strained positions to be (z,, %, 1), (&, %', 2/),
the cosine of the angle between them after strain is

oz + Yy + ne
V@t +y+ 20 V@ + g+ 5
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Now @, y, 2, are given by (1) in terms of z, y, 2, and =, 3/, 2/’
are the same functions of #/, ¥/, 2/; also z:y:2=1[:m :n, and
&y :Z=U:m':n. Hence we find, for the cosine in question,
the value

(1 +2¢) +mm'(1 4 2¢q) + 10 (1 +2¢5) + (mn’ +m'n) 8 + (nl' + n'D)gg+ (Im’ +U'm) s,
L2 (e, €, €5, 38y, 3ag, Rodimn)]W/[14+2(ey €y €55 34y, 485, Fodimn)?]

..................... (4).
In particular if the lines be the axes of  and y this reduces to

8s
LT 2e) L B reeeeereeeseeees (5)-

Thus 8, 8, 8, depend upon the angles between the strained
positions of the lines initially coinciding with the axes.

Another way of looking at this matter is to suppose that the
strain consists of a simple shear, say of the planes y parallel to the
axis .

Let the equations of the shear be

z=x+8y, Y=Y Hn==2

Then the six components of strain are
6a=0, =18 = 0)\
=0, 8=0 s=s]

s0 that s; is the amount of the shear. In the case of infinitesimal

strain the shear of two lines initially at right angles is the cosine
of the angle between them after strain, viz. this is the shear
parallel to either line of planes perpendicular to the other.

6. The S8train-Quadric.
We shall call the quadric whose equation is

(&1, €, €, 381, 3%, § Pyl =k .....oooui, )

the Strain-Quadric. If r be the length of any line before strain,
and 7, the corresponding length after strain, then

so that the square of every radius vector of the quadric is increased
by the same amount.

Let the equation of the strain-quadric referred to its principal

axes be
Er+ Ey+El=k...coocvovvvnnnn. 9);

then, since the s components of strain are zero, it follows from (5)
that the angles between lines, initially coinciding with the axes,
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remain right angles after strain—so that the principal axes of the
strain-quadric are the lines which remain co-orthogonal after strain,
ie. they are the same as the initial positions of the lines which
become the principal axes of the strain-ellipsoid, or they are the
principal axes of the strain defined in article 2.

The extensions of lines initially parallel to the axes of the
strain-quadric are /(1+2E,)—1, V(1 +2E,)—1, y(1+2Ey)—1,
these are called the principal extensions, and we shall denote them
by 71, 1, 7. The equation of the strain-ellipsoid, referred to its
principal axes in their strained position, is

Bl + )P+ /(1 + 52 + 2/[(1 + py ) =12,
where r is the radius of the sphere which is strained into the
ellipsoid.

'We now see that to specify a homogeneous strain we require to
know the principal extensions, and the principal axes of the strain.
In fact there are three lines of the figure initially at right angles,
which are strained into lines at right angles, but in altered direc-
tions, and lengths initially parallel to these lines are extended in
the ratios 149,:1, 1 +9,:1, 1 4+9,:1,

6. ‘Transformation of Strain-Components.
Suppose that a strain specified by ), €, &, 8, 8, 8 is known,
and that we wish to find the strain-components referred to a new
system of co-orthogonal axes.

Let #, ', Z be the coordinates, referred to the new system, of

a point whose coordinates, referred to the old system, are «, y, 2
and let the scheme of transformation be

x y z
4 L m, n
............ (10),
3/’ Iy ms ng
7 Iy my )

and let the components of the strain referred to the new axes be
&, &, e, 8, 8/, 8. Then, since the new and old lengths of a
given line are independent of the system of axes, it follows that
the strain-quadric (7) will be transformed to

(51’: &) €, %91’, s/, 1}8:’})}'03/2)’ =k,
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and thus ¢/'... will be the coefficients in the transformed equation
of the quadric (7). We thus obtain the equations

o =€l 3+ e -+ g+ 8y + gl + shymy, }
8 =2e) Ll +2egmamy + Legmang + 8y (Mg + many) + 8y(ngly +ngls) + 83(lymy + Igmy)

and the other components can be written down by cyclical inter-
changes of the suffixes of the I’s, m’s, and n’s.

We remark that by a well-known theorem of Solid Geometry
the quantities
a+ete, &' +87 48— (a6 + 66 + 66),
dey€6; + 518,85 — €8, — €857 — €55,
are unaltered by the transformation of coordinates. These are
called invariants of the strain, they are the coefficients in the
discriminating cubic of the strain-quadric (7).

7. Examples. Extension and Shear.

We may utilise the properties of the strain-quadric to discuss
the components of strain in particular cases. Of this we shall give
two examples.

(1) Suppose the strain (e, €, €, &, &, &) equivalent to a
simple extension. Let e be the amount of the extension, and
V(1 +2E;)—1=e¢, then referred to its principal axes the strain-
quadric is

Ear=k.
We thus find E=e+e+¢,
and the extension is therefore given by
e=v/{1+2(a+e+e)—1........ eeeeee (12),

where the positive square root is to be taken.
The conditions that the strain may be a simple extension are
8,7+ 8,7+ 857 — 4 (€65 + €56, + €6,) =0 (13)
d€,6,6; + 8,8 — €87 — €8T — 68,7 = 0 e )
Let I, m, n be the direction-cosines of the extended line,
then we have
2el +8m+8n 8l +2em+sn 8l +8m+ 2en _ s
2l = 2m = 2n ¥s

where x = ¢, + €;+¢; is the root of the discriminating cubic of the
strain-quadric that does not vanish. These equations determine
the direction (I, m, n).
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(2) Suppose the strain (e, €, €, $, 8, 8;) a simple shear of
amount 8. Then, if this be a shear of the planes 3" parallel to the
axis 2, we shall have by (6) for the strain-quadric referred to

(«,9,%)

We therefore have

36+ 82y =Kererrereriiennriennnns (14).

82+ 8,2+ 82 — 4 (€365 + 6561 + €,6;) = &°
4616563+ 81859 — €8 — €8, — €,8,° =0

and the conditions that the strain may be a simple shear are the
third of (15) and

(-‘1+€,+€3=%8’}

82+ 8% + 82 — 4 (626, + €56, + €6,) = 2 (€, + €5+ €5)....... (16).
The amount of the shear s is
8= \/{81’ + 822 + 832 - 4 (G,(-‘a + €3€; + 6162)} ............ (17)-

The equation of the strain-quadric, referred to its principal
axes, is

§(w+y*)+3—‘/is¥—42(aﬂ—y?)=k...............(18).

If this be written Ex+ Ey =k,
then it is easily verified that
V(A +2E) (1 +2E) =1,

and VA +2E) — /(1 +2E,)=s,
or if #,, 9, be the two principal extensions that do not vanish,
A+m)A+m)=1 m—mp=8..ccicvrrnn... 19).

This shews that shear is a state of plane strain which involves
no change in the volume of any part of the figure, and that its
amount is equal to the difference of the two principal extensions.

To find the principal axes of the shear, referred to the axes of
(«, ¥), we suppose one of these axes to make an angle 6 with the
axis #/, then

dssinf 4scos 6+ 4s°sin @ g +s4/(s°+4)
cosf sin 6 - 4 ’

whence ta.n6=§i\/(§+l).

Let a be the angle of the shear, then 4s = tan a, so that
0=} +4a, or i+ ia
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Thus, in figure 2, the principal axes of the shear are the internal
and external bisectors of the angle 4O, these are the lines 01, 02,
and there is extension of lines parallel to 01 and contraction of
lines parallel to 02.

After the strain these lines will not retain their primitive
directions, but we may find the angle through which they are
rotated.

Fig. 2.

In the figure let P be a point on one principal axis before
strain, and @ its strained position, ON the perpendicular on PQ.
Suppose ON =1, then PQ =g=2tan a, and tan § =(1 + sin a)seca.

Hence

NQ=cot0+s=cosa/(l +sina)+ 2 tan a = tan a + sec a,
1+sina & cos a

L - -1

and angle POQ = tan™ e an™ o —=a.

Thus the principal axes of the shear are rotated through an
angle equal to the angle of the shear. It is clear that after the
strain the figure can be turned back through this angle without
any alteration of the length of any line in it, and the simple shear
combined with this rotation is called a pure shear.

In pure shear lines parallel to one of the principal axes of the
shear are extended, and lines parallel to the other principal axis
are contracted, and since the principal extensions are connected
by the relation

A+n)(A+m)=1
given in equation (19), we get the following representation of pure
shear:
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Let ABCD be a rhombus, whose diagonals are in the ratio
1+, : 147, and are in the direction of the principal axes of the

D’ Fig. 3.
shear, and let A’B'C’D’ be an equal rhombus, with its correspond-
ing diagonals at right angles to those of ABCD; then by the pure
shear, consisting of contraction along AC and extension along BD,
the first rhombus will be transformed into the second.
The reader should find no difficulty in verifying the following
methods of producing any homogeneous strain :

(1) Any such strain can be produced in a figure by a shear
parallel to one axis of planes perpendicular to another, a
uniform extension perpendicular to the plane of the two axes, a
uniform extension of all lines of the figure, and a rotation.

(2) Any such strain can be produced by three shears each
of which is a shear parallel to one axis of planes perpendicular to

another, a uniform extension of all lines of the figure, and a
rotation.

8. Pure Strain,

In general a strain is said to be pure when the principal
axes of the strain-ellipsoid are lines which retain their primitive
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directions. In this case the principal axes of the strain-quadric
are lines which retain their primitive directions, and lines of the
figure parallel to these axes are simply extended in certain ratios.

Suppose the strain represented by equations (1) is a pure strain,
and let a—1, 8—1, y—1 be the principal extensions. Let
&, m, & be the coordinates after strain of a point whose coordi-
nates before strain are £, 9, {, the axes of (£, 5, {) being the principal
axes of the strain. Then, since all lines parallel to the axes are
elongated in the ratios a:1, 8:1, y:1, we have

El = aE) il =B"7: ;1 = '7;'
Let the principal axes, viz. the axes of (, 7, {), be given with
reference to the axes of (z, y, 2) by the scheme

x ] z
£ A mo| m
] L, m, Ny
¢ A ms | n

and let @, v, 2z be the coordinates, after strain, of the point,
whose coordinates, before strain, are z, ¥, z; then

& = llEl + lz"h + l3;1

=bhaf + LBy + 1yl

=ha (he + my +mz2) + 1B (hr + my + na2) + Ly (b + myy + nyz).
The coefficient of y in the expression for z,, i.e. the coefficient a,,, is

alimy + Blimy + oylyms,
and we should find the same value for a;,. We should find in like
MANner Gy = g, 0y = ;.
Thus, if the strain be pure, we have the relations
Oog = gz, Oy = iy, Gy = Bgeveenenrrnansonns (20).

Conversely we may shew that, if the equations (20) hold good,
the strain is pure. Suppose the strain given by equations (1), and

write
wm=Nte  a=Nf axStrg
Ox+ Gp=a, On + Qs = b, Gu+aa=¢ }...... (21).
Un— s =20, Oyy— On =20, Gn—a,=2o;
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The displacements of any point are?
z, — & =ex + ¢y + 3bz — yw; + 2w,
h—y=4cx+fy+taz—zw, +Ws}
2, —z=4%bz + tay + gz - 2w, + yw,

If =, ®,, @, be separately equal to zero, the resultant dis-
placement of any point is along the normal to that quadric of the

family
(e f, 9, 3a, 3b, dcYzyzy =const. ............ (23)

which passes through the point. Hence points on any principal axis
of these quadrics remain in it, 7.e. the three co-orthogonal lines that
remain co-orthogonal after strain retain their primitive directions,
and the strain is pure.

Thus the necessary and sufficient conditions that the strain
may be pure are equations (20), or in the notation of (21)

=0, w,=0, =;,=0.

It is shewn in Art. 10 that, when the displacements are small,
these quantities w,, w,, @, are the component rotations of any
small part of the figure about axes parallel to the coordinate axes,
and for this reason pure strain is often described as irrotational.

9. The Elongation-Quadric.

The quadric (23) is called the Elongation-Quadric. Let P be
any point (z, y, z) of the figure, which is transformed to P, (@1, %1, z1)
by the strain, then, if we define the elongation of OP in direction
OP to be the projection of P,P on OP, this is

(“’l—w)'oip'f'(yl_y)oy__p‘f'(zl_z)b%:

and by (22), whether w,, w,, =, vanish or not, this is

op© 9 4o, 1, Feloyey.

Thus the rate of elongation of OP in direction OP is found by
dividing this by OP, or, if I, m, n be the direction-cosines of OP,
this rate of elongation is

(e, 1, 9, 3a, 3b, FcQImn).

1 For an account of the kind of symmetry possessed by these expressions see
the Note on Double Suffix Notations at the end of chapter ITI.
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Hence the rate of elongation of any radius r of the quadric (23),
measured along r, is inversely as the square of this radius,
Let the equation of the elongation-quadric referred to its
principal axes be
e+ + g =k,
and suppose the strain pure, then the equations of strain referred
to principal axes are by (22)
a=1+e)s p=>1+hy a=1+g)2
and we thus see that, when the strain is pure, the quantities
e, f1, g are the principal extensions.
In general, by changing to new rectangular axes the following
quantities are unaltered, viz:—
e+f+g
a’+b’+cﬂ—4(fy+ge+ef)}
defg + abe — ea? — fb* — gc*
From the two first of these we can deduce that
3 (@ + 8+ )+ (e +f? +97)
is also an invariant for orthogonal transformations.

10. Composition of Strains.

Suppose a figure transformed by the homogeneous strain given
by equations (1), and the new figure transformed again by
homogeneous strain. Let the point (z, y, 2) come to (a1, ¥, 2,)
after the first strain, and (2, ¥,, 2,) come to (@, ¥,, 2,) after the
second strain, and let the equations of the second transform-
ation be

Yo=bnz + (1 +b) % + bx 2,

zﬂ=bm@1+bny1+(l +bn)zl

If we write the equations (1) and (25) in Prof. Cayley’s matrix-
notation

-Ta=(1 +b11)@1+buy1+bnzl}

(@, 1, 2)=(1+ay, Gy, G 4% Y 2)eenen(l),
an, l+an 4y l
Uy, Un, ltay

(-'172, Ys, za) = (1 + by, by, b Ziﬁl; Y, zl)'"(25):

] bu, l4bu, by |
bm; bn'b 1+bﬂ3 :
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we can write the equations of transformation, that express z,, ¥, 2,
in terms of 2, ¥, 2, in the form

(,, Ya z) = (1+ey, Ciz, Ci3 %, Y, 2)...(26),
Ca, l+cn, ey

Cn, Cny, 1oy
in which en=(1+an) (1 +by) + Gnbys + agbys
Ca= g (1 + b)) + (1 + aw) bu+%bn} v 27),
cs=a;(1 +bu)+ambu+(1+am)bm

and the other coefficients ¢ can be written down by symmetry. Of
this there are several interesting particular cases—

(i) Suppose the component strains (1) and (25) are pure,
the resultant strain is not in general a pure strain. We have for

example

Cra = Gy + b1a + Gysby + Aabyy + Ggebis,

Ca = Gn + by + @by + b + A,
and these will not become equal on putting a,,=ay,....

(ii) Suppose the strain (1) a pure strain, and the axes of

(=, y, ) the principal axes, so that the elongation-quadric is
ar®+ fi* + g:2* =k, and suppose the substitution (25) equivalent
to a simple rotation 6, about an axis whose direction-cosines are
I, m, n. Then we know that the equations corresponding to (25)
are three of the form

@, — 2, =sin 8 (zym — yyn) + 2 sin? g {(@d+ym+2zn)l—a),

(see Minchin's Statics, 3rd edition, vol. II. p. 104).

Thus the coefficients in the substitution (25) are given by
equations of the form
0

1+by=1+2("-1)sin*5
. . .0
b1,=—nsm€+2hn sin? 3 ................(28),

bn=msin0+2nlsin’g

where the other b’s can be put down by symmetry.

Now writing down the coefficients of (1) in the forms
tm=6, @x=f;, an=g

O =0n=0, m=0y=0, au=ay=0 }
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we can write the coefficients of (26) in such forms as

1+cu=(1+e)(1+2—1sin'}),
ca=(1+fi)(Isin 6 +2mnsin*16), | .----. (30).
cs=(1+g) (—1sin 8 + 2mn sin® 46

It may be verified analytically, and is geometrically obvious,
that the six components of strain, corresponding to the substitu-
tion (28), vanish identically, and that the six components of strain,
corresponding to equations such as (30), are respectively

a=1[A+ay-1] a=}[1+AP-1) &=§[1+g)r-1]
8=0, 8=0s=0.

In general we note that

Caa— Ces = 20 8in 8+ (f, + ¢1) Usin 8 + (f, — g1) 2mn sin® §6...(81).

Now it is geometrically obvious that any homogeneous strain
is a pure strain combined with a certain rotation. Also by
comparing (28) with (22) we see that, when the equations of
transformation, such as (22), correspond to a simple rotation 8, the
quantities =, w,, =, are the products of sin § and the cosines of
the angles which the axis of rotation makes with the axes of
coordinates. It appears however from (31) that, when the equa-
tions correspond to a pure strain combined with a rotation, the
quantities =,, w,, w; no longer have this meaning, unless the pure
strain be indefinitely small.

It may be shewn that, if P, P,, P, be the areas of the projec-
tions of any closed curve on the coordinate planes, then the
line-integral

J@m—2)de+ (g —y)dy +(a—2)dz

taken round the curve is 2P, + 2P, + 2P;w,. From which it
follows that we may interpret =, as half the line-integral of the
tangential displacement round a closed curve of unit area in the
plane yz, with similar interpretations for =, and =,. The proof is
left to the reader.

(iii) When, in equations (1) and (25), all the coefficients
@useros Dy,... are infinitesimal, the displacement of every point of
the figure will be infinitesimal and the equations giving the
resultant displacements reduce to

(.’L‘,-—-’L‘, Yo— Y, %2 — z)=( n+by, Gutba, a+by Im, Y z)

|On+bn, Omtba, Gutbol . (32);
|Gy +by, Gm+bu, Gyt by
L 4
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so that the resultant strains will be found from the component
strains by simple addition. In particular we notice that if the
component strains be pure the resultant strain is also pure.

(iv) A case of great importance is that of the composition
of two shears, especially of two infinitesimal shears of perpendicular
planes.

With the notation of art. 8 the equations of displacement may
be written
oz —z=4%bz, yy—y=%az, z,—z=}bz+}ay.
The elongation quadric is
ayz + bzz = const.
and its discriminating cubic takes the form
e —x} (P +¥)=0,
so that the strain is equivalent to equal extension and contraction,
each §4/(a®+ b?), along two lines at right angles, .. to a shear of
amount /(a?+ b?).

11. Infinitesimal Strains.

The case where the displacements are infinitesimal is the most
important for the mathematical theory of Elasticity. In this case
the six quantities e, f, g, a, b, ¢ of equations (21) are all very small,
and ultimately identical with the six quantities ¢, €, €, 8,, 8, 8 of
equations (3), so that the coefficients of a3, 32 23 yz, zz, 2y in the
elongation-quadric are the six components of strain. The strain-
quadric and the elongation-quadric in this case coincide. In the
same case, the quantities =,, w,, w, are the components of the
infinitesimal rotation of the principal axes of the strain-quadric
about the coordinate axes, as they pass from their positions before,
to their positions after, strain.

The strains may be small, but the displacements finite. In
this case all the quantities ¢, €, €, 8, 8,, 8 must be small, but the
coefficients a;;,... of equations (1) need not be small. Thus for
small strain it is not necessary that e, f, g, a, b, ¢, =, @, w; be
small. If however ¢, f, g, a, b, ¢ be very small, then the strain will
not be infinitesimal unless =, w,, =, are small also.

In the case of infinitesimal displacements, we may analyse the
strain represented by the six components e, f, g, @, b, ¢. The
quantities e, f, g are, as in art. 4, extensions of lines initially
parallel to the coordinate axes, and the quantity a is a shear of
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the planes y=const. parallel to the axis z, or of the planes
z=const, parallel to the axis y; in like manner b and ¢ can be
interpreted as shears.
The elongation-quadric or strain-quadric for the same case is
(6.1, 9 }a, 3b, fcqayzy =k,
and the extension of a radius » in any direction is &/r%

For the transformation of strain-components to new rectangular
axes, we have, with a notation similar to that of art. 10, the quadric
(e.f, 9, %a, 3b, deQayzy’=k

transformed into (¢, f', ¢, 3a’, §¥', §c¢'Yayz)* =k,

and thus we have 6 equations of the forms

& =ely’ +fim? +gn,* + amymy + bily + ey, }
' =elgly+ Yfmomy + 2gngng + a (myng + mang) + b (ks + ngly) +¢ (Lymy + lymy)

From these we might deduce the invariants (24). Of these
invariants the first, e +f+ g, is the cubical dilatation, s.e. it is the
ratio of the increment of volume of any part of the figure to the
original volume, and the invariant
e+f2+g+43@+b6+0)
is the ratio of the integral
[ =~ 2) + (3 = y) + (2, - 2)°} dwdyds,

through any small volume possessing kinetic symmetry about the
point (2, y, 2), to the moment of inertia of the same volume with
respect to any plane through (=, y, 2).

We can also put down two other invariants. These are

=’ + w + vy,
(e.f, 9, da, 3b, i"l‘“’l"""s"’a)’}

The first is geometrically obvious, since the resultant rotation
is independent of the choice of axes, and the second is analytically
obvious, since (e, f; g, 3a, 4b, §cYzyz)* transforms into

(6.1, 9, 3a’, §¥', $Yy2Y,

whenever #?+ 3° + 2* transforms into 2 + y2 4 2%

The results of art. 7 for very small shear are that the equation
of the elongation-quadric for very small shear ¢ of the planes
y =const. parallel to «, or of the planes z =const. parallel to y is

1 Betti, ¢ Teoria della Elasticita’. I! Nuovo Cimento, Serie 2, vi, 1872.
4—2
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cxy =k, and referred to its principal axes this is 4c(2*~g*)=%. In
other words equal extension and contraction e, along two lines at
right angles, are equivalent to a shear of amount 2e, of the planes
parallel to the bisectors of the principal axes, and the angle of the
shear is equal to half the amount of the shear. The axes of the
shear become lines inclined to one another at an angle, whose
complement is equal to the amount of the shear, so that, as
remarked in art. 4, the shear of two rectangular lines, when very
small, is the cosine of the angle between them after strain. The
shear of two rectangular lines is often spoken of as a shear of their
plane.

12. S8traln in a body.

Now regarding a body as continuously filling a region of space,
there will be a particle of the body at any point P, whose co-
ordinates are z,y, 2. Suppose £+ £, y + 9, z+ ¢ are the coordinates
of a neighbouring point @. If any system of forces be applied to
the body, it will in general be deformed. In the deformation that
takes place, let the particle, that was at (z, y, 2) be displaced to
(x+u, y+v, z+w). The quantities u, v, w are the component
displacements of this point of the body, and they must be, in
general, continuous functions of the position of the point, as
otherwise two points, originally very near together, would not
remain near together and the body would be ruptured. Suppose
u, v/, w' are the component displacements of the point , then
these are the same functions of z+ &, y+%, 2+ ¢ that u, v, w
are of z, y, z, and we may expand u/, ¢, w’ in powers of § 7, { by
Maclaurin’s Theorem, and obtain for the coordinates of the new
position of @ such quantities as
ou
oy
so that the coordinates of  relative to the new position of P are
ultimately

w+E+u+§g—g+n +§g—:+terms of higher order in £, 9, §,

ou ou _ou

f(l +87v)+na_y+§$’

Bv av a'y
55¢+”(l+a—y)+§5;’ .................. (35),

f%q;’-+ngi;+c(l +%’§’)

where squares and higher powers of £, 5, { are neglected.
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These expressions are the coordinates of @ relative to P after
the deformation, and they may be compared with the right-hand
sides of equations (1). If then we take a notation similar to (21),
viz.

i o _ow
=% =% 9=z
ow v ou  ow ov Ou
a=a—y+a~z, b=a—z+a;, C—a—w'i'é?/'; (36),
9 = _ W g 0w Ow o Oy _Ou
"oy 0z’ "0z oz’ 2T 0x Oy

we find that the component displacements of @, when P is
regarded as held fixed, are

e+ ¥on + 38— 9wy + Lo,
%CE +f"7 + 1}04'- to, + Eﬁ'a }
€+ dan+ g8 —Ewy+ 9w

Thus the particles in the neighbourhood of P will come into new
positions, which are derived from their original positions by a
homogeneous strain.

A body deformed in any manner is said to be strained, and we
see that, if the displacements be continuous functions of position,
the strain about any point is sensibly homogeneous.

The relative displacements will be indefinitely small if all the
first differential coefficients of u, v, w be indefinitely small. In
this case the quantitiese, f; g, a, b, ¢, =, @,, w, are all indefinitely
small. We recognize that =,, =,, =, are the component rotations
of the matter about P, moving as if rigid, and thus that the most
general system of small relative displacements of the matter about
any point can be analysed into a small rotation, and a small pure
strain. We also recognize that the quantities e, £, g are extensions
of the matter lying originally in lines through P parallel to the
axes, and that a, b, ¢ are shears of planes through P parallel
to the coordinate planes. The six quantities e, f, g, a, b, ¢ are
called the components of strain, and we know that they are
equivalent to three simple extensions of all lines parallel to the
principal axes of the elongation-quadric. All the results of art.
11 in regard to invariants, the cubical dilatation, the resultant
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rotation &c. hold for the matter about any point. For convenience

we state here that

ou ov Oow
A gt gt gy e (38)

1s the cubical dilatation of the matter about the point (z, y, 2).

If the strain be pure, =, =0, »,=0, @; =0, or we have

ow_ o ou_ow v _Ou

oy 0z’ 0z oz’ Oz 0y’
so that there exists a function ¢, such that

o _9% _0
u= 'a; v= 5:; , W= 97 .

The function ¢ is called the “displacement-potential.” Its exist-
ence is confined to the case where the strain is pure.

If the displacements be finite, the deformation of the body
in the neighbourhood of any point P can still be expressed
by six components of strain. Let r be the unstrained length
of any short line PQ of the body, r, its length after strain, and
I, m, n the direction-cosines of P@ before the strain, then, as in
art. 4,

(12 — 19)/1r2 = 2 (I'e, + me, + ne; + mns, + nls, + Ims;)...(39),

2B+ G+G9] )

_3L”+a_’,’ (aga_«a+azf>_v ) “0)
5= a2t oy 0z Oy %t oy az)

and ¢, €, 8, 8 are to be found by cyclical interchanges of the
letters (z, v, 2) and (u, v, w). These equations are deduced from
(85) in the same way as equations (3) from equations (1).

where

The necessary and sufficient conditions that the strain be
everywhere small are that e, €, €, 8, 8, 8; be everywhere small.

All the conclusions of arts, 5 and 6, with regard to the
transformation of strain-components, invariants, and the properties
of the strain-quadric, hold for the strain of the matter about any
point, and likewise the conclusions of art. 7 with regard to the
analysis of particular strains.
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It is easily verified that the cubical dilatation in the general
case i8
V142 (g + e+ &) + (des65 + dese, + 466, — 8, — 87 — 85°)
+ 2 (dar6ses + 88,8 — 618 — €8, — €85°)]| — 1,
and, in case the strain is infinitesimal, this is ultimately
at+ete,
whether the displacements be small or not.



CHAPTER IIL

ANALYSIS OF STRESS.

13. Stress at a point

When a solid is strained forces will in general be called into
play which resist the strain, we propose to investigate the
character of the system of forces thus arising. Avy molecule of
the solid is regarded as exerting upon any other an action depend-
ing on the state and configuration of the system of molecules, and
the second exerts an equal and opposite reaction upon the first.
Consider any plane drawn in the solid, the molecules on the one
side of the plane exert upon those on the other side forces in lines
which cross the plane. Let us fix our attention on an element dS
of the plane. The forces whose lines of action cross dS can be
reduced to a resultant at the centroid of dS and a couple. The
order of magnitude of the couple in the linear dimensions of dS is
higher by unity than that of the force, and therefore, when the
element dS is infinitesimal, the couple may be left out of account.

1 The following among other authorities may be consulted :

Cauchy, Ezercices de Mathématiques, Année 1827, the article <De la pression
ou tension dans un corps solide’, and 4Année 1828, the article ‘De la pression ou
tengion dans un systéme de points matériels’.

Lamé, Legons sur la théorie mathématique de Uélasticité des corps solides.

Thomson and Tait, Natural Philosophy, vol. 1. part 11.

8ir W. Thomson, Mathematical and Physical Papers, vol. 11x.

Basset, Hydrodynamics, ch. 11, xx.

Todhunter and Pearson, History of the Elasticity and Strength of Materials,
vol, 1, especially Appendix, Note B.

Mazxwell, Electricity and Magnetism,

British Association Report, 1885, Sir W. Thomson’s dddress to Section A.
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The forces have therefore a single resultant, and this resultant
constitutes the traction across dS. Let this traction be resolved
into three components in lines mutually at right angles, viz. NdS
in the normal to the plane, and 7dS and 7"dS parallel to two
rectangular lines in the plane. Then N, T, T are called the
components of stress across dS.

Now let us take any point O of the solid and through it draw
three planes at right angles to each other, and take these as
coordinate planes in a system of rectangular coordinates (z, y, 2).
The stress across an element of the plane z at the point O will
have components X, parallel to z, ¥, parallel to y, and Z, parallel
to z. The first of these X, is normal to the plane =, and the other
two tangential to it, and these are the components of the traction
exerted by the matter on the side # positive upon the matter on
the side z negative. The normal stress is reckoned positive when
it is a tension and negative when it is a pressure.

In like manner the stresses on the other two planes have
components X,, ¥,, Z,, and X,, Y, Z,, the capitals indicating the
direction of the stress-components, and the suffixes the planes
across which they act.

We may shew that a knowledge of the stresses across these
three planes at O is sufficient to enable us to determine the stress
across any other plane through O.

Draw a plane very near to O in direction normal to a line
whose direction-cosines are [, m, n, and let A be the area cut out
on this plane by the three coordinate planes, and consider the
equilibrium of the elementary tetrahedron of the solid whose faces
are A and lA, mA, nA. Let F, G, H be the components across
A of the traction per unit area exerted by the matter on the side
of the plane outside the tetrahedron upon that on the other side.
The forces acting on the matter within the tetrahedron are the
bodily forces, and the tractions across its four faces, of which the
former are estimated per unit mass, and the latter per unit area.
When the tetrahedron is indefinitely diminished, the bodily forces
multiplied by the mass within the tetrahedron will give us terms
in the equations of equilibrium or small motion of the order of the
cube of the linear dimensions; the surface-tractions, multiplied
each by the area of the face across which it acts, will give us
terms of the order of the square of the linear dimensions, and the
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former terms are in the limit negligible in comparison with the
latter. Thus for the equilibrium of the elementary tetrahedron
we have, by resolving parallel to «,

- X1 - X,mA—-XnA+FA=0,

and two similar equations by resolving parallel to y and 2. These
are equivalent to

G=1lY,+mY,+nY,
H=1Z,+ mZ,+ nZ,
which determine F, G, H, the components of traction across any

plane, in terms of the direction of the plane and the stresses across
the three coordinate planes.

F= lX,+me+an,}

14, Equations of equilibrium and small motion.

From these expressions we can obtain the general equations of
equilibrium of the solid. Let X, Y, Z be the bodily forces per
unit mass acting at any point of the solid, and p its density, so
that the components of the external force applied to any element
of volume dzdydz are pXdxdydz, pYdzdydz, pZdxdydz, and let dS
be an element of an arbitrary closed surface S drawn in the solid,
and [, m, n the direction-cosines of the normal to dS drawn
outwards. Then the sum of the components in any direction of all
the forces applied to the part of the solid within S must be equal
to zero. Thus, resolving parallel to z, we have

[pXdedydz + [f(IX,+mX, +nX,)dS=0......... @),

the volume-integration extending to all points within S, and the
surface-integration to all points on S.

In transforming the left-hand side of (2) and similar expressions,
we have to use a theorem of Integral Calculus discovered by Green,
and expressible by means of the equation

fff(gi gz gf)dzd?/dz—[f(lf+mn+né‘)ds

in which &, %, ¢ are functions of , y, 2, which are finite, continuous,
and one-valued within the surface S, and the volume-integration
extends to all points within &, and the surface-integration to all
points on 8. This theorem we shall always refer to as Green’s
Transformation.
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Applying the theorem to transform the surface-integral in (2)
into a volume-integral, we obtain the equation

fff(PX+ +—y+aaX)dwdydz=0 .......... (3).

Since this equation holds whatever the surface S may be, provided
only that it is closed and altogether within the solid, it holds when
S is reduced to a point, and thus we have the differential equation
of equilibrium
0X, 0X, 90X,
pX+ oz +7y—+§— ............... (4)

In like manner, resolving parallel to y and z, we obtain the
equations

oY, aY oY,
PV 4+ * oy o O (5)
0Z, aZ” 9g, [ .
PZ+ o + a_l/ +——a =0

In order that the part of the solid within S may be in equili-
brium the sum of the moments of all the forces applied to this part
about any axis must vanish. By taking moments about the axis
of z we get the equation

W (yZ —2Y) dedydz
+[ly(Zz:+mZy+nZ,)—2(lY,+mY,+nY,;)]dS =0...(6).

The surface-integral becomes by Green’s transformation

Jllle G + o+ ) - (o + S+ )] oty
- f f f (Y,— Z,) dedyds.

Hence using equations (5), and reducing S to a point, we have

Similarly Z;—-X,=0, X,—Y¥Y,=0.cccccc...... 3).
The theorem expressed by these equations is due to Cauchy.

In future we shall denote the stress-components! as follows:

Xz=-P: Yy'_‘Q: ZZ=R1 9
Y,=2,=8, Z,=X,=T, X,=Y.,=U e (9)

1 For the symmetry see Note on Double Suffix Notations at the end of chapter mr.
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Then the equations of equilibrium become

oP oU oT

U 0Q 98, o _

Ty TatPY =00 .. (10).
o o8  oR

a—z+-3:-y+$+pZ—0

In case the solid is in a state of small internal relative motion we

have to put instead of pX, p (X —%i;) , and similar expressions in

the other equations, where %i;: is the acceleration parallel to the

axis z of the element whose mass is pdzdyds. Thus the equations
of small motion are three such as

oP oU  oT o'u

an“l"é;"'a;-l-pX—pa; ............... (11).
To obtain the boundary-conditions that hold at the surface of the
solid, we suppose that surface-tractions, whose components parallel
to the axes are F, @, H per unit area, are applied over this surface.

Then the equations that hold at any point of the surface are

FP=IP+mU+aT
G=lU+mQ+nS}
H=IT+mS+nR

where I, m, n are the direction-cosines of the normal to the surface
drawn outwards.

The linearity of these equations is important in the general
theory. We may infer from (12) and (10) that, if forces be applied
at the boundary, stresses will exist in the interior, and the ex-
pression of these stresses is linear in the expression of the bodily
forces and surface-tractions.

15. Statement of the Assumptions made.

The establishment of Cauchy’s theorem, and of the equations
(4) and (5), rests on a particular assumption not quite fully stated
in art. 13. The bodily force that acts upon any element is
necessarily the product of a finite quantity and the mass of the
element. From this equations (4) and (5) are deduced. But, in
order that Cauchy’s theorem may be true, it is necessary to assume
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that the moments of the bodily forces that act upon any element,
about some set of axes whose origin is in the element, are
ultimately the products of the mass of the element and small
quantities which vanish when the linear dimensions of the element
vanish, in other words that the bodily forces acting upon any
element are ultimately reducible to a single force in a line that
meets the element. This is true for such bodily forces as gravita-
tion, and we shall limit our enquiry to the cases for which it holds
good. In the theory of Magnetism and some other parts of
mathematical Physics it has to be supposed that the bodily forces
applied to an element of the medium reduce to a force through
the centre of the element and a couple!. When this is the case
we may take L, M, N for the components of the couple, and then
to equation (6) we have to add the term [ffLdzdydz, so that instead
of (7) and (8) we get

Zy—Y,+ L=0
X,—Z,+M=0;}.
Y.-X,+N=0

In the theory of Elasticity these considerations are unimportant,
and the equations (7) and (8) are true for the systems of forces
usually considered.

16. Transformation of stress-systems.

We must now consider the transformation of any stress-system
from one set of rectangular coordinates to another.

Denote the new system of coordinates by ', ¥, #, and the
corresponding stresses by P, @ R’, 8’, T", U", and let the scheme
of transformation be

l z Yy z
a L m L
| e (18).
¥y i kL | m ny
_____ S ! i
z [ My Ny

1 For a mechanical representation of & medium in which this would be the case,
see Larmor ‘ On the propagation of a disturbance in a gyrostatically loaded mediuam’,
Proc. Lond. Math. Soe. Nov, 1891,
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The stress across the plane &, or L,z +my+n2=0, has com-

ponents
LP +m U +nT,

LU +mQ + nS,

LT +mS+nR;
hence
P=UL (P +mU+nT)+ m (LU + m@Q+nS)+n, (1, T+mS+n,R),
and
U =lL,(LP +mU +nT)+m,(LU +mQ+m8)+n(l, T + m,S + n R);
or

P =12P+mQ+nR+2mn,S+2n,l, T+ 2l;m, U, }
U=l P+mmsQ+ nyna R+ (mngt mgny) S-+H(mlotnoh ) T +H(lima+-1ma) U,

and from these @', R, and §’, 7' may be written down by cyclical
interchanges of the suffixes 1, 2, 3.

It is to be observed that, if the quadric
(P,Q,R, 8T UfayeP=k.....cccvu... (15)

be transformed by the substitutions given by the scheme (13), it
becomes

P,Q, R, 8T U zysy="
This quadric is termed the Stress-Quadric, and it appears from the
above equations that the normal stress across any plane is inversely
as the square of the radius vector of the stress-quadric which is
normal to the plane.

Again the transformation may be such as to refer the quadric
to its principal planes. When this is so &, 7, U’ will vanish, and
the stress across any one of the coordinate planes is normal to the
plane. The stresses P, @, R’ are then called principal stresses,
and we learn that there are at any point of the solid three co-ortho-
gonal planes across each of which the stress is purely normal
These are called the principal planes of stress.

17. Shearing stress.

Let us consider a case of stress in two dimensions. Suppose
that S, T, U all vanish, so that the axes of (, y, 2) are the principal
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axes of the stress, and consider the stress across the planes z = + y,
when P and @Q are equal and of opposite sign. Then

1
ll=m1=;/_2-r n1=0)

1
_lﬂ_""z=‘ﬁr nﬂ=0,

bh=my=0, n,=1
Hence P =0, =0, and U'=—P=Q,
so that equal pressure and tension across two planes at right angles
to each other are equivalent to tangential stresses across the planes
bisecting them of amount equal to either; and, conversely, equal
tangential stresses in any two planes at right angles are equivalent
to two equal normal stresses on planes inclined at an angle of 45°
to them, of which one is a pressure and the other a tension.

Thus the following are equivalent stress diagrams:

NN

llH‘UlH

Fig. 4.

Such a stress-system may be expected to produce a shear of the

planes across which it acts, and it is for this reason that tangential

stress is called shearing stress!. Properly speaking, shearing stress

consists of equal tangential stresses on two perpendicular planes,

the directions of both being perpendicular to the intersection of
the planes.

1 Historically shear appears to have been first used by engineers to express what
we here call shearing stress.
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We shall leave to the reader the working out of the following:

(1) There are three invariants of the stress at any point,
t.e. functions of the stresses which are independent of the
rectangular axes of reference.

(1) If P, @, R, be the principal stresses, the stress across
any plane is proportional to the perpendicular on the parallel
tangent plane of the ellipsoid 4%/ P2+ y%/Q;* + 2*/ R;® = const.

This is Lamé’s stress-ellipsoid. The reciprocal surface was
considered by Cauchy, its radius vector in any direction is in-
versely proportional to the stress across the perpendicular plane.

(ili) The quadric 2*/ P, + 3*/@+ 2*/ R, = const., called Lamé’s
stress-director quadric, is the reciprocal of the stress-quadric
with respect to its centre ; it has the property that the direction
of the stress across any plane is that of the radius-vector to
the point of contact of the parallel tangent plane.

(iv) There are in general at any point an infinite number
of planes across which the normal stress vanishes. These
planes envelope a cone of the second degree, (Lamé’s cone of
shearing stress,) which is reciprocal to the asymptotic cone of
the stress-quadric. When the cone is imaginary, the normal
stress is either a tension for all planes or a pressure. When
the cone is real it separates those planes across which the
normal stress is a tension from those across which it is a
pressure.

(v) The properties of the stress-quadric enable us to find
the magnitude and direction of the stress in particular cases
e.g. when it is known to be a simple tension parallel to a fixed
direction, or a simple shearing stress of sets of parallel planes
(cf. art. 7).

(vi) If the stress on every plane be purely normal, its
magnitude is constant. In this case the stress-quadric, stress-
ellipsoid, and stress-director quadric are spheres.

(vii) If two lines (1) and (2) be drawn from any point of a
solid, and planes perpendicular to them be drawn at the point,
then the component parallel to (2) of the stress across the plane
perpendicular to (1) is equal to the component parallel to (1)
of the stress across the plane perpendicular to (2). (Cauchy’s
theorem.) This is the generalisation of the theorem expressed
by equations (7) and (8).
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18. Work done in slightly incteasing the strain.

We have seen that the strain in the neighbourhood of the point
(@, 9, 2) of an elastic solid, which is slightly displaced so that its
coordinates become &+, y + v, z+w, can be expressed by means
of six components of strain ¢, £, g, a, b, ¢ viz.:

o= N f= o

- oz’ oy’ 9= % 16)

R ,
wla Tute Taty

and we have seen that the stress can be expressed by means of six
components of stress P, @, R, S, T, U. We shall now investigate
an expression for the work done in slightly increasing the strain.

Let F, G, H be the applied surface-tractions given by (12), and
suppose the displacements slightly increased from u, v, w to u + du,
2 + &, w + dw, then the work done is

[[(Féu + Qdv + Hoéw) dS' + [[fp (X du + Ydv + Z8w) daedydz...(17),

the surface-integration extending to all points of the surface S of
the solid, and the volume-integration to all internal points. Sub-
stituting for ¥, G, H from (12), and using Green’s transformation,
we find that (17) becomes

EETT
+ T(aai;uag:) +u(® +a§;)] dodyds

oP oU of oU aQ oS
fff[( tytat X)s +(a *out +pY)8’v
oT o8 oR
+ (5 oyt Te z) Sw] dadyds.
The latter of these integrals vanishes identically in virtue of the
equations of equilibrium, and therefore the work done in increasing
the strain from e, f, g,'a, b, ¢ to e + 8¢, f+ 8f,...c + d¢c is

[Jf (P3¢ + Q8 + Rbg + S8a.+ T8 + Udc) dadydz......(18).

Thus the increment of the potential energy per unit volume stored
up in the solid by the strain is

Pde + Q3f + Rdg + Sda + T8b+ Udc............ (19).
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If there exist a function W of ¢, f, g, @, b, ¢ of which this is the
total differential, then

ow oW oW
P=% =% B=%

- - PR R (20),
S Tw Um%

and W is the potential energy of the strained elastic solid in the
condition denoted by (¢, f, g, a, b, ¢). We shall shew in chapter V.
that W exists when the solid is strained at constant temperature,
or is executing small vibrations.

19. ‘The measurement of stress.

We have seen that any stress-system can be expressed by
means of six component stresses. These are forces per unit area,
and the dimension symbol of a stress is therefore ML™ T

Stresses may be measured in dynes per square centimetre, or in
poundals per square foot, or generally in units of force per unit
area. A unit stress is a stress of one unit of force per unit area.
Thus if one foot be the unit of length, one second the unit of time,
and one lb. the unit of mass, the pressure of the atmosphere (15 Ibs.
weight on the square inch) is 144 x 15 x 322 units of stress.

In the theory of elastic solids much larger stresses are con-
sidered. Stresses of thousands of 1bs. weight per square inch have
to be allowed for in calculations made by engineers. Prof Unwin
cites as an example the Conway Bridge, which is daily subjected
to stresses reaching “7 tons per square inch”. Ordinary railway
axles are expected to be quite safe with a stress of “ 4 tons to the
inch ”.

20. Stress in a medium.

We have defined stress in terms of intermolecular force,
assuming the molecular structure of matter, but we may gene-
ralise the notion thus defined so as to get rid of the molecular
hypothesis. Let us consider space, or any portion of it, continuously
filled with a medium, whose parts move in obedience to Newton’s
Laws of Motion. Then in such & medium the change of momentum
of any part will be partly produced by the action upon it of the
surrounding parts. This action between the two parts separated
by any surface can be conceived of as exerted across the surface,
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and in that case must reduce to stress-systems such as we have
been investigating. We must therefore suppose that at every
point in a medium, across any small area containing the point,
there exists a pair of equal and opposite forces proportional to the
area. The existence of this stress might be taken as a fundamental
fact, just as in Elementary Mechanics the tension of a string and the
pressure of a fluid are taken as fundamental notions derived from
experience, and we may use the notion to obtain equations of
motion or equilibrium, without seeking to refer it to some more or
less remote cause. As an example of a doctrine of stress derived
from an hypothesis other than molecular we may cite the theory of
Hydrodynamics. It can be shewn that the differential equation
of surfaces which always contain the same particles has three
independent integrals, so that there are three families of such
surfaces, and the individuality of any portion of the medium is
therefore secured by the kinematical conditions. Now, assuming
that no part of the medium can be created or destroyed, we have
an equation which represents the fact that the increase in any
time of the amount of matter within any closed surface is equal to
the amount that has entered the surface from outside during the
time, less the amount that has left it from inside. If we form
equations of motion, assuming this kinematical condition after
the manner of Lagrange, it appears that the pressure of the fluid
is the force called into play to prevent the violation of the
kinematical condition. We can thus see how the notion of
hydrostatic pressure can be arrived at kinematically without
the intervention of any molecular hypothesis. The stress-systems
we have been investigating would result from generalising the
notion thus obtained, by assuming that, when any relative motions
of the parts of a continuous medium take place, forces are called
into play between the parts of the medium analogous to hydrostatic
pressure, but not necessarily normal to the separating surfaces.



CHAPTER IIL
ELASTIC PROPERTIES OF MATTER—STRESS-STRAIN RELATIONS,

21. WHEN a solid body is subjected to the action of a system
of forces, which, acting on a rigid body, would produce equilibrium,
certain effects are observable depending on the nature and magni-
tude of the applied forces, and from the observed effects certain
inferences can be drawn as to the behaviour of the system of
molecules composing the body. The observable effects are changes
of temperature and deformations of the body, and the latter can be
kinematically expressed by the strain-systems previously investi-
gated. The applied forces (load) are in general of the character of
surface-tractions and bodily forces, and we have seen that the
existence of stresses within the solid can be inferred. The ex-
pression of these stresses is linear in the expressions of the

1 The following among other authorities may be consulted :

8ir G. Stokes. ‘On the theories of...the Equilibrium and Motion of Elastic
8olids’. Camb. Phil. Soc. Trans. vii1. 1845, and Mathematical and Physical Papers,
vol. .

S8ir W. Thomson. Art. Elasticity in Encyclopedia Britannica and Mathe-
matical and Physical Papers, vol. mi. Also, Lectures on Molecular Dynamics.
Baltimore, 1884.

F. E. Neumann. Vorlesungen iiber die Theorie der Elasticitiéit der festen Korper
und des Lichtdthers, 1885.

Saint-Venant. Translation of Clebsch’s Théorie de Uélasticité des corps solides.
Paris, 1883,

Voigt. ‘Allgemeine Formeln fiir die Bestimmung der Elasticititsconstanten
von Krystallen ..’, Wiedemann’s Annalen, xvi1. 1882, ¢ Bestimmung der Elasticitits-
constanten von Beryll und Bergkrystall’, Wiedemann’s Annalen, xxx1. 1887,
‘Bestimmung der Elasticititsconstanten von Topas und Baryi’, Wiedemann’s
Annalen, xxxiv. 1888, ¢ Bestimmung der Elasticititsconstanten von Fluss-spath,
Pyrit, Steinsalz, Sylvin’, Wiedemann’s Annalen, xxxv. 1888, and ¢Ueber die
Bezichung zwischen den beiden Elasticitiitsconstanten isotroper Korper’, Wiede-
mann’s Annalen, xxxvin, 1889.
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applied forces and surface-tractions, or more generally the internal
stress is linear in terms of the load. When we consider the solid as
composed of molecules, the stresses are seen to arise from variations
in the forces exerted between the molecules, depending, partly at
least, on variations in the molecular configuration; and we have
accordingly included in our statement the inference that the
application of force to the solid is accompanied by changes in its
molecular configuration. Such changes may be of two kinds.
Either the new configuration is a configuration of equilibrium
without the applied force, or it is not; and, if it be not a con-
figuration of equilibrium, yet it may still be nearer to some other
configuration of equilibrium than to the original configuration.

22. Definitions.

Unless every new configuration is a configuration of equilibrium
with no applied force the solid is said to be elastic. In other words
a body is elastic if a continued application of force is required to
maintain any alteration of volume or figure.

The term strain connotes all the relative displacements of the

parts of the solid.

When the solid is elastic, part of the strain disappears on the
removal of the load. This part is called elastic strain and the part
which does not disappear is called set.

Set is a permanent rearrangement of the parts of the solid.

There are in general limits to the amount of strain of any kind
which a solid can undergo without taking any set. Such limits
are called elastic limits. A solid, which can be strained without
taking any set, is said to be in a state of ease up to the amount
of the strain at which set begins. An elastic solid is said to be
perfectly elastic within its elastic limits.

When a perfectly elastic solid is strained by the application of
a load, which is not great enough to produce a strain surpassing
the elastic limit, the whole strain disappears when the load is
removed.

23. Hooke’s Law.

This law connects the observed deformation of an elastic solid
body with the applied load. It states that

The deformation produced is proportional to the load producing it.
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We have already noted the linearity of the relations between
internal stress and load, we may therefore restate the law in the
form

Stress is a linear function of strain.

This is the generalised Hooke’s law to which we have referred. It
forms the foundation of the Mathematical Theory of Elasticity as
at present developed.

Hooke’s law applies, in the first instance, to an elastic solid
body in a state of ease, strained within its elastic limits.

If the law be true it may be applied to finite strains not
exceeding the amount indicated, we have therefore to consider in
the first place the proofs of the law.

The proof of the law in the cases in which it holds is experi-
mental. The law has been demonstrated by the most minute
and careful experiments to hold for nearly all elastic solid bodies
in common use. Sir William Thomson states that the “law is
fulfilled, as accurately as any experiments hitherto made can tell,
for all metals and hard solids, each through the whole range
within its limits of elasticity”. Experimenters have however noted
a defect of the law in the case of cast-iron and other cast metals
for which it appears that the law does not represent the stress-strain
relation for any strains large enough to be observed.

A simple experimental proof can be given in all cases, when
the strain is infinitesimal. The strain is in this case expressed by
linear functions of the differential coefficients of the displacements.
If the law be true, the differential equations of vibration of an
elastic solid body become linear, and isochronous vibrations will be
possible. The experimental fact, that all solids can be thrown into
a state of isochronous vibration, is a peremptory proof of the truth
of the law in the case of the very small displacements involved.
This was first pointed out by Sir G. Stokes.

When a solid is strained by unequal heating it is clear that
Hooke’s Law as formulated above does not hold, for a strain is
produced without any load producing it. The above discussion
must be regarded as applying to solids strained at constant
temperature by the application of external forces, and to such
strains as take place in sound vibrations. In case the strain is not
of this kind there exists no theory which can be demonstrated in a
thoroughly satisfactory manner.
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24 Isotropy—ZASolotropy.

A solid is said to be elastically ssotropic when it exhibits no
differences of elastic quality depending on direction. The same
forces, applied in the same way, to similar and similarly situated
portions of two equal spherical or cubical blocks cut in any manner
from an isotropic solid, produce in them the same strain.

Elastic solids which are not isotropic are termed aolotropic.
If two spherical portions be cut in the same manner from an
zolotropic solid, and one of them be turned through any angle
about any axis, and thereafter similar systems of forces be similarly
applied to similar and similarly situated portions of them, the
strains produced will be in general different. Or if two cubical
blocks be cut from the solid, whose edges are not initially parallel,
and similar systems of forces be similarly applied to them, different
systems of strains will be produced in the two blocks. In fact the
resistance, which an aolotropic solid offers to change of shape,
depends partly on the load, and partly on the direction, with
reference to axes fixed in the solid, of the part of the surface to
which it is applied. As an example of the difference between
isotropy and wolotropy, we have the well-known result that a
weight, hung to the end of an isotropic bar, simply extends the
bar, while, if the bar be @olotropic, it may be twisted as well as
extended.

25. Elastic constants—Moduluses.

According to the generalised Hooke's Law the stress at any
point is a linear function of the strain, ie. each of the six stresses
P,Q R, S T U is a linear function of the six strains e, f, g,
a, b, c

The coefficients in the expression of P... as functions of e... are
termed elastic constants.

A Modulus of Elasticity is the quantity obtained by dividing
the number expressing a stress by the number expressing the
corresponding strain’. The moduluses are functions of the elastic
constants.

A Modulus is called a principal modulus when the stress
concerned provokes only a strain of its own type. In general this
is not the case, but a stress of given type being applied to a solid,

1 ¢.g. P and e are corresponding stresses and strains; so S and a, and the
average pressure — 3} (P+@+R) and the cubical compression —(e+f+9).
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strains of the corresponding type and of other types will be found.
A good example is that of extension. When a prismatic bar is
extended, the stress at any point can reduce to normal tension
across the sections of the bar, but the strain will not at the same
time reduce to simple extension of fibres of, the bar parallel to its
axis. The extension is in fact accompanied by lateral contractions.
For the definition of a modulus of any kind, we have to suppose
that only a certain kind of stress exists, and then calculate the
amount of the strain of the corresponding type, that must occur.
Typical examples of these calculations will be found in arts. 41-43
below.

The moduluses and elastic constants of a solid are physical
quantities of the same kind as stress, 7.e. they are forces per unit
area. In many treatises and memoirs, constants are introduced
which are the reciprocals of the moduluses and elastic constants,
e.g. the “coefficient of compressibility” is the reciprocal of the
modulus of compression.

26. Constants of Isotropic solid.

To give a simple theory of homogeneous isotropic solids, we
may assume that a uniform hydrostatic pressure, or tension, applied
to the surface of a cubical block, produces uniform cubical com-
pression, or dilatation, at all points of the interior and no other
strain,

We may also assume that uniform tangential stress, applied to
any plane, produces uniform shear of the plane and no other strain.

The modulus of compression, or bulk-modulus, of an isotropic
solid is the quantity obtained by dividing the uniform tension by
the uniform dilatation produced by it. It will be denoted by .

The modulus of rigidity is the quantity obtained by dividing
the uniform tangential stress by the shear produced by it. It will
be denoted by u. These are principal moduli.

Suppose the uniform tension to be p, and the small uniform
extension of all lines of the material to be ¢, so that a cube whose
sides are each 1 becomes a cube whose sides are each 1+e¢, then
the dilatation produced is 3¢, and we have the equation

Again suppose the tangential stress, of amount S, to be applied
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to the plane (yz) in a direction parallel to y, the shear of the
plane will be a, where

Young’s Modulus E is the ratio of a tractive force P per unit
area, applied to a bar of the material, to the extension e produced
in the bar, so that P=Fe.

We shall now obtain the expression of the six stresses in
terms of the six strains, and find the value of E as a function
of & and .

27. 8tress-strain relations for Isotropic solid.

A method of arriving at the theory is founded on the following
assumption :

In the case of an isotropic solid, the principal planes of stress
are perpendicular to the principal axes of extension.

Suppose the stress and strain referred to principal axes. Let
P, @1, R, be the components of stress, and ¢, f;, g; the components
of strain. Then plainly P, is a symmetrical function of f; and g;;
and, since the stresses are linear functions of the strains, we may
write

P=x(e +fl +9)+ 2u'e,
Q=Ma+fitg)+2%f,
B=\a+fi+9)+2u0,
the coefficients A and x4’ being the same in all three equations, as
there is no difference of elastic quality depending on direction.
Now let P,=Q,=R,, then will ,=f, = g,, and we find by (1)
S\ +2u’ =3k

Next let P,=—Q,,and R,=0. Then P, and @, are equivalent
to a shearing stress of the planes bisecting the angles between the
principal planes, across which P, and @, act. The magnitude of
the shearing stress is P,, and the shear produced is P,/u, and this
is equal to 2¢, since in the case supposed ¢, =—f;, and ¢, =0.
Hence p'=pu, so that we have

It is convenient to use A and u as the fundamental elastic
constants of an isotropic solid, and then the stress-strain relations,
referred to principal axes, are three such as

.P1=X(€1+fl+gl)+2pel .................. (4).
1 See arts. 11 and 17.
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Now transform this stress-strain system to any rectangular axes
of (z, ¥, 2'). Let (z, y, z) be the coordinates of (¢, ¥, 2) referred
to the principal axes, and let the scheme of transformation be

z L m m !
y Ly my ! Ny
Lo om , n ll

The stress-quadric (P, @, R, S, T,

UYJz'y2y=const. is the

transformed of Pua®+ @y* + R,2* =const., and the elongation-
quadric (e, f, g, 4a, 4b, $cQa'y’Z)* = const. is the transformed of
a2 + fiy + g:2® = const., and equations (33) of art. 11, and (14)

of art. 16, give us
P=P1l12+Q1m12+ Bin?

=N (a+f1+3) + 2p (W +m¥f, +n’g)

=N(e+/S+9)+2ue,
and

U=LLP, +mumQy + mna By

= (Ll + mma +mma) M (61 + 11+ g1) + 20 (Lhes + mum, £, + manag,)

=’w.

Hence the expressions for the six stresses are in general

where

is the cubical dilatation.

With the above expressions for the stresses in terms of the

strains it is found that the expression

Pde + Qdf+ Rdg + Sda + Tdb + Ude
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is the complete differential of a function W of ¢, f; g, a, b, ¢, given
by the equation
2W=(A+2n)(e+f+gr+p(a®+b+c —4fg— 4ge —def)...(7),
so that the stresses P, @,...U are given by the equations
ow ow ow
P=§g, Q=?f-,...U=§c—- ............... (8)
28. Relations between elastic constants.
To express £ in terms of A and u, suppose the stresses reduce
to a simple tension P. Then a, b, ¢ will be zero, and
(A +2p) e+ M(f+g)=P,
(M+20) f+ M (g+)=0,
(+2u)g +2(e+5) =0,
A

from which f=g.=-—2—(m)e=—a'e say,
_ N ] p(BA+2)
and P-—[k+2/x. (x_'_'u)]e— ™t p e.
Hence Young’s Modulus is E, where
_n(BA+2u)  Yuk
E= T R 9)
The number F=IN(Ap)eeeeniinninnnnann, (10)

is the ratio of lateral contraction to longitudinal extension when a
bar is pulled out. This constant is called Poisson’s ratio. Accord-
ing to the molecular hypothesis of Cauchy and Pojsson it is equal
to 4, and A is equal to u. It is certain that there are materials
for which experiment shews that A is at any rate very nearly equal
to 4. We shall not however introduce the relation A=y, except
occasionally in numerical calculations.

In general the ratio o must lie between 4 and —1; for if ¢ >4,
then u is negative, or the medium would not resist distortion, and
if ~1> o, k(=N\+ §p) is negative and the medium would not resist
compression. These limits for o are theoretically necessary. Asa
matter of practice there are no known isotropic materials for
which & is negative, and a negative value of o is for physical
reasons highly improbable.

We have introduced 5 constants E, ¢, A, u, & of which only two
are independent; the reader will find it useful to make for himself
a table giving expressions for each of these in terms of any selected
two.
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29. Equations of Equilibrium and small Motion.

Let u, v, w be the component displacements of any point (z, y, 2)
of the body, and suppose them small continuous functions of z, y, 2.
Then the strain-components e, f, g, a, b, ¢ are given by equations
(38) of art. 12, so that equations (5) become such equations as

Pﬂ@b%*’%ﬁ)”"g—: (1)
S=#(%—z;+g~:) J ............ 3

Substitute these in the equations of small motion (11) of art. 14,
and we have

A o _ o
A +p) g+ uVu+pX =p o

(7\.+p-)%—§ +pV’v+pY='p?1; ............ (12),

A y w
(t+p)-+uVwtpl=p=,

where V2 denotes the operator 2 +§;’+ e A is the cubical

o o’
. . 0w, o0v ow . .
dilatation 8_z+8?/ +a—z , p 18 the density, and X, ¥, Z are the
components of the bodily forces per unit mass acting at the point
(=, y, 2) of the body. The equations of equilibrium are the same

as (12) with the right-hand sides put equal to zero.
With the notation of art. 12 for the cubical dilatation and the
three rotations, these equations can also be written in the form

oA ow; . Ow, _ Pu
(7\'+2l")a;—2l‘a—y +2u 5 +pX=p 57

o, 0w, 0

oA v

(7\.+ 2}&) —a—y‘ - 2[1: E + 2#'87+PY=P -—at’ ...... (13)-
A | Bm o 0w, , 0w

e i e R

The boundary-conditions are found from equations (12) of art. 14,
by inserting the expressions for the six stresses in terms of the six
strains. Thus we obtain

F=1(\A + 2ue) + mpc + nub
G=luc+mOAA+2uf)+npat ............ (14).
H =1ub + mpa +n(AA + 2ug)
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It is easy to shew that these can be written in the form
ou '
F=nDA+2u (37, + mwy— ma-,)
ov
G =mAA+2u (—, + nw, — lw,) ............ (15),

H=n\A +2p(g%+ e, — mw,)

where I, m, n are the direction-cosines of the normal to the bound-
ing surface drawn outwards, dn’ is the element of this normal, and
F, @, H are the forces per unit area parallel to the axes applied at
any point of the bounding surface.

30. Table of Elastic Constants.

As shewing the order of magnitude of the moduluses of some
well-known elastic materials, and for convenience of reference, we
give the following table.

Material P E k " T Authority
Steel Pianoforte | 7-727 (2049 | ......{ ..o | coeeee D. M¢Farlane, quoted by Sir
Wire! 'W. Thomson, Encye. Brat.
Steel 7:849 | 2181|1876 | 834 |[-306]| Everett$
P PO [T PO (TR 294 | Kirchhoff, Pogg. Ann.,1869
» ceeeens | 20811499 ...... '268 | Amagat, Journal de Phys:-
que, 1889
Iron (wrought) |7:677|2000|1485| 785 |[-274] Everett
Brass (drawn) [8-471]1096]...... 373 |[468] Everett
Brass ... ... 1063 ...... ‘333 | Wertheim, Ann. de Chimie,
. 1848
M seonas 1106 (1071 ...... 327 {Amagat, loc. cit.
Copper ... 123911189 |[470]| 327 | Amagat, loc. cit.
” 8843|1258 | 1717| 456 |{-378]. Everett
Lead vewe.. | 160| 369 ...... 428 | Amagat, loc. cit.
Glass 2942 615| 423| 243 | ...... Everett
1w Heeseas 690 463 |[253]| 245 |Amagat, loc. cit.

For greater completeness, the density p of the matter referred
to is also generally given. The moduluses are given in terms
of a unit stress of 10° Grammes’ weight per square centimgtre
The authority for the results is also given. It will be noticed

1 Except in Amagat’s experiments the materials tested were probably not
isotropic, but they are treated as such by the authorities referred to.
2 ¢« Units and Physical Constants’.
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that in some cases we give K, in others k, in others u, and in
others 0. The numbers in square brackets occasionally given in
some columns are obtained from those given in other columns by
application of known relations between elastic constants.

31. Elastic Constants of ZSolotropic 8olid.

In the general case of an molotropic solid subject to Hooke’s
Law we must have each of the six stresses a linear function of the
six strains. Adopting a notation similar to that of art. 10, we may
express the most general stress-strain relations in the form

(P,Q R8T, U)

=(6y €1 €3 Cu Cs CsJ6f 9 abec)..(16)
Ca Coy Cos Cyy Cos Cog
Cxu Cgg Css Cy Cs5 Cos

Ca Cy Cys Cu Cys Cus

Cn Coa Cus Cou Cs Css

Ca Cm Cs Cu Cos Cos:
The quantities ¢,...! are called elastic constants.

We shall hereafter prove (chapter V.), that in case the solid
is strained, either at constant temperature, or in such a way that no
heat is gained or lost by any element, the work (per unit volume)
done in slightly increasing the strain, expressed by

Pde+ Qdf + Rdg + Sda + Tdb + Ude............. amn

is the complete differential of a function W of the six strains ¢, f, g,
a, b, ¢c. In consequence of equations (16), this function must be a
complete quadratic function of the six strains, and this function is

3 (cu, Cxmye--Cu, Cuo. Q6 f, 9,0, b, cP............ (18),
where Crs=Cor, (1,8=1,2...6) c.ocerrivrann.nen (19).

There are 15 relations of the form (19), whereby the 36 constants
of equation (16) are reduced to 21. This is Green’s reduction of
the number of constants, and, in developing the theory, we shall
suppose it to hold good. The constants ¢,... for any particular
solid depend on the material, and on the directions chosen as axes,

1 For the symmetry sse Note on Double Suffix Notations at the end of this
chapter.
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Again we shall prove that, for a system of discrete particles
homogeneously arranged, whose action upon each other is such
that the force between any two is in the line joining them and
is a function of their distance, there is a further reduction in the
number of constants from 21 to 15, effected by the equations

Cs=Cyu, Cu=Cu, 012=ceo}

Cu=Coty Cx=Cet, Cos=Cs
This is Cauchy’s reduction of the number of constants, and there
are many practical applications for which it is convenient to
suppose it to hold good. We shall not however expressly introduce
it into the general theory, as we have no sufficient ground for
supposing that it expresses a necessary property of solid bodies,
and it has not been verified by experiment.

32. Natural Crystals.

Further reductions in the number of constants take place, when
the solid exhibits any kind of structural symmetry. The theory of
the possible symmetries, and of the forms of bodies possessing these
symmetries, is the science of Crystallography’. The internal
structure of crystalline bodies can be inferred from the forms in
which they crystallize. These forms are always bounded by
surfaces which are very nearly plane, and deviations from
plane forms are treated as exceptions, crystals bounded by
planes being regarded as the rule. If any three edges of a
crystal be chosen as axes, the planes of the crystal may be re-
ferred to them, and any plane can be determined by its intercepts
on the axes. The law of crystal form experimentally ascertained
is that, for any crystal, these intercepts are rational numerical
multiples of three fixed lengths dependent on the form. The
ratios of these fixed lengths are in general irrational, and are
called azial ratics. Crystals are classified according to their
symmetry, and their axial ratios, when referred to the most
convenient system of axes. Thus if a, b, ¢ be three fixed inter-
cepts on three fixed axes, any crystal must be bounded by planes
parallel to the planes whose intercepts are a/h, b/k, ¢/, where h, k, |
are positive or negative integral numbers. The ratiosa:b: ¢ are
the axial ratios, and depend on the material. The symbol (4, %, )

1 The system of notation adopted is that of Miller, see e.g., G. H. Williams,
Elements of Crystallography. Maomillan, London, 1890.
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represents a family of parallel planes. If the crystal possess
symmetry with respect to the plane of two of the axes, (say the
b-axis and the c-axis), then the existence of a plane face, forming
one member of the family (k, k, I) requires the existence of a face
forming one member of the family (=4, &, ). The collection of all
the planes required by this law forms a complete or holokedral
crystal form. Of equal importance are the partial crystal forms
arrived at by the selection of certain planes from those of
any complete crystal form. If half the planes be selected the
resulting form is said to be hemihedral, if one quarter tetartohedral;
the half or quarter selected must however be chosen according to
certain rules, depending on the symmetry of the crystal. If, when
the axes are suitably chosen, any one of the axial ratios become
rational, it is clear that this ratio may be taken to be unity, and
the two axes concerned are said to be equivalent; if further these
axes be normal to planes of symmetry, they are said to be equi-
valent axes of symmetry. The law of selection of planes to make a
hemihedral form is that only such planes can occur as intersect
equivalent axes of symmetry at the same distance from the origin,
at the same inclination, and in equal numbers’. The selection of
half the planes of a complete crystal form may either include or
exclude pairs of parallel planes; in the former case the resulting
form is said to be hemihedral with parallel faces, in the latter
hemihedral with inclined faces.

In the theory of elastic crystals, it is convenient to introduce
two sets of rectangular axes. The axes of (z, y, z) are perfectly
general, and the axes of (x,, ¥,, 2,) are parallel to lines to which it
is convenient to refer the faces of the crystal, (sometimes, but not
always, crystallographic axes). We shall denote the displacements,
stresses, and strains, referred to the latter system, by (u,, v,, w,),
(Lo, &, Bo, Sy, 1o, Uy), and (e, fo, Go, @, bs, C); and the most
general system of elastic constants corresponding to (16), when
referred to the axes of (w,, ¥,, 2,), will be denoted by a’s with double
suffixes instead of ¢’s.

1 An example will make this clearer. If no two axes of symmetry be equivalent,
but three planes of symmetry be present, as in the rhombie system, a complete
form is the octahedron (+1, +1, +1). A possible method of hemihedrism is by
selection of the planes (*1, +1, -+1). If there be three equivalent azes of
symmetry at right angles, as in the cubic system, this is not a possible method
of hemihedrism.
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Complete crystal forms are divided into six systems according to
their symmetries, We shall exhibit the stress-strain relations for
each of these systems, and for the most important related hemihedral
forms, with reference to specially selected sets of axes of (x, ¥, 2).

To do this we shall follow F. E. Neumann in his assumptions
that crystallographic symmetry s identical with symmetry in
elastic quality, and the directions of equivalent axes of symmetry
are elastically interchangeable.

33. Triclinic, Anorthic, or Doubly-Oblique S8ystem—
(21 Constants).

In this system there is no plane of symmetry, and no reduction
takes place in the number of constants. The relations (16) with
Crs = Cor are the stress-strain relations.

34 Monoclinic or Oblique 8ystem—(13 Constants).

This system possesses one plane of symmetry. Let this be
the plane (z,, y,), then P,, @,, R,, U, must remain unaltered, and
the other stresses must change sign, when z, and w, are changed
into — z, and — w;, 7.e. when a, and b, are changed into — a, and — b,.
Hence the coefficients ay, s, Qo, Gas, Gy, Bssy Bgg, Aoz vanish, and the
energy-function W is given by

2W=((1;u, am; a&l) a'es, Qyy. --Ieo’.ﬁn go: 60)2 + (a’“) a'ua: a’“ﬁa’h bo))2 (20);
t.e. 2W consists of a complete quadratic function of &, f;, g, ¢,, and a
complete quadratic function of a,, b,

Let (h, &, I) denote any plane of a complete form of this system,
referred to the axes of (z,, ¥,, 2,), then (h, k, —I) must be a plane
of the form, and, taking the two parallel planes (—k, —k, —1)
and (—h, —k, 1), we get the complete crystal form. These planes
do not form the boundary of a crystal since they do not enclose a
space. The faces of a crystal are generally the sets of planes
belonging to several complete or partial forms of the same system.

The parallel-faced hemihedral forms would consist of the planes
(h, k, 1) and (—h, —k, — 1), or of the other pair. Each of these is
identical with a complete triclinic form, and may therefore be
rejected from our enumeration. If there were true monoclinic
crystals exhibiting this mode of hemihedrism we could have the
phenomenon of the combination of an apparently monoclinic form
with an apparently triclinic, which has never been observed. We

L. 6
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shall in like manner reject all partial forms arrived at geometrically,
which are identical with forms belonging to a different system of
crystals.

The inclined-faced hemihedral forms would consist of the planes
(h, k, 1) and (—h, —Fk, ) or of the other pair, or again of the pair
(h, k, 1) and (&, k, — 1) or of the other pair. The first named have
no plane of symmetry.

Some inclined-faced hemihedral forms of this system possess no
plane of symmetry, but the figure of any such form will be similarly
situated with respect to the axes if it be rotated through two right
angles about the z, axis. It follows that P,, Q,, R,, U, remain un-
altered, and S,, T, change sign when wu,, v,, %, ¥, are changed into
— Uy, — ¥y, — &y, — Yo While w, and z, remain unaltered, i.e. when a,
and b, are changed to — a, and — b,. Hence the stress-strain
formulse for these are the same as for the complete forms of the
same system. The remaining inclined-faced hemihedral forms of
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this system possess one plane of symmetry, so that the formula
(20) holds for all forms of this system.

36. Rhombic or Prismatic System—(9 Constants).

The complete forms of this system possess three planes of
symmetry at right angles to each other. Let the planes (, ¥,)
and (x,, 2,) be planes of symmetry. Then all the coefficients

Uy, Gns, Qugy Ty, A5, Tugy Agas Ags, Xags Oy Qus, Qg va.nish, a'nd the
energy-function is given by

2W=(an, tn, Qss, s, A1, G2 J 0, fo: o) + Bua 6’ + Ausbi® + @sci? (21),
which is the same as when there are three planes of symmetry.

Topaz and Barytes are examples of crystals for which formula (21)
holds.

Let (h, k, l) denote any plane of a complete form of this system
referred to the axzes (2, ¥,, %), then (£ A, +%, +1) must all be
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planes of the form, and the complete crystal form is the octa-
hedron with rectangular diagonals of different lengths.

The types of the possible hemihedral forms are :

1°. The tetrahedron formed by the planes ABC, A’BC’, A'B'C,
AB'C’, where AA’, BB’ and CC’ are the axes. This has no plane
of symmetry but the figure will come into a similar position with
respect to the axes after a rotation through two right angles about

either axis, hence for these inclined-faced hemihedral forms formula
(21) holds.

2°. The half-form whose planes are ABC, ABC’, A'BC,
A'B'C’. This is identical with the complete monoclinic form,
and may therefore be rejected.

3°. The half-form whose planes are ABC, A'BC, A’'B'C, AB'C.
This has two planes of symmetry, and formula (21) holds.

We shall write (21) in the form
2W=(4, B, C, F, G, H{e,, f,, g + La + Mb3+ Ncg...(21).
In this notation Cauchy’s relations are
L=F, M=G, N=H.

36. Quadratic or Tetragonal System—(6 Constants).

This system has three rectangular planes of symmetry, and two
of the axes are equivalent ; let these be the axes of , and y,, then
P, must be the same function of e, that ¢, is of f;, and P, and @,
must have the same term in g,; also S, must be the same function
of a, that T, is of b,; we thus get the equalities a,, = ay, @ = 0,
Gu= Gy, and W is given by the equation

2W=(au, G, G, Aus, Aas, a0, [ o, Go)* + Gua (A+ Be?) + Ceel?. . .(22).

Let (&, k, I) denote any plane of the complete form. Then the
complete form will also contain the planes (%, +k +!) and
(tk, +h, +1). If k=h the figure is an octahedron with rectangular
diagonals two of which are equal in length. The hemihedral forms
derivable from the most general complete form are obtained as
follows:—

1°. Selection by alternate planes. Of the 8 bounding planes,
4 are obtained from the form (h, &, {) by taking the signs all
positive, or two negative and one positive, and the other 4 are
obtained from these by interchanging & and k and at the same time
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changing the sign of /. The resulting inclined-faced hemihedral
form has no plane of symmetry, but by rotating it round the z,
axis through 90° it will come into a similar position with respect
to the axes. We shall see presently that equation (22) does not
hold for this case (fig. 7).

’
Fig. 7.

In fig. 7 AB and A’D are two sides of a rhombus, two of whose
corners are 4, A’, and the other two are on OC equidistant from O.
BC and CD are two sides of an equal rhombus, one of whose corners
is O, another on OC opposite to C, and the other two on A4’. The
complete form consists of two pyramids, vertices Z and Z’ standing
on the 8 sided figure ABCDA’... The hemihedral forms obtained
by the first method of selection are such as that bounded by the
planes Z’A B, ZBC, Z'CD, ZDA’...

2°. Selection by alternate pairs intersecting in the principal
plane of symmetry (z, y,). Of the 8 bounding planes, 4 are
obtained from (A, k, I) by taking the first two letters either (&, k)
or (—h, —k) or (k, —h) or (—k, h), and the other 4 from these by
changing the sign of I. The resulting parallel-faced hemihedral
form has three planes of symmetry, viz.: the plane (), %) and
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planes parallel to the sides of the square base in this plane, and
formula (22) holds for these forms (fig. 8).

Pig. 8.

3°. Selection by alternate octants. Of the 8 bounding planes,
4 are obtained by taking the signs of (&, %, I) all positive or two
negative and one positive, and the other 4 are obtained from these
by interchanging A and k. The resulting inclined-faced hemi-
hedral forms have two planes of symmetry which bisect the angles
between the planes (z,, 2,) and (¥, 2,), but the equivalence of the
corresponding axes of symmetry is lost. The form therefore
belongs really to the rhombic system and may be rejected here.

For the trapezohedral hemihedrons obtained by the first
method of selection it can be shewn that the energy-function is
given by an equation of the form

2W=(an, Gn, G, Gas, Qss, G131 €6, J os Jo)*Has (0600 + s +200:( €~ o) o
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which involves 7 constants. This mode of crystallization has been
observed in certain organic salts only.

37. Regular or Cubic System—(3 Constants).

This system has three rectangular planes of symmetry and all
three axes equivalent. It is clear that W is given by the
equation

2W=(au, @u, Cu, G, G, G236, for Fo + Bus (@ + b + ¢57)....(24).

Let (h, k, I) denote any plane of the crystal. Then the complete
form is obtained by taking the six permutations of the letters
h,k, I, and giving either sign to each letter. The most general
complete form is therefore bounded by 48 planes. The types of
hemihedrism are similar to those of the tetragonal system. If the
first method (by alternate planes) be adopted, the resulting figure
will have no plane of symmetry; but it will coincide with its ori-
ginal position after a rotation through 90° about either axis, and
equation (24) holds for this case. If the second method (by
alternate pairs intersecting in a principal plane of symmetry) be
adopted, the resulting parallel-faced hemihedral forms will have
three rectangular planes of symmetry, one belonging to the
complete form, and the other two bisecting the angles between
two principal planes of the complete form, and all three axes
equivalent, and equation (24) will clearly hold for this case. If
the third method (by alternate octants) be adopted the resulting
inclined-faced hemihedral forms will be such that, by a rotation
through 45° about either axis, the two principal planes of the
complete form, that meet in that axis, become planes of symmetry,
and equation (24) will therefore hold for this case.

Fluor-spar, Rock-salt, Pyrites, and Potassium Chloride are
examples of minerals for which formula (24) holds.

38. Hexagonal System—(5 Constants).

This system has 7 planes of symmetry, of which one is perpen-
dicular to the axis z,, and 6 meet in the axis 2, and are symmetri-
cally arranged round that axis, and the axes perpendicular to the
latter 6 planes are equivalent. We can express this by beginning
with the rhombic system, and supposing that the expressions for
the stresses in terms of the strains are unaltered by a rotation
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through 60° about the axis z,, When the new axes are given by
the equations

L=1%, m =43, =0
l2=_%~/3, m2=%: n2=0
L,=0, my=0, ny=1

the equations of transformation of strain-components, given in (33)
of art. 10, become

€=%e+4f+3Iv3c, a’ =3%a— $/8b,
S=%e+1f—-1v8c, bV =4N3a+4), }...(26).
9=9 '=—§v/3e+4n3f—}c

The equations of transformation of stress-components given in (14)
of art. 16, give P, @, ... in terms of P, Q,... If we write down
the corresponding formula for P, @, ... in terms of P, €,... we
shall get

P=}P +{Q-3v3U', S=38 +4vaT,
Q=4P +1Q +3v3U’, T=—}y38 +3}T (27).
R=R, U=3v3P —}v3Q — 30’

Now writing equation (21) in the form
2W=(4, B, C, F, G, H{e,, o, g, + La® + Mb?+ Ncp,
substituting for 8’ and 7" in the S, T equations of (27), and
equating coefficients of a or b, we obtain L =M.
Substituting for R’ in the R equation of (27), and equating
coefficients of e or f, we obtain F=@G.

Substituting for P, ', U’ in the P, @ equations of (27), and
equating coefficients of ¢ in the P equation, and coefficients
of f in the Q equation, we get §N =134 — &B —3H, and
4N=13B— %A —~3H, from which A =B, and N=}(4 — H).

Thus the energy-function is given by

2W=(auy gy, Qgs, G, Oug, %Ieoxfo- go)’+a«(aoz+bo’)+ %(a'u'—a'u)co2

Note that this formula is unaltered by turning the axes of x, and
¥y, through any angle.

Beryl is an example of a crystal for which this formula holds.

39. Rhombohedral System—(6 Constants).

The most important hemihedral forms of the hexagonal system
are the rhombohedrons obtained from a hexagonal pyramid by



39] SYSTEMS OF CRYSTALS. 89

the selection of alternate planes. In figure 9 ABCA’B'C" is a
regular hexagon, and ZZ' a perpendicular axis, and the faces of
the rhombohedron are ZAB, ZBC, ZCA', ZA'B, ZB'C',and ZC' A.
These forms are unaltered by rotation through 120° about the axis
2z,, and also by rotation through 180° about the line A.A’, which
we take for the axis #,, We have already seen (art. 34) that the
last property produces just the same simplification in the energy-
function as if the plane z, =0 were a plane of symmetry, and we
may therefore set out from the form

2W =(tn, @z, Gx, Gus - J 60> fo, Jo, @) + (@ss; Gows TaY bo, Co)*
If we work out the conditions that this may be unaltered by a
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rotation through 120° about the axis z,, we shall find the energy-
function for this crystal system given by

2W = (au, @u, Gus, Gss, Gos, 013 €0, for Go)* + Bas (@ + b)) +3 (@ — an) &

+ 20,3 (8 — fo) + 201 DoC0e v evvvvnenne (29).
After what we have just done for the holohedrons of the hexagonal
system, the work may be left to the reader. Formula (29) holds
for Iceland Spar.

Quartz is an example of a tetartohedral form of the hexagonal
system, which is a hemihedral form of the rhombohedral system,
and has the property of being unaltered by the same rotations as
the rthombohedron. Formula (29) therefore holds for this mineral.

40. Isotropic Solids.

In an isotropic solid any three rectangular lines are equivalent
axes of symmetry, and therefore there cannot be more independent
constants than there are for a regular crystal, and the energy-
tunction will be given by an equation of the form

2W=A(+/*+9)+2H(fg+ge+ef )+ N(a*+b+¢2),
where there may be relations among the constants.

Again this function must be unaltered by rotation of the axes
through any angle, and therefore, in particular, if the rotation be
through 60° about the axis z. This will give us the same relation
among the constants as holds for hexagonal crystals viz. :

H=A4-2N.
Hence 2W takes the form
Ae+f+9r+ N[a*+b0+c—4(fy+ge+ef)]
Now the quantities that occur herein are invariants, and therefore
no further reduction in the number of constants can be effected by

considerations of symmetry. This is the same form as that of
equation (7) of art. 27.

41. Resistance to Compression.

Consider now a prism of any solid in the form of a rectangular
parallelepiped whose edges are parallel to the coordinate axes, and
suppose it subject to uniform surface-tractions only. It is clear
that the stress-equations (10) of art. 14 can be satisfied by sup-
posing P, @, R all constant, and S, T, U all zero, and then, by
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(12) of the same article, it follows that the surface-tractions are
P, @, R on the three pairs of faces.
Now let P =@ = R=—p, then a uniform pressure p is applied
to the faces of the solid, and we have in general
cue+onf+oagtaatodtac=—p
Cst+Cnft g+ +cubtot=—p
Cue+onf+omg+oudtodHot==p\......... (30).
e+ oy f+cugteatcgdtcc= 0
e+ Couf+cug oot +cubtoc= 0
Cioe + oo+ Cng +Cut +Cb+cc = 0
Let II be the determinant formed with the ¢'s, and C,, the
minor of ¢, then
e=—p(Cn+ Cu+ Cy)/TI,
S==p(Cis+Ca+ C)/II,
g=—p (0 + O + Cy)/IL

Hence p=—(e+f+9) oo 10520, 520,520,
If k=TI/(Ca+ Cat Cro+ 20+ 2Cs +2C) evveveneees @),

then k is the ratio of the uniform pressure applied to the cubical
compression produced. This is the resistance to compression, or
bulk-modulus of the solid, for the set of directions (z, y, 2). Now
in the case under consideration the stress-quadric is a sphere
p (2* + y* + 2°) = const., and therefore if we transform to new axes
the normal stresses will each be —p, and the tangential stresses
will be each zero. Also we know that ¢+ f+ g is an invariant.
It follows that the bulk-modulus % is independent of the set of
directions (z, y, 2). It can be shewn without difficulty that, if
uniform pressure p be applied at all points of the surface of any
solid, uniform cubical compression p/k will be produced.

42. Rigidity.

Suppose that all the stress-components are zero except S;
the stress reduces to a simple shearing stress of the planes (y, 2),
and if a be the shear produced, then

a =80, /I

Thus II/C,, is the resistance to shear of the planes y = const.
parallel to the axis z, or of the planes z=const. parallel to the
axis y, and this may be called the rigidity for the directions (y, 2).
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In the case of crystals of the rhombic system the three
rigidities, for the three pairs of principal directions, are the I, M,
N of (21), p. 83 and a like simplification has place in the case of
any body having three rectangular planes of symmetry.

In general suppose the stress-system to reduce to shearing
stress S’ of planes (I;, m,, n) and (&, m,, n,) at right angles to
each other (see art. 17). Let (4, m;, m) be the intersection of
these planes, then the stress-system referred to the (z, y, 2) axes
will be
P=215, Q = 2mym,S, R =2nmn,8 } (32)
8 =(myng + mgny) 8, T'=(nds +n,la) &, U = (Limy +Lmy) &' '
The shear a’ of the lines (2, 8) is the cosine of the angle between
them after strain, and this is

o' =2 (lhe + mymy f + nanag)
+ (Mg + Myns) @ + (nals + 15ls) b + (L + Lymy) c....(33).

Also ¢ =(CynP + C@ + CyR + C, S + C,, T + C, U)/TI,
and f, g, ... are given by similar equations. Hence
Ia'/S =
(Cu, Ca....Crs... Y 201y, 2mamg, 2nsng , g+ Mgy, Nals+nola, lymy+Lms)?

where the right-hand side is a complete quadratic function of six
arguments, and its coefficients are the minors of the ¢’s in the
determinant I1. The quantity obtained by dividing II by the
right-hand side of (84) is the rigidity for the directions (L, m,, n,),
(L5, my, my).

For a solid with three rectangular planes of symmetry, the
rigidity for directions (2, 8) is the reciprocal of the expression

4(BO—F?, OA—G?, AB— H?, GH— AF, HF — BQ, FG — CHYlgly, myms, ngng)?
(ABC+9FGH- AF*— B CHY)

+ 7 (g b gt (b ngl i g gl (35).

The general formula (84) shews that there is some obscurity
about the definition of the rigidity in art. 26, as the rigidity of a
crystal depends, not only on the plane to which the tangential stress
is applied, but also on the direction of the tangential stress applied
to the plane. Suppose any two lines at right angles to each other
drawn in the solid, and let these be taken as axes of ¥ and 2’ in a
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system of rectangular axes of (#/, ¥/, 2'), and let the stress be such
that, referred to these axes, the stress-quadric is 28%/2 = const.;
then §' is a tangential stress on the plane 2’ =0 parallel to the
axis ¥, and there is an equal tangential stress upon the plane
¥ = 0 parallel to the axis 2. If the plane 2/ =0 bound the solid,
and the traction 8" be uniformly applied to this plane face, we
may expect that the planes 2/ =const. will be made to move
parallel to themselves, and to the axis 4. In the case of a crystal
however this shear is only part of the effect, and it is by com-
parison of this shear with the traction S8’ that the “rigidity ” for
the directions (y/, ) is arrived at. In regard to the formula (84)
it is to be noticed that the rigidity for two directions is a sym-
metrical function of the direction-cosines defining them, ze. it
depends equally on the direction of displacement and on that of
the normal to the planes displaced. It is easy to shew that in the
case of an isotropic solid the formula becomes independent of both
directions.

43. Young’s Modulus.

Suppose that all the stress-components are zero except P, then
He = CnP,-

and II/C,, is the ratio of the tension to the extension for the
direction 2. This is called the Young’s modulus for this direction,
and we shall denote it by Z,.

Suppose next that the stress-system reduces to simple tension
P, in direction (;, my, n,), then, referred to the axes of (z, y, 2),
we have

P=102P, Q=mzP, R =n2P (36)

S=mnP, T=nlP U=l P} e .
The extension ¢ in this direction is

€ = el + fm? + gn? + amn, + bl + chm,......... (87).

Hence
II¢ [P = (Cy, Cn,...C... QB3 M2, m2, mymy, iy, Ly .. (38),
where the right-hand side is a complete quadratic function of six
arguments, whose coefficients are the minors of the ¢’s in the
determinant II. The quantity obtained by dividing II by the
right-hand side of (38) is the Young’s modulus of the material
for the direction (1, m;, n,).
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If we construct the surface of the fourth order
(Ch, Cayeo. O . [ 28 3P, 22, y2z, 23, xy)* =const....... (89),
the radius vector of this surface in any direction is inversely
proportional to the real positive fourth root of the Young's
modulus of the material for that direction.
When the solid possesses three rectangular planes of symmetry,
the equation (38) may be written
1_& om mt 2min? | 2000 | 20%m!
E=E+—E’; E'l‘ T, +—1{-,"*+~'F’— ......
where E,, E,, K, are the Young’s moduluses for the three principal
directions, and the E’s and F's are given by such equations as

1_ BO-P
E‘ll—m’
H B F
Q@ F O

This case has been discussed by Saint-Venant!, He shewed
that there are in general 13 directions for which £ becomes a
maximum or minimum. Of these 3 are the axes of (z, y, 2),
2 others lie in each of the coordinate planes between the axes,
and the remaining 4 lie one in each of the trihedral angles formed
by the coordinate planes. He also found that all these directions
except the first three will be imaginary if

F, lie between E, and E,,

F, lie between E; and F,,
and Fy lie between E, and E,,
and if the 3 quantities such as

57 &5+ (5-7) (7 F)

have not all the same sign.

In the notation of this art. the result (35) is that the rigidity
for directions (2, 3) is the reciprocal of

L2 | meimg 1y,

4 [—E;’f E, t7F,
2 1 2 1 2 1

(T'l - z) MMgNNy + (E - ﬂ) nnglol, + (Fs - N) lgl,‘mgma:l

] ? 3 ? lﬂ ls 2
g (e man (o 4 ndhy | (b bl a5,

1 See the ‘ Annotated Clebsch,’ pp. 95 sq.

+
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and the result (31) of the article preceding is that the resistance
to compression is the reciprocal of

1 1 1 2 2 2 1 1 1

E+E+E+ﬁ+E+Fs I M- N (31).

44 Ratio of Lateral Contraction to Longitudinal ex-
tension.

When all the stresses except P vanish we have as before

Ile = C,P
1 0 21 O (42).
IIg = C,,P

Denote the ratio — fJe in this case by o,;, and — g/e by oy, then
Oy == 12/011-

There are six principal quantities such as this, and they are
the ratios of lateral contraction parallel to one axis to longitudinal
extension parallel to another. We shall call them the principal
Poisson’s ratios.

In the case of three planes of symmetry, we have, with the
notation of the last article,

ou=E (55~ 7))

= (55~ 7)

on=F, (%V—;) [ eeeerneeenne (43)
ou=E (55-7)

on=E, ‘2”31' %,)

on="E, (21L - %) )

Observe that for a regular crystal
E=E=E,=E F,=F,=F,, and L=M=N,
Also for an isotropic solid the Z’s are equal to the F’s, and the

expressions for the bulk-modulus and the o's and E’s coincide
with those found for %, o, and £ in arts. 27, 28.
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45. Elastic Constants of Crystals,

The elastic constants of several minerals have been determined
by Prof. Voigt of Goéttingen by experiments on the torsion and
flexure of rods. He shewed how to extend Saint-Venant’s theories
of torsion and flexure so as to apply to cases in which the @olo-
tropy of the material was of a more general character than that
of a rhombic crystal, having an axis of symmetry in the direction
of the bar, but most of his experimental results depend upon the
application of the theories of Saint-Venant. We give a résumé
of some of Prof. Voigt’s principal results, the constants being
expressed in terms of a unit stress of 10° grammes’ weight per
square centimetre.

For Pyrites (regular), the constants are
a,=3680, a,=1075, a,=—488,
and we have
Principal Young’s modulus, £ = 3530,
Principal Rigidity, @y = p=1075;
also by calculation we find Principal Poisson’s ratio o = — } nearly.

These results are very remarkable, shewing that these modu-
luses of pyrites are much greater than those of steel?, and further
that a bar of the material cut in the direction of a principal axis
when extended expands slightly in a lateral direction. The
modulus of compression is about 1070 x 10° grammes’ weight per
square centimetre, which is considerably smaller than that of steel.

The table shews the values? of the constants for three other
minerals for which the energy-function has the same form as for
Pyrites. In this table a, is the principal rigidity, and E is the
principal Young’s modulus.

Material E ay a5y ay
Fluor Spar 1470 1670 457 346
Rock-salt 418 477 132 129
Potassium Chloride 372 375 198 655

1 See table, p. 77. The moduluses for different specimens of steel vary
considerably.

2 These numbers shew that there really exist materials which possess what Sir
‘W. Thomson calls * cyboid molotropy.” (See his Lectures on Molecular Dynamics,
p- 1568, and Note B at the end of this volume.)
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Except in the case of Rock-salt, Cauchy’s condition (a,, = a,) is
not even approximately verified, and the difference is much greater
than could be accounted for by assuming experimental errors.

Beryl is a Lhexagonal crystal for which the constants are (art. 38),

ay = 2746, agx= 2409, a,,=980, a, =674, a, = 666.

For a bar whose axis is in the direction of the principal axis
of symmetry E=2100. For a bar whose axis is in the direction
of a secondary axis of symmetry £ =2300. The first of these is
the same as that for steel, and the second is rather greater. The
principal rigidities are 666 and 980, of which the first is less and
the second considerably greater than the rigidity of steel
Cauchy’s relations are approximately verified.

Quartz is a trapezohedral tetartohedral form whose elastic
character is similar to that of a rhombohedral crystal. The con-
stants are

a4y =868, ag=1074, 0, =143, a,,=70, a, = 582, a,,=171,
and £ in the direction of the axis z, is 1030.

Topaz is a rhombic crystal whose principal Young’s moduli
and rigidities are greater than those of ordinary steel. The
constants of formula (21) are for this mineral

A =2870, B=3560, C =3000, F=900, G =860, H=1280,

L=1100, M =1350, N =1330,
the axis of z, being the brachydiagonal, and that of , the macro-
diagonal. The principal Young’s moduli are 2300, 2890, 2650.

Barytes is a mineral whose energy-function has the same form,
and its constants are

A =907, B=800, C=1074, F=273, G =275, H =468,
L =122, M=293, N=283.

These results also shew that for these materials Cauchy’s

reduction is not valid.

46. Amorphous bodies.

There are many solids such as laminated metals, and fibrous
woods, which exhibit a certain symmetry without being crystalline,
t.e. there are three planes of symmetry, and the body may or
may not be isotropic with reference to all lines drawn in one of
them. In either case we may expect that the Young’s modulus
E will have only three (or two) maximum and minimum values,

L. 7
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and further we may expect that the Young’s modulus in one
principal direction will have a ratio neither very large nor very
small to the principal rigidity for the pair of perpendicular axes,
lastly, we may expect one at least of the ratios o not to be very
large. These conditions can of course be satisfied in a variety
of ways. Saint-Venant proposes formule equivalent to

_3MN

Q=Ne+ 3NLf+ Ly, T=Mb>.cceer... (44),
R=Me+ L+ 32, y_me

where n is a number. These satisfy all the above conditions, and
are put forward by Saint-Venant as likely to prove more useful
in practical applications than the formulz for an isotropic solid.
(See the “ Annotated Clebsch,” p. 107.) In case the axes of z
and y are interchangeable, we can simplify these formulae by
putting L=M.
It is easy to shew that
1
=145 (7

the work is left to the reader.

47. Determination of the constant n.

Saint-Venant has proposed an empirical formula for n in the
form

271

where « is a number. In the absence of definite evidence he
proposed to put y=16. The ratio £;/E, is known for some kinds
of wood, eg. it has been shewn by Hagen' that this ratio is
15 for oak, 22'5 for beech, 48 for pine, 83 for fir, the direction
(8) being that of the fibres. If we eliminate n between equations
(45) and (46), we obtain a formula for «, viz.:

,1,‘5 (% %f _1) / (g: -1) eeeveeseeenns (47).

Supposing the ratio £y/E, known, this would enable us to find
the value of 4 by experiments on torsion directed to the deter-

1 ¢Sur P'élasticité du bois.’ Annales de Chimie, x1. 1844,
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mination of N and L. The same experiments would give n
directly by (43).

48. Other distributions of Elasticity (Curvilinear Dis-
tributions).

There is another way in which the elasticity of a homogeneous
solid may vary, viz.: two similar elements being cut from different
portions of the solid, it may be necessary to have them differently
orientated in order that they may exhibit similarity of elastic
quality, the relative orientation depending on the relative position
of the parts of the solid from which the elements are cut. An
example will make this clearer. Suppose a thin plate of some
material which has three planes of symmetry, one of which co-
incides with the plane of the plate, rolled into a circular cylinder;
it will retain differences of quality depending on direction. A
series of such plates may be put together so as to form a solid
cylinder, and this may be done in such a way that the generators
are axes of symmetry. Then, if similar elements be cut from two
parts of the solid cylinder, they will exhibit similarity of elastic
quality when turned so that the radii and generators of the
cylindrical surfaces are parallel. This is an example of a
“cylindrical distribution” of elasticity, and in like manner we
might have spherical and other distributions. If we refer the
matter in the neighbourhood of any point to a system of axes
passing through the point, and chosen so as to simplify the stress-
strain relations, the directions of the axes chosen will vary from
point to point, and it will be best to use some system of curvilinear
coordinates. We shall return to this matter when dealing with
such systems. It is clear that processes of manufacture may
introduce such variations of elasticity as we have just described,
and we shall refer to them as “ curvilinear distributions”.

49. Note on Double Suffix Notations.

The kind of symmetry possessed by the sets of quantities that
we have to consider is best brought out by the use of some form
of double suffix notation. In the writings of different elasticians
a great variety of different notations may be found. Some of
them are tabulated and compared in art. 610 of Todhunter and
Pearson’s History, vol. 1. All the notations that are really
suggestive are clumsy. We have adopted Sir W. Thomson’s
notation, which is neat but not suggestive. It will be found

7—2
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convenient to compare the notation employed with a double-
suffix notation or some simplified form of one, and to keep the
latter in mind.
The six strains
ot du D b D b D
oz’ 0y’ 0z’ oy 0z’ 0z oz’ dx Oy
may be denoted by =z, ¥y, 2, Yz, 22, @y
This is Kirchhoff’s notation, and we have

e==a,, f=yy..... c =2,
The six stresses P, @, R, S, T, U may be denoted by
=, W, =, 95, =, 5.
Then eg. zz is the stress in direction z across a plane perpen-
dicular to z, 3= is the stress in direction y across a plane perpen-
dicular to 2, and by Cauchy’s theorem y:=7z. This is Prof.
Pearson’s notation.

The elastic constants. may be expressed in the following manner.

Write

72 = lwwx| Ty + |22y Yy + 15x22) 25 + \eaye| Y, - \ewsz| 2y + lexey Ty,

vz = |yzxa| Ty + vy Yy -+ lyssal Z; + wawst Y, + szl 2, + lyzyl Ty,
and similarly for the other stresses, where the first two letters are
always the same as those in the stress on the left, and the second
two are always the same as those in the strain on the right.
Now, from the nature of the quantities involved, it is clear that the
first two letters in any of these coefficients may be interchanged,
and in like manner the second two letters may be interchanged.
With this understanding the number of the coefficients is 36.
Green’s reduction to 21 is effected by supposing that the first
two letters may be interchanged with the second two; this is the
relation ¢, = ¢, of art. 31. Cauchy’s further reduction to 15 will
be arrived at by supposing that the order of the letters in any
coefficient is indifferent.

To see the relation of the constants |rzez| ...... with ¢y...... we
observe that the suffixes (1, 2, 3) correspond to the combinations
of two letters which are alike (2=, yy, 2z), and (4, 5, 6) to the
combinations of two letters which are unlike (yz, 2z, zy), thus we
may write down the coefficient ¢,; = zz351, and again Ce = 23231, Ac-
cording to the rari-constant theory these two are identical, while
the multi-constant theory makes them different (see Introduction).



CHAPTER 1IV.
THE STRENGTH OF MATERIALS.

60. For practical purposes it is important to have information
as to the behaviour of materials strained beyond their elastic limits,
and there exists a large body of knowledge of this kind which can
be found in treatises on Applied Mechanics®. We propose in this
chapter to give a brief account of some of the principal facts
experimentally ascertained, and to explain in what sense the
mathematical Theory of Elasticity becomes of use in applications
to practice.

1. Stress-strain diagrams®.

One of the greatest aids to scientific investigation of the
properties of matter subjected to stress is the use of these
diagrams. They are usually constructed by taking the strain
developed as abscissa, and the stress producing it as the corre-
sponding ordinate. For most materials the case selected for this
kind of treatment is the extension of bars, and, in the diagram,
the ordinate represents the traction applied, and the abscissa the
elongation of the bar., The testing machine, by means of which
the experiments are made, can be associated with an automatic
recording apparatus® by which the curve is drawn. The general
character of the curve for hard metals under extension, is now well
known. It is for a considerable range of stress very nearly straight.

1 e.g. Rankine’s Applied Mechanics, Cotterill’s Applied Mechanics, Unwin’s
Testing of Materials of Construction.

3 The use of these diagrams appears to have been suggested by J. Bernoulli
in 1694, but they were really introduced into practical treatises by Poncelet in 1839.

3 See Prof. Unwin’s treatise on the Testing of Materials of Construction.
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Then comes a stage in which the curve is generally concave down-
wards, so that the strain increases faster than it would do if it were
proportional to the traction; in this stage the strain is largely a
permanent set. As the traction increases there comes a region of
well-marked discontinuity, in which a small increase of traction
produces a large increase of set. The traction at the beginning of
this region is called the Yield-Point’. If the traction be increased
above the yield-point, local flow of the material generally takes
place at some point of the bar, determined apparently by accidental
circumstances, and the bar ultimately breaks.

52. Elastic Limits.

The strain is in general wholly elastic, provided it be not
greater than a certain limit, t.e. if a certsin limiting stress be not
exceeded, the strained body recovers its previous form and dimen-
gions on the removal of the load. The elastic limits are by no
means constant, even for the same kind of material, but appear to
depend very much upon the previous history of the body tested.
Cast iron is an example of a material which, in the natural state,
cannot be subjected to any finite stress without receiving a
permanent set. It is well known that the elastic limits may be
gradually raised by the application of loads that produce a perma-
nent set. Thus a bar of cast iron, after having received a set by
the application of a small finite load, may be strained by the
application of an equal or slightly greater load, without taking any
increase of set. It is possible that in cases of this kind the initial
set, consists in the removal of a state of initial strain, or, in other
words, that the application of a load to the body is required to
reduce it to a state of ease. It is important to remember that
there are in general two elastic limits for the same kind of strain ;
thus, for most materials, the limiting elastic extension differs from
the limiting elastic compression. It is also important to remember
that the elastic limits may be considerably widened by the gradual
application and removal of loads that produce small permanent
sets. The experimental determination of elastic limits is beset by
difficulties, among which not the least important is that the elastic

1 The phenomenon appears to have been first noticed by Dufour in Geneva in
1824, in some observations on a bridge of iron wire. Poncelet was acquainted
with it. The name * Yield Point’ is due to Prof. Pearson (Todhunter and Pearson,
vol. 1.).
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limit is the greatest stress that produces no set, while experiment
can only determine whether there is a set large enough to be
measured, and therefore the determination depends upon the deli-
cacy of the measuring apparatus employed.

53. Time-effects. Plasticity.

The length of time that a body has been subjected to con-
siderable stress generally affects the strain produced, and the
length of time that a strained body has been free from stress
generally affects the extent of the elastic recovery. The latter
effect was discovered by Weber! in 1835 and called by him
Elastische Nachurirkung or elastic after-working, the former appears
to have been first noted by Vicat? in 1834. When a body has
been strained by a load surpassing the elastic limit, and is set free,
part of the strain disappears at once, and the strain that does not
at once disappear gradually diminishes. The body never returns
to its primitive condition, and the ultimate deformation is the
permanent set, the part of the strain that gradually disappears is
called elastic after-strain. To produce the effect noted by Vicat
very considerable stress is generally required. He found that wires
held stretched, with a tension equal to one quarter of the breaking
stress, retained the length to which this tension brought them
throughout the whole time of his experiments (33 months), while
similar wires stretched with a tension equal to half the breaking
stress exhibited a notable gradual increase of extension. The
gradual flow of solids under great stress, indicated by these ex-
periments, has been made the subject of exhaustive investigation
by M. Henri Tresca®. He found, in his experiments on the
punching and crushing of metals, results which point to the
conclusion that all solids when subjected to very great pressure
ultimately flow, t.e. take a set which increases with the time. An
account of some of these experiments is given by Prof. Unwin*.
This capacity of solids to flow under great stress is called plasticity.
A solid is said to be hard when the force required to produce con-

1 De fili Bombycini vi Elastica. Gottingen, 1841. An off-print of a paper
communicated to the Ksnigliche Gesellschaft der Wissenschaften zu Gottingen, 1835,
and practically translated in Poggendorff’s Annalen, xxx1v. 1835 and urv. 1841,

2 Note sur Uallongement progressif du fil de fer soumis & diverses tensions.
Annales des ponts et chaussées, ler semestre, 1834.

3 Mémoires...par divers savans. Paris, Acad. xvir, 1868, and xx. 1872.
4 The Testing of Materials of Construction.
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siderable set is great, soft or plastic when it is small; for a fluid it
may be as small as we please, provided it is continuously applied.

b4. Viscosity of Solids.

“Viscosity ” is a general term for all those properties of matter
in virtue of which the resistance, which a body offers to any change,
depends upon the rate at which the change is effected. The
existence of viscous resistances involves a dissipation of the energy
of the substance, the kinetic energy of molar motion being trans-
formed, as is generally supposed, into kinetic energy of molecular
agitation. The most marked effect of this property, in the case of
elastic solids, is the dying away of vibrations set up in the solid.
Suppose a solid of any form struck, or otherwise suddenly disturbed.
It will be thrown into more or less rapid vibration, and the stresses
developed in it will depend partly on the displacements, and partly
on the rates at which they are effected. The parts of the stresses
depending on these rates of change are viscous resistances, and
they ultimately destroy the vibratory motion. This effect is quite
different to the time-effects previously noticed. The latter are also
influential in producing a decay of oscillations, and they also dis-
close a transformation of energy, but apparently it is the potential
energy of strain that is transformed into some other form of energy,
possibly as suggested by Maxwell' and Mr J. G. Butcher? into
energy of separation of more or less stable groups of molecules. It
is necessary to mention this distinction as Sir W. Thomson?, unless
read very carefully, appears to attribute the dying away of vibra-
tions entirely to the Elastische Nachunrkung of Weber, while in
Maxwell's Heat the term “viscosity ” is used in a different sense,
namely, that a body is more or less viscous, according as a change
produced by the application of stress takes a greater or less time to
produce.

5. JASolotropy induced by permanent set.

One of the changes produced in a solid, which has received a
permanent set, may be that the material, previously isotropic,
becomes @olotropic. The best known example is that of a bar
rendered =olotropic by permanent torsion. Herr Warburg* found

1 Constitution of Bodies, Encyel. Brit.

3 Proe. Lond. Math. Soc. vu1. p. 108,

3 Elasticity, Encycl. Drit. and Math. and Phys. Papers, vol. 111. p. 27.
4 Wiedemann’s dnnalen, x. 1880.
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that, in a copper wire to which a permanent twist had been given,
the elastic phenomena observed could all be explained on the
supposition that the substance of the wire was rendered olotropic
like a rhombic crystal. The strain of the substance observed as a
permanent set may be regarded as a shear of the material, the
plane of the shear being the plane parallel to the axis and
perpendicular to the axial radius vector at any point, and this
shear is by art. 7 capable of analysis into a compression and an
extension along the principal axes of the shear, which are the lines
bisecting the angles between the axis of the wire and the direction
of displacement of any point. The axzes of the rhombic crystal
whose @olotropy is similar to that of the substance of the wire are
the axial radius vector and the principal axes of the shear, and it
was found that the Young's modulus in the direction of the per-
manent extension was increased, that in the direction of the
permanent compression diminished. When a weight was hung
on the wire it produced, in addition to extension, a small shear,
equivalent to a partial untwisting® of the wire; this was an elastic
strain, and disappeared on the removal of the load. This experi-
ment is important as shewing that processes of manufacture may
induce considerable ®olotropy in materials which in the unworked
stage are isotropic, and consequently that estimates of strength,
founded on the employment of the equations of isotropic elasticity,
cannot be strictly interpreted.

§6. Fatigue of Resistance.

A body strained within its elastic limits may be strained again
and again without receiving any injury; thus a watch-spring may
be coiled and uncoiled millions of times without deterioration.
But it is different when a body is strained repeatedly by rapidly
varying loads. Herr Wohler's® experiments on this point have
been held to shew that the resistance of a body to any kind of
deformation can be seriously diminished, by rapidly repeated appli-
cations of a load. The result appears to point to a gradual
deterioration® of the quality of the material subjected to repeated
loading, which can be verified by the observation that after a

1 Cf. Bir W. Thomson’s article Elasticity, Encycl. Brit., see Math. and Phys.
Papers, vol. m. p. 82,

2 Ueber die Festigkeitsversuche mit Eisen und Stahl. An account of Wohler’s
methods and results is given in Unwin’s Testing of the Materials of Construction.

3 Prof. Pearson proposes a different interpretation. See Mess. of Math., 1890,
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large number of applications and removals of the load, bars may
be broken by a stress, much below the statical breaking stress,
and even below the elastic limit.

An analogous property of bodies is that to which Sir W.
Thomson® has called attention under the name “fatigue of elas-
ticity”. He observed that the torsional vibrations of wires died
away much more rapidly when the wires had been kept vibrating for
several hours or days, than when, after being at rest for several days,
they were set in vibration and immediately left to themselves.

Experimental results of this kind point to the importance of
taking into account the manner and frequency of the application
of force to a structure in estimating its strength.

67. Theories of Rupture.

Various theories have been advanced as to the conditions under
which a body is ruptured, or a structure becomes unsafe. Thus
Lamé? supposed it necessary that the greatest tension should be
less than a certain limit. Poncelet?, followed by Saint Venant!,
assumed that the greatest extension must be less than a certain
limit. These measures of tendency to rupture agree for a bar
under extension, but in general they lead to different limits of safe
loading®. Again M. Tresca followed by Prof. G. H. Darwin® makes
the maximum difference of the greatest and least principal stresses
the measure of tendency to rupture, and a not very different limit
would be found by following Coulomb’s? suggestion, that the
greatest shear produced in the material is a measure of this
tendency. It is possible that the proper limit of safety depends
on the nature of the load (whether it tend to produce extension or

1 Math. and Phys. Papers, vol. 111, p. 23.

? See e.g. the memoir of Lamé and Clapeyron, Mém. par divers savans, Paris
Acad, vol. 1v. 1833. The same supposition is made by a great many elasticians.

3 See Todhunter and Pearson, vol. 1. art. 995,

4 Bee especially the Historique Abrégé in Saini-Venant’s edition of the Légons
de Navier, pp. oxcix.—cev.

5 For examples see Todhunter and Pearson, vol. 1. p. 550 footnote, and art. 150
of the present work.

8 ¢On the stresses produced in the interior of the Earth by the weight of Con-
{inents and Mountains’, Phil, Trans. R. S. 1882. The same measure is adopted
in the account of Prof. Darwin’s work in Thomson and Tait’s Nat. Phil. Part 11.
art, 832" :

7 «Essai sur une application des régles de Maximis &e.’, Mém. par divers Savans,
1776. Introduction.
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compression, or shear), and on the manner in which it is applied.
The conditions of rupture are but vaguely understood, and may
depend largely on these and other accidental circumstances. At
the same time the question is very important, as a satisfactory
answer to it might suggest in many cases causes of weakness
previously unsuspected, and, in others, methods of economising
material that would be consistent with safety. The answer given
in most practical treatises is that the stress developed in the
material must nowhere exceed a certain fraction of the breaking
stress. The reciprocal of this fraction is called the “factor of
safety”, and it depends in general on the nature of the strain to
which the structure or machine will be subjected. Thus a factor?
6 is allowed for boilers, 10 for pillars, 6 for axles, 6 to 10 for
railway-bridges, and 12 for screw-propeller-shafts and parts of
other machines subjected to sudden reversals of load.

In all these theories it is supposed that the stress or strain
actually produced in a body of given form, by a given load, is
somehow calculable. The only known method of calculating
these effects is by the use of the mathematical theory of elas-
ticity, or by some more or less rough and ready rule obtained
from some result of this theory. To explain how this is done
we may consider any one of the theories described above, e.g.
that of Poncelet and Saint-Venant. According to this theory,
rupture ensues, if at some point, and in some direction, the
greatest principal extension exceed a certain limit, depending
on the direction if the body be @olotropic. Suppose the body
subject to a given system of load, and suppose that we know
how to solve the equations of elastic equilibrium with the given
boundary-conditions. The extension at every point in every
direction can be found, and the maximum principal extension
can be deduced; this maximum will be linear in the expression
of the given load, and equating it to the limiting extension
consistent with safety?, we shall have an equation to determine
the maximum safe load. Now the maximum referred to, being
found by the use of the equations of elasticity, it is virtually

1 My authorities for these numbers are Unwin’s Testing of Materials of Con.
struction, Rankine’s Applied Mechanics, and Box’s Strength of Materials,

2 This limiting extension e is given by the equation Ty=%Ee, where E is
Young's modulus of the material for a given direction, T, is the breaking tension
of a bar cut in that direction, and & is the factor of safety.



108 STRENGTH OF MATERIALS. [58

assumed that the strain is a small elastic strain, while, at the
same time, it is perfectly well known that there is considerable
set before rupture is approached. The only logical way out of
the difficulty would be to use, instead of the elastic equations,
others, in which set is properly taken into account, and these are
unfortunately still unknown.

§68. Practice and Theory.

The application of the Mathematical Theory of strains, so
small that their squares are negligible, to practical problems of
strength cannot, from the nature of the case, be exact. The
theory is capable of determining exactly such small strains as
those produced in the interior of the Earth assumed to be solid by
the tidal disturbing attraction of the Sun and Moon, and the modes
and periods of the free vibrations of solids. It is not capable of
answering exactly any other kind of question than such as relate
to very small strains. The results to which it leads, in other
cases, are qualitative rather than quantitative. Thus, by Saint-
Venant’s theory of the torsion of prisms, it can be predicted that
a shaft transmitting a couple by torsion is seriously weakened by
the existence of a dent having a curvature approaching to that
in a reentrant angle, or by the existence of a flaw parallel to the
axis of the shaft. By the theory of equilibrium of a mass with a
spherical boundary, it can be predicted that the shear in the
neighbourhood of a flaw of spherical form may be as great as
twice that at a distance. The result of such theories would be
that a factor of safety must be allowed for shafts transmitting
a couple in which such flaws may occur, and it suggests that 2
may be the factor required—this is the factor allowed in practice
to guard against this kind of weakness; other factors are allowed
for other reasons. Again, it can be shewn that, in certain cases,
a load suddenly applied may cause a strain twice' as great as
that produced by a gradual application of the same load, and
that a load suddenly reversed may cause a strain three times as
great as that produced by the gradual application of the same
load. This shews that additional factors of safety will be required
for sudden applications and sudden reversals, and it suggests that

! This point appears to have been first expressly noted by Poncelet in his
Introduction & la Mécanique industrielle, physique et expérimentale of 1839, see
Todhunter and Pearson, vol. 1. art, 988.
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these factors may be 2 and 3. The actual values that ought to
be given to these factors in practice can however only be found
by experiment. Again, a source of weakness in structures, some
parts of which are very thin bars or plates subjected to thrust, is
a possible buckling of the parts. The conditions of buckling can
be determined from the theory of Elastic Stability, and this theory
can thus be made to suggest some method of supporting the parts
by stays, and the best places for them, so as to secure the greatest
strength with the least expenditure of materials; but the result,
at any rate in structures that may receive small permanent sets,
is only a suggestion and requires to be verified by experiment.

There exists no adequate mathematical theory of set, or of
after-strain, or in fact of any of the phenomena exhibited by
materials strained beyond their elastic limits. No one apparently
has ever attempted to formulate general equations of equilibrium
or motion of a solid so strained, although empirical laws of set
have been suggested, such as the Coulomb-Gerstner law*; and the
researches® of Boltzmann, Kohlrausch, Meyer, Neesen and others
have gone some way towards the foundation of a theory of after-
strain. Yet it is imperatively necessary that effects which cannot
be calculated exactly should be taken into account in construc-
tions, and it is in this sense that elastic theory is at this time
behind engineering practice.

1 S8ee Handbuch der Mechanik, by Franz Joseph Ritter von Gerstner. Prag,
1833 ; and Todhunter and Pearson, vol. 1. p. 441.

2 For a good account of the theory see F. Braun in Eneyclopidie der Natur-
wissenschaften, Handbuch der Physik, Bd. 1. pp. 321—342.



CHAPTER V.

GENERAL THEOREMS.

STRESS-STRAIN EQUATIONS DEDUCED FROM CAUCHY'S
MOLECULAR HYPOTHESIS.

59. Statement of the Hypothesis.

We proceed to investigate, after the manner of Cauchy’, the
stress across a small plane area arising from the forces (supposed
insensible at sensible distances), that act between the individual
pairs of a system of particles homogeneously arranged, when the
force between two whose masses are m and m’ placed at a distance
r i8 mm'y (r). The nature of the homogeneity of the arrange-
ment can be described by stating that all the particles have the
same mass, and, if P, P, Q be the positions of any three particles,
and a line Q@ be drawn from @ equal and parallel to PP, there
will be a particle at Q.

60. Evaluation of stress-components.

Now, as in ch. I, let 2, , z be the coordinates before strain
of a point P, at which there is a particle of mass M, and 2+ §,
y+m, z+ ¢ those of another point @ at which there is a particle
m of equal mass, » the distance between them, and A, u, » the
direction-cosines of P@), so that

E=Ar, g=pr, E=vr..oniiniii (1).
Through P draw a plane parallel to the plane yz, and let
my, M,,... denote particles on the side of the plane where & is

} ¢De la pression ou tension dans un systéme de points matériels’. Ezercices
de Mathématiques, 1828.
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greater than the & of P, and m,, my,... particles on the other
side of the plane. Describe round P any small curve in the
plane #=const. through P whose radii vectores are all sensibly
greater than the greatest distance at which the force between
two particles is sensible, and let 8 be the area of this curve;
then, in the notation of ch. IL, if

Ps, Us T.8eueviiniininiininninnn 2)

be the sums of components, parallel to z, y, 2, of all the forces that
cross the plane within the curve 8, P, U, T will be the component
stresses at P across a plane parallel to 2. Now these sums of
components are the sums of such quantities as

mimy x (rg) Mg mamy' x (ryg) g, My’ X () V... (3),
where m; and mj are the masses of two particles on opposite sides
of the plane, ry; the distance between them, and Ay, wy, vy, the
direction-cosines of this line, and the summation must be extended
to all pairs so situated that the line joining them crosses s, and
the distance between them does not exceed the greatest distance
at which the force is sensible (called by Cauchy the “radius of the
sphere of molecular activity”).

Now there will be a particle m whose distance r from M is
ry, and such that the line joining M, m is parallel to the line
joining m;, my, and therefore the force across s arising from the
force between m; and m;” will have components

Mmy(r)N, Mmyx(r)p, Mmy@)v............ (4).

The summation may be taken by first summing for all the pairs of
particles (m;, m;") that have the same r, A, g, v, and are so situated
that the line joining them crosses s, and then summing for all the
directions A, g, » on which pairs of particles are met with, and
lastly summing for all the particles on each such line (A, g, »)
whose distance apart is not greater than the radius of the
sphere of molecular activity. The first summation will be made
by multiplying the expressions (4) by the number of particles
contained in a cylinder standing on s whose height is »A; this
number is psrA/M, where p is the density, or mass per unit
volume, of the system of particles, and thus we get for the
component stresses per unit area across the plane parallel to
(yz) through M, the sums of such quantities as

pmrNix (r), pmraux (r), pmrAvy (). .......... (3).
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Now it is clear that, if the summation be extended to all directions
round M in which particles are met with, the force between any
pair m;, m; will have been counted twice, and we thus get
P=3pZ[mraty(r)], U=3pZ[mraux(r)], T=4pZ[mravy(r)]...(6),
where the summations refer to all particles m, whose distance
from M is not greater than the radius of the sphere of molecular
activity.

61. 8tress in terms of strain.

Now let the system be displaced so that M comes to
(¢+u, y+v, z+w),
and m comes to
(z+u+E+du, y+ov+n+8, z+w+{+dw),
then, since m is very near to M, we may express du, 8y, dw in the

forms
ou

0 0
8u=5%+na—;+§52

o o ov
Sv-—{-’% +n@+:3—z .................. ),
ow ow _ow
dw = E ‘3; +7 @ +¢ 2
and use the notation e, f, g, a, b, ¢, A of strain-components.
Let r become 7 (1 + ¢), then, by (88) of art. 11,
€=eN+ful+ g+ auy + VA + A eeennnnnnns (8).

Also rA is the difference of the «’s of m and M, and this
becomes
ou ou _ou
E<1+3;)+’7@+§3-z,
ou ou Ou
or rx+r<xa;+y@+ u$)=rx+8(r7\), 8ay ...... 9),

and in like manner we may write down the values of 7u, rv after
strain.

The new value of x (r) is

X +erx' (r)eoeeenniii (10).
The new value of p is

pll—(e+f+g)l=p sy ..ccceemrrininnn. (11).
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Thus P, U, T become

P=ips[m S e OHA+3()
U=ip's [ m - sty (ot B}t 3 L (1.2,

T=ip'%|m TT“1+e) e (r)+er (DA +8(\) {rv+ 8 (rv)}]
We shall put down P and U, we get
P = 4'% [mriy ()]
+p! {2 I (] G+ EEmrra ()] 5+ Elmrnag (]2}
+ 3p’S[mr frx’ (r)—x (r)} A} (eA*+ fui+ gv* + apv + bvh + cAp)]...(13).
U=4p'Z [mrauy ()]
+1p {2 [mraiy ()] g—:} + 3 [mrapy (1)) % + 2 [mrvy (1)) g—z}

/{ 0 0 )
+ 49 {2 [mni (9] o+ 2 [ty (0] 55 + 2 mrawg(r)] 32}
+3p'Z [mrlry (r)—x (r)} M (N*+ f*+ gv*+ apw + bk + cAp)] (14).
In like manner the other four stresses can be put down.

Now suppose the initial state of the system is one of zero
stress, or that the system is disturbed from the natural state,
then we see that all the 6 quantities such as

Smray (D], S[mrdpx (D] cevvniiennns (15)

must vanish identically, and, therefore, the expressions of the six
stresses in terms of the strains are such quantities as the last lines
of the right hand sides of (13) and (14). In these, neglecting
squares of the strains, we may put p for p’, and thus writing for

shortness
rirX (M) —x @} =P (r)eeeenrannnnn. (16),

we find such expressions as
P=1p3 [md (r) N (eN*+fu?+gv*+ apv+ bvn + cxp,)]} an
U =3p2[me (r) Ap (eN* + fu + gv* +apv + bvh +au)]) 7
Hooke’s Law follows at once, and the elastic constants are such
expressions as
1= [me ()N, $p3 [meb () Wu],
3pZ[mep (r) Mu®], 3pZ [me (r) Nuv].......... (18),
and there are 15 of these.
L. 8
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If all the stress-equations similar to the above be written
down, and the coefficients compared with the elastic constants
¢ of art. 81, it will be found that

Cra=Cy, (r,8=1,2...6),
and that Cs=Cy, Csu= Cs; cl,=c“}
Cu=Cg, Cxp=Ce, Cy=Cc)
as in equations (20) of that article.

The particular result for isotropic solids is that A =g, and

consequently o =1, as stated in art. 28.

62. The Thermo-Elastic Equations.

Consider a solid strained by unequal heating. Suppose that,
when the temperature of any part is increased by ¢, the force
between two particles m, m’ is increased by a quantity of the
form mm’Kt, where K is independent of the configuration. Then,
referring to the investigation of art. 60, we see that we have
to add to the expressions for the stresses the sum of all such
quantities as

mymy KN, mymiKitp, mmiKty,
where m;, m;’ are the equal masses of particles in a line crossing
the area 8; and, as before, the stresses thence arising are given by
such equations as
P=4p% [mrNKt], U=34pZ [mruKt]

We should find in this way the stresses given by such equations
as (17), each increased by a quantity, which is the product of ¢
and & constant depending on the material.

In case the particles of the system are distributed symmetri-
cally in all directions, the terms contributed by ¢ to the tangential
stresses will disappear, and the terms contributed to the normal
stresses will all be equal, so that the stresses will consist of

(1) a hydrostatic pressure proportional to the change of
temperature,
(2) elastic stresses like those of (17) due to the strains.
The equations of equilibrium hence deduced will be three of

the form
oP U oT

ot oy T o tP X = Bax ................. (19),
where 8 is a constant, and P... are component stresses due to
the strains, and are the same functions of the strains as occur
when ¢ is constant.
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The boundary conditions will be three of the form
IP+mU+nT=F+1Bt.cccc.cccucue...... (20).

These are the Thermo-elastic equations of Duhamel and
Neumann, and the above method of obtaining them is practically
that of Duhamel’ and Weyrauch®. We may, however, obtain
them by another method, dispensing with the hypothesis of
material points with forces between them. To do this we shall
have to make subsidiary assumptions.

1°. When a homogeneous isotropic solid is uniformly heated,
and allowed to change form freely, a uniform cubical dilatation
takes place proportional to the change of temperature.

2°. When the solid is heated and the volume of every part
kept constant, stresses are developed in the interior, which, we
shall assume, reduce to a hydrostatic pressure proportional to the
change of temperature. This we shall call the thermal stress.

3°. When a solid is unequally heated the stress at any point
consists of two parts:—(1) a hydrostatic pressure proportional to
the change of temperature (the thermal stress), (2) elastic stresses
proportional to the strains.

Of these assumptions 1° appears to be experimentally verified,
when the changes of temperature do not amount to more than a
few degrees Centigrade; 2° is in some sense a consequence of 1°
since we know that in the case of elastic strains and stresses
uniform pressure produces uniform cubical compression, and we
have only to assume that this holds however the stress be pro-
duced; 8° is then the assumption that the stress due to strain
and variation of temperature is the sum of the stress due to strain
without variation of temperature, and the stress due to variation
of temperature without strain.

This method leads to the same equations as Duhamel’s method,
it is practically that of F. E. Neumann?, The resulting equations
cannot be regarded as proved, but only as resting on probable
hypotheses. They are applied by Duhamel and Neumann to
cases where ¢ is a given function of &, y, z and the time.

1 ¢« Mémoire sur le calcul des actions moléculaires...’, Mém....par divers Savans,
1838.

2 Theorie der Elasticitit fester Korper.

3 Vorlesungen iiber die Theorie der Elasticitit der festen Korper...

8—2
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EXISTENCE AND PROPERTIES OF THE ENERGY-FUNCTION.

63. 8Sir W. Thomson’s Theorem of the Existence of
the Energy-Function!.

In the general case of an wmolotropic solid, the stress-strain
relations contain 36 constants, and we have seen that in the
special case of isotropy these are reduced to 2, and that in such
a way that the stresses are the partial differential coefficients of
a quadratic function W of the strains, this function denoting the
potential energy of strain. The method by which we obtained
this result was founded on particular assumptions. If such a
function exist in the general case, there will be 15 linear relations
among the constants, reducing their number to 21. We shall now
shew that, if the solid be strained either at constant temperature,
or in such a way that no heat is allowed to escape from or to
enter into any element, then the function W exists.

Let ¢, f, 9, a, b, ¢ be the six components of strain, and, in
some state of the solid, let e, f;, go, @, by, ¢, be the values of
these quantities, and let ¢ be the temperature of the solid
measured on some absolute scale, t.e. on some scale independent
of the working substance, and let the state of the solid defined by
e=¢, ...a=a,, ...t =1, be taken as the standard state, then the
intrinsic energy £ of the solid is the whole work that would have
to be done upon it to bring it from the state e,, f;, go, @, by, G, £,
to the state e, £, g, a, b, ¢, t. Since the state of the solid depends
only upon e, f, g,a,b, ¢, t it follows that £ is some function of
these quantities, say

E=¢(efg,a,bct) cccvvinnnnnnn.. (21).

Then a knowledge of ¢ includes a knowledge of all the thermo-
elastic properties of the solid.

Now let the solid be strained at constant temperature from
the state (&, fo, 9o, @, by, €y, t) to the state (e, f, g, a, b, ¢, t), and
let H be the heat that must be supplied to it to keep its tempe-
rature constant, and then let the solid be brought back from the
state (¢, f; 9, a, b, ¢, t) to the state (e, fo, gos @, bo, Co, t), through
the same or any other series of states, provided it is always at

1 Quarterly Journal, v. 1857.
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constant temperature, and let H’ be the heat supplied to it during
this process. Then, by the second law of Thermo-dynamics,
g + HT =0 i (22).
Hence H=—-H’, and the heat that must be supplied to the
solid to keep its temperature constant, while it is being strained
by the action of external forces from the state (e, fo, 9o, @, bo, G)
to the state (e, f, g, a, b, ¢), is independent of the particular
succession of states through which it is made to pass. Hence H
is a function of (e, f; g, a, b, ¢c) which vanishes when e=g,.... so
that we may take
H=+(ef g9 a b, c t)—y(e, fo Fo» @, by, G, B)...... (23).
Let X, be the intrinsic energy in the state (&, fo, go, @0, bo, Co, t),
then the whole change of the intrinsic energy in passing from the
state (&, fo, o, @, bo, Cy) to the state (e, £, g, @, b, ¢) at the constant
temperature ¢ is & — E,. But this change in the intrinsic energy
is equal to the work W done by the external forces, together with
the mechanical value of the heat supplied to the solid during the
process.
Thus if J be the mechanical equivalent of the thermal unit

W+J.H=E-E,
or W=d¢(ef g ab,ct)— (e, fo, 9o, %, by, 6, t)

—J{Y(e f g ab,c, t)—y (e, o, gos @, by, Co, O} ... (24).
Hence W is a function of ¢, f, g, @, b, ¢, and is independent of the
particular succession of states through which the solid passes
during the strain at constant temperature.

When the solid is strained in such a manner that no heat is
allowed to escape, let ¢, be the initial, and ¢ the final temperature,
and suppose that the initial state is taken as the standard. Then
the heat supplied during the process is zero and the whole change
of intrinsic energy is equal to the work done by the external forces.
With our choice of the standard state, this statement is-equivalent
to the equation

W=E=¢(e, f,9,a,b ¢ 8)ceueerceeniini.. (25).

Now the temperature of the solid will be a function of
(e, /. 9, a, b, c), since the solid is strained according to the
adiabatic law, and it follows that W is a function of (¢, f, 9, @, b, ¢)
and is in this case also independent of the series of intermediate
states which can be passed through when no heat is allowed to
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pass into or out of any element of the solid. This probably
applies to the small vibrations of solid bodies, the period being
so small, that no heat is gained or lost during it, and we shall
therefore be able to use the energy-function to obtain the equa-
tions of vibration.

In any other case W as a function of (¢, £, g, a, b, ¢) does not
exist. We have always the relations, given by the general theories
of the Conservation and Dissipation of Energy, in the forms
AW +[JdH = E — E,

E=¢(ef 9.0 bct) (26)

e
'_t_ —x(e’.f’ g9 a, b.v ¢, t)_x(e:f: 9 a b: c, t)o

where dH is the heat supplied to the solid when its state is
changed by infinitely small variations of the quantities (e, f, g,
a, b, ¢, t), and the integrations are summations taken with reference
to the series of states through which the solid passes.

It is apparent that, until the form of ¢ is known, we can assert
nothing concerning the behaviour of the strained solid, except in
the cases when W is known to exist. Thus, if the solid be strained
by unequal heating, the theory of elasticity is incapable of answer-
ing any question relating to such strain without some additional
assumption. Attempts to give an answer have been made by
Duhamel and Neumann starting from particular hypotheses. The
results at which they arrived could be obtained by assuming that,
when the temperature of an element is increased by ¢, the work
done by external forces, in slightly increasing the strain in this

element, is

Sp(e,f,9,a,b,¢)—Btd(e+ f+9).rrennee.. (27),
where ¢ is the same function that would oceur if ¢ were constant,
and B is a constant coefficient.

64. Green’s method!.

When the function W exists the general variational equation
of small motion is

+ff[[(px-p T)ut (o7 —pam) 80+ (pZ—p 50 Sw] dodydz
+ff(ﬁ'su + Gv + How) dS—fffSdedydz:O...(%),

1 ¢On the Laws of Reflexion and Refraction of Light’,... Matkematical Papers of
the late George Green.
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in which p is the density, X, ¥, Z the components of the bodily
force per unit mass at any point (z, y, 2), u, v, w the component
displacements of the particle initially at (, y, 2), and F, G, H the
component surface-tractions per unit area applied at the point of
the bounding surface where the element of surface is dS. For this
equation represents that the whole work done by all the forces
internal and external in a small displacement vanishes.

If we transform this equation by writing
0 W LW 8 w ow
SW——— af 8f+ tag Sa+ 5 %
au

=E§:’ ooy

and note that f f oW Sa—u dzdydz

~ [[[2. CF su) asayae - [[[2 () sudwdyas

- f fz%vsuds- f f fa‘x (aa_v: Sudadydz ... .oeeen... (29),

where I, m, n are the direction-cosines of the normal to dS drawn
outwards (from the region occupied by the solid into the space
outside), and treat the other terms in like manner, we shall see
that the left hand side of equation (28) becomes the sum of a
number of volume-integrals and a number of surface-integrals,
and these may be arranged so that there is one of each containing
du, one of each containing 8v, and one of each containing dw. We
must equate to zero the quantities that multiply each of these
variations under each of the signs of integration, and we thus
obtain
three differential equations that hold at every point of the

solid,
and  three equations of condition that hold at all points of the

surface.

65. Form of the Energy Function W1
We found, art. 18, equation (19),
SW = Pde + Qdf + Rdg + S8a + T8b + Usc...... (30),

8o that P=avz,... S=§E,... ............
oe da

1 Kirchhoff, Vorlesungen ilber mathematische Physik, Mechanik.

8b+aW

remember that
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Now, according to the generalised Hooke’s Law, the stress-
components P, @, R, S, T, U are linear functions of the strains
e, f, 9, a,b, ¢, and therefore W is a quadratic function of the strains.
A complete quadratic function of six arguments involves 21 inde-
pendent coefficients, and therefore there are in general 21 constants
of elasticity. As in art. 31 these may be denoted by ¢’s with
double suffixes, and then c,, = ¢,,.

We may adopt a symbolical notation. Writing the six strains

e=m, [=u, g=x, a=a, b=ax;, c=a;...... (32),

and writing down the form
O=cx+ 2+ CTy+ C &+ Css + Cog vevneenen (33),
we may put W=40...ccceocivrerviininnnn. (34),

where it is understood that ¢,, ¢,,... have no physical meaning, but
after the square of ©® has been formed ¢,? is to be replaced by ¢,
¢¢s by ¢, and so on. Then the quantities ¢y, ¢y;,... are the elastic
constants.

Our proof of the existence of W, in the two cases of isothermal
and adiabatic changes of state, points to different values of W as a
function of (¢, f; ¢, @, b, ¢) in these two cases. The form of the two
functions is the same, since each is a homogeneous quadratic
function of the same six arguments, but the coefficients of the two
functions may be different. This probably explains some of the
discrepancies in the values of the elastic constants as calculated
from experiments on equilibrium, and experiments on small
vibrations. (cf. Lord Rayleigh, “Sound”, ch. xr)

We shall in our equations express the constants for equilibrium
and small vibrations by the same letters. The difference between
them is small for all hard solids which have been subjected to
experiment.

It may be remarked here that, if a solid be strained at constant
temperature, then, whether Hooke’s Law hold or not, and whether
the strain be small or not, the above equation (28) will still hold
good. As soon as we know the stress-strain relations appropriate
to the case, it will be possible to proceed to form the equations of
motion or equilibrium,

66. Kirchhoff’s General Theorems.

Kirchhoff has given some general theorems, founded on the
form of W.
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(a) Since the solid is supposed disturbed from a state of stable
equilibrium, W is always positive. Thus W is a quadratic function
of six arguments ¢, f, g, a, b, ¢ which is always positive.

(8) If W=0 the solid is only moved as a rigid body.

For W is a quadratic function of six arguments, which is always
positive for all real finite values of these arguments. Thus if the
strains be real W can vanish only when the strains all vanish, so
that, if W=0, we must have

8 o ow ow ov au ow av ou
0’3 0’3—z=0’5§+3_z=0’ az 0= =0, 3_—0(35)

If we differentiate each of these equations with respect to z, y and
z we shall find eighteen linear equations among the eighteen
second differential coefficients of wu, v, w which shew that each of
these second differential coefficients must vanish. Thus u, v, w are
linear functions of =, y, 2, and, in virtue of the above equations,
these must be of the forms

U="1Uy—TY + g2, V="0y— pz+ 17, W="w,— 92+ py...(36),
which are the formulae for the displacement of a rigid body by a
translation (u,, v,, w,), and a rotation (p, g, 7).

(y) 1If the six strains be given, and we seek the displacements
%, v, w, then these will be arbitrary to the extent of quantities
of the form given in (8). But, if we impose six independent
equations of condition, such as that, when =0, y=0, 2=0,

ou ov ov

u-—O, v—O, w—O, a;=o, a—z O, a 0
the expression for the displacements with given strains will be
unique. These particular equations indicate that a point of the
solid (the origin) retains its primitive position, that one line-
element of the solid (along the axis of z) retains its direction, and
that one plane-element of the solid (the zx plane) retains its
direction unaltered by the strain. It is manifestly possible, having
strained the solid in an arbitrary manner, to bring it back, by
translation and rotation, so that this point, this line, and this plane
shall recover their primitive positions.

(8) The strains cannot be given arbitrarily®.

1 This theorem was given by Saint-Venant in his edition of Navier’s Legons,
Appendice 1.
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Suppose we have the equations
v ow ow  ov
/=y =% "y ta "%

and seek the conditions of compatibility.

ou ow ov  ou
+a—{;, 0=5;v+a7/(37),

The displacements %, v, w must be one-valued functions of
z, y, 2, 8o that, if we integrate along any line drawn through the
origin, we must have

u—u.,+f da:+ d +gudz .................. (38),
where u, is the value of u at the origin.
In like manner we must have
ou [ou o*u ou
53_/_(6—3/) + awaydz+ayﬂdy+f—dz ............ (39),
ou [Ou Ou o*u ou
o (a_z) A L R (40),

where the line-integrals may be taken along any line leading from
the origin to the point (2, y, 2), and must be independent of the
path of integration.

Now using the equations (87), and re-writing, we may express
these in the form

Gt aevl~%+(§; o) By (5 5y )

...(41).
= @)t [E e (G g o+ (52 o

0z Oz,

The line integrals will be independent of the path of integra-
tion, if

P L Of_ o
oyF 02 Ozdy
e ¥g_
37 T s
Pe a0 0%
25y—az‘+a?,=az—ay+azaw» ............... (4'2),
af Lob ob B’c Pa
0zox © oy Byaz ozoy
g  0O¢c_ Pa | b
2 oy 0z 0y Y wow T dyoz
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to which may be added
o'f + 79 g _ 0a
32" 9y Oyoz
one of the equations obtained by operating in like manner upon v.

These six equations are the necessary and sufficient conditions
of compatibility of equations (37).

(¢) If either the surface-displacements or the surface-tractions
be given, the solution of the general equations of equilibrium is
unique.

1°. Supposing the bodily forces and surface-tractions given,
then, taking W a quadratic function of the six strains, we have

ow
= P,.....
also the general equations of equilibrium are three such as
oP oU oT
oz @+a +pX=0.eiiiriiinnnns (44),
and the boundary-conditions are three such as
IP+mU+nT=F................... (45).

If possible suppose there are two different solutions of these
sets of equations, and that the corresponding displacements are
U, ¥, W, and u,, v, w, in the two solutions. Then, writing

W=t—w, V=u—v, w=w-—w,
we see that o/, v/, w are a set of displacements which satisfy three
such differential equations as

aP' ou’  oT"

% oy +5, =0 . iiiirrieiinineens (46),
and three such bounda.ry conditions as
WP +mU 40l =0.ccccviviinennnenn. (47),

where P,... are the stresses corresponding to these displacements.

Now, by Green’s transformation,

fff{ aP’ aU,+aaT’)+ .. }dwdydz

=ff{u’(lP’ +mU +0T) + ... +...} dS

_fff( aavf'+f aa;f,'+ e aa.W')daadydz
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where ¢, f,...c’ are the strains corresponding to the displacements
o, v,w. Hence

f f f < FALA— %‘f) dodydz =0 ......... (48).

But, from the form of W’, as a positive quadratic function, we
know that the expression under the integral sign is 2 W’, so that
the integral is a sum of positive terms, which can vanish only
when ¢ =f'=...=c¢'=0. Thus the displacements (/, v, w') are
such as are possible for a rigid body, and the solution is only inde-
terminate to the extent of such displacements.

2°. Supposing the bodily forces and surface-displacements
given, we take as before two solutions u,, v, wy, u,, v, w,, and
form their differences ', v/, w/, then u/, v/, w’' satisfy stress-
equations like ) , )
6aP +6U +8_@ -0,
z

oy Oz
and boundary-conditions u'=0, v'= 0, w’ =0, at the surface.
Thus we find that

ff( ae’+ +caaW)dxdydz 0,

and hence ¢€ =0, f'=0,...c’=0, and the displacements are only
indeterminate to the extent of displacements possible for a rigid
body. This indeterminateness is also removed, since u, v, w are
given at the surface, and, if three points of a rigid body be moved
in a given manner, the displacement of all the points is deter-
minate.

It follows from this theorem that, if in any manner we can find
a solution of the equations of equilibrium, which satisfies all the
conditions, this is the only solution.

There are exceptional cases, in which more than one solution
is possible ; in these cases one of the solutions that can be obtained
corresponds to an unstable condition’. It will be observed that, if
we had set out from the variational equation, the stability of the
system would have depended upon second variations. It will be
better to postpone the general consideration of the theory of
stability of elastic systems until after we have discussed the theory

1 Sir W. Thomson, Math. and Phys. Papers, vol. nt., G. H. Bryan, Camb. Phil.
Soc. Proc., vol. v, 1888,
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of the deformation of thin wires and plates, for which possible
instability becomes of importance. Kirchhoff’s theorem of the
uniqueness of solutions holds for the cases we shall investigate in
this volume, viz. those of infinitesimal strain in a body all whose
dimensions are finite.

67. Possibility of Solution.

We add here a theorem relating to the possibility of solving
the general equations.

Suppose the surface-displacements given, and that there is no
bodily force, we have to shew that there exist functions u, v, w,
satisfying the differential equations of equilibrium and the
boundary-conditions.

Let u, v, w and «, ¥/, w’ be two systems of functions of z, y, z
which are finite, continuous, and one-valued within the surface S,
limiting the body, and at that surface become equal to the given
displacements. It is clear that there is an infinite number of
such systems of functions. Form with u, v, w the energy-function
W, which is a definite quadratic function of the six strains, ex-
pressed by certain differential coefficients of u, v, w; and form
in like manner with «/, ¢, w’ the energy-function W’, and let

V=[|Wdzdydz, V' =W dzdydz ......... (49),
the integration extending throughout the body, then
V-V=[[(W—-W)dsdydz ............... (50).

Denote the six strains corresponding to u, ¥, w by the letters
€, €,...6;, and the corresponding six stresses by P,, P,,...P,, and
let similar quantities derived from the «’, »', »’ system be denoted
by the same letters with accents, and write

W=Ff (e, s, ) =1F(€)cerrveururinnn.n. (31),
then with the same notation
W=flet+(€—e)} . cecueerrnnrinnnnnnn. (52),

and V' —V=[[f{fle+( —e)}~f ()} dodydz
=U f {2 (€—e) %ﬁe) +f(€ - e)} dzdydz.... (53),

since f is a homogeneous quadratic function of its six arguments.
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Then it is easy to shew that the right hand side of (53) can
be transformed into

, oP, 0P, 0P,
—fﬂ(u—u ) (52 + ot e 0%\ dadyd
— (similar terms in v'—v and @’ — w) + [ff f (¢ — ) dxedydz...(54),

and therefore, since the function f(¢'—e) is necessarily positive, it
follows from (53) that ¥V’ is always greater than V, if the equation

3Pl 3P, 0P,
3_1/ + | I (55),

and the two similar equations hold good, and therefore these
equations have a solution if ¥V have a minimum value.

Now W is a sum of positive terms, and, at the surface, W
must be different from zero, and therefore ¥V being necessarily
positive must have a minimum value for some set of functions
u, v, w satisfying the boundary-conditions. This shews that the
equations such as (55) have a solution, and that the values of
u, v, w thence deducible make V a minimum. Since these are
the equations of equilibrium, the theorem is proved.

This is an expansion of the proof sketched by Sir William
Thomson (Math. and Phys. Papers, vol. 11L, p. 389). It is similar
to the well-known “proof” usually given of Dirichlet’s Principle.
This proof has been attacked by Weierstrass, and is not admitted
ag valid in its application to the Theory of Functions of a complex
variable. The difficulty appears to be one concerning the con-
tinuity of the integral; it is not shewn that the minimum value,
proved to exist, can be arrived at by continuous variation from a
function V", otherwise arbitrary, but satisfying the boundary-
conditions, The difficulty has not yet been cleared up.

68. Bettl’s Theorem.

Let u, v, w be any functions of z, y, 2, ¢ which are finite,
continuous, and one-valued within the space occupied by a solid.
Then, if proper bodily forces and surface-tractions be applied to
the solid, u, v, w can be the component displacements of a point of
it. These bodily forces and surface-tractions can be determined
from the equations of equilibrium or small motion, and, when
they are known, u, v, w will be the system of displacements that
such bodily forces and surface-tractions would produce.
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Now let (u, v, wy), (us, v, ws) be two sets of displacements,
X, Y1, Z), and (X,, Y,, Z;) the corresponding bodily forces,
(Fy, Gy, H)), and (F,, Gy, H,) the corresponding surface-tractions,
then Prof. Betti’'s theorem is that the whole work done by all the
Jorces (including kinetic reactions) of the first set, acting over the
displacements produced by the second set, is equal to the whole work
done by the forces of the second set, acting over the displacements
produced by the first.

Ana.lytica.lly stated this gives the equation

] T (-2t (- 22 vt (2= ) ] eyt

+ f f (Fts + Goo + Hyw) dS
=[[] [p (e o (Tom )t o (80 ) ] dady
+ f f (Fas + G+ Huw) dS..... (56),

the volume integrations being taken over all points within the
surface S of the solid.

To prove the theorem, let P,, @, R,, 8, T, U, be the six
stresses, and e, f1, g1, &, by, ¢; the six strains, corresponding to the
first set of displacements, and like expressions with suffix 2 those
corresponding to the second set, and let W, be the energy-function
for the first set, and W, that for the second set. Then, by the
equations of equilibrium,-the left hand side of (56) is

QUI aU an asl

G @) G iy 5

0T, , 98,  OR, . f y

(— + oy + 0z ) wﬂ] da:dydz + | |(Fiug+ Gyvy + Hywy) dS
=fff(Plei+Q1.f2+-ngn+S1an+ Tib,+ Uycs) dzdydz

~ [[( (P4 MO+ 0T~ F) 4 0,00+ mQu 08, )
+w, (IT, + m8S, + nR, — H,)]dS.
The surface integral vanishes identically in virtue of the
boundary-conditions, and the volume integral is

fﬁ[ aW+faaW‘ aW‘ an+b,aavb‘j1 aW]dzdydz,
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and this, by a property of quadratic functions, is equal to
ow, oW, 0 W, 3 W, ,oW, oW,
ﬁf[ +f‘af+‘ag G thg et ]da:dydz,
which, as before, is equal to the right hand member of (56).

This theorem® is equivalent in the subject of Elasticity to
Lord Rayleigh’s general reciprocal theorem for any system dis-
placed from a configuration of stable equilibrium. Its utility,
as the foundation of a method of integration of the general
equations, will be hereafter explained.

69. Determination of the mean values of strain-com-
ponents.

Prof. Betti has given an interesting example of the use of his
theorem, shewing how the mean values of the strains produced in
a body of any form by given surface-tractions can be calculated.

Let the system of displacements u,, v, w, correspond to a
homogeneous pure strain given by the equations
U= e+ 3cy +4be
=4ex+ fiy +3aztoiinl. (57),
w,=3bz +iay+ g
and let the system u,, v, w, be produced by given surface-tractions
F,, G, H,. Then the theorem for displacements produced by
surface-tractions becomes
[ (Fruy + G, + Ha,) dS = [f (Fau, + G, + Hoaw,) d8S.. (58).
The six stresses P,, Q,, R,, S,, T,, U, are all constants,
and thus, substituting
Fo,=IP,+mU, +nT,, G=IlU;+mQ;+n8S,, H,=1T,+mS,+nR,

the equation becomes by transformation of the right hand surface-

integral into a volume-integral

[ [Fesr + G fiy + Higaz + Fa, (Hyy + Gi2) + 3 b, (Fiz + Hyz)
+36,(Gw + Fiy)]dS = P, [[[edV + Qu[[[ fdV + B, [[[g:dV

+8: [[fadV+ T, [[fodV + U [ff 6,dV ..ccnnnnenen (60),
where dV 1is the element of volume.

1 Betti’s theorem was first given in Il Nuovo Cimento, 1872. Its publication
precedes by one year that of Lord Rayleigh’s reciprocal theorem.
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Now it is easy, by solving the stress-strain equations, to find
€2, fa, 92, @, by, ¢ 80 that one of the stresses P,,... is unity and
the rest zero, and thus from the above equation we can find the
volume-integrals of each of the six strain-components.

Consider, in particular, the case of an isotropic solid, for which
P,=(A+2u)e+ M (fi+9g)

In order that P, may be unity and the rest zero, we must have

_ Atp 1 . A -
o= Gnrom) "B I @ = B a0

In order that S, may be unity and the rest zero, we must have

1
=;’ g,=f,=g,=0, b,=02=0.

Hence, suppressing the suffix 1, we find the mean values of
the six strains in the following forms:

1
mean value of 6= 1> f f (Fo—o (Gy+ Hz) dS evueen.n.. (62),
mean value of a= 1 f f (Hy + Gz)dS (63)
2[LV y ..................... N

where V is the volume of the body, and £ is the Young’s Modulus,
p the Rigidity, and o the Poisson’s ratio of the material, and these
three constants are connected by the relation

E=2u(1+0).

We notice that the mean value of the cubical compression is
rean value of A= %V f (Fz+Gy+ Hz)dS............ (64),

where k is the resistance to compression, given by

l+o
b=Mtdu=du g
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THE PROPAGATION OF A DISTURBANCE IN AN ISOTROPIC
ELASTIC MEDIUM.

70. Solution of the equations of small motion.

We shall suppose a medium unlimited in extent. At any
instant, which is taken as the origin of time, we shall suppose the
medium disturbed, so that different parts of it are in different
states as regards compression and distortion, and we seek to find
the state of the medium at any time ¢, at any point. We begin
with the simple case of a homogeneous isotropic medium.

The differential equations of small motion of the medium are
0A Pu
(M +p) 7z +uVu=p =2

0A o
(x-i-“)—a—y--i-“v’v —Pa—t’ --------------- (65).
o
ot
By differentiating with respect to 2, y, ¢, and adding, we
obtain the equation

Ot ) 2 4 = p

A
M+2) VA=p Sl oo (66).

By differentiating the third of equations (65) with respect to y
and the second with respect to z, and subtracting, we obtain the
equation

wWVia, = pa;Twal ........................ (67),
ow o
where ==} (az_/ - B—z)

is the rotation about an axis parallel to the axis 2, and in like
manner

0z
pVim, =p =2
gl pe— (68).
3
WV =P g

1 Bee Poisson’s memoir of April 14, 1828, Mém. Paris Acad. 1829, and Lord
Rayleigh's Theory of Sound, vol. 1. ch. xv.
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These equations, with the identical equation
aﬂ'] aﬁ'g aw' _
5_{0— + —a; + 5 =0 i (69),
determine the whole motion.
In what follows we shall for shortness write

A+2u)=kp, p=kp..cccveeerreneis (70).
We have now to consider the solution of the equations
=22
PN SR 1),
Ve = = o =(w,, Ts, Wy)
These equations are of the same type
P _ o
= =aV% .o, (72),

and we want a solution of this in terms of arbitrary initial
conditions,
We can write down at once the symbolical solution

¢ = cosh (aVt) b, +ts‘_’?%‘;i) Barerrerrno, (73),
from which it appears that initially
b=
Up _  preseeeeeeneeeee (74),
a
so thas, if the initial values of ¢ and 25 be denoted by ¢, and ¢,
= cosh (atV) ¢, + ¢ S22 (V) (“‘v) Boeerennnannns (75),
where ¢, ¢, are functions of z, y, 2.
Observing that cosh (atV), and sAmle(‘(/zE are even functions

of V, we see that these are real operators, and the operations
indicated can be performed.

But there is another form into which the solution can be
thrown, in virtue of the theorem that the mean value of a function
v over the surface of a sphere of radius R, whose centre is the

sinh (RV) ”

origin, is the value of — at the origin.

9—2
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For, consider the function [fe**+Ww+e=dS, the integration ex-
tending over the surface of a sphere, whose centre is the origin,
and whose radius is R. Changing the axes, so that the new axis
of Z may be the normal to the plane az + by + cz= 0, we see that

ZN@+ b+ P =azx+by+cz,

also dS= 2w RdZ, and the integration for Z is taken between the
limits R and — R.

B
Hence f f er=tbyterdS = { 9 ReVa+¥i+ozl7
J_B
_4mRe
~ RV
if Vi=a'+ b+

sinh RV,

Now suppose 4 is any function of #, y, 2z, uniform within a
spbere whose centre is the origin and radius R,
8 ,,9..8
then ¥ (2, 9, 2) =3(:dz° Ty +'d‘°) ‘P‘ (@, Yos 2o)s

by Maclaurin’s theorem, where #,, %, 2, are to be put equal to zero
after the differentiations have been performed.

Hence the mean value of the function over the surface of the

sphere
=Z7:—R,—ff1k(a;, y, 5)dS
4-'rrR’ G’dxo”dw dzodS Y (2o, Yo, 20)
_ sinh (RV.,) W (@, Yoo 20)
where V°,=5%+33’},i+82%”

and ,, %, 2, are to be put equal to zero after the differentiation ;
this proves the theorem.

Now cosh (atV) = gt (

sinh (atV)
atv )

Hence the general solution of the equation

%t% = aaVa¢



7] WAVE-MOTION. 133

in terms of initial conditions is shewn to be
_ 0 {, sinh (atV) sinh (atV)
‘f’—a“t{’—i.zzv—”‘f’*'}“ —av %
and this solution can be interpreted as follows:

Take any point of the medium as origin, and with this point
as centre describe a sphere of radius a¢, then the function

sinh (aV) ;
n atv ¢o

is the mean value of ¢, over the surface of this sphere, and
smh ( atV)
$o

is the mean value of ¢, over the surface of this sphere, thus

A SR S an,

where @, and @, are the mean values of the initial ¢ and ¢ at all
points of the surface of a sphere whose radius is a¢ and centre the
point at which the disturbance is to be estimated.

71. Interpretation. Wave-motion.

Now suppose the initial disturbance confined within a certain
space I. Then at time ¢=0 all the medium without the surface
of T is at rest, and ¢, ¢, have values different from zero for points
within 7, and are zero outside. With any point of 7' as centre
describe a sphere of radius at, then at time ¢ the disturbance will
be confined to the space within the envelope of these spheres.
This envelope is a surface of two sheets, an inner and an outer,
and the part of the medium between the two sheets is in motion,
all the remainder is at rest. Each element of the medium as the
outer sheet of the envelope reaches it takes suddenly the small
velocity corresponding to ¢, and after the inner sheet passes it
suddenly loses velocity and comes to rest. This kind of motion is
called wave-motion. If the disturbance emanate from the space
close about a central point it is clear that there will be at any
instant two concentric spheres very close together whose common
centre is at the point, and the disturbed parts of the medium will
be those between the two spheres. The radius of the mean sphere

1 8tokes, ‘Dynamieal Theory of Diffraction’, Math. and Phys. Papers, vol. 1.
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at time ¢ will be at. The waves are therefore said to be propagated
with velocity a.

In the case of the isotropic solid, we have two kinds of waves.
The first is a wave of compression corresponding to equation (66),
and travelling with a velocity A = ¥ (X + 2u)/p, the other kind are
waves of distortion, corresponding to equations (67) and (68), and
travelling with a velocity & = ¥u/p.

72. Propagation of plane waves.

Now suppose that plane waves are propagated through the
medium. Then we must have the displacement the same at all
points of a certain family of parallel planes, and we may take

u=Af(ax+by +cz +et)
v=Bf(aa:+by+cz+et)}.
w=Cf (ax + by + cz + et)

The general equations are satisfied by supposing
A+ p)a+p(@+b+c*)—petl A+ (M +p)abB+ (M + p)acC =0
A+ p) abd + {(\ + p) B+ p(a? + B + ¢*)— pe?} B+(7\.+,u)bcC’=0}-
(A +p)acA + (N +p)beB+ {(A+p) ¢+ p(a*+ b+ ¢%) — pe’}C =0

Let e#= V3 (a® + b* + ¢%), then V is the velocity of the waves,
and we have, on eliminating 4, B, C, an equation which turns out
to be

A+2u—pV)(u—pVir=0............... (78),
which gives the values of V, V=~(x+2u)/p, and V=+p/p,
corresponding to waves of compression and to waves of distortion
respectively.

PROPAGATION OF A DISTURBANCE IN AN ZEOLOTROPIC MEDIUM.

73. Formation of equations of motion when there is
a surface of discontinuity.

The particular case of an isotropic medium, in which the part
within a space T is initially corapressed and distorted, and the
remainder of the medium in its natural state, is included in the
more general problem presented by a medium within which there
18, at time ¢ = 0, a surface of discontinuity S, On one side of S,
which we shall call the positive side, the medium is strained in such
a way that the component displacements u, v, w are continuous



78] WAVES IN XEOLOTROPIC MEDIA. 185

functions of the coordinates (z, y, 2), and on the other side of S,
which we shall call the negative side, the displacements are
different continuous functions of the coordinates. The difference
between two components of displacement on opposite sides of S, is
zero, the difference of their differential coefficients with respect to
@, y, # or t is taken to be of the same order of magnitude as these
differential coefficients. We shall shew that the surface of discon-
tinuity is propagated through the medium in such a way that any
tangent plane moves parallel to itself, with a velocity depending
on its direction and independent of the time. The theory was
given by Herr Christoffel in Brioschi’s Annalt di Matematica, 1877.
Suppose then that, at time ¢, there is in the medium a surface
of discontinuity 8. On the positive side of S let the displacement
be u,, v;, w, and on the negative side of 8 let the displacement be
%,, ¥, W;, then these agree at the surface, but their differential
coefficients are different on the two sides. We suppose the tangent
plane at any point on S to move in time dt through a small space
wdt with velocity » in the positive direction of the normal to S,
then, in the neighbourhood of the point of contact, a small
cylindrical element pwdtdS of the medium will have its velocity
changed from 4,, 9, %, to @, 9, 1, and will therefore have been
acted upon by an impulse whose components are
pwdtdS (i, — ,) parallel to &
pwdtdS ( 9,— ;) parallel to y}
pwdtdS (i, — ;) parallel to z
Now let [, m, » be the direction-cosines of the normal to dS
drawn in the positive direction, and let F,, Gy, H, be the surface-
tractions on the positive face of the small cylindrical element,
F,, G,, H, those on the negative face, then the impulses of these
forces during the time d¢ are the impulses that change the motion
of the element. Hence we have

—pod8 (i — tiy) =(F, - F)dS ............ (80),
and two similar equations.
Also we have, by the ordinary stress-equations,
F,=IP,+mU,+nT,
Ci=lU;+ Mm@y + 18} covvervnirrnnanns (81),
H,=IT, + m8, +nR,
and similar equations with suffix 2.
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Thus, if for shortness we write

also h—ty=§ S—f=n d—td=f..... (83),
we get

—pom =1l + m@ +nS’
—pl=1T"+mS +nR
Now let W be the potential energy of strain, and, as in art. 65,
let @,, @,...%s be the six strains, and write symbolically
X=ct+eyg+ .. +Ceg cnvveenninnnnn (85),
then, symbolically, W=3X2iiirriirinianianes (86).

—pol=IP +mU’ + nT’}

Let the excess of the strains ,,... on the positive side of the
surface of discontinuity above those on the negative side be
denoted by @/, «;..., and write down the form

X' =0y + 0oy + oo+ Coly erererrnnannnnn (87),
and let W' =3X"
=3(Cu, Copee CraT B oo Prvrevnrnnrnnnen (88),

then for any =, 887 i8 the same linear function of the quantities 2’

that %Z is of the quantities «, v.e. it is the excess of a stress-

component on the positive side above the corresponding stress-
component on the negative side. Thus the equations (84) become

three such as W
ow’ ow oW’
_P(‘)E:l—aw—l’-}'maT“,-}-na;s, ............ (89).

74. Conditions at the separating surface.

Now let (&, B, y) be any point which moves so as always to be
on the surface of discontinuity at time ¢, and write the equation of
the surface

. t=F(ct, B, ) servereiiniiiiinininians (90).
Then it is clear that

wdt =lda+mdB +ndy .................. (91),
# 1 o m d_n
and therefore a—a = ;‘; s a_B = ; B af_y = 5 ............

The equations of continuity of displacement hold at points
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(x, y, 2) which move so as to remain on the surface, t.e. s0 as to
coincide with a, 8,y. Hence we may differentiate the equations

U=y, V=V, W =Wyeeierereeaeraerens (93),
with respect to a, 8 or , regarding ¢ as a function of these quanti-
ties, and replace the partial differential coefficients with respect to
(a, B, ) by partial differential coefficients with respect to (, y, 2).
Doing this we get nine such equations as

ou, Ouy , .. . 00
a—m—a;+(u1—u,)5a—0 ............... (94).
With notations already introduced we thus obtain
oz, +1E=0, oz, +mn=0, oy +n¢=0) (95).

oz +mm+mf=0, wz/+I{+nE=0, oxc.'+mE+bq=0}

75. Formation of the equation for the velocity.

Let II be the function into which W’ is transformed by
substituting for z,, #,'...x, from the equations (95). Then II is
a quadratic function of £, 5, ¢ and, since £ only occurs in the
expressions for z,/, @y, #;, we have

%%=-},(z%;-"; m%Tu:,+n%Z~) ............. (96),
and similar equations for
on  om
on’ o’
And the equations (90) therefore become
pe=%l, p,,=gl:, p§=-aaL; ............... 7).

To form the function II, write down the symbolical equations

al+cgm+en=N\
Cel +Cm+cn=2>N,
cl+emten=2n,
Then

® () + 625 + ... + 6o) = — (ME + A + Asd)......(99),
and therefore
P =F (ME+Nn + 08P
= ‘} ()'11! )1‘2! M) M) M) MI&’ ﬂ’ 0’ """""""" (100)1
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where
M=A? = (¢l + cam + ) = (Cn, Cess Crs5 Cs6s Cas» Ca § 4, ™, 7). (101),
and  Ny=NN=(cl + cgm + cn) (e + cm + o)

= (Ca05 Coa Ost> & [Cas + Cas), 3 [Cr4 + Cs), 3 [Cr3+ Coe] L, m, M)

and the other coefficients can be written down in like manner.
The function II is thus a complete quadratic function of £, 7,

¢, and, since W’ is always positive, »*[I also is always positive.
Now from the equations (97) we find

oll
poif =w’ = M€ + Mt + Mt
and two similar equations.
Hence w® must satisfy the determinantal equation

Ay — o’ ,  Aass s
A, An— ', Ay =0...... (103).
A, Aas, An— @

Since the function Il is always positive, the roots of this equation
are all real and positive.

Thus there are in general three real values of w,the velocity
with which the tangent plane to the surface of discontinuity

advances, and these are functions of (I, m, n) the direction of the
tangent plane.

76. Equations of a ray.
Let a,, 8, 7, be any point on the surface S, when ¢ =0, then
the parallel tangent plane at time ¢ is
l@—a)+m(y—B)+n(z—v) =0t
and this contains the point

ow ‘o Oow
(a°+t3_l’ B°+t87n’ 'Yo+ta—,n)s

. ? dw .,
if L +me 0 =0 s (104).

But o is given by equation (103) which is of the form
f (o, mjow, njw)=0,
and therefore writing £, f, f; for the differential coefficients of f
with regard to [/, m/w, n/w, we have
Ui +mfs+nfs)do = (fidl+ fadm + f,dn),
so that equation (104) is satisfied.
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Again, if we seek the point of contact of the plane
l(@—ap)+m(y—PB) +n(z—y)=at,
with its envelope, when I, m, n vary and o is a given function of
l, m, n, we shall get, taking account of (104),

z— ao—tg—;’=0

a
y—ﬁo-ta—;= ..................... (105),
z—%—tg—::=0

and therefore the point
(ao"'t%(;‘)‘, Bo +t27wn’ 'Yo+tg'_::)
is the point of contact at time ¢ of the tangent plane parallel to
the tangent plane initially at (a,, By, v,).
The equations (105) are the equations of a straight line
passing through (g, B,, v,). This line is called the ray through
(@, Bo, o).

77. Wave-Surface.

We have shewn how the surface of discontinuity S at time ¢
is connected with the initial surface §,, viz. our equations shew
that from every point P of S, we have to draw in a given direc-
tion, depending on that of the normal to S, at P, the ray through
that point, and take on it a length proportional to the time and to
a certain function of the direction of the normal to S, at P, This
gives a construction for the points on S. Also the tangent plane
to S at any such point is parallel to the tangent plane to S, at
the corresponding point. This gives a construction for the tangent
planes to S.

Now suppose the initial surface S, to be a small closed surface
surrounding the point (&, B,, 7,). Then we have to draw normals
in every direction from this surface and mark upon them lengths
wt where o is a function of the direction of the normal given by
equation (103). The planes drawn perpendicular to these normals
at the points so found will envelope a surface, which Herr
Christoffel calls the “central-surface” of the point (ay, B,, 7).
That particular central-surface for which ¢ =1 he calls the “ wave-
surface ”. If the wave-surface be constructed all other central-
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surfaces are obtained from it by producing the radii vectores in
the ratio ¢: 1.

78. Wave-Motion,

We can now give a sketch of the propagation of the disturbance
through the medium. For this purpose we shall suppose that
initially the part of the medium outside a certain surface S, is
unstrained, and the medium within the surface is strained in a
given manner. If then we draw the central-surface corresponding
to time ¢ for every point within S,, these surfaces will have an
envelope S, which will consist in general of six sheets, two for
each value of w. Fixing our attention on one value of ® and the
corresponding sheets of S the motion of this type will be called a
wave. Three such waves are propagated. The parts of the
medium, not included between the two sheets of S, corresponding
to a wave are at rest and unstrained. Every element of the
medium when the wave reaches it takes suddenly the small dis-
placement-velocity propagated with the wave. After a time
depending on its position with respect to the original region of
disturbance (the space within S,), the wave will have passed over
this element, and as the inner sheet of S passes over it the
element suddenly loses the small velocity that it had, and returns
to a position of rest and a configuration of no strain. The same
thing happens for each of the three waves. The element, if it be
far enough from S,, is jerked into motion from rest, and returns
impulsively to rest from motion by the action of three separate
impulses, and its motion in each case lasts for a finite time
depending on the size of S,. In every case the whole motion
depends simply on the form of the wave-surface and on the initial
state.

The particular case of an isotropic solid is an example of a
case in which the determinantal equation for  has two equal roots,
the & of our previous work. The reader will find it an instructive
exercise to work out this case, and also the case of a medium
whose energy-function is of the form

${d (e+f+9r+L(a—4fg)+ M(B ~ dge) + N (¢ — 4¢f )],
which leads to Fresnel’s wave-surface! and a sphere as the general
wave-surface.

! See Math. Papers of the late George Green, pp. 3083—305.
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ON THE GENERAL THEORY OF THE FREE VIBRATIONS OF SOLIDS!

79. Determination of Principal Modes of Vibration.

Suppose a finite solid mass, bounded by a closed surface, and
under the action of no bodily forces, is slightly disturbed, so that
initially there is a given distribution of strain, displacement, and
velocity, and suppose that the forces applied to the boundary are
of the nature of constraints which do no work, as, for example,
when a point of the surface is held fixed, or is constrained to move
on a smooth fixed guiding curve or surface; the problem of de-
termining the subsequent motion is a particular case of the
general problem of determining the free vibrations of a system
about a configuration of stable equilibrium.

We know that for such a system there are definite periods and
types of vibration, and the type is determined by stating the ratio
of the various displacements of all the points to the displacement
of one of them in some particular direction. The displacements
in any direction are in general continuous functions of position,
and the amplitudes of the displacements in different direc-
tions are in a certain ratio. The whole motion is analysed into
the sum of certain series of coexistent small motions which can be
executed independently of one another. The motions of these
types are called principal modes of vibration.

Now let u, v, w be the displacements, and suppose the solid is
vibrating in a principal mode with a period 27/p. Then p/2w is
called the frequency and p the speed of the vibration. The
functions u, v, w are for this mode proportional to simple harmonic
functions of the time, t.e. of the form cos (pt + ¢).

Let p, be any one of the speeds of principal modes and write
¢, for cos (p,& +¢,), then we have to take

U=y + Uy + ... + Upp + ...

v=uvd + v+ ... + P+ }

w = wyd,+ Wyt ... +w P+ ...
and the whole motion of the rth type is determined when u,, v,
w,, p, are known.

1 Clebsch, Theorie der Elasticitit fester Korper, and Lord Rayleigh’s Theory of
Sound, vol. 1.
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The quantities ¢, are called normal coordinates, and wu,, v,,
w, normal functions. The general variational equation of motion
is

ff SWdzdydz
+ [[[{o 55 bu+p Ga v+ 0 5 Sl dodyds =0......100)

If after performing the variations we put u =u,,, v=1v,¢,,
w = w,¢,, and observe that

ou
i Uy P,

and so on, we see that ¢, will be a factor which can be removed
from the resulting equations, and the part that arises from §W
will be the same as if we substitute (u,, v,, w,) for (%, v, w) in the
expressions

oP oU oT oU oQ oS 0T oS, 6 oR

% @'l'a—z-, a—w’-l-a-y'l'-a;, 5;-!-5—1;-!-3,:.
If P, Q,...U, denote the values of P, @,...U when u,, v,, w, are
substituted for u, v, w the equations of vibration are

oP, oU, oT, -
50 T oy T ag TAP= O, (108),

and two similar equations.

These are three partial differential equations of the second
order for the determination of u,, v,, w,.

In addition to these we have three boundary-conditions at
every bounding surface. By substituting therein the values of
u, ¥, w t.e. of u,, v,, Wy, since ¢, is a factor which may be removed,
we shall obtain in general sufficient equations to determine the
ratios of the unknown constants that occur in the solution, and
one other equation generally transcendental which involves p,.
The values of p,, that satisfy this equation, are the speeds of the
possible principal oscillations of the system. The equation is
generally referred to as the frequency-equation.

80. General Theorems on Vibrating Systems.

We can now use the general equation of vibration (107) to
prove two theorems.
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Theorem 1°. Suppose p, and p, are two roots of the frequency-
equation and that the corresponding types are given by
u=¢,uy, v=¢,7,, w= ¢rwr}
w= .,
Then, in the variational equation, we may take u, v, w to
be proportional to u,, v,, w,, and 8u, 8y, dw to be proportional to
%, Uy, Wy, Then remembering that
Pu o

b
5 W Wf= = Pribrthy,
we have, omitting the time-factors,

U= ¢lul) v = s,

PAffp (wts + v, + wyw,) dedyds
= [[fS Wdzdydz.
[[8Wdzdydz = [[f (Pé¢ + ...) dadydz
=[[f (Pres+ Qrfo+ ... + U,) dadyds

=fff(Pler+ QCfr+ et Uncr) d@dde,
by a general property of quadratic functions.

Thus [ff 8 Wdzdydz is a symmetrical function of

Now

(ur, v, wr), (U, v, wy),

and thus we shall obtain the same expression for this integral
when we identify », v, w with v, v, w, and &, &, w with
Uy, Uy, Wy,

But proceeding as before we find that in this case
0 [flp (uiy + V50, + ww,) dadydz = [[[§ W dwdyds.

Hence
(22— 2D JIf p (ustts + v,0, + wyw,) dedydz = 0,
and since p,® — p,? is not =0 it follows that

IS p (uptty + v, + wews) dedydz = 0............ (110).

This theorem enables us to determine the subsequent state in

terms of the initial conditions by the method of Lord Rayleigh’s
Theory of Sound, art. 101.

Theorem 2°. We can shew that the frequency-equation for p?
has always real positive roots.

For suppose if possible that p,*=a + ¢3 where a and 3 are real.
Then the equation will have a root p,* = a — (8.
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We shall obtain two corresponding sets of normal functions,
2, and ,..., which are conjugate imaginaries.
Thus wu, is the sum of two positive squares, and the same
is true of v,9, and w,w,, and therefore
I p (wrwy + vp9, + wyw,) dedyds,
is a sum of terms, which are all positive, and consequently this
integral cannot vanish. The values of p?* are therefore all real.

To shew that the roots are positive consider the integral
[ (u? + 02 + wrP)dedydz ................ (111),
which is always positive ; this by (108) is equal to
- p—lpr—ﬂfff{u,. (aa—% +aal;'+ %1;') +...+ } dadydz,
and by Green’s transformation this is
- o2 ff{u. P, + mU, +0T,) + ... +...} dS
+p7 02 [ {Prer + Qv fr + Rogr + Syar + T, + Uy} dwdyde.

Of this expression the first line vanishes identically! in virtue of
the boundary conditions, and the second line is

27p,7 [[f W, dadydz,
where W, is the potential energy of strain per unit volume when
the solid is vibrating in the rth normal mode. Hence the integral
(111) is the product of p,2 and a quantity which is always positive,
and therefore p, is also positive.

81. Load suddenly applied or suddenly reversed.

The theory of the vibrations of solids may be used to prove
two theorems of great importance for the strength of materials.
The first of these is that the strain produced by a load suddenly
applied may be twice as great as that produced by the gradual
application of the same load; the second is that, if the load be
suddenly reversed, the strain may be trebled.

To prove the first theorem, we observe that, if a load be
suddenly applied to an elastic system, the system will be thrown
into a state of vibration about a certain equilibrium configuration,
viz. that which the system would take if the load were applied

1 Tf the surfaces be not free there are additional surface-terms for the work done
by the surface-tractions, and the surface-integral again vanishes.



81] LOAD SUDDENLY APPLIED OR REVERSED, 145

gradually. The initial state is one in which the energy is purely
potential, and, as there is no elastic stress, this energy is due
simply to the position of the elastic solid in the field of force
constituting the load. If the initial position be a possible position
of instantaneous rest in a normal mode of oscillation of the system,
then the system will oscillate in that normal mode, and the con-
figuration at the end of a quarter of a period will be the equi-
librium configuration; ¢.e. the displacement from the equilibrium
configuration will be zero; at the end of a half-period, it will be
equal and opposite to that in the initial position. The maximum
displacement from the initial configuration will therefore be twice
that in the equilibrium configuration. If the system, when left
to itself under the suddenly applied load, do not oscillate in a
normal mode the strain will be less than twice that in the
equilibrium configuration, since the system never passes into a
configuration in which the energy is purely potential.

The proof of the second theorem is similar. The system being
held strained in a configuration of equilibrium, the load is suddenly
reversed, and the new position of equilibrium is one in which all
the displacements are reversed. This is the position about which
the system oscillates. If it oscillate in a normal made the maxi-
mum displacement from the equilibrium configuration is double
the initial displacement from the configuration of no strain; and,
at the instant when the displacement from the equilibrium
configuration is a maximum, the displacement from the configu-
ration of no strain is three times that which would obtain in
the equilibrium configuration.

A typical example of the first theorem is the case of an
elastic string, to which a weight is suddenly attached. The
greatest extension of the string is double that which it has,
when statically supporting the weight.

A typical example of the second theorem is the case of a
cylindrical shaft held twisted. If the twisting couple be suddenly
reversed the greatest shear can be three times that which
originally accompanied the twist.



CHAPTER VI

THE EQUILIBRIUM OF BEAMS. SAINT-VENANT'S PROBLEM'.

82. The Semi-inverse Method.

It seems in the first place appropriate to explain the semi-
inverse method of solution adopted by Saint-Venant, and to give
the reasons which led to its adoption, and this leads us to speak of
the theory of beams in practical use by engineers and others
before the publication of his researches on the subject. Let us
for example consider flexure. The problem of determining the
resistance of a beam to flexure, when one end is built into a wall,
while the other end supports a weight, is the oldest problem of the

1 The following among other authorities may be consulted.

Saint-Venant. ¢Mémoire sur la Torsion des Prismes, avec des considérations
sur leur flexion, ainsi que sur 1’équilibre intérieur des solides élastiques en général,
et des formules pratiques pour le caleul de leur résistance & divers efforts s’exercant
simultanément’. Mém. des Savants étrangers, 1855, Also * Mémoire sur la flexion
des prismes, sur les glissements...qui ’accompagnent..., et sur la forme courbe
affectée...par leurs sections transversales primitivement planes’, Liouville’s Journal,
1856. Also ¢Sur une formule donnant approximativement le moment de torsion’,
Comptes Rendus, Lxxxviir, 1879,

Clebsch, Theorie der Elasticitiit fester Korper.

Thomeon and Tait. Natural Philosophy, vol. 1. part 11.

Basset. Hydrodynamics, vol. 1.

Pearson. ¢On the Flexure of Heavy Beams subjected to Continuous Systems of
Load’. Quarterly Journal, 1890.

Navier. Légons sur Uapplication de la Mécanique..., 3rd edition, 1863, with
notes by Saint-Venant.

Voigt. ¢Allgemeine Formeln fiir die Bestimmung der Elasticititsconstanten
von Krystallen...’, Wiedemann’s 4Annalen, xvi. 1882, and ‘ Ueber die Torsion eines
rechteckigen Prismas aus homogener krystallinischer Substanz', Wiedemann’s
Annalen, xx1x. 1886,
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subject of Elasticity, and had received discussion even before the
discovery of Hooke’s Law. This problem continued to attract the
attention of mathematicians, and was the subject of researches by
Coulomb, Euler, the Bernoullis, Navier, and many others, but for
practical purposes most simple questions of flexure may be regarded
as settled by Saint-Venant’s solution. The method of the older
mathematicians was to suppose the resistance to flexure to be the
resultant of the stresses arising from the extensions and cantractions
which the fibres of the bent beam undergo, taking no account of the
shears of the cross-sections, or the distortion of these sections, by
which the bending is generally accompanied. Saint-Venant pointed
out that in general the method is inadequate, as its hypotheses are
false and some of its conclusions erroneous, but he set himself to
discover whether in this and similar cases a solution of the equations
of elasticity could be obtained, which, leaving intact some of these
hypotheses and conclusions, should yet be applicable to a large
majority of practical problems. The semi-inverse method of
solution consists in imposing a restriction on the generality of the
stress within the solid in accordance with a result based on some
theory not derived from a solution of the general equations. In
the particular case of beams, the conclusion borrowed from the
older theories is that each fibre of the beam parallel to the genera-
tors of its bounding surface, is deformed by forces acting on its
ends alone, and suffers no traction from neighbouring fibres.

We are to suppose, then, a beam of cylindrical form with
plane ends perpendicular to its axis, to be subject to the action of
forces on its plane ends, while no traction is exerted on its
cylindrical bounding surface, and we are further to suppose that
there is no stress across any plane parallel to the axis. To make
our work as generally applicable as possible we shall assume that
the material of the beam has three rectangular planes of symmetry?,

1 Saint-Venant began with a solid which has one plane of symmetry only,
perpendicular to the axis of the beam, but introduced the other two planes after-
wards to simplify the work. The student reading the subject for the first time is
advised to work over all the general theory for the case of an isotropic beam.

As a further example of the analysis in the next article it may be shewn that, if
Saint- Venant’s stress conditions be imposed and the beam be supposed vibrating,
equation (12) will be satisfied, and-equations (11) and (18) become

o _p(l+20) Pw 1)
B = Su{L o) GOl s ,
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two of which intersect in the axis of the beam, but we shall not at
first take it to be isotropic.

83. Equations of the Problem.

Take then the axis of z parallel to the length of the beam, and
suppose that it is the line of centres of inertia of the normal
sections in the unstrained state, and suppose the energy-function
of the material when strained to be W, where

9W =(4,B,C F, G, HYe,f,g¢+ La*+ Mb*+ N¢*... (1),
so that the stresses are given by the equations
P=Ade+Hf+ Gy, S=La
Q=He+ Bf+Fg, T=DMby -oevveeeeeeeet (2).
R=Q@e+Ff+Cyg, U=Nc
The stress-conditions imposed by the semi-inverse method are

P=Q=U=0...... ereereenaeens 3)
Pw op Pw _ Pw
and L —2F(1+0') al_at’—alay’ ........................ (18),

where ¢ is the Poisson’s ratio of the material, supposed isotropie, and x is the

rigidity,. Equations (11), (12), and (13) cannot be satizfied unless %'E is independent

of zand y. The equation corresponding to (10) is
o o Pw_pTw
o3 ay’ s ; '5;5 ...........................

and, on differentiating this with respect to z, we find incompatible equations for 31:

as a function of z and ¢t. Hence %’f must be zero; and then, since (7) holds, u is
a function of z, y, t and v of 2, z, ¢; and using (8) and (6) and the equations corre-
sponding to (9), we ghall find that
U= —T7Ye
v= rzenle—bl)
where 7 is a constant, and *=u/p, and the boundary condition can be satisfied only
when the boundary is & circle.

Thus & circular cylinder can execute purely torsional vibrations under Saint-
Venant’s stress condition ; and, with this exception, the only vibrations under this
condition are given by

s (z— bt)’

Pw Pw pPw
u=0, v=0, S +-5=< =5
o "oy o’
and the boundary condition
) dy

These are similar to the vibrations of water in a cylindrical tank whose curved
surface coincides with that of the beam.
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We have therefore for the equations of equilibrium

oT 28
az—o’ a—z=0 ’ 4)
aT aS aR -------------------- s
o Yoy tas ="

and the only condition at the cylindrical boundary, which is not
satisfied identically, is
IT+mS=0.cueucrruriirrrernnnrennne. (5),

where I, m are the cosines of the angles which the normal to the
boundary drawn outwards makes with the axes of # and y.

We may also suppose the geometrical conditions satisfied at the
origin to be
ou oy ou
=" %"

Then the problem consists in the discovery of the most general
solution of the equations (3), (4), (5), (6), and the determination of
the consequent amount and distribution of force over the plane
ends of the cylinders,

u=0, v=0, w=0, =0...(6).

84 Equations for the displacements.

Since P =0, @ =0, we must have

u__BG-HF w_

@~ AB-H* T ™

o __AF-GH ow o

dy  AB—H® 3z "o’ Y
where o, and o, are the ratios of lateral contraction, parallel to =
and y respectively, to longitudinal extension parallel to 2.

Also, since U =0, we must have

L S ®).
oy o«

1 These equations denote that the origin is supposed beld fixed, that the
element of the axis of the beam at the origin retains its primitive direction, and
the element of the plane through it and the axis y retains its primitive direction.
If any other conditions be imposed at the origin the displacements consist of those
that we shall obtain combined with a suitable rigid body displacement.

% The problem in this form was first considered by Clebsch. (See Introduction.)
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And, since ?z=0 and a8 =0, we must have
oz 0z

ou | w
L2 B (9).
* Tw_,
9 oyoz

The third equation of (4) is

o | v | Pw Pu o ow
M(a—z‘a;'F—a;;) (ay“ +ay,) GW+FW+032_’_O,
or by (7),
[aaw g’;,)+[0 M+ G)a— (L +F)a,] =0...(10).

85. Determination of the form of u and v.

Differentiate (10) with respect to z, the equations of (9) with
respect to x and y respectively, and use (7) to eliminate » and v,

and we get

Pw
Tgp = Ut (11).
Differentiate equations (9) with respect to y and z, add, and

use (8), and we get
v _g (12)
Gags = O s .
Differentiate equations (9) with respect to # and y, then, using
(7) and (11), we get
Pw
e =0, EW ..................... (13).

It thus appears that g—% is linear in 2, and linear in « and y
separately, and therefore

=(at+ar+ay)+e(B+Bz+BY) . eceee.. (14),
where the a’s and 8's are constants; and the only possible forms
for 4 and v that satisfy (7), (9) and (14) are

u=—a, (ar + o2’ + awy) — 012 (Bz + }B:2" + Bywy)

—§0,2* —§8:2' + w0 + w2,
v=—oy(ay + axy + yay’) — 022 (By + Buzy + $By)

— 32,2° — }B,2° + v, + vz,

where u, and v, are functions of y, and v, and v, functions of z.
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Now (8) shews that the equation
_a-la,z—a'lﬁ,zz+%1;—;+2—aa%l + [ oy — By + gv°+ aa:] =0
is identically satisfied whatever z may be, and therefore
U=d + ay+ ooy
=8 +By+1is.8y"
v =a’ —az + a2’
v, =8" — B+ }0.8, 2,
where all the a's and 8’s are constants.
Hence, using equation (8) and the conditions (6) at the origin,
we find for  and v the forms
u=— 0, (az + o2 + azy) — 012 (Bz + 42 + Bury)
— a2t — B2 + oy +2 (Boy +{o.8:9%),
V=0, (ay + aay + jay’) — 052 (By + Buoy + 38"
— $0,2" — }B,2° + da1a,2° — 2 (Bw — § o, B?)
86. Determination of w.
Returning now to equation (14) we find
w=2z(a+az+ay)+42 (B + Lz + By)+v......(16),
where «' i8 a function of z and y which satisfies the equation
% +La"" +[C—(M + @) o~ (L + F) 0] (8 + B + Bay) =O.

A pa.rtxcula.r solution is
W =—[C= (M + @) o,—(L+F)o)] [‘}3 (%

+48. % 448,97 |.an),

and therefore w consists of (16), in which «/ is given by (17), and
a solution as general as may be required of the equation

¢
M +I,a g = O (18).

Thus, if ¢ be the solutlon of this equation required to satisfy
the boundary-conditions, w is given by the equation

w=z(a+ar+ay)+ 32 (B+8z+By)+ ¢
-k {18 (Foh)+ 8.5 + 181 ]9,

K=C-(M+@) o, —(L+F)0sunneren... (20).

.(15).

where
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87. Boundary-condition.
The stresses corresponding to these displacements are by (2)

$=L 3~ BBy (vt gy )~ By (o T ) - 18

vineocf)

71|29 [ (21).

E + By - Bz (0'1+ I I—fM) By (a‘,+ %) — }Boz

K\
+189 (o)
R=(C— Go,— Fa,) [a+ iz +ay+2(B+ Biz+ By)]
The condition (5) at the cylindrical boundary becomes

(2152 +Lm ) = g (Lms - H1g)

o [smy oo g 0 )
+,91[Ml1}a1w’ + Imoy (s2+7) ~ My (rs= )]

+ B [Lm&a',y + Mlzy (a’, K) Lm}as (a’, —1%)]...(22).

This condition holds at every point of the boundary. If therefore
we multiply by the element of arc of the boundary ds, and inte-
grate round the boundary, and transform the line-integrals into
surface-integrals over the normal section, the left-hand side
vanishes identically by equation (18), and the right-hand side

BJ[[2 (et pia) + 2 (o )|
+aff I:Ma'l +L(m+ %)] wdady
+ 8 f f [L% +M (a’, + %)] ydzdy.

The last two terms vanish if we take the axis z to pass through
the centres of inertia of the normal sections, and it follows that in
general 8 must be zero, the term in B being

B (C— Go, — Fa,) [area of normal section].
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The coefficient C'— G, ~ Fo, can be shewn to be the Young's
modulus £ of the material for traction parallel to z (ch. IIT
arts, 43 and 44).

88. Simplified forms of the Displacements and Stresses.
As we have shewn that 8 =0 we may rewrite our equations as
follows :
= — gyaz — §a, (018° — oy®) — oy + Bz
— 4Bz (0.2 — oyy*) — 0By z — fa 2 — &Blza
v =— 02y — o2y + §ot, (617 — 0y?) — Bz
— 0By + §B:z (012* — o) — §a,2° — §Bye*
w=z(a+az+ay)+42(Bz+By)+¢
— 4 (E— Mo, - Lay) (Bay'/L + Byw| M)
where ¢ satisfies the equation (18), viz.:
o* 0
M ¢+ L a;

at all points of any normal section, and the condition
2+ 1m¥ — g, (Lma - M)

o9y
+8 [&Mlm:' +E=- M"‘

~—~

...... (23),

(Emay + 1M1y) ~ o |

+8, [&me/’+E Lc’(Mnyh}an) Lma, ]..(24)

at all points of the cylindrical boundary. The stresses at any point
are

0 E-~ Ml \
§=1| - -E= 0 pay

L
Y (a',y“+ £ 'Af" P 20',.'1:’):
=M [g—f + By —16 (a’lz’ +E= LM"‘ y=—2a,y') - oeee(25).

E—La'g N
" Bwy_

R=E[a+az+ay+z(Bz+By)]

89. Character of the solution.

The solution is linear in 6 independent arbitrary constants,
a, &, %, By, B, B, and we may suppose all but one of these to
vanish. Thus we shall have a solution involving @, a solution
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involving a;, and so on. Of these the solution involving a, can be
obtained from that involving a, by changing # into y and making
appropriate changes in the constants oy, L,..., and the solution
involving B, is similarly related to that involving 8;.

The solution involving a corresponds to simple extension of the
beam.

The solution involving &, corresponds to uniform flexure in the
plane of (=, 2); for the equations of the line of particles initially
coinciding with the axis of z become

y=0, z=—}a7
As all the B's vanish, ¢ =0, and the resultant stress across any
section reduces to a couple about the axis of y.

The solution involving B, corresponds to forsion about the z
axis; for this axis retains its primitive position, and every normal
section is rotated through an angle — 8,2. The resultant stress
across any section reduces to a couple about the axis 2.

The solution involving B, corresponds to non-uniform flexure in
the plane (2, 2); for the equations of the line of particles initially
coinciding with the axis of z become

y=0, z=—1}8:2"
and the resultant stress is of a more general character than in the
other solutions, We shall shew that, by a combination of this
with the previous cases, it is possible to make the stress reduce to
transverse force parallel to the axis of .

90. Extension of the cylinder.
The displacements are

U=—o0r
v=—oay !» ........................ (26),
w=az J

where a 18 the extension of the beam.
The only stress that is different from zero is R, and we have

where £ is Young’s modulus of the material for extension parallel
to the axis of the beam.

The resultant stress across any normal section is

where w is the area of the cross-section.
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91. Uniform Flexure.

Suppose all the constants except 4, to vanish. The displace-
ments are
= — 4o, (2 + 012 — o))
V=—=@OLY P oereeecrrinennes (29).
w= azz

All the stresses except R vanish, and

The resultant stress across any section reduces to a couple about

the axis y of amount
e . [T (31),

where I, is the moment of inertia of the cross-section with respect
to the axis y.
The central-line is deformed into the curve
z=—4a,2’
........................ 2),
el (32)
which is an arc of a parabola, but as the bending is very small we
may regard it as an arc of a circle of large radius %.
1

The change of position of the cross-sections is given by the
equation

W =OLTZ veeerecneorsosecnnassnonens (33),
which shews that any section z = z, becomes
2=2)(L + a@)ecrreerurrininrnnnnenns (34),

so that this section is turned round the axis y through an angle
2z, and remains plane.

The distortion of the shape of the cross-sections depends on »
and v. Consider the beam rectangular, and let 2a and 2b be the
lengths of the sides. Then, referred to the new position of the
centre of inertia the sides

z=+a, and y=1>b
become zF a=—}a, (0108 — oy®),
and YFb=—ocmbe.
The latter are straight, and intersect y =0 in =0, and are

inclined to these at a small angle o.ba,; the former are arcs of
parabolas, and their curvature is oya,.

If, to fix ideas, we draw the axis z horizontal, and perpendicular
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to the paper, and the axis # in any section vertically upwards, the
central line will be approximately part of a circle, of radius 5—

1
whose centre is vertically above the origin (a, being taken negative).
The shape of the cross-section® is given in the figure in which all
lines parallel to AB or CD become approximately arcs of circles
with their concavities downwards or in the opposite direction to
that of the central line, and the upper and lower plane faces of
the bar become anticlastic surfaces with their principal curvatures
in the ratio 1: o,.

A/

X

0

— ﬂo

Fig. 10.

If this figure be supposed raised through the distance necessary
to bring its centre on to the circle formed by the central-line, and
turned round the axis y until the axis # produced passes through
the centre of this circle, we shall have a complete representation of
the changes of form and position involved, and the representation
applies equally well to the distortion of a beam of rectangular
section and to the distortion of a rectangular portion of a beam of
any section.

1 The curvature in the figure is much exaggerated.
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92. Torsion of the Cylinder.

Let us write
Bo=—m,
8o that 72 is the angle turned through by any section at a distance
2z from the fixed end, Then the displacements are

u=—1Yz

V=TT } ........................... (35),

w=¢
where ¢ satisfies the differential equation

b L%

M— 3 + 1L g = 0o (36),

and the boundary-condition
m%yin? 4’ w7 (Mly— Lma) ... 37).

ox
The resultant stress across any section has components

M f f (g;z ~1y) dedy panallel to.,

o
Lﬂ(@ +72)dody parallel to y.
The first of these may be written

2 et (5 - )} 2o + o)} s

since (36) holds at all points to which the integration extends;
and this can be transformed to
[a {Ml%%+Lm%$—r(Mby—me)}ds

where ds is an element of arc of the boundary. The line-integral
vanishes identically, since ¢ satisfies the boundary-condition (37),
and thus the resultant stress parallel to  vanishes. In like manner
the resultant stress parallel to y vanishes. The stress therefore
reduces to a couple

i} {Lw (34’ +1a) — My (3—4’ - Ty)} dody

= L+ ML)+ || (ng;‘; 34’) dody......(38),

where 7, and I, are the moments of inertia of the cross-section with
respect to the axes of y and «,
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93. Symmetrical Case.

If the two principal rigidities L and M be equal the theory is
simplified. Taking L =M=y, we find that the stress gives rise
to a couple about the axis 2z of amount

#f{ +-rw (ai’—'ry)} dzdy

or prl+p f [(= @ ~y %i;i) dady........ (39),

where I is the moment of inertia of the section about the axis z.

If we suppose

[[(=32-v3E) dedy =@ -1 [[iar+ ) dua

the couple will be gurl. The quantity gul is called the torsional
rigidity of the prism.

These results suggest two considerations. The first is a
comparison with previous theories. The predecessors of Saint-
Venant had generally supposed that, in every case of torsion, the
stress at any section reduced to a couple about the axis of the
cylinder, whose amount is u7J where 7 is the amount of the shear.
In their work the distortion of the cross-section, implied by the
existence of ¢, was neglected. It is only for the circular cylinder
that ¢ vanishes, and the property assumed is a unique property of
the circular cylinder. Saint-Venant by introducing ¢ shewed that
the couple is only proportional to that assumed by his predecessors,
the coefficient ¢ depending on the size and form of the section.
This coefficient is now called Saint-Venant’s “ torsion-factor”.

94. Hydrodynamical Analogy.

The second consideration is that there is an analogous problem
in Hydrodynamics, viz.: it will appear that the solution can be
derived from that for the motion of frictionless liquid in a rotating
cylindrical vessel.

Let @ be the velocity-potential of the liquid, @ the angular
velocity of rotation, then the conditions to be satisfied are

oD A oD
o oy

1 We shall retain this supposition till the end of art. 102.
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at all points of the section, and the boundary-condition

od o®
lﬁ; +m@=—lwy+mwa: ............... (41)
at all points of the bounding curve.
So that Pip=—w:Tiireirerninirnnnne. (42).

In the hydrodynamical problem the whole momentum of the
liquid is angular and the moment of momentum is

fff o0& 0P
p U (a: &y -y E) dzdy....oovieniinnnns (43),
where p is the density, and this is —wp (¢ —1) 7.

If we suppose the vessel constructed of such material that its
moment of inertia about the axis of the cylinder is — p7, the whole
impulse required to start the motion will be —pwgl, so that,
identifying p and u, the impulse in the hydrodynamical problem
will be identical with the couple in the elastic problem. The
hydrodynamical problem is however no longer a real physical
problem as it involves a negative distribution of matter on the
surface of the cylinder.

The hydrodynamical analogy suggests the method to be
followed in the solution of the torsion-problem. We know that in
irrotational motion of a liquid in two dimensions there exists a
stream-function ¥, which is the conjugate-function of ® with
respect to # and y, and that the value of ¥ is given at the boundary,
and it is in general simpler to solve the equation _3;:’7_*_ %I;= 0
when the value of V is given at any boundary than when the value
of %%, (rate of variation in the direction of the normal) is given at
the boundary.

We shall accordingly suppose that ¢ and 4 are conjugate
functions of z and y, so that ¢ + ¢y is a function of the complex
variable z+ .y, then we know that ¢ and + satisfy the same
partial differential equation

CAY I
(373 + @;) =0
and we have 0p N 0__ 0 o, (44).

oz 9y’ Oy oz
We have to obtain the boundary-condition for y-.
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Let ds be an element of arc of the bounding curve of a normal
section of the cylinder, measured in that direction in which the

¥

Fig. 11.
curve must be described in order that its area may be always to
the left of the boundary, then

W
l—zls, m——%..........

are the cosines of the angles which the normal to the boundary
makes with the axes, and the boundary-condition becomes

eeeeoeseeen o (45)

dydy dady_ ( de  dy

Zoptma(Cm Y a)

We may obtain the integral of this equation in the form
V=3r(@+ )+ Crnrininninnnnn. (46),

where C is an arbitrary constant.
Thus the problem is reduced to finding a solution of the

equation
oy o _
Pl W | 47
at all points of the section, subject to the condition
V=37 (@ + 1)+ Corrrreeeervernnn (48)

at all points of the boundary.



96] STRENGTH UNDER TORSION. 161

95. Hydrodynamical Analogy, continued.

There is another form of the hydrodynamical analogy in which
the problem of torsion is compared with that of a liquid circulating
with uniform spin in a fixed cylindrical vessel coinciding with the
surface of the twisted prism. In this form the moment of
momentum of the liquid coincides with the torsional rigidity of
the prism, and the velocity of the liquid at any point represents
the shear at that point of the prism. In the first form of the
analogy the shear is represented by the velocity of the liquid
relative to the vessel.

A result of considerable importance! can be at once deduced
from the hydrodynamical analogy. Suppose a shaft transmnitting
a couple to contain a cylindrical flaw whose axis is parallel to that
of the shaft. If the diameter of the cavity be small compared with
that of the shaft, and the cavity be at a distance from the surface
great compared with its diameter, the problem is very nearly the
same as that of liquid streaming past a cylinder. Now we know
that the velocity of liquid streaming past a cylinder has a maximum
value equal to twice the velocity of the stream, and we may
therefore conclude that in the case of the shaft the shear near the
cavity is twice as great as that at a distance. The importance of
this result in connexion with the strength of materials has been
previously pointed out (art. 58).

96. SBtrength of a beam under torsion.
With our notation the six strains of the material are

e=f=g=c¢=0, a=%§+m, b=%%—fy,
and, by art. 10 (iv), these are equivalent to a shear v/(a?+b%).
This, as stated in the last article, is the velocity of the fluid in the
corresponding circulating motion. Whatever theory of strength be
adopted it is clearly necessary that this shear must not surpass a
certain limit, and it is therefore of great importance to know where
the maximum of this shear is to be found. In a number of
particular cases it can be shewn that this maximum is on the
contour at the point (or points) nearest the axis. To investigate
the question generally, it would be necessary to know the solution
of the torsion-problem, or of the corresponding hydrodynamical

1 Larmor, Phil. Mag. Jan, 1892.
L. 11
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problem. We can however give reasons for thinking that the
points of maximum shear in general lie on the contour and not
far from the points nearest the axis. Take the hydrodynamical
problem of the liquid circulating within the boundary, and suppose
the stream-lines drawn. Then at any point of a stream-line the
velocity is inversely proportional to the distance between con-
secutive stream-lines. As the stream-lines do not cut themselves
or each other, and as near the axis they approximate to circles
round the axis, and near the boundary they approximate to the
boundary, it is clear that in general they will be closest together
in the neighbourhood of a line drawn from the axis to the
nearest point of the boundary, and farthest apart in the neighbour-
hood of a line drawn from the axis to the farthest point of the
boundary. Again, since the line-integral of the velocity round
any closed curve within the boundary is equal to twice the
surface-integral of vortex-strength over the area enclosed by the
curve, it is clear that the average velocity along any stream-line
increases as we pass from the axis to the boundary. This of course
does not amount to a proof that the points of maximum shear in
the torsion-problem lie on the boundary, but it goes some way
towards making this probable.

According to what has just been said the result for a cylindrical
cavity requires a more exact statement. Practically it comes to
this. Suppose the cavity meets a section in the point P, the shear
in the neighbourhood of P is nearly doubled, provided the
distance of P from the surface is at least three or four times
the diameter of the cavity. If P be near the axis this is of no
importance as a greater shear exists at the surface, but if the
distance of P from the axis be at least three or four times its
distance from the surface the result becomes important as the
maximum shear is considerably increased. The case of a semi-
circular groove in the surface can be included by observing that
the motion of the fluid in its neighbourhood would be the same as
that of fluid streaming past a semi-circular ridge on an infinite
plane. The maximum shear may in this case be doubled.

If the boundary have anywhere a sharp corner projecting
outwards, the velocity of the fluid at the corner vanishes, and
therefore the shear in the torsion-problem is zero at such a corner.
If the boundary have a sharp corner projecting inwards, the
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velocity is theoretically infinite, and the torsion of a prism with
such a section will be accompanied by set in the neighbourhood of
the corner.

The resistance of the beam to torsion is in general not increased
by the existence of a sharp corner projecting outwards, and by
paring down the section in the neighbourhood of the corner a form
could be arrived at with a smaller area and the same torsional
rigidity. The fibres that might be pared away are called by Saint-
Venant “ useless fibres ” (fibres inutiles).

97. The circular cylinder.
The boundary condition becomes

4r = const.,

so that 4 is constant at all points. Hence also ¢ is constant, and
a8 ¢ vanishes with z and y the value of ¢ is everywhere zero.

In this case the twisting couple is 471 and there is no distortion
of the cross-sections’.

98. The elliptic cylinder.

Y

/

Fig. 12.

Let the equation of the ellipse be
@Y
p + he ) N (49).

1 When the two principal rigidities are unequal there is distortion. Its inves-
tigation is left to the reader.

11—2
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The differential equation is satisfied by

where A is any constant. This will also satisfy the boundary-
condition if
A@ —y) =37 (@ +¥)

2

can be constant when pr

y_
+E=Lb
which requires that
A-37)a*+(A+47) b2 =0.

H —% a2;b2( 3 2) (“'1)

ence Y= TAT BT ~Y) 51),
az_bz

and ¢=—Tm$y ........................ (52)

In this case the twisting couple qur[ is
a3 — b2

=}mwabur [a’ + b - (L::,:_l;)ﬂ]

=apura®B(@* + 0D i (53),
and g=4a(@®+ VP ..vviininiiiiinii, (54).
The distortion of the sections into curved surfaces whose contour-
lines are given by ¢ =const. is shewn in fig. 12. One quadrant
only is drawn and the curves in the other quadrants can be
obtained by reflexions in the axes. In the quadrant drawn the
section is depressed, in the other quadrants it is alternately
depressed and elevated.

The stream-function of the circulating motion when the ellipse
is held fixed is

Jo @+ - o b (- ),

o ‘E’abn + yzaz

a+b ’
the stream-lines are therefore similar ellipses, and the distance
between consecutives is proportional to the perpendicular from the
centre on the tangent. The maximum velocity along a given
stream-line has place therefore on the minor axis. The velocity
at any point on the minor axis is proportional to the distance from
the centre, and therefore, in the torsion-problem, the shear is

or
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greatest at the extremities of the minor axis of the ellipse, and is
there equal to 2ra%h/(a? + b°).

99. The equilateral triangular prism.
¥

4

Fig. 13.
Let 3a be the height of the triangle, then the equation of the
boundary is
(z—a)(z—yV3 +2a)(z+yV3 + 2a) =0,
or o — 3zy* + 3a (2* + y*) — 4a*=0.
The function A (28— 8xy®) satisfies the differential equation,

and
A (2= 3ay) =47 (2" + y’)
will be constant all over the boundary if

Thus P=— %a (k) SR (55),

and - La (1= 8%Y) reerrerireannenns (56).

The curves of equal distortion are shown in fig. 13. The triangle
is divided into 6 exactly similar and equal parts by the lines
joining the corners to the middle points of the sides, and, in these
parts, the section is alternately depressed and elevated.

In this, as in any case where there is a sharp corner which is
not re-entrant, the velocity of the fluid circulating in the prism
is zero at the corner, and it is obvious from .symmetry that its



166 THE TORSION-PROBLEM. [100

maximum in the case of the triangle has place at the middle
points of the sides, It may be verified by direct calculation that
the maximum shear in the twisted triangular prism has place at
the middle points of the sides.

100. ‘The rectangle.

Suppose the edges of the rectangle are z =t a, y = + b, so that
the lengths of its sides are 2a and 2b.

We have to solve the equation ¥ aM—’=0, subject to the

08 T oy
condition
Y — 37 (2% + ) = const.
all along the boundary.
Suppose Y=x+A@@—y)+B..ccccvinennnn. (67),

where A and B are constants at present undetermined. Then we
have to solve

3—% + g’—;f =0 euiiiienniinirreiannane, (58),
subject to the condition
x+A@—-y)—ir(@+y)+B=0............ (59)
along the edges. If we suppose a > b, and take 4 =}r, B=0"r, the
conditions for x become
X=0riviiiiiiiiniiiiniiiene... (60),
when y=+b and @ > 2 >—a, and
X=T@WP =0 iiiiiiiiiiiiiiinnans (61),

when z=+a and >y >—b.

The most general form of solution can be expanded in series of

the form
3 [Aem@ta) 4 Bem(w-w)],
=1

where the 4 and B are complex constants. But we observe that y is
an even function of y at the boundaries, and vanishes when y=+b.
Thus we must expand x in cosines of multiples of y, and make
every cosine vanish for y=5b. Again x is an even function of &,
and thus the & coefficients must all be hyperbolic cosines.

Thus x is of the form

(2n+1) 72
cosh *———~"—
3 2b (2n+1)my
X _§ 4, -~ Gnt Do cos R (62),

2b
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provided

r (@ =) =3 4, cos (AT ... (63),

when b>y>—b.

Now between these limits we find, by expanding y*—¥&* in
Fourier’s series,

- =1y
Ap=—14 b=( )(2“1)3 ............... (64).
Thus
h(2n+1)7ra:
. ’°° (- 1)‘" 2b 2n+1)my
x"‘””( ) @+ 1P nCrtDma 2 ~(65).
2b
Also ¥v=b+ir(@-)+x
so that
¢ =—rT12Y
sin h(2'n+1)1m:
2% (=D 2b 2n+1)my
b ( )2 @ +iy —@rDm " | O
2b

The twisting couple is, by (89) of art. 93,

f (" = i) dwdy
st () [ (5 -s32)
which is equal to

gp-rab’+4m-b’< (= ( -——ya ) dody...... 67),

a4
8

where
. (2n+l)1ra: in 2n+1)my
ol (1 sinh o7 25 (68)
o 2n+1p h(2n+1)1ra '

2b
A term of the double integral is
h(2n+1)7ra (—1)» ﬁ‘ 2sinh (2n+1)1ra; (2n+1)7ry
2  (2n+1p2 2b

— y cosh (2n -;;) 7% gin (2n ;l}) Ty] dz dy.

sec
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Now

e ., @n+1D) w2
f-aa:smh op dx
% 2n+1l)ma  2b .o (2n+1) 1“]
“@n+l)a [2 @ 0osh g — G Dy 2 oPh T o ’
and (9 D o}
n+1)mwy "
f_,, % W@t Do
80 b (-1)
@+ Dmy , _ 8(=1)
.{_ M dalCre
Also
Cn+Dwz , 2 (2n+1) ma
f_a cosh LT dy = ot 2 aink R,
Hence the twisting couple is
o (2 pras L
SuTa +<;r) RTA > @n +1)‘
o, @+ D) 7a
2\8 = /2b 2b
—urte () §<?> ISV
which is equal to
anh (2n+1)ma
N e _
18urab p.'rbd( ) E‘, BT Iy (69),

g 1 _-

o (2n+1) " 96°

and it is to be noticed that a term §urad® is contributed by the
transcendental part of ¢.

The expression for ¢ must really be unaltered when z is
changed into y, and @ into b, and the expression for the twisting
couple must be symmetrical in @ and 5. For an account of the
identities thus obtained the reader is referred to a paper by
Mr F. Purser in the Messenger of Mathematics, X1. 1882,

Saint-Venant has investigated® the forms of the curves of equal
distortion given by ¢ =const. If we begin with the case of a
square prism ¢ vanishes along the diagonals, and along the middle
lines of the square parallel to its sides. If we take one side great
compared with the adjacent side, then ¢ vaunishes only on the
middle lines and not on the diagonals. The limiting form between

since

1 See the great memoir on * Torsion * of 1855.
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rectangles which divide into 8 parts, in which ¢ is alternately
positive and negative, and those which divide into 4 such parts, is
given by making the ratio of the sides equal to 1'4513.

101. Other sections.

When the section is not of one of the forms just considered
the problem can frequently be solved by means of conjugate
functions. Whenever we know a transformation by means of
conjugate functions, say

a+ 8 =Ff(z+y),
such that the boundary consists partly of lines a = const. and
partly of lines 8 =const., the differential equation for yr can be
expressed in the form
G e S

T
and ¥ will be a given functlon of a along some part of the
boundary, and of 8 along the remainder. The simplest case is
that of a curvilinear rectangle bounded by two arcs of concentric
circles and two radii, including the case of a sector! of a circle of
any angle. The work in these cases may be left to the reader, we
give the results.

1°. For a sector of angle 28 in terms of polar coordinates
7, 8, so that the boundaries are

r=0, r=a, 0-+,8

y=4r 2Z,+ a’E[A,,.+1 (a)‘z” o, 05 (2n+1) 5 ] .(70),

where

n+1 1 2 1
Ay = (=) [(2n+1).,,-_4.,3_(2n+1)1r+(2n+1)7r+ 4-.3]

If we write re® = gz, then

, &
¥ —up=4ra cos 28

_."2'%’ {w,f” T dw_4_.3 tan——l( 2'; 1f +1 }...(72),

™

Iwﬁ +.7c‘B

m

where the modulus of z is 31, and tan— (wz_ﬁ) is that branch
of the function which vanishes with 2.

1 Greenhill, Messenger of Mathematics, vin. 1879, and x. 1881,
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2°. In case 273 is an integer greater than 2 the integra-

tions can be pérformed, but when 7 —2 the first two terms

28
become infinite, and their difference has a finite limit, and
we find for a quadrantal cylinder

Ta?

V== f[ 23 log & + tan—1a? + } (w“—al:z)log(l +x‘)]

8°. For a semi-circular cylinder
1[:—L¢—-——~|:}7mﬂ—1(x+ ) + 4 ( )Iogi*x] (74).
4°. For a curvilinear rectangle bounded by two arcs and

two radii, taking conjugate functions

and supposing the outer radius is @ =ce™, and the inner
b =ce~*, (so that ¢ is the geometrical mean of the radii,) and
taking for the bounding radii 8=+ 8,, we find

$ = — frabe > in 28 | osraby % A, ®,,

os 28,
where
(gn_{-vl ) ma osh (Cn+1)7a
®,, = - cosh 2a0 28, + sinh 2ao 28, ...(76)
" cos h(2n+ 1)ma, sinh Cn+ Dmay| ’
28, 28,
o (@0 +1) 78
n ot n4+1)m
e (—)*sin 58,

[Cnr D)7 —4B)(Cn+ D (Cn+ 1) 7+ 45,
Another method is to take any function 4 satisfying

e
0z ay
and make ¥ — 47 (2* + y*) = const.,

the equation of a bounding curve. Then this gives a boundary for
which the problem of torsion is solved.
102. Approximate Formula.

A large number of such cases have been solved, and the results
obtained lead to a very remarkable approximate formula for the
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torsion of a prism of any section which is not very elongated in
any direction, and does not present any re-entrant angles,

This formula is a generalisation of the formula for the ellipse.
The latter gives for the twisting couple @ the form
1l o
G=gm THm
where ® is the area and I the moment of inertia about the axis.

Now Saint-Venant® found that, in the case of all sections such
as those just described that had been worked out,

4
G=x?un

where the value of « varies only from ‘0228 to ‘026 while its mean
value is about ‘025, or 4;, and its value for an ellipse is 02533...,
and thus we may take with remarkable accuracy for most forms
of section likely to occur in practice

and the twisting couple for different prisms of the same material
18 directly as the fourth power of the area of the cross-section, and
inversely as the moment of inertia of this section about the axis.
The theory of Coulomb and Navier made the couple directly
proportional to the moment of inertia 7.

103. Torsion of ARolotropic Rectangular Beam.

On account of its importance we shall give the solution of the
problem of the torsion of the rectangular prism in the case where
the two principal rigidities of the material for shear of planes
through the axis are not the same.

We have to find a function ¢ to satisfy the differential
equation

op 0%
Ma? +La—y=‘0 ..................... (78),
and the conditions
%=ry, when z=+a, and b>y>-b,
o
and sy =™ when y=+b and a>z>-a.

1 Comptes Rendus, Lxxxviil, pp. 142—147, 1879.
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Let z =ML+ M)
=3/‘\/L/‘\/(L+.M)J\ ..................

where the denominator is introduced for the sake of homogeneity.

The differential equation (78) becomes
8’¢ 8’4; ~0

St By” ........................ (80),
and the boundary-conditions become

0 M) o
when =+ \/(L#) a
and \/(L_ZM)b>y’>—N/(L-£M)b,
and g;—,= —51/;(%4]%) R (82),

when y=4 ,\/ (E——Z—M) b
and ,\/(L;-”M) >a > \/(E#) a.

Introduce yr the conjugate function of ¢ with respect to #” and
y/, supposing ¢ + «Jr to be a function of z’ + ¢y’; then, writing

\é(ijblll) T=r1/, \/ (L :;-”M) a=a,

...... (83),
\/ (L +M ) bt
L
¥+ has to satisfy the conditions
a‘l’ s
a—-y, =TY cversctcenceiiiansiicinieans (84),
when Z=%a and b'>y >-V,
and g‘;” S oo, (85),
when y=212b and a'>a'>~d.
Thus Y =472+ y?)+const. ..oovvveiinniininns (86)

is the condition that obtains at the boundary.
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The problem is now precisely the same as in the case of
elastic symmetry except that
a, Y, &, b, 7

take the places of

z Y a b T
We have therefore

¢—_lelyl
sinh 2n + 1) o’
L % @ty
I TS Vo T L ’
2b'
or b=—T3Y
inh {(2n+ 1)me _}
M2 3 (=) 2b . Cn+ Dy
+T\/(L) ey E(2n+1)" (@ e }sm 2
2b M
.................. (87).

And the twisting couple is, by (38),
r(LL,+ ML)+ [ {ng Myaq”} dady,
which can be shewn to be equal to

(2 ) L
st /() e (2) 3 e VA )

(2n+ 1y

104. Approximate Formula.
We may express this result in the following form.

Let I be the length of the beam, ¢ its thickness (or smaller
cross-dimension), @ the area of its cross-section, » the ratio

(ay'L)[(by M), f the function
@n+1)mwr
£ —
w/ % (2n 4+ 1y

Then the angle turned through by the end at which the couple
@ is applied is

361
Mot? (1 - f/r)

Now when r is not < 3, f is remarkably nearly constant and equal
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to 3:361...; and thus, if the thickness of the beam be considerably
less than the breadth, we have an approximate formula
3Gl

Mot? (1 - E-;)

r
In this formula ¥ is the rigidity for the directions of the axis of
the beam and the breadth of the cross-section, supposed perpen-
dicular to planes of symmetry of the material.

It is clear that by twisting thin rectangular bars of a crystal,
cut parallel to axes of symmetry, and having their smaller sectional
dimensions parallel to axes of symmetry, we can obtain sufficient
data to determine the three principal rigidities of the crystal.
Prof. Voigt of Gottingen has used this method to determine the
rigidities of certain crystals. He has also shewn that a formula
similar to (90) holds in the case of other crystal forms than those
having three planes of symmetry, only M is not the rigidity for
the two directions, and f is a function which satisfies equations
that have not been solved. At present we refer the reader to
Prof. Voigt’s papers® for an account of the torsion of prisms of
matter which has not three planes of symmetry of contexture, and

we hope to return to the subject in connexion with Kirchhoff’s
theory of thin rods.

105. Non-uniform Flexure.

Returning now to the general solutions of art. 88, we wish to
shew how they may be applied to the case of flexure by transverse
force applied at one end of the beam. For this purpose we must
consider the terms of the solution which involve the constants 8,
and B8, We have seen already in art. 89 that the solution
involving 8, is distinct from that involving B, and that one of
these can be obtained from the other, and it will therefore be
sufficient if we consider the terms in 8, only.

Suppose then that all the constants in equations (28) except
B, vanish, and let us seek to determine the end-traction that gives
rise to the terms in 8,

The displacements are

U=—- %:812 (0'1-’1'3 - U'zyn) - '&,8123
v =—o,BrYyz e (91),
w= ¢+ 48w — % (E — Mo, — La,) ﬂl‘vy,/L

1 For references see p. 146 supra,

angle turned through =
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where ¢ satisfies the differential equation M g—(ﬁ +L g;: =0...(92),

at all points of a normal section, and the condition

ey 1m %
oz oy

-8 [«}Mlo-lw’ + (Lmay + $Mly?) — Mlo‘,g] ...... (93)

at all points of the boundary.
The stresses at any point of a section, z = const., are
S=1L [gj’ L= Ma’ By ] parallel to the axis v,

T=M [— — 38, (m,, +E= X G- 2L, y)] -+ (94).

parallel to the axis «,

E - Mo'l

R = EB,zx parallel to the axis z
The resultant stress parallel to z is

m [ [?"’ ~ 18, (s E= M= 2, y)] dady

_ff[ a:::( a“b) +Lay( ¢)] dzdy
—i68M f f (o'lw“+E~MUL’_ 2La, y’) dzdy.

The first surface-integral on the right can be transformed into a
line-integral round the boundary, and, if ds be an element of arc
of the boundary, and [, m the direction-cosines of the normal to it
drawn outwards, the stress parallel to 2 becomes, by (93),

f [wzmx i M —% (Lmaty + § Mly'z) — Mlag’w] ds

— 18 [[(or + BB 2L0n ) gy,
Transforming the line-integral into a surface-integral, we find
stress parallel toz=EL B ....c.ccvvviiiiiiiieiiciiniiiiiinasanas. (95),

with our previous notation for the moments of inertia.

The resultant stress parallel to y is

- f f[ ay( a¢)+M (y )] dady — B, f (E — Mo,) aydady.
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Transforming as before we find that this is
8| {%Mlo’la:‘y + 2= et ;szs]}
~ 8. (B = Ma)) aydady

=4, f f Ezydzdy,

which vanishes provided the principal axes of inertia of the section
of the beam coincide with its axes of symmetry of elastic structure.

The resultant stress parallel to z vanishes.
The couple about ah axis in the section parallel to the axis z is

2B.E f f aydady,

which vanishes identically when the stress parallel to y vanishes.
The couple about an axis in the section parallel to the axis y is

—B.E [ f Sdady=— BB Iy v (96).

The couple about the axis z at any section is

ff( 3y Mya)d”’dy

- /&M ff (B — May) (a"y/ M — $y*/L) — }or2’y + o] dady. ..(97),
and, as in the case of torsion, the first term of this can only be
calculated when ¢ is known,

We shall suppose that the principal axes of inertia of the
section of the beam coincide with its axes of symmetry of elastic
structure, and then we see that the resultant stress at any section
reduces to a transverse force parallel to' the axis #, a bending
couple about the axis y, and a torsional couple about the axis z.
By a combination of this solution with the previous solutions,
in which there was either simply a bending couple about the
axis of 7, or simply a torsional couple about the axis of 2z, we
may obtain the solution for any resultant stress-system.

106. Practical Utility of the Solution.

Now although the resultant stress-system may consist of any
extending force, any transverse force, any twisting couple, and any
bending couple whatever, yet the mode found for the application
of these forces is unique and determinate. It is very unlikely
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that in the pieces used in architecture or engineering the stresses
applied at an end of a bar are distributed over the end in the
manner here considered, and the application of the theory to
structures depends on the validity of a prineiple introduced by
Saint-Venant! which may be called the principle of the “elastic
equivalence of statically equipollent loads”. He stated that any
system of surface-tractions applied to a small part of a surface of
a solid will produce at any point not very near to that surface the
same strain as any other system of forces having the same resultant
would produce. When the part of the surface to which the forces
are applied is vanishingly small the principle is obviously true,
but it becomes less and less exact as the surface subjected to
traction becomes larger. The principle is in fact equivalent to
this—the application of an equilibrating system of forces to a
part of the surface of a solid produces no strain in the interior—
a theorem which is in general obviously untrue, but which becomes
more and more exact as the surface subjected to traction is
diminished. It is on account of the assumed smallness of the
linear dimensions of the cross-section of the beam compared with
its length that the principle may be applied to obtain a theory
of the equilibrium of beams.

107. Bending by transverse force.

We wish to obtain in the general case the solution for applied
transverse force X parallel to the axis z.

Consider first the terms in 8,, these give rise to (1) a stress
EB,I, parallel to the axis «, (2) a couple — EB,I,z about the axis
y, and (3) a couple which we may call T about the axis 2, (See
art. 97.) T is constant along the beam.

The terms in a, give rise to a couple — Ea,/, about the axis .
(See art. 89.)

The terms in 8, or T give rise to a couple about the axis z (see
art. 92), and since 7 is at our disposal we may make this couple
equal to — 7. This couple is constant all along the beam.

If then we take a,+ 8,/ =0, the stress-system at z=1 will
reduce to a force X where

1 See the memoir on ¢ Torsion’ of 1856.
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The stress at any other section will reduce to a force X and a
couple

EBIL, (L =2)ueeeeeeeeeereaeannnns, (99).

<2 =—31l =—XZ/EI1,
the equation of the central-line is by (23)

o= g (b= 4,

and the stress-system consists of a force parallel to the axis z

Since

— EI, ‘fl” ........................... (100),
and a couple about the axis y
d'z
El, 7 CRSTOTUTI PR (101).

The quantity £1, is called the flexural rigidity of the beam,
and the above analysis verifies the ordinary theory of the “bending
moment ”, viz.: that the flexural couple at any point of a slightly
bent beam is the product of the curvature and the flexural rigidity.

Let AB be the beam, P any point on its central-line, then the
system of forces just considered is the resultant of the action of

X

<

bd

Fig. 14.

the part BP on the part AP, and the action of AP on BP is equal
and opposite to this.

Now it may be observed that the equation

ELYT = X (=2 (102),

which is derived at once from the figure by taking moments for
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the equilibrium of BP about an axis through P parallel to the
axis y, is sufficient, with the conditions
dx
z=0, P 0

at 2=0, to determine the form of the central-line,

We shall devote a subsequent chapter to the development of
this remark.

At present we notice that the deflexion of the axis of the
beam is

1}1'5 (=32 2Peeeniniiriinninieenn...(108),
1

and the maximum deflexion is at the end of the beam, and is
equal to

X
3 )7 AR (104).
The displacements are

X
u=4 5[ - 2) (02" — o) + (1 - §2) #] —1y2

EI

X

V=g, % (—-2) 2y + 72z ....(105),

w=§E£Il[(za_2zZ)z_l_’7_‘Lz__l_L”’mya]+¢

where 7 is the twist corresponding to the twisting couple — 7.

The changes in any cross-section may be analysed into:—

(1) A rigid-body translational displacement parallel to
which brings the centre of inertia to its proper place on the
bent axis of the beam.

(2) A rigid-body rotational displacement 7z round the axis of
the beam?.

(8) A distortion of the shape of the cross-section similar
to that sketched in art. 91, the displacements involved being
proportional to the distance from the end at which the force X
is applied.

(4) A distortion of the cross-sections into curved surfaces
depending on the function ¢.

Readers of Saint-Venant’s Memoir of 1856 will see that his
expression for the displacement w contains an additional term
1 In all the partiqnlar cases that we shall treat r vanishes.

122
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proportional to ¢, and in fact equivalent to —z (g-%’) , where the

suffix O refers to the value at the origin, this cannot occur in our
solution because we have imposed the geometrical condition that

(gl:_) =0. Saint-Venant consequently obtains an additional term
°

-1 (%%) in the maximum deflexion, and Prof. Pearson® appears to
0

think that this constitutes a correction (though not a very

important one) to the Bernoulli-Eulerian theory of beams. Asa

matter of fact it only amounts to superposing on the displacements

(105) a certain rigid-body rotation, and need not therefore be

considered.

108. Asymmetric Loading.

Suppose the principal axes of inertia of the section of the beam
do not lie in and perpendicular to the plane through the axis 2
and the direction of the force. Then, still supposing the axes of
and y to be these principal axes, the force will have two com-
ponents X and Y.

Fig. 15.
Let P be the applied force, § the angle between the direction
of P and the axis of #, then Pcos@ = X, and Psin 6 =Y, and we
have to add the solutions for

Pcosé Psin 8
Bo="g1, '3’=le 1 (106)
a—-M ___Plsine 3

==TFL o %L

Let ¢, be the value of ¢ corresponding to 8,, and let ¢, be the
value of ¢ corresponding to B,, then the twisting couple T'is the
sum of the two twisting couples that come from ¢, and ¢,.

! Elastical Researches of Barré de Saint-Venant, art. 96.



108] ASYMMETRIC LOADING. 181

The displacements for bending by the force P are, by 105,

w=t P20 10— 2) (0 — o) + U= 1) 2]
Psginé
+ —EB-,;:—- (I~ 2) oyzy — 7Yz,
Psin 6
1=} g 0= (gt ~ o) + (I~ §s) #]
Poosd S (107),
+ —E—Il-* (l —Z) a-,a:y+ TZZ,
w= 1}52'0_;2 l:(za — 2 __E_"_ﬂu_;';dﬁ a:l
%'Bg,i;:ol:(zﬂ—%z)y—E Mo Lo, w“:l
+ 1+ by J

where 7 is the twist corresponding to the twisting couple — 7.
The equations of the central-line are
w=1}£Ec?Tsle(l—?;z)z’
Psiné

y=1"gr (=122

and the deflexion in the plane through the axis and the direction

of the force P is

P fcos?@ sin?f

1z (71— + T‘) (A=32) 2 e (109).

The maximum deflexion is at the end of the beam and is

equal to

PP fcos?@  sin? 6
vz (%)
Unless I, = I, the axis will not be bent into a plane curve in the
plane through P and the old position of the axis, but the plane in
which the curve lies is given by the equation

weinf yoosb .

I, L

the sine of the angle between this plane and the plane through P
and the axis is

sin @ cos 0 (—}— ~ —117’)
1

gin? § cos' 0\ 3
(I: + L’) :
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The plane through the axis perpendicular to the plane in which
bending takes place cuts the cross-section in a line which is conju-
gate, with respect to the ellipse 23/, + /1, =1, to the intersection
of the cross-section and the plane through the axis and the direc-
tion of the force P.

This is the theorem of Saint-Venant and Bresse that the
neutral line is conjugate with respect to the ellipse of inertia to
the trace of the load-plane on the cross-section.

109. Strength of a beam under flexure.

To simplify* the consideration of this question we shall suppose
that 0, =0, =0, and L=M=pu; also we shall suppose the section
such that the twisting couple I'=0, and thus reduce the displace-
ments to

u=4B, [0 (I -2) (@ —y)+ (- 32) 2]
”=/31°'(l—z)w3’

E
w=if (- 2)a— (7 - 20)ap] +4
where ¢ is a certain function of (z, y) to be determined by solving

the equation
aﬁ + a’_¢. =0
o oy
subject to a condition given at the boundary.
The six strains are

e=Ro(l—2)z )
S=Bo(—-2)x

g=—R(l-2)=z

a=%i;-(f —a') By S (112)
b=%;i’-;,31 [(%'- 3«;) ¥+ a-x’]

c=0

/
Now in the particular cases that we shall investigate we
shall find that ¢ is at least of the order 8§ in the linear
dimensions of the cross-section, and thus, if # and y be small

1 The suppositions of this article are not equivalent to that of transverse
isotropy. See Note B at the end of the volume.
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compared with (l—g), we may for a first approximation neglect
a and b in comparison with e, £, g. It will then be seen that
the greatest principal extension has place at the highest point
on the contour and at the fixed end, # being measured positive
downwards. According to the theory of Poncelet and Saint-
Venant (art. 57) this extension must not exceed a certain limit.
If T, be the breaking stress of the material for pull in the
direction of the axis g, and ¢ the thickness of the beam the limit
of safe loading X is given by the equation
QX =2T0LJ(Ut) evvvnnniinnnannannns (113),

where @ is a factor of safety.

In case the beam is not very long® in comparison with its
breadth and thickness, we cannot neglect the shears a, b, due to
flexure, and given in equations (112). The problem then becomes
very complicated. We have really to transform the elongation

quadric
(e.f, 9. %a, §b, dcqm, y, 2P =k
to its principal axes, so as to obtain the form
e+ [y + g =k,
then the greatest positive value of ¢, f;, or g, is the greatest
principal extension. The quadric can be found in particular cases
only after the function ¢ has been determined.

110. Strength under combined strain.

Suppose the strains due to transverse force X (=f,E1) to be
as in the last article
e=Bo(l—-2)a f=Boc(l-2=z, g=-p(l-2)a

and the strains due to torsional couple @ to be as in art. 96

%, %
a——@+m, b_a—a: TY,

and suppose ¢=0.

The beam will be at once bent to curvature B, (I —-z) at any
point, and twisted to torsion 7.

The principal axes of the strain at any point are a line parallel
to the axis £ and two rectangular lines in the plane of the section.
It is easy to see that the latter make half-right angles with the
tangent and normal to the stream-line of the circulating fluid

1 If this be not the case the forces whose resultant is X must be regarded as
distributed over the end in a particular manner. See art. 106.
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motion associated with the torsional strain by the hydrodynamical
analogy of art. 95. For the strains ¢ and f at any point, being
equal, are equivalent to uniform extension 8,0 (! —2)z in the
plane z =const., and the principal axes of the shear compounded
of @ and b are the lines in question. If s be the amount of the
shear 4/(a®+ b"), then the principal extensions that arise from the
torsional strain are }s and — %8, and by superposing these on the
uniform extension we find that the principal extensions for the
combined torsional and flexural strain are
Bo(l-2)z+%s Bo(l—2)z—1%s, —B(—-2z..(114).

The maximum is either the maximum of — 8, (! —2)«z when z
is negative and has its greatest value, or of 8,0 (I— 2)z + }s when
& is positive. Let us first suppose g very small or that = is small in
comparison with 8, (I —2z), then the limit of safe loading is deter-
mined by considering the flexure and disregarding the torsion. In
the same way if = be great in comparison with 8, (I~ z) the limit
of safe-loading is determined by considering the torsion and disre-
garding the flexure.

In general there is an abrupt change from circumstances in
which safety is determined purely by considerations of flexure to
others in which it is determined partly by considerations of torsion.
For example consider an elliptic beam for which the plane of
flexure passes through the minor axis. Let a, and b, be the semi-
axes of the beam, and take its equation to be #%/b?+ y*a*=1
where a, >b,. Then we know that s is a maximum when y=0,
@ =+ b, and its value at these points is 27a,*h,/(a,*+b,?). Hence
in this case the two maxima to be compared are

Bi(l-2)b, and Bio(l—2) b+ 7a,%h/(a; +by?).
The greatest extension is therefore determined purely by flexure
or partly by torsion according as
a'  Thab’r
a*+b24X(1-0)’

Now each of the principal extensions has its maximum when
£=0, and the extension at the highest point of the contour near
the fixed end is the greatest extension anywhere, if the twisting
couple ( satisfy the inequality

¢<t1=2

l—-2)>o0r<
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In this case the limit of safe loading is given by the formula (113)
of the last article.

If G be greater than this limit, one of the principal extensions
at the lowest point of the contour near the fixed end is the great-
est, and is equal to one of the principal extensions at the highest
point near the loaded end. In this case, according to the theory of
Poncelet and Saint-Venant, the limit of safe loading is given by
the equation

® [{5 G+ 40'le| —

where T, is the breaking stress for pull in the direction of the axis
of the beam, and ® the factor of safety.

In the case of the ellipse, just worked out, it happens that s
has its maximum where # has its maximum. When this is not
the case, and it usually is not, the maximum value of B,olz + %s
would require a special investigation. For example we might
take the equilateral triangle; in general the lowest point of the
contour is at a corner of the triangle, and s has its minimum value
zero when « is a maximum. A case like that worked out for the
ellipse would be fallen on by supposing the lowest side horizontal.
Another example would be found by bending a horizontal elliptic
bar with its major axis vertical by an applied weight, and twisting
it by an applied couple. The maximum of z is then at the lowest
point, which is the point where s is least. This case can be easily
investigated and may be left to the reader.

111, Distortion of Cross-Section. Symmetrical Case.

We shall now suppose that the principal axes of inertia of the
section coincide with axes of symmetry of the material of the
beam, and that the two principal rigidities, corresponding to sec-
tions through these axes and the axis of the beam, are equal®.

Then the problem of finding the terms of the general solution
that contain B, reduces to finding ¢ to satisfy the equation

and the boundary-condition obtained from (93), viz. :
?—5 =B, [Ha2* + (E/p — a,)(mzy + §y*) — o3ly*]...(116),

1 This supposition will be retained in the following articles, except where there
is a statement modifying it
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where dn is the element of the normal to the bounding curve
drawn outwards, and ux is written for M or L.

As in the case of torsion we may introduce a hydrodynamical
analogy. For ¢ is the velocity potential of the plane motion of
fluid within the bounding curve when the normal velocity at any
point of the boundary has components

Bi[}e:2* + % (E/p — 0, — 20,) 3] parallel to z,
and B (Elp— o) zy parallel to .

We may utilise this analogy to shew that ¢ is of the third
order in # and y. For suppose # and y very small, then the
normal velocity at the boundary is of the second order of small
quantities, and the velocity at every point must be of the second
order at least, and therefore the function ¢ whose differential co-
efficients are the components of velocity must be of the third order.

There exists a solution of the equation for ¢ subject to the
boundary-condition. For we know from elementary hydrodyn-
amics that there exists a solution of the equation with the
normal rate of variation of ¢ given at the boundary provided

'B—;fds=0,

the integral being taken right round the boundary.
Now

[32 do= B, [thtorat + (Bl ~ ) (may + i)~ oy do

-

over the section, and this vanishes since the axis of z passes
through the centre of inertia of the section.

In the general case where L+ M we may take &/¥M =z,
¥~ L =y, the boundary is transformed to a curve in & new plane
of #, ¥/, and the boundary-condition (93) becomes

\/ {(%)’J'(%)a} 3¢

V@@
= a given function of , ¥ = ¥ (&, '), say,

where f(z, y) =0 is the equation of the boundary, and dn’ is the
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element of the normal to the transformed boundary. The differ-
ential equation becomes
3’4; PP _ _o,

aa:" By

and there will be a solution if

(@)@,
lM(f) tI (aj.«;)

where ds’ is the element of arc of the new boundary. Remember-
ing that ¥ (¢, %) is linear in I, m we see that it becomes linear in
U, m/, (the direction cosines of dn’), and contains the reciprocal of
the radical as a factor. This factor therefore disappears and the
theorem reduces to that in the symmetrical case.

[+@

112, Distortion of the sections of a circular Cylinder.

To find ¢ for a circular cylinder we transform to polar co-

ordinates
x=rcosb, y=rsiné,

so that the boundary-condition (116) becomes

aaif_.—,aﬁl [id'x cos® 0+(§%‘—-4}al —a-,) cos @ sin? 0] when r =@

=a’B, [(ﬁ %‘ - }a,) cos 8 + (éa’l +}os— g%) cos 30] . (117).

Now any function ¢ which satisfies (115) within a circle whose
centre is the origin can be expressed in the form

Sn (4, cos nf + B, sin nf),
1

and to satisfy the boundary-condition we take this to contain only
the terms in A4, and A4,, thus

o=5 [(g%-—h-,) a*r cos 0+§(1}a,+}a-,—g§)r'cos30]

=5 [(% %‘ - ia',) @’z + % (1}01 +10—% %) (=*— 3.1:3/’)]...(118).
It is easy to see that the integral |

(e - 2e) ast
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over the circle vanishes identically, and thence that the twisting
couple (97) vanishes, and the resultant stress across any section
reduces to a transverse force X parallel to the axis z given by
the equation
X =}EBmat,

and a bending couple M’ about an axis parallel to the axis y,
which is given by

M =~ }EBmatz.
Suppose an equal and opposite couple applied at the end z=1
and produced by forces distributed over the end, such that the
force per unit area is parallel to the axis z and is

— BB\,
then we shall have the solution for bending by transverse force X
by adding to the displacements (91), in which
B =4X/(Ewat),

the displacements (29), in which

a, = — 4X1/(Enat).
The displacements are, by (105) and (118),

u =;,i4 [ — 2) (0:12° — o) + 2 (I — $2)] )
V== % [ - 2) ouy]

92X L (119).

w=m[(%f—1}aﬂ) a’x+§(o’1+1}az—&§) (z* — Szy?)

+(z"—2lz)a:+(a,+o,—§)wy’] J

The change of shape of any rectangular element of the cross-
section will be similar to that investigated in art. 91, so that
lines z=const. in the section remain approximately straight,
and lines y=const. become approximately arcs of circles whose
concavity is in the opposite direction to that of the axis of the
beam, and all the displacements in the plane of a section which
affect the shape of an element are proportional to the distance
from the end at which the force is applied.

But the point of most interest is the distortion of the sections
into curved surfaces. The curves for which the displacement
parallel to the axis is constant, called curves of equal distortion,
are given by the equation

z(a2® 4+ By*— 1) =const........cev.n.nn (120),
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where
I TGS AT Y
pe(2l—2)~a*GE—fpoy)| (121).
Yuoc, — &

A= @I ) —d (R~ )

If az* and By* be small, these curves are very nearly straight
lines z=const.; and thus, if / be great compared with a, near
the end z=1[, where the force X is applied, any section remains
very approximately plane and is turned through such an angle as
will make it pass through the centre of curvature of the arc into
which the central-line is bent. As we travel along the beam from
the loaded end towards the fixed end, z is continually diminishing,
and at distances from the loaded end comparable with the radius
of the section a and B are comparable with a2, so that the curves
are no longer approximately straight.

113. Distortion of sections of isotropic circular beam
by flexure,

Consider in particular the case of an isotropic beam for sections
so near the fixed end that z may be neglected in comparison with
a, and suppose (with Poisson) oy =a,=%, and £ =§u, then the
curves of equal distortion become

z (2* + yt — 1a?) = consbu...cuvrennnnnn. (122).

In tracing the curves, if we take the constant zero, the curve
consists of the axis y, and the circle 22*+ 2y =T7a?, which
completely surrounds the circular cross-section of the cylinder.
The latter is the inner circle, and the former the outer circle in
the figure. If we take the constant positive, and not too great,
the curve consists of an oval lying within the outer circle on the
side « positive, and an open branch outside this circle and asym-
ptotic to the axis y on the side z negative. When the constant is
%, the oval contracts to a point (z=+/§a, y=0) and for any
greater value of the constant the oval disappears; this point is
outside the circular boundary. If we take the constant negative
similar results hold. The curves of equal distortion are the parts
of the ovals included within the tnner circle, and the displacement
parallel to the z axis has the opposite sign to 2. Thus if, to fix
ideas, the axis of 2z be perpendicular to the plane of the paper, and
the axis z vertically downwards, and the beam be supposed bent



190 THE PROBLEM OF FLEXURE. (113

by a vertical downwards force applied at the end z=1, all the part
of the section in the lower half of the figure is shifted towards the
origin, and all the part of the section in the upper half of the
figure is shifted away from the origin, and the distance through
which any point is shifted is the same at all points of the curves
traced in fig. 16. (One quadrant only is drawn.)

Fig. 16.

As we travel along the beam towards the end z=1 the outer
circle expands. The double points move off farther from the
inner circle and the parts of the ovals within the inner circle
flatten out. If I>3}4/7a?, the outer circle becomes infinite for
z=1—4/(P—10%, and, for greater values of 2, @ and B are
negative, and the outer circle disappears. The curves of equal
distortion may now be written

z(@+y+p)=¢

1 See footnote p. 183.
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where p is a constant depending on z, and ¢ has the opposite sign
to the displacement w. The curves of equal distortion are like
that shown in fig. 17,

The surfaces into which the cross-sections are distorted are
given by the equations

5= 20= g 1o (21— %)~ Jo) o (a0 + By~ 1),

vhere z=z, is the equation of any cross-section before strain.
‘When z, is small this becomes

X
z—zo=——ly%—‘w(a:’+y”—1}a’),
of which the contour lines are drawn in fig. 16. When 2, is
greater than [ — »/(I* — Ja*) the equation becomes of the form
z2~z,=kx (2 +y*+p),

where k and p are constants. The contour-lines of this surface are
such as that drawn in fig. 17.

~
N

Fig. 17.

x

It is worth while to remark that the parts of the ovals in fig.
16 and of the curve in fig. 17 situated outside the circle r =a, are
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the curves of equal distortion of the section of a hollow circular
tube of internal radius a, and external radius 7, bent to the same
curvature by end tractions, and whose outer surface is subjected to
traction parallel to the axis z. The amount of this traction near
the fixed end is proportional to z (a? - r9)/r.

114. Distortion of sections of hollow circular beam.

Suppose the bounding curve of the normal section of the beam
consists of two concentric circles, and let r=a be the outer
boundary, and r =b the inner. Then we have to find a function ¢

to satisfy the equation
76, #9_
aw T oy 0
at all points between the two circles, and
0 E E
a_‘: = a?B, [(% e i-a',) cos 8 + (}al +}0,—3 ;) cos 38]
when r = a, and

- %% =— b8, l:(g%,— {a-,) cos § + (ﬁa’l +40.— %-ﬁ) cos 38:]

when r=b; the required function ¢ is
o=25 l:(gl;?_ {a-,) {(az +b0)r+ ‘-l:_i’} cos 6
+13 (%0'1+i'0'2— %g) 73 cos 30]

=8, [( 4 g_ i'vs) (@*+8%) ;a:“++ 3/g/’) +ab

The twisting couple given by (97) vanishes identically, and the
transverse force applied is

X =}EB\w(a*— b).
The distortion of the cross-sections is given by the equation

2X E
W= e @ =5 l:(z“— 2lz) x — (; -0~ a',) zy?

. (& g_ ?m) (a2+b’)g%yy:)+a’b’z + g( S P | f)(a,’—3wy’):l
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and the equations of the curves of equal distortion are of the form

'y ]
ey y,) const.,

where all the constants that occur are functions of z.

w(l—aa:’—

For an isotropic solid fulfilling Poisson’s condition (o=1}), it
can be eagily verified that these curves, when 2 is small enough to
be neglected, are given by the equation

z[(@ + ¥ = F (@ + 1) (22 + y°) — §ab*] = — 4w (2 + y7)/Bs...(125),
and they may be traced in the same manner as the curves for
a solid cylinder.

1156. Elliptic cylinder.

To simplify this case we shall suppose the beam isotropic. We
have then to find a function ¢ to satisfy the differential equation
8“4) ¢ _ _0
T oy*
at all points within the ellipse

and the condition

D _ Bl (oo + 2 @) ) +m (24 0) ay]
at the bounda.ry. This is obtained from (116) by writing 2 (1 + o)
for E/p.

If p be the perpendicular from the centre on any tangent, this
condition is

¢ [o'a:" +@—a)yr (2 +l';) ¥ "’] ...... 2.

o 2a?
Take conjugate functions §, 5 of z, y such that
z+y=ccosh (E+m).cceerinverarann. (128),

where ¢* =a? — b?, then we know that, if ¢ be the real or imaginary
part of any function of £+ iy, the equation will be satisfied and
the form of ¢ will be adapted to satisfy boundary-conditions at
the surface of the elliptic cylinder.

Let the cylinder be the surface £ = £, of the family, so that
ccosh £ =a,
c¢sinh = b,
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and let p be the perpendicular from the axis on the tangent plane
at any point, and A the positive value of the function

0E\* = (0E\*|¢
[(375) * (33/)] '
Then we know that A—1df is the distance between the consecutive

surfaces £ and £+ d§, and h—'dy is the distance between consecu-
tives 5 and 9 + dn; also we have

k2= }c* (cosh 2 — cos 29),

from which, by putting £=§,, we find for the perpendicular p
from the centre of the elliptic section on any tangent the equation

hab=p...ccocvviivirnninnnni. (129).

The solutions ¢ of the differential equation, which remain
finite continuous and one-valued within the elliptic boundary, are
of the form

¢ = 8,2 [A,, cosh nE cos nny + B, sinh n§sin ny)...(130).
The boundary-condition (127) at §=§, is

hg% =Bp [{(2 +0) 5+ (1-o) :";} cosh £, sinh® &, cos 7 sin?

+40 Z—; cosh? &, cos® 17] ,
or %’g = Bab [{(2 +o)a+(1-3o) %} 1 (cos 7 — cos 3n)

+ doa (cos 3n + 3 cos 17)] ......... (131).

Hence all the B’s vanish ; and, of the 4’s, all vanish except
A, and A4;, and we have

A, sinh & = }ab [(2+a)a;|—(1—§a)§+%ca]

>

34, sinh 3¢, = — }ab [(2+a)a+(1—ga)§—gaa]

or A, =}ac [(2+§a)a+(1—}o-)%2] ,

md A= —dgn @A o)L .
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Hence

¢ =31Bac [(2 +40)a+ (1 -30) %’] cosh £ cos 7

= 1%b 30%'@ [(2 +30)a+(1—30) %’] cosh 3£ cos 37 ... (132).
Now

cosh3fcos3n='2[ —12 —302],
c c
as is easily verified ; hence

$=182[(2 +40) @ + (1 — o) b1]

~ 480 LI 0 4 o)+ (L~ o) B
or
¢= %p;’_‘: 5[0} {20 + b + 200} — } (2° - By*) {20° + b + Jo (0 - B)}]

We notice by way of verification that the value of ¢ for the
circle is deduced by putting a=2.

It is easy to see that the couple (97) about the axis # vanishes.

As in the case of the circle we find the displacements produced
by a load X at the end z=1, by substituting from (133) in (105),

in the forms:
wm (o (=) (@ =) + 2 (U~ §2)]

4X
v=ma‘(l—-z)wy

2 3 F)
om0 O ]
............ (134),
where
_ } {4a® + 20° + o (a2 — BY)}
%= B0+ (2l =2)z + 207 (20" + b + 20a*) (185)

_ 2a* — o (a* —~ )
B Gar ) @—7)z+ 20 @ + I+ 2oa)

and the curves of equal distortion are now ovals lying within an
ellipse when z is small, and curves like that in fig. 17 when z is

13—2
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considerable. These are among the curves given in the frontis-
piece of Prof. Pearson’s Elastical Researches of Barré de Saint-
Venant.

116. Flexure of Afolotropic Rectangular Beam.

We shall suppose the sides of the rectangle parallel to the axes
of z and y, and of lengths 2a and 2b.

When the two principal rigidities of the beam in the planes
(¢, «) and (2, y) are unequal we have to satisfy the equation

b PP
R e AL (136),

within the rectangle, and the boundary-conditions
a¢ =3B [alx' it "i_ 2La, y]
when z=+a and b >y>-b,

and ib —g L= M M"‘ DY eereeerieeereereeens (138),

when y +b and a>z>—a.

Now, as in the case of torsion, take
¢ el + L)
¥ =y~ +M/L)
Then the differential equation becomes
aa¢ as¢ _ O
s 8y”
and the boundary-canditions become

¢ *B‘&/(LfM)[ LI-:I-IM 2 AI{Z;MM%?/’]'

when & =+ay(l+L/M)

and W+ M/L)y>y >—bJ/(1 + M/L),
M \E-Mo, ,,

and ¢ Bw/(L+M) I+ “Y

when y=1b/(1 + M/L)

and av(1 + LIM)> o >~ a\/(1+ L|M).

Take a new function x such that

¢=—15 \/ ( I f M) E;fﬁ‘ (@ =82’y +x......(140).
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Then x must be determined to satisfy the equation

X Px_
dar t oy

at all points of the section, and the boundary-conditions

% =5 \/ (Lf-[M) [2 (LﬁM) o= Llfl’lr[y"]

at the 2’ boundary, and

at the ¥ boundary.
Assume

M !
x=P8 «/(m) [Aw'+2 (A sinh “’;” cosw;;y)]....(lil),
where @' is written for av/(1 + L/M), and b’ for by/(1 + M/L). This

form is taken because % is an even function, and the condition at
the y’ boundary is satisfied identically. To determine the coeffi-

cients we have

A+ 2[ Ay cosh P7% cos MY E Loy .

Ty = T LY
when b’ >y > —b'. Now between these limits we may expand y*
by Fourier’s theorem in the form

y=f B3 o],

E b?
A=oy¥-03,

T )]

Hence

And therefore
4
¢=I31{ ( ‘}a'nb’)'” &(E Md'l)( 3?’
\
,8inh {mm
- g \/%[ 2 (nz b (m;a } (142).
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For an isotropic beam this reduces to

=81 [ +0) @~ jobllz—} (2 +0) (& - 3ap?)

(_)”sinhmrx oy
— F a' 2 n W(}Oﬁ —F .......(143).
b

Returning to the genera.l case, it is easy to see by symmetry
that the integrals f f = dzdy, and f f y =~ dedy vanish, and that

therefore the terms in Bl contribute no couple about the axis z.

Now suppose the beam bent by a load X parallel to # applied
at the end £=1, we have, as in art. 107, to add the solutions for

B, = §X/(Ea*b),
a, = — §X1/(Ea’h).
The displacements are

u=ﬁf‘-‘¥b [(0—2) (010" — 0y — (b — 4) 71,
=1 Ea.b a3 (L ~2)ay, (144),

w=§m[z(2l—-z)a:—(E-Ma-1—La',)wy’/L]+¢

where ¢ is the function determined by (142).

The curves of equal distortion have been traced by Saint-
Venant for a square beam of isotropic matter obeying Poisson’s
condition,

Investigations by means of conjugate functions might be given
of the distortion of beams of various forms of section by flexure,
but the problem is less interesting than the corresponding one of
torsion on account of the comparative smallness of ¢.



CHAPTER VII.
CURVILINEAR COORDINATES.

117, Orthogonal Surfaces.

For many problems it is convenient to use systems of curvi-
linear coordinates instead of the ordinary Cartesian rectangular
coordinates, These may be defined as follows:

Let f (z, y, 2) =a, some constant, be the equation of a family
of surfaces. Fixing our attention upon any point (z, y, 2), one
surface of the family will in general pass through this point. If
small variations be made in , y, 2, v.e. if we pass to a neighbour-
ing point (z + de, y + dy, z + dz), this point will in general lie on
a surface of the family differing from the surface f(z, y, 2) =aq,
but near to it. The surface on which it lies is given by the
equation f(z, y, z) = a + da, where

Y g W gy U gty T 0

Thus a knowledge of a gives the surface of the family on which
the point (z, y, 2) lies, and « is called a curvilinear coordinate of
the point (=, y, 2).

If now we take three independent families of surfaces

fi@ g, 2)=aq

Sz y,2)=8,

fo(@, g, )=,
and fix our attention on the point (z, y, z), we find one surface of
each family passing through the point. If a neighbouring point

be taken one surface of each family will pass through the neighbour-
ing point. The two sets of surfaces are taken to be (a, 3, v) for the
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point (z, y, 2), and (a+da, 8+dB, 4+ dy) for the neighbouring
point. The quantities (a, B, ) are called curvilinear coordinates
of the point., Now, conversely, as any point will lie on three
particular surfaces these determine the point; and, the region of
space considered being suitably limited, if we attach to one point
of this region a set of corresponding values of (a, 8, ), and proceed
in all directions from this point, by giving to (z, y, 2) as functions
of (a, B, v) values continuous with those at the chosen starting
point, any point within the region will be given by its (a, B, 7).

The most convenient systems to choose, in applications of the
theory of elasticity, are systems of surfaces which cut each other
everywhere at right angles. Such systems are called orthogonal
surfaces. It is well known that there exists an infinite number of
sets of such surfaces, and, according to a celebrated theérem of
Dupin’s, the intersection of two surfaces belonging to different
families of the same set of orthogonal surfaces is a line of curva-
ture on each. In what follows we shall suppose the surfaces to be
a, B, v, and shall suppose that these cut each other everywhere at
right angles, so that the three relations

880y 08Dy BBy _
swdet oyoy e
dydn  dyda  dyda_ o { ... (D),

dwdn oy oy Taz o

a98 , 0208 , 3adf_

Ozoz  oyody 0z0z
are identically satisfied.

0

The theory of orthogonal curvilinear coordinates is due to
Lamé, and was developed by him in his Légons sur les coordonnées
curvilignes. The method we shall employ is founded on the
particular case treated by Mr Webb in the Messenger of Mathe-
matics, 1882. The problems at the end of the chapter have been
considered by various writers, including Poisson, Lamé, Clebsch,
Saint-Venant, and Mr Chree.

118. The line-element.

Let dn, be the length cut off from the normal to « = constant
at any point (z, y, z) by the neighbouring surface a +da of the
family, and write h? for the quantity

(oa/ox)* + (Oafoy ) + (0a/o2).
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Then, if 2+ dx, y+ dy, 2+ dz be the coordinates of the point in
which the normal to « at (z, y, 2) meets the surface a-+ da, we
shall have, by projecting the line joining two neighbouring points
on the normal to a,

1 (0a Oa Oat

dnl=E(é-md.c+a—ydy+a—zdz)=da/h,.

If, in like manner, dn,, dn, be the elements of the normals to 8
and v, drawn through the point (z, y, z), we shall find

dny,= d.B/hs: dn, = d‘Y/ha;
where o2 = (08[oxy + (08/oy) + (08/0z),
and by = (Oy[0x)* + (Ory/Oy)* + (y/0z).
Since the square of the distance between the points (a, 8, ¥),
(a+da, B+dB, v+ dy) is dn?+ dng + dn,?, we find for this distance

the expression
[(da/hy)? + (dB/hs) + (dy[AafP.....oeneeeeen. (2).

In general Ay, hy, h; can be supposed to be expressed in terms of
a, B, v. The quantity (2) is called the line-element.

119. Vector-Differentiation.

If P be a point whose coordinates are z, y, z, we may draw
through P a system of rectangular axes, to which we may refer
points in the neighbourhood of P, the directions of the axes being
the normals to the three surfaces a, 8, v which pass through P,
If =, 3, 2z represent the coordinates of any point near to P,
referred to this system of axes at P, we require formulz for
differentiation with respect to z,, ¥, 2, It is plain that dz,, dy,,

o

dz, are the same as dn,, dn,, dns, but it does not follow that e
1

is the same as A, g—f, when ¢ is a component of a vector, which
has a magnitude and direction depending on (z, 8,7). In estimat-

ing g:«’ , we have to remember that the change contemplated in ¢
1

is that which takes place when we pass from P to a near point
situated on the normal to a at P, If ¢ be a component of a
vector quantity estimated parallel to one or other of the three
normals at any point, the change produced in ¢, when we pass
from any point to a neighbouring point, will depend partly on
the change of direction of the axis along which the vector is
resolved.
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Now let £, 5, ¢ be the components of a vector quantity parallel
to the three normals at any point (a, 8, ), then we know that the
changes, 8f, &y, 8¢, which take place when we pass from any point
(a, B, v) to a neighbouring point (a + da, 8+ dB, ry + dy) are

8E= dE_ 7’803 + ;80!))
n=dn -6, + ESG,,I ...................... (3),
8¢ = df — £86, + 786,

in which df stands for Eda+ag d,3+g—5 dy, and 86,, 80,, &6,

are the infinitesimal rotations of the three normals at (a, 8, 7)
about themselves necessary to bring them into coincidence with
the normals at (a+da, 8+dB, y+dy).

120. The three rotations.

Fig. 18,

Let P be the POint' (G,B, 'Y)) Pl, (a+ da) B’ 'Y)’ P!: (a) B+dﬁy 7))
and Q, (a+da, B+dB, 7).

It is clear that the rotation 88, will be a linear function of da,

dB. To find the term in dB, observe that the length PP, is ‘1’5,
and the length P,Q is gih:,B_*_ daa% (g}g), the angle between the

tangents to PP, and P,Q is found by dividing the difference of
these by PP,, and is therefore equal to

e

and this is the rotation of the system of axes from (1) towards



120] GEOMETRY. 203

(2) in passing from P to P,, t.e. it is the term of 86, that contains
dB. In like manner the term in da is

- h,-a% (}711) da.

Adding these we get the complete expression for 86, We can
now put down the formule

5. = "’aﬁ< ) - h'afy( 5) 9,
80,=h,,a; (E> d“_h‘a (};) N (- (4),

0 (1 0 (1
s0,=h g (1) 48 - ap 1) &
of which the third has just been proved, and the other two are
found by cyclical interchanges of the letters and suffixes.
As an example of the application of these formulae we shall
find the normal to the surface vy at (a+da, 8, 7).
In the expressions (4) for 86,, 86,, 66, we must put d8=0 and
dy=0.
The equations giving the changes in the direction-cosines
(I, m, n) of any line are obtained from (3) by putting I, m, n
for £ o, & Thus
8l = dl —mb6, + ndb,,

om =dm — ndl, +186,,
dn= dn — 186, + m&0,.
When =0, m=0, n =1, these become

8l = 86, = hsa—i (;—J da,

dm =0,

n=0;
so that the equations of the normal to v at (a + da, 8, v), referred
to the three normals at (a, 8, ), are

5B
-0 &
Hh=Y, hx—z-—(:l-):—l.
A
This meets the normal to 4 at («, 8, v) in the point
1
0=0,9=0,2=— ===,
b (1)
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and thus the line of intersection of B =const. and ¢ =const. is a
line of curvature on «. This proves Dupin’s Theorem, and gives
for the principal curvature 1/p, of the surface y in the normal
section through the line da

In like manner we could find the other principal curvature 1/p,
of vy, viz.:

These formula for the curvatures are due to Lamé.

121. ‘The strains.

We shall now find expressions for the components of strain and
the rotations of an elastic medium referred to the orthogonal
coordinates.

Suppose a system of rectangular axes drawn through any point
P (a, B, v) whose directions coincide with the normals to the three
surfaces at the point. Let @y, ¥, 2 be the coordinates of a neigh-
bouring point @ referred to this system of axes. Then after strain
we must suppose the whole of the elastic body moved back without
rotation so that P is brought to its old position. When this is
done, let z;+u, y,+v, 2,+w be the coordinates of @ referred to
the same system of axes. The six components of strain are the

three extensions
ou o ow

a_wl: a_yl: a—‘zl)
and the three shears
ow ov ou Oow OJv  Ou
oy on o T ot oy
and the rotations of the medium are

ow ov ou ow ov Ou
Ha ) Ham ) ¥ o)
Since u, v, w are components of a vector, the changes in them
are by (3)
Su = du — v86, + wdl,
Su=dy —whO, + ubly [rsveererserrcrirans .
Sw = dw — udf, + v86,
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Inserting the values of the 3¢’s from (4), the first of these
equations becomes

ou Bu au Bu

_,,[;h (hq)dﬁ h.,aﬁ(,h) ]+w[h'3?y(’h)da b 5 (h.)d"]

Remembering that dw,, dy,, dz, are da/k,, dB/h,, dy/h; we
obtain by equating the coefficients of da, dB, dry the results

maa Ty B (,h) + hlh,wa% (&)
au

a—%=h’%_h‘h’”3& (}T,) ......... ).

ou ou 2 /1
0.~ Mgy hhig (7)

Similar results follow from the other equations of (7).

If as in ch. L. we write ¢, f, g, a, b, ¢ for the six components of
strain

wow w
oz, ’ 0y’ "' omy ayl,
we find

=g +hho g (1) + o 52 (1) W
St bhog (1) + b )
7=ty + b g 1) + b g ()
a=h~;g%+hs%v—hahq[vi(l +'wi(i)1
b= h"ay+h‘a [ h‘>+u ( j

c=h +h,gg hlhq[ aﬁ(i)+”'a%(hl~,)j)

These give the six strain-components, and the cubical dilatation
A is given by the equation

A = hihyhy [a% (h:‘—h;) + 3379 (ﬁ) + % (h;lhﬂ)T ...... (11).
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Again, if as in ch. L. we write =, =, =, for the three

rotations ow v ou ow ov ou
o) e 2w

we easily find the formulae

ses= o 3 (1) =3 (1)
9wy = haby a(;é) a%() ............ 12).
SRR

122. The ltreu-equations of equilibrium or small
motion.

We have next to consider the expression of the stress-equations,
referred to the same system of axes. Let 8V be an element of
volume contained by the three pairs of surfaces a and a+ da,
B and B +dB, v and v +dy, and A,, A,, A, the areas of the faces of
this element, which lie in the tangent planes to a, 3, y respectively.
Denote by P,Q, R, 8, T, U the system of six stresses acting at any
point &, B, v, P being the stress on the face A, in the direction of
dn,, and 8 being the stress on the face A, in the direction of dn,, or
on the face A, in the direction of dn,, and similarly for the others.
Then the equation of motion of the element parallel to #, is

=pZ25V...13)
X,, Y1, Z, being the components of the bodily force per unit of
mass parallel to dn,, dn,, dn, respectively.

In the above equation 8V =dadBdy/hhh,, and A, =dBdy/hoh,,
and so on.

0 2 5
d%a—%(PA1)+dy1 @:(UA,)-I—dzlé_z_l(TA’)_i_lesV

Now PA, is the z,-component of a vector quantity whose other
components are UA, and TA,, viz., this quantity is the resultant
stress across the surface-element A,.

Hence
2(PA) 9(PA) 9(PA)
o dx, + e dy, + P dz,

0(PAY) 4 _ U6+ TALS6,,

90 (PAI) dat-2 (f;sAl) g +° (lanA
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so that remembering dx, =dafh,,... we have

e dm=da| T2 4 O () 70 2 (1)

T ow,
- daddr [ ) + i )+ i (1)
- dudgy 35+ e (1) * e ) oo ()

. ;{ a% (}%1)] ............... (14).

Again UA, is the z-component of a vector quantity whose
other components are QA, and SA,, so that

3(UA a(l;Aody +3(3"Ae>d

oz,

D don +

_o(Uay o(UAy) o(Uay)
da e+ g A8 + S dy — QA0+ SAB,

Hence
a(mz) oU U 3 Uo (1\_¢
dy, =da d'Bd7[hJL13/3 haB(hl)-l-—i{l B

In like manner

"G dn=dadbay |G p o () + 1 ) = e (i)

Hence multiplying throughout by df:i,hgt‘i'y equation (13)

becomes

G- x) b E e T ena g () o4 (1]
a0

+h1[h,(P—Q)%(h—l;)+h,(P—R)a%(i)] ......... an.

In like manner we may form the equations of motion parallel
to y, and 2,; they are
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p (5= 7) =hig +hgg+h gy b [ (1) v (1)
b0 2hg (1) +heg ()]

+h, [h,,(Q_R)a%(i) +"“(Q‘P)a%(;}:)} ...... as),

and

P(agg‘zl) ”13T+”=§§+h»a ""T[%; (D*’"‘ai(}%,)}
+h8 {2 (1) + e 5 (1) |
+ha[M(R~P)%(%)+M(R—Q)%(i)] ...... 19).

These equations were first given by Lamé who obtained them
by direct transformation from the Cartesian equations.

From these equations we may obtain the differential equations
in terms of u, v, w by means of the stress-strain relations. When
the solid is isotropic we have

P=2\A+2ue, Q=NA+2uf, R=NA+2ug
8 = pa, T = b, U=pe }
A=e+f+g
We shall however be able to obtain the equations for u, v, w

as well as equations (17), (18), (19) more directly by using the
energy-method explained in the last chapter.

123. Application of the energy-method.

To obtain the stress-equations (17), (18), (19) by variation of
the energy-function, we set out from the known result (art. 64)
that all the equations and conditions are included in the general
equation

f f f SWdndyds
-/l [(px,-pgit‘,‘)&w (p¥imp 300+ (v p%’;—f)sw] dodyds

+ f f f(ﬁ'su 4GB+ HOWYAS. creeereeeereresererereseesesesnan, (21).
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With orthogonal coordinates a, 8, v we must replace dadydz
herein by the element of volume expressed by dadg8dry/(hhshs).

We have to evaluate

ffswdadﬁd-y

aW ow

where W= Se+ o 8f+ s 8C.riinrnnns (21%).

Also we have, by (10),

odu 0
S¢ = h, 2% +hhzaﬁ(}h) h.h,a (hl) ....... (22).
Thus we shall have to evaluate terms of the form
oduoW dadBd/y
f f f LA (23).
Now if i, ¢ be any functions of «, B, ry, we have
88¢
Ba( xOp) — 3 8¢ ............... (24).

Hence the above term (23) is

M[aa{jh, % } Su%{hlxaal:}]dadﬁdq....(zs).

Again if £ be any uniform function of a, 8, v and the inte-
gration extend to all points within a closed surface S

f f @—f dadBdy = f f PoEldS oo, (26),

where [, m, n are the cosines of the angles which the normal to
S, drawn outwards, makes with the normals to a, 8, v, at any
point of S.

Thus the term in Q% 1s transformed into the sum of a volume-

integral and a surface-integral. In like manner all the terms
containing differential coefficients of u, v, w may be transformed
each into the sum of a volume-integral and a surface-integral.

In the expression of

ff fa w dadﬁd‘y

we shall collect the terms conta.mmg Su.
L. 14
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The volume-integral is

M-zt im0 7 5=0%
o(1 oW}y 10 oW
~ i s ()

‘a%{ﬁ ag:} }} a?e (hl)aw] SudadBdy.

The surface-integral is

[0 5+ m s+ ) buas

The sum of all the terms thus obtained has to be equated to
fff[(pxl—pg’t’,f) Skt } d;‘f,f’ + [[(Fou-+ G0+ Hou) as.

By equating the terms in 8« in the volume-integrals we obtain
the equation

b [ (i 5 ) * 58 (i 20 )+ 3 (i )]
'h""[aa( )aa_va a?s ]
— Iuhs [aa (hs) aa;V 6—37 (h) aav” +pX, = p%:-. e (2T).

This is identical with equation (17), and the equations corre-
sponding to (18) and (19) can be written down by symmetry.

In like manner by equating the terms in 8u, 8y, dw in the
surface-integrals we obtain the boundary-conditions
IP+mU+aTl="F,
U4+ mQ+n8S=G,
IT+mS+nR=H
The strain-equations can be found as before by substituting
for the stresses their expression in terms of the strains, or by

beginning with the expression for W in terms of strain-com-
ponents.

124. Strain-equations for isotropic solid.

In the case of an isotropic solid, the strain-equations can be
put into a particularly simple form.
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The energy per unit volume W is given by the equation
2W = (A +2p) At + p[a? + b* + ¢ — 4fg — 496 — d¢f ]..(29),
where A and a® + b*+ ¢* — 4fg — 4ge — 4¢f are invariants.
Now we have proved (art. 11) that =*+ =;® + =, is also an
invariant. We have the identities

dw ov dw v
Yy=toi+4(5 o 5;537)
ou ow Ou ow

b 496—4‘5’2 +4($la';1'—5;167), ........ (30)
ov ou Ov ou
o=t = w4 (5 = o )

Hence also the quantity
(aw ov ow 811) (6u8w ou 6w) (Bv ou v &u)

005, 0n0y/  \0ndw, 00z \0m oy, Oy om
is an invariant for orthogonal transformations.

Now take a fixed system of axes of @, y, z, and let U, V), W,
be component displacements referred to this system of axes, then
according to the theorem just quoted

(Bz_v a_u_aﬂa_v) ow, BV_BWIE)V)
00z, 02,0y, ( oy 0z 9z oy
where the fixed system (z, y, z) is quite independent of the
directions of the (z), ¥, ) axes, which are the normals to the
surfaces a, 8, v at any point.

Thus in varying the energy we have to find the variation of
the functions A, =, @,, w;, and of such quantities as

oW, oV, oW,dV,
Il By % 9z By ) derlyds.

Now the variation of such a quantjty as this last can contribute

surface-terms only ; for

ff 08 W, 0V, 8W188V, oW, 0V, oW,08V,

ay T oy Oz oz oy 0z Oy

ﬁ[ ‘aw)amgg

a(aV ) B’V]dxdydz

)w@a

1
~a\ay °M) W,

+ terms containing 8V,.
14—2
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oV, 0 [0V,
The parts - ( sw) and ‘a'z(a
surfa.ce-mtegrals and the other parts vanish identically, The
terms in 8V, may similarly be shewn to contribute surface-

integrals only.

SW,) contribute only

Hence the volume-integral part of
f f SW dadyds

is the same as that of

[0+ 200804+ 20 i+ w24 w0} SED. . (32)

and we can obtain the equations of equilibrium or small motion
in terms of u, v, w by variation of this integral.

The term in 8u proceeding from the variation of the term in

At is
J[for 200 dbbog ()
and this is

f f (h +2u) u as dadBdy | o curface-integral...(33).

There is no term in &u proceedmg from the variation of =,.

The term in du proceeding from the variation of a, is

[ &9 550

and this is

f f f 2”' o 3 d“dﬁd’y + a surface-integral...... (34).

The term in Su proceedmg from the variation of =, is in like
manner

fff 2u —— 7 Bﬁ( )dadﬁd‘i + a surface-integral ........ (85).

Hence the volume-integral part of [ff 8 Wdadydz is
s sonE - ) () S5

— similar terms in dv and Sw ....cocoivuiiiiiiiinniiinineen, (36).
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Thus we obtain the three equations of equilibrium

(*+2ﬂ)hn%%—2ﬂhuhsa%(%)+2ph,h,%(

o,

*u
W)+ eEi=p

(x+2y)h,g%-2mh,%(%) + 2@,}»15%(&') +pY, =p$, \(3n).

(k+2#)haz 2;dhh,a( )+2yh,h,aB(hl)+le pa;_"t‘.”

Equations equivalent to these were first given by Lamé, who
obtained them by direct transformation from the Cartesian
equations.

The boundary-conditions are, as in ch. 111 (15),

F= DxA+2,u(a“,+mﬁr, ﬂm),
G=mxA+2,‘(a”,+nm—zw,) .......... (38),

He=mA+2% (gn—“’,+ Loy — mw,)

where F, G, H are the surface-tractions estimated in the directions
of the normals to the surfaces («, 8, ¥) which meet in any point of
the bounding surface, (!, m, n) are the cosines of the angles which
the normal to the bounding surface drawn outwards makes with
these three normals, and dn’ is the element of the normal to the
bounding surface.

125. S8ystems of Orthogonal Coordinates.

Among particular systems of curvilinear orthogonal coordinates,
we may mention

1°.  Polar coordinates.

The coordinates are the colatitude 6, the longitude ¢, and
the radius vector », and the surfaces are

coaxal cones @ = const.,
planes through the fixed axis ¢ = const.,
concentric spheres r = const.

If we take 0 =a, ¢ = 8, r = the values of the A’s are

hy=1/r, hy=coseclfr, hy=1.
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2°.  Elliptic coordinates.

The surfaces are confocal quadrics, For an account of the
system the reader is referred to Salmon’s Geometry of Three
Dimensions, ch. XIL sect. 1v., and for applications in the theory
of Potential and in Hydrodynamics to Heine’s Handbuch der
Kugelfunctionen, and to M. Poincaré’s memoir in the Acta
Mathematica, vol. ViL. There are at present no applications of
importance in the theory of Elasticity.

8°. Cylindrical systems derived by means of conjugate
JSunctions.

Suppose a+B=f(z+w),

so that a and B are the real and imaginary parts of a function
of a complex variable in the plane 2, y. Then it is well
known that the curves a = const., 8= const. cut at right angles.
It follows that we may take a = const. and 8 =const. for two
families of cylindrical surfaces cutting at right angles, and the
planes z = const. will cut each of them at right angles. Hence
a, B, z form a system of orthogonal surfaces. Such systems
ought to prove useful in the solution of problems relating to
bodies with cylindrical boundaries.

4°, Systems of revolution.

Let =*=4* + *, and suppose a + 8 =f(z + =), then in the
plane z, = the curves @, 8 cut at right angles. If this plane
be made to turn about the axis z, the surfaces a = const.,
B = const., and the planes ¢ = const. drawn through the axis z
are a system of orthogonal surfaces. We shall consider some
examples of the application of such systems in our subject later.
For other applications the reader is referred to Mr Basset’s
Hydrodynamics, vol. 11, to a paper by Mr Bryan in Phil.
Trans. R. S. 1888, and to Mr Hicks’'s memoirs on Toroidal
Functions and on Vortex Motion in Phil. Trans. R. S. 1881,
1884, 1885,

We leave to the reader the verification of the following results
for polar coordinates, the displacements %, v, w being in the
directions of the meridian, parallel, and radius through the

point (6, ¢, r):
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1°. The strains are

o= 18u+g)
r 00
1
f= rsm88¢+ Ct8+
ow
9=7%"
1 ow ov v
Sren0dp T o 1
ou low u
b= trae
c= 1gg+r—ﬁln—o-g—;—-%cot8.

2°. The cubical dilatation is given by the equation

1 . .
= isnd [a%(ursme)+é%(w)+a%(un"‘sm8)] .

3°. The three rotations are given by the equations
2o = i [gz 3 (vrsin 9)]
2w, = 13-;5—9 [% (vrsin ) — 6% (ur)] .

4°. The stress-equations are

19P 1 oU oT ‘3T+(P Qycot §  (*u
1_'>55+rsm08¢+5—r r =P BF—XI)’
19U 1 0Q 98 3S+2Ucoté o
» 90 T rsing 6¢+31 r P(a—t’_ Yl)’
12T 1 98 OR Tcot8+2R—-P—-Q W
790 Trsndogtor T r P(Bt’ Z‘)’

in which, with Prof. Pearson’s notation (see art. 49) P =7,
Q=3%, R=7%,S8S=6, T=w, U=8, and X,, ¥,, Z, are the
components of the bodily force per unit mass in the directions
6, ¢,
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5°.  The equations of motion in terms of displacements® for

an isotropic body are

(x+2p)sinﬂaag 2paaz+2psm8 —(re,) = prsmﬂ(?;: Xl),
0 o
(>~+2y)coseco%-2»a-,<ml)+2» = (m-T),

(A +2p)r?sin 8 aar 2’”80 (1.-:-,sm0)+2p,raﬁr =prisin 0(3;;1:_ Zl>

In like manner in cylindrical coordinates, », 6, z, the dis-
placements being u along the radius, v along the tangent to the
circular section, and w along the generator, we have the following

results:

1°. The strains are

_0Ou _1low ov
=% =rwta
1ov u ou ow

f=FaT9+;’ b_az or’
_w R
9= =atiee 5

2°. The cubical dilatation is given by the equation

1 ov aw
;ar( QRS R

8°. The three rotations are given by the equations
ow 0
2oy = [aa —& )]

2 ou ow
=% o

1 For applications of polar coordinates the reader is referred to Mr Chree's
paper on ‘ The equations of an isotropio solid in polar and cylindrical coordinates’,
Camb. Phil, Soe, Trans. xiv., 1889.
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4°. The stress-equations are

8P 13U T P-Q_ (%u
wtr Tt T P(_

U 10Q 38 2U_ (3
wtreta T ( Y‘)’

o 108 oR T_ (0w

wtrmte te=r(m ~4)
in which, with Prof. Pearson’s notation, P =7, Q =%, R=2z,
S=6, T=o, U=7, and X,, ¥,, Z, are the components of
the bodily force per unit mass in the directions r, 6, z.

5°. The equations in terms of the displacements for an
isotropic body are

(k+2p)rqe—2u %’ +2,u.'r p‘rC)’ta Xl),

10A 0
(A +2u) 2 5g =2 ; +2 5t = (at= ),

2 Fw
(7\.+2,u.)'r——-—2p. a (rws) + 2 %_pr(at, -zl).

126. Radial 8train. Polar Coordinates.

We proceed to consider the very simple example of purely
radial strain of isotropic matter referred to polar coordinates. For
this it is simpler to proceed by a different method.

Suppose the displacement of a point to be U” along the radius,
and zero in any other direction, then the displacements parallel to
@, y, z are

where U is a function of .
The strains e, f, g, referred to the fixed axes of , y, z, are
ou U a» U Ua? \l

SR AT e
_ov Uy U Uyp
Iy~ rtT T

=0z Brr’+'r "
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so that the cubical dilatation is given by the equation

U 2U
A= e, (41).

The rotations are w,, =,, @, where
_ow ov_oU (yz yz Y Y3\
o= ~m = () T U (~FE+ L) =0
50 2w, =0 and 2w, = 0, as indeed is physically obvious.
In the equations of small motion the bodily forces must reduce
to a purely radial force, R say, and

X=RZ, v=RY, z=R%Z....... (42).
r r r
The equations of small motion are, by (13) of ch. 111,
oA x O x
(X+2,u)a—w‘+pR;—pa—t’ (U1 ;) ............... (43),

and two similar equations.

Multiplying these by =, ¥, %, and adding, we have

r
24 U
(A +2p) 5= +pR=p .,
2 (U 2T U
or (x+2p)a—r(—37+ 7)+pR=p—5?2— ............. (44).

To estimate the traction across a concentric sphere, suppose
this traction to be a tension 7' along the radius outwards; the
component tractions are Tz/r, Ty/r, Tz/r. Hence equations (15)
of ch. 111. become three such as

r =z 0/
or T9=9{(x+2p)a£+2x£].
ror| or r
Thus T =(7\.+2p)%g-+27\.% ................... (45).

This is the radial traction per unit area across any element of a
concentric sphere of radius 7.

We shall now consider some examples of these formulae, and,
as we do not require U to denote a component of stress, we shall
suppress the accent on U,
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127. Compression of a sphere due to its own gravita-
tion?,
Let a be the radius of the bounding surface in the strained
state, and let the bodily force at a distance 7 be — gr/a.
The equation of equilibrium is
al 22U r
(A +2p) ( + ) gp =0
Putting gp=10H (A + 2u) a, the equation becomes
d’U au
et ar - 2U0=10Hr.
The complete primitive of this equation is
U=Ar+ B + Hr,
;'d
where A and B are arbitrary constants.

As U must be finite at the centre of the sphere, we must put

B =0, and thus
U=Ar+ Hrs

Suppose the surface free, then T'= 0 when r=a, or
(A +2u) (4 +3Ha*) + 22 (4 + Ha?) =0,

5 + 6
= Hgs 22T
hence A Ha W
_ gpar 5)~+6,u._l">
so that U= 2 (——3)‘ Tah ) e (46).

Writing this in terms of Poisson’s ratio o, where
o=+ w),

—_. gpar (3—g 1~
v (1+a‘ a,) ................. (47).

The displacement is everywhere towards the centre, since by
art. (28) 3— o >1+ 0. The radial contraction —dU/dr is

we have

gea (3—a 3r
*x+2#(1+¢ a,) .................. (48),
so that the parts of the radii that lie within the sphere
r=ay/{(8=0)/(8+30)} cerveernriririannn. (49)

are contracted, and the parts that lie outside this sphere are
extended.

1 For further details in regard to this problem and those in arts, 128—130 the
reader is referred to Mr Chree’s paper quoted on p. 216.
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The greatest extension has place at the surface, and is
equal to

gea o
B ol pi LRSI R (50).

According to the theory of Poncelet and Saint-Venant (art.
57) the sphere will be certainly unable to resist the strain arising
from its own gravitation if the breaking stress T, of the material

gea o . .
be less than 3£ x+oit o’ or the condition of safety is

M+2u o gpa
Ap 1+or+2u
Supposing, with Poisson, A=px and o =4, this is T, > gpa.
For a sphere of the same size and mass as the Earth, this is
greater than 237 x 10° grammes’ weight per square centimetre,
and the solution is not applicable to such a body.

To> 3u

There is another difficulty in the application of the result to
the case of the Earth. The necessary limitation to the mathe-
matical theory is that the strain found from it must always be
“small”. Now we found at the surface an extension

gea o
LEWE S gt
and this cannot be treated as a small quantity unless gpao/(A + 2u)
can be so treated. For a sphere of the size and density of the
earth gpa is about 3585 x 10*° grammes’ weight per square
centimetre, which is greater than any modulus of any known
homogeneous isotropic material, and for any such material it is
clear that gpa/(A + 2ux) cannot be a small fraction.

In case the material be approximately incompressible so that
A is very great compared with u we can have gpa/(A +2u) a
small fraction of the order of strains usually considered. In any
other case! what the work shews is that a sphere of the size
and mass of the earth, homogeneous, and possessed of finite
and comparable moduluses of rigidity and compression equal to
those of any known material, could not exist. If such a solid
existed for an instant, finite motions would ensue accompanied
by large permanent sets.

1 If ¢ be small the extension (50) is small, but (48) shews that large strains
would exist in the interior.
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128. Spherical 8hell under internal and external Pres-
sures.

As an example of equilibrium under surface-tractions, consider
the case of a spherical shell, whose outer and inner surfaces are
subjeeted to hydrostatic pressure.

Let 75, 7, be the radii of the outer and inner surfaces,
Do, Py the pressures on them.
Then, when r=r, T'=-n,
and, when r=r, T'=-p,.
The general solution of the differential equation of equi-
librium T av
d U 2
@ +7)=0
. B
18 U=Ar+ ol
The radial stress at any point is

(x+2p)(A——27;-B)+2x(A +£),

thus (3 +2u) 4 — 4;:}* ——p0,
4uB
(M +2u) 4 - ::s ==p;
1_1\_p=p
hence B (rl“ r;‘) =4
and

1_1\__p B
(A +2u) 4 (7‘13 7‘03) =T + rd’
from which
__ 1 pri-prd
U= AN+2u rE-rs T
In particular if p,=0, p,=p we have a spherical envelope
strained by internal pressure. The displacement is

1 rird(p—po) 1
+ horaers m veee(53).

prec [ 1 18
Py [3x+ gt gy s | e (59)
The radial extension at any point is
Prn’ 1 _ L 7'_02
roa__rlﬂ [3x + 2’“ 2’“ T’ ----.----.........(55),

which is greatest at the inner surface.
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The extension of any line perpendicular to the radius is
y 1 1 r?

%r? (m‘2—“+ ﬁ 7—1) cersssnsnnnennees(56),
which is also greatest at the inner surface, and its value there
is the greatest principal extension.

According to the theory of Poncelet and Saint-Venant
(art. 57) the spherical envelope will be certainly unsafe
if its breaking stress be less than the product of E and the
above expression (56).

If we take A = u this condition becomes

3 3
T,<p 81"‘(—;03*““_5,::-) ...................... (57),
where T is the breaking stress of the material.

If the envelope be of small thickness 24!, and radius 7, the
condition of safety is

where @ is the factor of safety. This gives the greatest safe
pressure allowed by the theory referred to.

129. Vibrations of a spherical shell.

Suppose a shell whose internal radius is @, and external radius
is b 18 vibrating freely, and that the displacement is purely radial.

The bodily forces and surface-tractions vanish; and the dis-
placement U is determined by solving the differential equation

Oh -+ 20) (a u f %’f iU) paag eee(59),

subject to the conditions that
(7\+2y.)a—g+2xg=0. (60)
= =0 ,

when »=a and when » =5,

Assume that U as a function of ¢ is proportional to e#, then
the period of the small oscillations is 27r/p, and, to determine U as
a function of 7, we have to solve the equation

@l 2dU0 2
~ ST+ o
e " rar A+2u
1 The factor 2 is inserted here as we shall find it always convenient in the
theory of Thin Shells to represent the half-thickness of the shell by h. The
spherical envelope is a ¢ thin shell”,
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Writing
rU= ye‘l",}
M+ 2m) = pp,
the above equation becomes
dy = L
drn THY= 1& ’y

which is an integrable case of Riccati’s equation. The complete
primitive is

1 d)(A sinxr+Bcosm').

y=r (r dr r
Hence with new arbitrary constants we may write
U= d (A sinxr+Bcos;cr)e(p,
d (xr) ’

xr
or U= I:Afcrcos(x:r; smxr_ersmzc;-;cos xr] et (61).
From this
oU_ e

& =i [4 {(2 = x¥*) sin kr — 2kr cos a1}

+ B {(2 — %) cos k7 + 2«7 sin xr} ]
Hence at either surface we shall have
[+ 2x) {(2 — #2r*) sin k7 — 267 cO8 w7} + 2\ (a1 co8 kr — sin k)] 4
+[(N + 2p) {(2 — £*2) cos xr + 2«7 sin #7}
— 20 (krsinxr+coser)] B=0......c.covuneen. (62).
Writing
N+ 21) =2 — Ve (63),
substituting successively ¢ and b for r, and eliminating the ratio
A : B, we obtain the equation
—vka + (v — x%a?) tan ka _ —vib +(v— ) tan kb
v—K'@® +vkatanke v —«2b*+ i tan kb
This is an equation to find x. When « is found from this equation
the type of vibration is given by (62), and the period 27/p is

2 «/ (x wa) ....................... (65).

The particular case of an indefinitely thin shell is interesting.
The equation for « may be written f(a)=f(b); and, if b=a + da,
we get g‘—{; =0,

a4 (uw—(u—a.‘)ta.nz) =0

dz\ v—2'+votanas /

. (64).

or



224 CURVILINEAR COORDINATES. [130

where z is written for xa. This equation reduces to
wsec?z (a2 — v (3 —v)} =0,

_ N (BNt 2u)
80 that Bt=p(3-—v)= O+
and the period is a \/ (ﬁ ;—;%) ..................... (66),

where o =\/(A+ u), is the Poisson’s ratio of the material of the
shell.

130. Radial Strain. Cylindricali Coordinates.

The reader will easily supply the analysis necessary to prove
the following results, for cylindrical radial strain, the axes at any
point being taken to be the radius, the tangent to the circular
section, and the generator through the point, and the displace-
ment being U along the radius:

(i) The strains are
ou U

a3 72000, 0 (67).
r’ o
(ii) The general equation of small motion is
o U U o'U
(h+2,u)a—7(5;+;)+pR—pw ............ (68).

(iii) The radial stress across any element of a coaxal
cylinder of radius r is

o U

(X+2,U-)—a?+ X; ....................... (69).
(iv) The solution for bodily force R = w*r is
@’
—_ 1
U=Ar+Br- 8(x+2“)r’ ............... (70).

This is sometimes taken to include the case of a circular
disc? rotating with angular velocity . If the disc be complete
up to the axis we must have B =0, and if the edge be free

_ ar (2h+3/1. . )

U-—80~+2’u) Nt 2Rk ) FTP (71),
where a is the radius of the disc. The extensions are both
greatest at the axis, and there they are each equal to

»*pa® (2N + 3u)
SOv+u) (h + 24)

1 A better solution of the problem of a rotating dise is given in the next article.
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According to the theory of Poncelet and Saint-Venant, the
cylinder will certainly tend to crack at the axis if the breaking
stress T, of the material be less than

a?paru (8N + 2u) (BN + ) (73)
BN AP b 2y \

and if Poisson’s ratio be } this condition is
To<330%a..ccccrnninniiiniiniinnnns (74)

The stress in the cylinder at a distance = from the axis
consists of & radial tension
N Ic. T DY
"= oty @™
a tension along the tangent to the circular section
—~ . .
% 4(“_2 i+ 2p) AT a -t p) ],
and a tension in the direction of the axis of the cylinder
oo @ [N, ]
-2
“ 4(x+2u)[ s ¢
These are principal stresses, and the maximum of each is at the
axis, where 7r and 4 are > % and are each equal to

Z‘m——) (27\.+ 3[1-) a’.

Thus Lam¢’s condition of safety (art. 57) would be that

2N +3u
o> P o 2y

or if Poisson’s ratio be },
T, > fopa®.
Thus the maximum angular velocity for safety given by Lamé’s
method is less than that given by Poncelet’s in the ratio /§.
The maximum difference of greatest and least principal

stresses is the value of % —as at the axis, and this is

@’ padu (2N + 3u)

AN+ ) (A +2u)°
On the “stress-difference” theory (art. 57) this must be less
than 7;,. The maximum angular velocity for safety according
to this theory is +/§ of that given by Poncelet’s theory, Poisson’s
ratio being .

L 15
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The solution does not afford a means of experimental
investigation as to the relative values of the stress-difference
and the other theories, for it really refers to an infinite cylinder
or a cylinder whose length is maintained constant by the
requisite end tractions’.

(v) The solution for hydrostatic pressures, p; inside and p,
outside an infinite cylindrical shell of internal radius », and
external radius 7y, is

_7'1,}’1 To'Do r rérd (p—p) 1
U= rd—ns 2(7\+;4)+ ré—rt  urt (75).
In case p,=0 and p,=p the greatest extension is along the
circular sections of the inner cylinder, and its amount is

e 1 1 rs
ra—7 [2 ot p) + Z" E:l ............... (76).

According to the theory of Poncelet and Saint-Venant, if 7', be
the breaking stress of the material the cylinder will certainly
be ruptured if

'+ 2rg
T o< g rd — 13
adopting the value $ for Poisson’s ratio. For a thin cylindrical

envelope of radius 7 and thickness 2k the condition of safety is
h
¢p < 'i'%‘ ; T [ R Y Y] (78),

where @ is the factor of safety.—This result should be compared
with that in equation (58).

(vi) The solutions for purely radial vibrations of a solid
cylinder of radius a is

U=AJ i (kr)eP......cceenininvnnennns (79),

where J, denotes Bessel’s function of order unity, and
BA+20)=P% coeveernriivnnnnnens (80).

We should find that « is determined by the equation
xady (ka) + ——— 7\+ % Ji(ka)=0...c.ceueunens (81).

For purely radial vibrations of a cylindrical shell of radii
a and b, we have in like manner

U=[AJ,(,kr)+ BY,(xr)]e#............... (82),

1 A new solution of the problem of the rotating oylinder was communicated to
the Cambridge Philosophieal SBociety in February, 1892, by Mr Chree.



131] ROTATING DISC, 227

where J, and Y, denote the two kinds of Bessel’s functions, and
x is determined by the equation

(A +2p) kad)’ (ka) + MJy (k@) _ (A + 2p) €bJ)’ (xb) + AJ, («b)

(A +2u)ka Y, (ka)+ 1Y, (xka) — (A +2u) 0¥, (xb)+ A Y (xb)

The two last problems (v) and (vi) are important in the theory
of Thin Shells,

131. Strain Symmetrical about an axis. Rotating
Circular Disc.

As another example?, consider strain symmetrical about an
axis.

Let the axis be the axis of z, and let r be the radius vector
to any point drawn perpendicular to this axis, and & the angle
between the direction of » and a fixed plane through the axis;
also let v and w be the displacements in the direction of the radius
and the axis of z. Then the strains are
ou

5 the extension along 7,

e =
U . i
== the extension perpendicular to the plane (7, 2), > (84).

g= %?—: , the extension along z,

ou  ow
Tt
If the material be isotropic the stresses are?

\
r?=P=XA+2p%‘-:,

b the shear of the plane (r, 2)

w=Q=2A +2,u‘;‘,

- ow
z=R= XA+2pa—z,
ou 3‘w)

J

m=T= <_ ow
e H\9z + or
1 Only the leading steps of the analysis are given, and the verification is left to
the reader.
2 See art. 49.

15—2
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The equations of equilibrium under “centrifugal force” w*
from the axis z are

8P+8T P— Q

or Tos T +arer=0 . ....(86)
of 2R g _ o
or ' 0z -
There is no difficulty in venfying the following solution
T (1-0) (B +o)ar—(1+0) P+ 5L o (L+a)r(P- z=)1
= PP o8+ 0)ate—2 (1 + o) i) — 3E 1+" 2(b—

where E is the Young’s modulus x (3\ + 2u)/(A + u), and o is the
Poisson’s ratio $A\/(A + u). It is easy to shew that this solution
makes the planes z=+1[ free from stress, and the cylindrical
surface r =a free from tangential stress, and also makes the
resultant normal stress per unit length of the circumference
vanish when r=a.

This is Mr Chree’s solution' of the problem of the rotating
circular disc. The complete solution, if it could be obtained,
ought to give zero radial traction at all points of the eylindrical
bounding surface, a condition which the above solution does not
satisfy, .e. it should make P =0 when r =a, but what it really
gives is P finite when r=a, and

12
f PR N—— (88),

when r =a.

According to the principle of the equivalence of equipollent
loads (p. 177), we see that for ‘a very thin disc the solution is
sufficiently accurate at all points not very near the edge. It will
be found that the greatest extension is the tangential extension f,
at the centre, z=0, 7= 0, and this is given by

Ef,=wp[3(1-0)(B+0)a*+}o (1+0)l)...... (89).

This solution is quite different to that in example (iv) above.
In the latter the conditions at the flat surfaces of the cylinder
are altogether neglected, and it applies only to the case of an
infinite cylinder rotating about its axis or of a cylinder whose
length is maintained constant.

1 Camb. Phil. Soc. Proc. 1890.
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No solution has yet been found which satisfies all the con-
ditions ezactly. In this respect the problem is just as much
finished and just as much unfinished as the beam-problems in
the last chapter.

132. Curvilinear Distributions of ASolotropy.

In the case of an ®olotropic material, with what we have called
in art. 48 a curvilinear distribution of elasticity, it is convenient
to refer the equations of elasticity to curvilinear coordinates, so
that the directions of the axes of @, ¥, z (art. 121) through any
point are those of the axes at the point for which the energy-
function takes the simplest form. The number of elastic
constants” is then the smallest possible, and those that occur are
constants if the material be homogeneous. If we adopted any
other mode of forming the equations the “elastic constants”
of the material would vary from point to point in a manner
difficult to manage. Thus in polar coordinates we may have
a material which has at every point three planes of symmetry such
that the axes of symmetry at any point are the directions of the
meridian, the parallel, and the central radius vector at the point.
As examples of curvilinear distributions we may take the problems
of art. 128 and (v) of art. 130.

Taking first the cylinder-problem of art. 130, and supposing
the material similar to a tetragonal crystal, whose equivalent axes
of symmetry are the generator and the tangent to the circular
section at any point, we shall have the energy-function W given
by the equation

2W=A (¢ + f*)+ Cg*+ 2Fg (e + ) + 2Hef + L (a* + b)) + N

and from this the stresses are easily expressed in terms of the
strains. We shall suppose the displacement purely radial and
equal to U (a function of ), and thus find the strains ¢, £, g, @, b, ¢

equal respectively to O, rg , Z—g , 0, 0, 0, the axes being the

generator’, the tangent to the circular section, and the radius of
the cylinder through any point.
The stresses are
au U ,dU v U aUu
F—‘—i"-:-}-H—;,Fﬂ-i-A?,F;'FCdr;0’0:0*
! The order is different to that in art. 125,
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The equations of equilibrium under surface-tractions only
reduce to

R

or

#U  CdU AU _
Gdr,+;ﬂ—7—0 ................. (91);

and the solution is

where n*= 4/C, and n is taken positive.
The constants are given by the equations
— po=F (ary* + Bry ™) + On (ary ™ — Bry™ ),
—p=F (ar 4+ Br ) + On (ar™ — Br™™Y) ;
from which we find

— Plro—"_l + ) -n—1
(F + Gn) (1‘1"—’1' —n—1__ ron—hrl—n—-l) >

B= Pt — Por 1
F=Cn) (rre = rpir)

so that

plr‘n-i-l — DTy n+1 (Torl)ﬂ-i-l ( Plro”-l _ Po7‘1"_1) .
= (F + On) (r™ — 1™ T Cn=F (rm—rm .+(93),

which agrees with equation (75) in the case of isotropy.

In Saint-Venant’s solution an extension o parallel to the axis
is assumed, and 4 is supposed constant; for this we may refer to
Prof. Pearson’s Elastical Researches of Barré de Saint-Venant,
p. 79.

Taking next the sphere-problem of art. 128, and supposing the
material of the spherical shell such that when referred to polar
coordinates 6, ¢, r the energy-function has the form (90), we
find that, if the displacement be purely radial and equal to U, a
function of r, the strains are

U U dU

r’ r’ dr’ »0,0,0;

and the stresses are
dU ., dU U

U ,dU U
(¥ +H);+Ir‘z;, (A+H);+F%, GE'+2F7,
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and the equations of equilibrium reduce to

aU 204U U
GEF+7'37_2(A+H_F)F=O ......... (94);
8o that U=ar"3+ Br=1,
where n’=}{1+84+—g——F},

and we can find, as in the cylinder-problem,

—__1 _[prtoprid, prdr—prde
U_rom—rlm{(n—§)0+2Frn +(rn™ (n+3)C—-2F }

which agrees with equation (53) in the case of isotropy.

The cubical dilatation of the spherical cavity is the value of

3U/r when r=r,, and this is
3rni Px"‘l’“" - po"'o"+l m z_’lrlh - pﬁ‘J"" 96
T — {(n —-3)C+2F + 7 n+4)C- 211'} +++(96).

This result is of importance in the theory of piezometer ex-
periments, for which a discrepancy appears to have been observed
between the results obtained and the dilatation that would have
place if the material were isotropic. The solution in (96) contains
3 independent constants and Saint-Venant® held that these could
be adjusted so as to explain the experiments in question.

1 See Pearson’s Elastical Researches of Barré de Saint-Venant, p. 82.



CHAPTER VIIL

GENERAL SOLUTIONS

133, Statement of the Problem.

The general problem of the Mathematical Theory of Elasticity
consists in the discovery of functions u, v, w which satisfy the
system of equations

8P ou o' u
P Xt et oyt o —P o
oU 0@ 98 _ a’v
wtoyta =rw
aT o8 +8R dw
w T oy " 0z =P
(where P,Q,R, 8, T U are the partial differential coefficients of

a quadratic function W of the six quantities

auavaw3w+avau+awavau)
oz’ oy’ oz’ oy 0z’ 0z Oz’ ox oy’

at all points within a certain closed surface, the surface of the
strained solid, and also fulfil certain conditions given at the

boundary.

We shall consider separately problems in which a solid is
considered as held strained by the application of forces, and
problems involving small motions, and shall proceed now to the
consideration of the equilibrium of an isotropic solid body.

pY+ =

Pz + =

Suppose then that a mass of homogeneous isotropic elastic
matter is subject to bodily forces whose components at any point
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are X, Y, Z. The equations of equilibrium which hold at every
point are

(7\+#)%i:+#v’u+pX=0,
(x+p)aai;+,‘va,,+,,y:0, ............... ),

(x+p)%§+w1w+ pZ =0

where A is the cubical dilatation given by

In order to solve these equations we seek first any set of
particular integrals in terms of X, ¥, Z, and secondly the most
general complementary solutions of the same equations with X,
Y, Z all equal to zero. The first set of particular integrals
obtained will not in general lead to values of the stresses or
displacements which satisfy the boundary-conditions. In that
case we have to determine the arbitrary functions or arbitrary
constants, that occur in the complementary solutions, so that the
complete solutions, consisting of particular integrals and com-
plementary functions, may satisfy these conditions.

134. Formula for the Bodily Forces!,

Let X, Y, Z be the components of the bodily force, per unit of
mass, supposed finite continuous and one-valued functions of z, y, 2
throughout the body; we seek to throw X, ¥, Z into the forms

o oW 8V
=%t

_Of U oW | . 3),
o v, oU

Z——a-;—a—w-i'@

where U, V, W, and f are functions of z, ¥, .

By differentiating the above equations with respect to z, y, 2
and adding, we obtain

oX oY oZ
V’f=a—w+a—y+a—z=d>say ................. (4).

1 The subject-matter of this and the two following articles is due to Prof. Betti—
Teoria della Elasticita. Il Nuovo Cimento, 1872,
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Let @' be the value of ® at (2, ¢/, #), and » the distance of
(2, y, 2) from («/, 3/, #), then a particular integral of the equation
for f is the potential of a distribution whose density at (2, v/, 2)

i8 — 1 @', so that we may write
4ar

f= ¢-—fffq"dm'dg/dz—¢+rsay . (5),

where the integration extends throughout the solid, and 4+ is a
function which is finite continuous and one-valued within the body
and satisfies the equation

R N (6);

we may complete the definition of v by subjecting it to the
condition

al’ __..(lX+mY+nZ) 0. ivviviniennnnn ()

at the boundary, (l, m, n) denoting the direction-cosines of the
normal drawn outwards, and dv the element of this normal. Thus
the function f'is completely determined.

Now let f -t G,
_9f ........................... (8),

af

then G, H, K are completely determmed.
By differentiating these equations with respect to =z, y, 2,
adding, and using (4), we find

P + = 3y &-’ =00 crernreirereiieinna. (9) s
and by the condition (7) we have
IG4+mH+nK =0 ..ccccovvninininnnn. (10)
at the boundary. o
Let A_-—fffg‘z”dydz ..................... (11),
where, as in the case of ¢/, & is the value of G at (2, %, ), and in
like manner let
B= - j J‘ jH’dw’dy’dz’

o-_1 f f fK’dm’dy’dz’
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then we have
Vi4A=G, V*B=H, V'C=K.

From the definitions of 4, B, C we obtain
ekl 2o Qo
Lo ey ) o

- [f(za' +mB 4 nK) - d3

4-”‘”](8(?' oH’ BK') L adydr
=0 identically.

We can now write

_ _0 4 oB\ 9 0 o4
6=va-2 (5& -2 (aa: az) .......... (13),
and we have similar equations for H and K.
Hence, if
oB oC oC 24 04 oB
U—'a—z—a-y-, - V_EZ_E sy = W—a—y——'a—;...(li),

X, Y, Z will be thrown into the forms (8), and all the functions
S, U, V, W will be well defined.,

135. Interpretation.

Consider any surface o drawn within the body. The surface-
integral of the normal component of the system of forces depending

on fis p f f f ®dT, where dT is the element of the volume within

the surface o, and, when the surface is contracted to a point,
we see that this system of forces tends to vary the volume of
an element.

The surface-integral of the normal component of the @, H, K
system is

p [[6 +mH + i) do = pfffaG 2+ 2) ar=o,
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so that this system does not tend to alter the volume of an
element.

Consider the line-integral of the tangential component of this
latter system along any closed line 8, and let dS be an element of
a surface having the line s for an edge, then this line-integral is

f Gda + Hdy + Kdz,

and, by the theorem for the transformation of line-integrals and
surface-integrals, this is

[ -%)+m G -5) +nGa -3

Thus if & be a very small closed curve in the plane (g, 2), and S,
its area, the line-integral in question is S,V2U, so that the system
G, H, K tends to produce rotation of the elements.

136. Particular Integrals for the Bodily Forces.

Now let u, v, w be the displacements at any point of the body,
and suppose u, v, w expressed in the same way as X, ¥, Z in the
forms

_% _oN oM
“ox oy " og’
_op_oL oN \ ... 15).
=0y "z T 15)
o6 oM oL
YT m Ty oy
Then A =V,
oA aV N oV:M
and Vi = = 5

The equations of equilibrium become three such as

8V’¢ oV:N oViM of oW oW
Ot 2 5P (- oy T a% )+e (5 ay+az) 0.
Hence we have a solution in the form
S
P T EWE @6),

= 2 ([ swayar
L_4wfffr de/dy dz
and similar forms for M and N, where as before /', U are the
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values of £, U at («, 3, 2/). Hence we can write down u in the
form

=% (7\ T 2#-) f f — cos mda'dy’dz’

T imp fff{W’ CO8 7y — gcos u} da'dy'ds ...... anmn,

where cos 7z is the cosine of the angle between the axis # and the
line r drawn from (z, y, 2) to (@, ¥, #), and v and w can be written
down by symmetry. These values of u, v, w are particular
integrals of the equations of equilibrium. They will not however
in general satisfy the boundary-conditions.

We notice that in accordance with our interpretation of f, U,
V, W the cubical dilatation is — pf/(A + 2u).

137. Second form of Particular Integral

Another method of obtaining the particular integral will be
given later (ch. iX. art. 150), where we shall shew that, if X', ¥,
Z' be the bodily forces, per unit mass, applied at the point («, ¥/, 2),
the equations of equilibrium can be satisfied by the forms

u-mfffL{ 2(7;1;,‘);( gt ry +z§’)? de/dy/d7,

v=—mz Atp a(X'a’+17'ar+z"”) dddyds,

dmu))] L r 20 +2)0y %
(Z A+u 0 ar o or ,
4”!*//] 7_2(k+2p)a—z(x wt¥ % +Zaz) da/'dy d7
...... (18).

Solutions equivalent to these are given in Thomson and Tait’s
Natural Philosophy, Part 11, art. 731.

138. Particular Integral for Forced Vibrations.

Suppose the solid executes forced vibrations, under the action
of periodic forces. Then we have to take X, Y, Z and consequently
J, U, V, W all proportional to e#’, where 27/p is the period.

In the forced vibrations «, », w will also be proportional to e#,
and thus the equations of small vibration may be written in such
forms as

2a of oW oy _
A+u) g pV*u+pp’u+p(ax 5+ ) =0 (19)
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Now substituting from (15), and writing
B=pp /(A+2p), 2=pp*lpp.cccennn...... (20),

we have three such equations as
0
ot l[@emertor|-nl[@ranew]
pa—z[(V’+x’)M+£V]=0 ......... @1),

and thus all the equations can be satisfied by making ¢ a solution
of

p -
(V'+h’)¢+x+2pf—0 .................. (22),

and L, M, N solutions of such equations as
(V’+x’)L+£U=O ..................... (23).

Now we know that a particular solution of (22) is

_ foo
$=1- (xp o f f S Y7 (24)

(see Lord Rayleigh's Theory of Sound, vol. 11. art. 277), and in
like manner for L, M, N we have such solutions as

L=-2Ft f f f Ul WS W (25).

4

The values of %, v, w hence obtained are particular integrals of
the equations of small motion (21), but they do not in general
satisfy the boundary-conditions.

139. Particular Class of Cases.

When the bodily forces have a potential f which satisfies
Laplace’s equation, these particular solutions are very much
simplified.

For equilibrium we may take

ude +vdy+wdz=dd......ccuuue....... (26).
Then A =V3¢, and we have three such equations as
0
52 +20) Vi + of | =
whence we may take
Vi + S=0ueiiiiiiinn, (27).

x+2p
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Now f may be thrown into the form
oF
f=r = FEFiiiiiiiiiiiena (28),
where r?=a+ 3* + 2%, and F satisfies Laplace’s equation, and then
V’(-}WF)=r%§+&F=f.

p
Hence p=—1n Yo Forviiiiiinninnnnns (29),
0¢ 0¢ o
and u==5-, V=g, w=a

constitute a set of particular integrals.

For forced vibrations, taking the equations such as

0A of _
(X'i'}l-)a—w +p,V*u+pp*u+pa—w—0 ............ (30),
where f satisfies V3f=0, and has the time-factor ¢'#!, we may put
_1Y 1y 1Y
U= Pow’ v= Py w——p,& ......... (31),

then these make
Viu=0, V=0, V=0, A=0,
and we have a set of particular integrals.

140. Description of Betti’s Method of Integration.

Prof. Betti has developed, by the aid of his theorem (art. 68),
a general method of integrating the equations of elasticity, for an
isotropic solid of any shape, with any given boundary-conditions,
when the problem can be solved for the same solid with a certain
set of boundary-conditions. In this method we seek in the first
place to determine the cubical dilatation and the three component
rotations, and from these we find the corregponding displacements.
We have already shewn that it is always possible to find a parti-
cular integral for the bodily forces; so that we may divide the
problem into two parts: (1) the determination of a system of
particular displacements which satisfy the equations containing
the bodily forces but do not satisfy the boundary-conditions; (2)
the determination of a system of displacements which satisfy the
equations when the bodily forces are null and which also satisfy
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arbitrary boundary-conditions. It is with the latter problem that
we shall here occupy ourselves.

‘We have to find a solution of the equations

63 +p.)i;—i+ pViu=0,
M+ p) %% +aV =0, oo (32),

0A
(x+#)$+pv*w—0

which hold at all points of the solid.

We shall consider first the problem of determining the cubical
dilatation A and the three rotations =, w,, =, s0 a8 to satisfy the
differential equations, and so that it may be possible to satisfy the
boundary-conditions ; and we shall suppose that at the boundary
of the solid either the surface-tractions or the displacements are
given functions. When A, =,, w,, o, are known, we have

V“u:-}iﬁiA_,‘
p oz
A+ u0A
Vi=—"T000 (33)
K Oy
Vip=_Mtproa
B 0z

Hence, if the surface-displacements be given, we have to find
u, v, w to satisfy equations of the form V*x=a given function of
z, ¥, 2, and u = a given function at the boundary.

If the surface-tractions F, G, H be given the boundary-con-
ditions can be written, by (15) of art. 29, in the forms

ou F A :
a—y=“— '—lé—ﬂA-—-ﬂW,-i-ﬂw,,
ov _ G A
all + lﬁ' -_m 2”. s—A—nw, L ceeiiiinns (34),
f;_'w_ H lw,+mw1—-nlA {
2p

where (I, m, n) are the duection-cosines of the normal (dv) to the
boundary drawn outwards from the space occupied by the solid.
Thus we have to find u, v, w to satisfy equations of the form
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Viy = a given function of (z, y, z), and g—:
boundary.

Now Prof. Betti has shewn that we can find the value of A,
at any point (¢, 3, ¢), so that the surface-displacements may
be given functions, if we can find systems of displacements
€ 7, ¢ which become equal at any point (@, y, 2) of the surface

1 1 1
to — %r;_ , —%— , — 6;"‘_7' where r is the distance between the points
(=, ¥y, 2) and (¢, ¥, 7); and we can find A so that the surface-
tractions may be given functions if we can find displacements
(€ 1, ©) such that the surface-tractions that would produce them
are those that would occur if near the surface the displacements
o oo
Px’ oy’ 0z

the determination of =, w,, w;.

= a given function at the

were — ; and he has given similar methods for

141. Determination of the Cubical Dilatation.
Consider first the system of displacements
or? or? o
Uy = + Eo, V= _aE/‘ +170, W, =—a7'+ go ...... (35),

where 7 is the distance of any point (&, y, z) from a particular point
(«, ¥, 2) of the solid, and &,, 5, &, are finite, continuous, and one-
valued throughout the volume ¥V enclosed by the surface S of the
solid. We shall shew that, if &, 7,, {, be suitably determined,
we can hence obtain the value of A. The quantities

ot o o

5a By g e
satisfy the equations of equilibrium (82) at all points which lie
within the volume V’, enclosed between the surface S and any
small closed surface S’ surrounding the point («, 4/, 2/). Hence
if &, n,, §, satisfy these equations throughout the volume ¥, the
displacements u,, v,, w, given by (4) will ratisfy the equations
throughout the volume V', Let Fy+ L,, G,+ M,, H,+ N, be the
surface-tractions on § arising from the displacements w,, v,, w,, and
suppose L,, M,, N, are the parts contributed to these surface-
trgctions by the displacements &, no, &. Let Fy+ Ly, Gy + M/,
H/ + N/ be the surface-tractions on S’ arising from the same set

L. 16
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of displacements, and L), M/, N, the parts contributed by
eo, N0 go-

Let u, v, w be any system of displacements finite, continuous,
and one-valued throughout V, and requiring no bodily force for its
maintenance, F, G, H the resulting surface-tractions on S, F¥, G, H’
the resulting surface-tractions on §. Let us apply Prof. Betti’s
reciprocal theorem (art. 68) to the systems (u, v, w) and (u,, v, w,)
and the space V” between the surfaces S and S’; then, since there
is no bodily force, we have

I (Fuy+ Gvo+ Huw,) dS + [ (F'uy + G'vo + H'wy) dS’
=[[{(Fo+L)u+(G+ M) v+ (H,+ N)w}dS

+[[{(FS + L u+ (G + M) v+ (H + N)w} dS'........ (37).

We shall find the limiting form of this equation when § is
contracted to a point.

The leﬂ;-ha.nd side is

ff[ Ge+e)+e(% ’+no)+H("’g"+;o)] ds

+ﬁ( +G’ +H’aa )dS’,

and the right-hand side is
JI(Fo+ L)u + (Go+ M) v+ (H,+ N) w] dS

+ [f (Fju+ Gv+ Hyw) dS',
since the integrals  [f(F'E, + G'n+ H'E,)dS
and [ (Lo'w+ M)v+ N/w) dS’

vanish when & is contracted to a point, the functions to be
integrated being finite.

To caleulate f f {F’—— +& agy_ H’é’i} as’

we may take the origin at («/, ¥, #/), and the surface ' a sphere
of small radius, whose centre is the origin. Then, remembering
that the normal to S’ must be drawn towards its centre, we have,
by (15) of art. 29,

,o0r! O or!
A R
ou y(ov _ou z (ou ow
—spaeng ot G-2)-wt G-

+ two similar expressions,
_2\A 2p(a:&u+yav zaw)

r’+r' ror rar ror
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Again
’ , , . 0 [for? ) —1 0 [or?
gt

;rl
Thus equation (37) becomes

(P2 G ) @R G
(][ ve) ol e n)e (5 46

+ff[(Fo+Lo)u+(Go+Mo)U+ (Ho+ No) w] dS ........(38).

Now ar (?3_: + —2;—‘) = %(uwr),
and [[[Zdzdyas = [ as = [[ uorda,
if 1o = S,

Hence f:r"drf g%d«»:ffuwrdm;

and therefore, differentiating,

ﬂffa—udw=ffzr(a—“+2—u)dw;
so0 that 1 a—udﬂ” f f 5t 2”' dS’

Thus equation (38) is transformed into

4#(7\.+2;L)A——ff|: (ar_l+Eo)+G( +m)+H@a +§,)]ds

+ [ [(Fot L)+ (Go + My) v + (Ho + Ny w]dS......(39).

This gives the value of A at («, ¥/, #), when the surface-
tractions are F, G, H, and the surface-displacements are u, v, w.

If the surface-displacements be given, then supposing we can
find &, 7, &, 80 a8 to satisfy the equations of equilibrium, and so
as to make

! ! !

Eo————, ’70—"'@, §o=‘“a—z
at the surface, » being the distance of any point on the surface
from (2, ¥, 7'), we shall have to calculate thence the sets of

16—2
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surface-tractions F,, G,, H, and L,, M,, N,., When this is done
the value of A at (2, ¥/, 2’) can be expressed in the form

A=tr(rr2n) II(Fs+ L) u+ (Go+ My)v + (H, + N,y w]dS...(40),

where u, v, w are the given surface-displacements.
If the surface-tractions be given, we first calculate the tractions
1 1
F,, Gy, H, 8s 1fag_,a;;,ag_
find £, 7, & a system of displacements which satisfy the general
equations of equilibrium and the particular boundary-conditions
=-F, G=-Gy, H=—-H,, 1e. we make F,+ L, G,+ M,
H,+ N, vanish. When this is done the value of A at (#, ¥/, #)

can be expressed in the form

A== 47r(7\+2p-)f.[|: Ba; +E°)
+G( +no)+H(——+§‘o)] e (A1),

where F, G, H are the g1ven surface-tractions.
142. Determination of the Rotations.

were the displacements; then we

To determine the rotation wy,=1% (B_v - %) we take
or! or-
= ay vs=—'a_z‘+'”8) wa=§; ......... (4'2),

where r has the same meaning as before, and §;, 7,, ¢, are finite,
continuous, and one-valued throughout the solid, and are a possible
system of displacements satisfying the differential equations of
equilibrium. Then we form the surface-tractions Fy+ L,, Gy + My,
H,+ N;on 8, where L,, M,, N, are the parts contributed by the
displacements §,, n;, &, and the similar set Fy + Ly, Gy + My,
Hy+ Ny on §, and take any other set of displacements u, v, w,
and the corresponding surface-tractions F, G, H on S and F', &,
H’ on §, and apply Prof. Betti’s theorem as before to the volume
between S and 8’ when 8’ is contracted to a point. We thus
obtain the equation

[[[7(E +&)+6(-% +n) + 20 as
+ff(F'——G' )ay

=[[[(Fs + L) u+(Gs + My)v + (H; + N,) w] dS
+ [ (Fu+ Gy + Hiw)dS ........(43).
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As before, take (2/, v/, /) as origin, and § a small sphere
described round this point as centre, then, by (15) of art. 29,
,or! , 0 y@_wﬁv) p.av__a_g
e A 1 - FA RS

oy
,L,J[ G-+ 1E-3)+1G-2)
and

F/u+ G/v+ Hyw = pu | 2;%(‘)"'3/8( )

roz\r*

2
r
m[22) 4202
¥
r

[ -

L roz \r*

Hence F’~—3/——-G’ai_——(F,u+G,v+H,w)

[ @S C] EE -5
» [‘f {z&z) _ 0 (w_z)} +¥ {a (wz) 0 (uz)} 42 {B (ug) 9 (vz)}]
oz oy | "r| o=z 0z r| oy oz ||’
The integral of the last line over S’ vanishes identically.
The first line is

2p (0 (ury) a(vm)], © (av a_q)
| er or ) oz 0y/’
and, working as before, we find for the surface-integral the

value of

~smn (G~ 5)
at (¢, ¥/, 7).

Hence at («/, ¥, 2") we have

== Swff[ G+ &)+ 6 (T +m) + 2] as

- 8;;ff [(Fs+ Ly) u+(Gs + My) v + (Hy + Ny) w] dS...(44).

If the surface-displacements be given, we have to find &, #,, &
a system of displacements to satisfy the general equations ef
equilibrium and to make
or or?

Ea=—-a—y—, M=y =0 e (46)
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at the surface ; then we calculate two sets of surface-tractions, viz.:
L;, M,, N, corresponding to &, ,, §; and Fy, Gy, H, corresponding
. o or?
to displacements oy "
When this is done the rotation =; can be expressed in the
form

S 511; [ [(Fy+ L) u+ (G + M) v+ (Hy + Ny) w] dS...(46),

where u, v, w are the given surface-displacements.

If the surface-tractions be given, we have to find &, 9,, ¢; a
system of displacements to satisfy the general equations of equili-
brium, and to make the surface-tractions

=—F, G=—G, H=—H,........... (47),

—1

where F;, Gy, H, are calculated as if the displacements were o

oy ’
o , 0; then the rotation =, can be expressed in the form

oz
s-mff[ ( +fa) + G( o’ +m) +Ht,] dS...(48),
where F, @, H are the given surface-tractions.

In like manner w,, @, can be determined.

To find =,, when the surface-tractions are given, we seek a
system of displacements §, n,, § which satisfy the equations of
equilibrium, and which would be produced by surface-tractions
equal to those that would act at the surface if the displacements
ar—l ar—l
% oy’

8w, = [ [FEI +6 @a’lz_— +m)+H (- a;_; + ;)] ds...(49),

where F, G, H are the given surface-tractions.

To find =, we seek a system of displacements §,, 7, {, which
satisfy the equations of equilibrium, and would be produced by
surface-tractions equal to those that would act at the surface if
the displacements near the surface were -a—;:—l , 0, — b_ar; , then

near the surface were 0, — , then

8muur, =ﬂ [It’ (— a—;; + E,) + Gns+ H—@—ar; + :,)] ds...(50).



142] APPLICATIONS. 247

We might state in similar language the methods of deter-
mining =, and @, when the surface-displacements are given, but
this case is of less importance as u, v, w can be determined
when A is known without the previous determination of =,
w,, T;.

Prof. Betti has applied his method to develope the solutions of
problems concerned with spherical boundaries, and has obtained
results in terms of definite integrals extended over the bounding
surfaces. Similar results were found by Borchardt using a different
analysis. (See Introduction.) The same method has been applied
by Signor Cerruti to determine the state of strain in the interior
of a solid bounded by an infinite plane at which given conditions
are satisfied. We shall consider this problem in the following
chapter.



CHAPTER IX.
THE PROBLEM OF BOUSSINESQ AND CERRUTL

DISPLACEMENT IN A SOLID BOUNDED BY AN INFINITE PLANE—
SURFACE-TRACTIONS GIVEN.

143. Statement of the Problem.

Suppose a solid bounded on one side by an infinite plane, and
otherwise unlimited. If the points of the plane be made to
execute given displacements, or if given tractions be applied to
the plane, strains will be produced in the interior. The problem
of determining the displacements produced was first attempted by
Lamé and Clapeyron and was afterwards solved by M. Boussinesq!
and Signor Valentino Cerruti>.. We shall give Signor Cerruti’s
solution, and shall investigate particular cases by the method of
M. Boussinesq. We begin with the case where the surface-
displacements are given.

144. Determination of the dilatation.

Suppose the solid is bounded by the plane z =0, and that the
displacements %, v, w are given functions of &, ¥ when z=0.
We have in the first place to determine A at any point (2, ¥/, 2')
of the solid. For this purpose we require a system of displace-
ments &, n,, &, which satisfy the equations of equilibrium, and,
at the surface, are equal to

o o or?
~% T T
r being the distance between («, y, z) and (v, ¥/, 2').

Let (@, 11, ;) be the image of («, ¥, ¢') in the plane z=0,
so that =2, p=vy, H=—7iiiiiiiinininnen, 1),
and let R=@—af+@y~yr+@E—5) . (2);

1 Applications des Potentiels, directes, inverses, logarithmiques. Paris, 1885.
3 ¢Ricerche intorno all’ equilibrio de corpi elastici isotropi’—Reale Accademia
dei Lincei, Rome, 1882,
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then we have, when 2z =0,

o _OR? o OR™ o R™

Ox oz’ oy oy’ 0z 0z °
Thus —9R~/ox, —0R~[0y, 0R~*[0z are functions which satisfy the
boundary-conditions, but they do not satisfy the differential equa-
tions of equilibrium. We therefore take

oR™ o BR"
£ = E—“a';‘;"lo - ;;o gl+

where £, 7', £ vanish with 2. Now if these be a sysbem of dis-
placements the diﬁ'erential equa.tions of equilibrium become

aR'

B’R‘l ,
(] ’ #R- ,
a+m@(5 g a+23F)HNM=q} ...... (3).
! 0
O+g (Gt s 205 ) AT =0
These can be satisfied by assuming

-1 2 D=1
§= aa’waz y = a;;g; , §= ag:g' ------ 4,
where « is a constant. For we find
of o¢’ G“R‘l
u*@ %2 =% oA
1
Vg = %aa&ali:’v 233}/3’5,“;, aga’R—_
and hence the three equations are of such forms as

9 R
[a(x+,u.)+2(7t+u)+2y.a]a-5z,—=0,

+

and they are all satisfied if a=— 2(\ + u)/(A + 3p).
Hence we have
E__BR‘1_2(A+;4) R )
T om A+3u ° Ox0z’
__O0R? 2(\+p) . oR &
hET 3y T A8 © g5’
t= OB 2(M+ p) eR™
T Oz A+ 3u 02
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To find A from these, we have to calculate two sets of surface-
tractions. Let A’, @, w,, @, be the dilatation and rotations
corresponding to any system of displacements «/, v/, w/, and let
F, ¢, H be the corresponding surface-tractions. Then, if z
be positive within the medium, the boundary-conditions are,
by (15) of art. 29,

ou’ ,
F =—2p 5~ + 2wy,

, o ,
G=-2[L$—2W1, .................. (6).
,_ ow' ,
H=- 2#—6—2' —-AA
The system F,, G,, H, is obtained by putting
, 31“1 ar—l , 31“1
Y= "o YT %
and we get
or?
Fo = 2“5;6; y
ot
= Qg b oererseriiinniiniennns 7).
Go=—2uzoms ¢ ™
or?
Ho=—2p 02

The system L,, M,, N, is obtained by putting « =&, v’ =1,
w'=¢. Weget

s _4p PRT A+ p) SR
A_X+3p % _(1+3\+3p) oyoz ’
r=—(1 X+p)a’R—‘,
T = ( A +38u) 020z~
Hence we find, when 2z =0,
= g Mtw PR o Adp P
L= 2 T80 9oz~ 2P\ ¥ 3p 0’
- Atp PR o Mrp @ 8).
o, = PN 8u gz~ NT Sudyoz’ . ®
g MEE PR o AMtp O
No= R W T i W X

Hence, by (40) of art. 141, we find

A=—;Q—Lsz)ff(u%£+v§;-—a;+wa§) dady......(9).
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This gives the value of A at (&, ¥, #) in terms of the given
surface-displacements u, v, w.

145. Determination of the displacements.
We may now determine u, v, w at (, ¥/, 2).
Let L, M, N denote the functions

which are finite, continuous and one-valued within the solid ; then
the value of A at («, ¥/, 2’) is given by the equation

ri3u . @L L oM  @N
- TA = 57 T ayar o
] (aL oM oN )

=\t tor

and the equations for u, v, w are three such as
Pu Pu Pu_ Atp PP
8m”+8y”+8z”—(x+3p)1raa{az’ ............ (12).
Now L, M, N are the potentials of distributions of densities
u, v, w on the surface, and therefore L, M, N, ¢ all satisfy

Laplace’s equation. Also the surface-value of u is — l_n_ =, for

this is the density of the distribution whose potential is L. Thus

we may take

_13L 1 ks 26
2r 0z " 2w A +38u” Oz’

_LAM L au 0
2w 07 2w A4+3u” Oy’

U S
2w o7 2w A+3p” 07

oL oM oN
where ¢= 8_5'+ @7 + g s (14).

V=

w=

We shall devote the next seven articles to the discussion and
generalisation of a particular example, returning in art. 153 to
the problem of determining the displacements when the surface-
tractions are given.
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146. Particular Example.

The simplest example of these formule will be found by

supposing that L=M=0. Then g= ¢, and ¢ satisfies
b T P _
o T =0

To fix ideas suppose the bounding plane horizontal, and the
axis z drawn vertically downwards from a point in the plane.
Then this example will correspond to the case when part of the
bounding plane is vertically depressed, and the remainder held
fixed.

Now ¢ is the potential of a distribution of matter on the
surface, and the simplest example we can take is that of a single
mass dm distributed over a small area do at the origin. (It is
convenient to take this — dm.) We shall shew hereafter that
dm is a constant multiple of the force required to depress the
part of the surface near the origin.

Suppose then that

where r is the distance from the origin to any point of the solid.
Since the only (z, y, z) that occurs is the origin, we may suppress
the accents on (2, ¥, ) and write

u=m Atu 2z

T2 A+8u 1’

_dm A+ p 2y 16
R (16).

_dm  dm rtu 2
T2 2r A4 8

w

If dm be regarded as a small finite quantity the depression
near the origin is very great, and we must regard the origin as
excluded from the part of the solid whose deformation we in-
vestigate. The problem is that of a considerable depression near
a single point, and the above formule shew how to find the
displacements at a distance from the point.
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147. Elementary Discussion of Particular Example.
Simple Solutions of First Type.

On account of its importance we shall consider this solution
a priore.

It can be readily verified that the displacements
B B R S
R YTe YTetYTL v
where r is the distance of the point (2, y, 2) from the origin,
satisfy the general equations of equilibrium, when there is no
bodily force, at all points not indefinitely near the origin. This
is M. Boussinesq’s first type of simple solutions of these equations.

U =

Now these expressions can be written

o o _ 0r h+2p.
oz VT iy YTTamtw

where 7 is the distance of («, y, z) from a given pomt. If the above
expressions be multiplied by any quantity independent of , y, 2
we still have a solution, and the sum of any number of such
solutions is a solution, and therefore

u=—9%ffplrdw’dy’, v—-———ffplrdx’dy,
w=—Z[[ owiatay +"+2"v-ff pardal dyf

is a solution, » being the distance of (=, y, z) from the point (£'y)
on the plane z=0, and p, any function of #, ¥. Now we may
regard p, as the surface-density of a distribution of matter on the
plane z=0, and then [fp,rde’dy is the “direct potential” of this
distribution at (=, y, 2), and, since V3= 2/r, §V*[forda’dy’ is the
“inverse potential ” (i.e. the ordinary gravitation potential) of this
distribution.

u=-—

Ver.. (18),

...{(19)

148. Solid bounded by Infinite Plane. Purely Normal
Surface Displacement.

We shall suppose the solid bounded by the plane z=0, and
seek the distribution of surface-traction which would produce the
above system of displacements. It corresponds to purely normal
displacement of a part of the bounding surface, the remainder
being kept fixed.
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It is easy te verify that the stresses T, S, R across any surface
z=const, arising from the displacements (17) are

2u? z_6 2’z

T=—7H_'u;s (g
2u® y 2y
e —— 2 QU= M e 2
8 A+pr 6’“1‘" (20)
.2z .2
R_--k_*_'”‘-’—_,l 6#-,’,,

The surface-tractions at z=0, arising from the system (19)
have a component H parallel to the ¢ axis given by

e [ o [P,

the axis of z being drawn into the solid.

These quantities have finite limits when z=0. The integral
_ f f zp,dz’ dy
rl
is the attraction parallel to z of the surface distribution p,, and

therefore when z =0 its limit is — 2mp,.

To find f zﬂdgﬂ/_, we transform to polar coordinates +/, &

in the plane ', ¥, and put r'=g¢z, where ¢ may be any positive
quantity, thus this integral is

[ pgdgdé’
g =4mp
o (1+¢)
_A+2u .
Hence = tn 77 N (22)

The displacement at the surface is easily seen to be purely
normal and equal to

A+ 3;4..[/‘ pdz’dy’
N )] s (23).

Now suppose p, to vanish at all points except near the origin,
and suppose that near the origin p, becomes infinite in such a way

that [f p,dz’dy’ is finite and equal to——— 7\:2,:4 4:;

Then the part near the origin suffers a very great normal
displacement, and the resultant normal traction is W. If to fix
ideas we consider the plane z=0 horizontal, and the axis s drawn
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vertically downwards into the solid, the problem is that of finding
the deformations produced in the interior by very great normal
pressure distributed over a very small area so as to have a finite
resultant, and such tangential traction as will hold fixed the
parts of the bounding plane at a distance from the origin.

To obtain the displacements in this problem we have to
At+p W

multiply the expressions (17) by ™ T 2 b

149. Weight supported at single point. Rest of sur-
face fixed.
The displacement can be analysed into:
A+3u W1
A+ 2u 4 r’
(2) a radial displacement from the origin equal to
Mtu W cosf
A+2udmu 18’
where @ is the angle between the radius-vector and the vertical.

The stress exerted across any horizontal plane by the matter
above it can be reduced to:

(1) a vertical pressure equal to
uW  cosé Adp o )
TN+ 3p) (1+3 ; cos?d}),
(2) a radial tangential traction outwards from the axis z equa
WV a0 g2tk )
to IO+ 28) 7 (1+3 P cos’f).
At the surface these reduce to a radial tangential traction
s W
A+ 24 292
at all points at a finite distance from the origin. This is the
traction required to hold the surface fixed.

To find the strains we refer to polar coordinates (6, ¢, 7).
The displacements %, v', w’ along the meridian, the parallel, and
the radius-vector are

(1) a vertical displacement equal to

i , . W cosf
UW=——a———, ¢'=0, w—m—r---(ﬂ‘)-

Then, using the formule of ch. viL art. 125, we find that the
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extension along the meridian is equal to that along the parallel,
and either of them is

(A +p) Wrcos O/{mp (M +2u}} oovenneeen, (25).
The contraction along the radius vector is
FWr2cos 0/(um) «eveevenniinnnnnnnns (26).
The cubical compression is
FWrcos 0flm (A +2p)..cevvvnvnnranand (27).
There is a shear in the meridian plane of amount
FWr2sin 6/fwr (A +2u)}veeninnninnnnns (28).

The axes of the elongation-quadric are in and perpendicular to
the meridian plane, and the two in the meridian plane can be
obtained by turning the tangent to the meridian (1) and the
radius vector (3) through an angle § tan {2x tan /(3\ + 5u)} in
the direction from (1) fowards (3).

150. Generalisation. Particular Integral for the
Bodily Forces’.

The results of the preceding example are very important. We
see that if the mass ffp,de'dy’ be very small and be distributed
with a finite surface-density over a very small area, there will be
a finite normal surface-traction per unit area near the origin?,
equal to

(N + 2u)
AN+ p
and vanishing surface-traction elsewhere. The displacements
corresponding to this state of things are proportional to
or or r A+2u
T oxds’ ~ oyoe’ Bz’+x+pv.r

We also found that if p, be the density of a surface-distribution

on the plane z =0, the functions 4, v, w given by

u=_aiaffplrdddg/, v=-a% fp,rdz'dy',

w=w az,ffplrda:’@ +"+2"v-ff parde dy,

1 The methods of this and the following article are taken from M. Boussinesq’s
Application des Potentiels dec. pp. 276 sq.

1 For the case of infinite normal surface-traction near the origin, having a
finite resultant for a very small area, and vaniching surface-traction elsewhere
see below, art. 163.

(surface-density),
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where r is the distance of any point (z, y, ) from the point (2, y")
on the surface, are functions which satisfy the equations of
equilibrium at every point on either side of the surface, p, being
finite.

It follows from this that, if p’ be the volume-density at
(«, ¥, Z) of a distribution of fictitious matter, and ® be the
“direct potential” of this distribution given by

@ =[[fprde dy dz,

the functions u, v, w given by

. . T K+2/.¢
U= omaz’ YT aga VT e taa T ()

satisfy the differential equations of equilibrium, under no forces, at
all points where p’ vanishes.

To find the bodily forces X, Y, Z, which must be applied in
order that the expressions given in (29) may centinue to satisfy
the equations of equilibrium at points where p’ is finite, we form
from the u, v, w of (29) the expressions such as

0A \
A+ p) %=t uV3u,

ou ov  ow ,
where A= tayt o~ x+yaz v [[[ raet aya.

Observing that V* [ p’rde’dy’dz’ = — 8ap’ when r = 0, we find

X' =0, Y=0pZ= 8'rr/.l.7~+ 2u ', where Z' is the value of Z at

A+
@y, 7).
Thus the displacements
o it P A+2u
= ————— = — = — v’
U= wds oyoz’ b 8z'+7x+/.l. ®
__()‘_‘*'_QP__'U'Z' dy dz’ 30
where ¢—81r/.l.(7t+2y-) jr dedy'ds ............ (30),

correspond to a bodily force always parallel to the axis z.

Hence we can find the displacements, produced by any bodily
forces whatever, in the form
L. 17
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u=_f’_ﬁfﬁ" 2_("71__%;(1’ o Y'g;+Z’g:) o' dydz,

v———fff-y' Adp_ a(21'?I+Ir'5’\'+2""') dddyds’,

dmrp r  2(A+ 2u)dy oy oz
_ P g A+p 0 (fy,0r or or ,
w"wpfﬁ_r 2(x+2,¢)az(x +Y'ay+z'az) dd/dy'ds/

These are the complete values of u, v, w at any point of an
infinite solid to a finite part of which finite bodily forces X', Y’, Z
are applied. They will also represent the displacements in such a
solid, when the forces are applied at all points, provided they

become at an infinite distance small of the order }—{ at least, where

R is the distance of the infinitely distant (=, y, ) from the origin;
and this condition will be satisfied if the bodily forces X, ¥, Z
at (z, y, 2) are such that when R is infinite X R, YR, ZR converge
uniformly to zero.

Another application of the results (81) is that they give
particular integrals of the general equations of equilibrium of a
finite solid mass subject to given bodily forces, whatever the
surface-conditions may be. (See art. 137.)

1561. Case of Force applied at single point.

Consider particularly the case of a single force parallel to the
axis z applied at the origin. This force must be regarded as a
bodily force ZpdV acting on the element of mass pdV. If we
suppose Z to become infinite, while ZpdV remains finite and = P
say, we have the limiting case of a force P applied at a single
point (the origin). The displacements at any point not indefinitely
near the origin are

_At+pu P oz
T A+ 2u8mur’
_Mp P 2
=138 . (32).
A+p P 22 A+8p P 1
A Y2 Stur A+2u8mur

If in art. 149 we write P for W, and take the vertical to
mean the direction of the force P, all the statements of that
article apply to this. case.
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162. Local Perturbations.

It is of great interest to enquire what will be the resulting
displacements when a system of forces, which acting on a rigid
body would produce equilibrium, is applied to a small part of a
solid. In the Theory of Beams we have seen that Saint-Venant
introduced a principle, which we have called the “ Principle of the
<equivalence of statically equipollent loads”. This principle states
that the application of an equilibrating system of forces to a small
part of the surface of a solid produces no sensible strain, except at
very small distances from the part subjected to the action of the
forces. M. Boussinesq brings this principle under a more general
one which he states thus:

“ External forces which produce equilibrium being applied to
“an elastic solid at points within a given sphere provoke no
“gensible displacement at distances from the sphere which are of
“a certain order of magnitude in comparison with the radius.”

M. Boussinesq has given several examples of this principle, and
they lead to the conclusion that the application of forces to a
small part of a solid produces, at sensible distances from the part,
sensibly the same displacements as would be produced by the action
of any other system of forces equivalent to the same resultant
force and the same couple when applied to a rigid body. Near
the region of application of the forces their mode of distribution
sensibly affects the result, and the displacements differ finitely
from those that would be produced by an equivalent set of forces
differently distributed; but these deviations from the kind of
displacement that depends on resultant forces and moments are
practically confined to a small space near the region of application
of the forces, and they are called by M. Boussinesq “Local Per-
turbations ”.

The student will find no difficulty in proving, by differentiating
the formule of the last article with respect to z, that equal and
opposite forces, applied at points near together, in the same
straight line, produce at sensible distances displacements which
vary directly as the forces, and as the distance between their
points of application, and inversely as the square of the distance
from the point of application of one of them; and that the re-
sulting strains are directly as the forces and the distance between
their points of application, and inversely as the cube of the dis-

17—2
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tance from the point of application of one of them. Similar
results can also be proved in the case where the forces are applied
at points near together, but not in the same straight line. Such
systems produce then displacements which can be regarded simply
as local perturbations, insensible at sensible distances from the
region within which they are applied. In the case of a long thin
wire or rod strained by the application of forces at its ends, or a
very thin plate or shell strained by forces applied at its edge, the
falling off of the local perturbations at a little distance from the
region of application of the force is likely to be much more rapid.
The particular case of a very thin plate subjected to torsional
couple has been considered in Thomson and Tait’s Natural Philo-
sophy, Part 11, art. 728, where it is shewn that the local pertur-
bations diminish according to an exponential function of the
distance from the edge.

DISPLACEMENT IN A SOLID BOUNDED BY AN INFINITE PLANE—
SURFACE-TRACTIONS GIVEN.

153. Calculation of the Dilatation.

For the calculation of the cubical dilatation we must, according
to art. 141, determine a system of displacements, which satisfy the
equations of equilibrium and make the surface-tractions equal to

—1 291 1
2;43%5, 2;4-3%11 , 2;43—3;, when z = 0.

This is the same system of surface-tractions as that which in
the previous problem (art. 144) we denoted by L,, M,, N,, except
for a factor, viz.: these are — (A + 3u)/(A + p) times L,, M,, N,,
and thus the displacements which correspond to them are
—(A+3u)/(A +p) times the displacements &, 7, § of our
previous problem (art. 144).

The displacements required bave therefore the forms
A+3udR™ >R
Atu 0w - dnm
A +3udR™ +22 PR
Adp Oy 020y '
A+ 3udR! #R

T A4p 0z +2z 0z’
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and the surface-values of these, when 2z =0, are
A+SuOt A4 3udrt A+ Bud
A+u 0z’ A+p Oy A+p 0z’
so that the value of A at (2/,%/,2') is given by the equation
1 or! ort or!
A--2——"(x+p)ﬂ(ﬁ'—a—i +eg + H%) dedy...(33),

where F, G, H are the given surface-tractions at z =0.

154 Properties of certain functions.

The determination of the rotations is more difficult and depends
upon the properties of the function x defined by the equation

x=log(z+2 + R).ceruunrinrnnncann. (84).

This function is finite, continuous, and one-valued within the
solid, and satisfies Laplace’s equation.

‘We have
ox_ 1 z-z
oz z+Z+R R’
x__ 1 y-un
oy z2+7Z+R R ~’
al 1 z—1z 1 1

2 ¢¥7+R B "z+7+B R’

x_R-@-=mp  (z—ax)
o R (z+7+R) R'(z+7+R)

_ 1 _(z+z’+2R)(.'c—a_:1_2=
“R(z+7Z+R) R(z+7+Ry °
Px 1 _(z+7+2R) (y—u)
*"R(z+2 +R) R (z+7Z+Ry ’
Px__z—z 1 _(z+7+2R)(s—2)
2 R  R(z+7+R) R'(z+2 + Ry
1 z2—2z
_(z:Fz’+R)’{1+2 B }

Hence
(z+27+2R) 2(z+2)+R _

vix= 3 - —7 .=0.
R(z+7Z+R) R(z+7zZ+Ry R(z+Z+Ry
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ox _OoR™
0xdz  ox
*x _ BR—I
oyoz ’
Px_ Z’L’“'
oz 0z
Again, consider the function y- defined by the equation
Yv=(z+2)log(z+7Z+R)-R ............ (35).

We find o _ov_

Also

and '44-, (a4 and Z;_\p- satisfy Laplace’s equation.
1565. Determination of subsidiary displacements re-
quired in finding the rotations.
To find &, we have, by art. 142, to find displacements §,, 1, &
satisfying the equations of equilibrium, and such that the surface-
tractions that would produce them are the same as if the displace-

ments near the surface were 0, - 813; 8;';‘ thus we have to find
displacements §,, #,, & which sa.tisfy the boundary-conditions
0 ot
# (32 * % ) 83/81.
oL  om ort o
(By + az) (—a?; - —a_z’—) P (36).
o  om o Bt’l_ ot
A (E: + = ay a ) +2u 2n a—y—az
The functions 0, —ag‘: , ag/—l satisfy the first two conditions
identically, and therefore we take

, , OR™ BR—
EI=EI) Th=mn —7: §1 §1 hr-wat)
and the functions &', %/, §’ must be finite, contmuous. and one-
valued throughout the solid, and must satisfy certain differential
equations, to be given presently, and the boundary-conditions

BEI a§1 a§1 a'h =
Bt =0 Gt =0 (37,
of/ 31)1' 3;’1 o0&’ — R
and (a@ ay -+ az) -+ 2 az - 4’& a—y—-az ...... (38).
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Now supposing that
,_OF ooy
£ = 2’ N =% b= (39),

the third of these boundary-conditions becomes

ai a;;) +O+20) .Q —— a?— ...... (40).

In the notation of the last article these equations can be
satisfied by assuming

PX | .9
§=2 et
"9y X 40X
7 “%ayaz"'“ay' } .................. (41),
v o PX L 00X
c —22 a?'l'ﬁ az J

where a and 8 are constants: for with these values we find

%, on" o _ oy
aa: oy Bz =2 ?_’X ~B)7 0z’

ééf'—<2+ﬂ>33§+2za7,

and, when z= 0, we have

of”  on"  of” og” o*x.
(6a:+ay+az)+2 =[@-a+B)r+2@+ B/ u] 5X;
and since %’f = aa;R: , the third of the boundary-conditions (40) is
satisfied if

—aA+(B+2)(A+2u)=—4p.

The other two boundary-conditions become, when z=0,

(a+8+2) =0, (a+ﬁ+2)aa"§ =0,
Hence a+8+2=0.
Thus a=2_“, B=_2Xﬁ

Ad+p Abp
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It follows that the displacements

£=2 X 49 P X )
T Bmayaz A+ p 0xdy’
n=200%X Lo P Px_0OR™

oy0z " “A+poy oz
—9, OX 4o Pk Tx_Px
T a7 Tl (42)
—9, 0% A+2u ¢  OR™
R R W ¥, M
_9, X _g P Tx _Ox
Oyozt N+ uoyoz Oyor |
satisfy the boundary-conditions. It is easy to verify that they
also satisfy the differential equations of equilibrium.

1566. Calculation of the Rotations.
Hence we find, by art, 142, and remembering that Viy =0,

s, = (P o+ 0 55 H %)

+ff(G%—F%)dwdy ..................... (43).

In like manner we should find

R R

dady

+ff o Fa’x)dwdy .................... (44).

It is easy to shew that the functions &, ns, {; required for the
determination of =, are
oR™ aR—‘

El=Ty_: N =—

drpw, = f f (F % 333) dady ......... (45).

157. 8implified forms for the Dilatation and the Ro-
tations.

We introduce now four functions L, M, N, ¢ defined as follows:

» CS—

and therefore
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L = [[Fxdzdy,
M = [[Gxdady,
N=[{Hydady, }--ereeeeereesaces (46).
oL oM 0oN
¢ = a—‘w, + W + W
Then since
ox__0x ox_ _9x ox_0o%
oz’ oz’ oy oy’ o7 oz
and Vay =0,
it follows that L, M, N, ¢ all satisfy the equation
v
o7 2T Y,
at all points within the solid, and are finite, continuous, and one-
valued functions of , ¥/, 7.
Now the value of A given in art. 153 and the values found in
the last article for =,, w,, @; can be re-written in the following

forms:
A= 1 ¢
S (A + ) 32’

O, = A2 a_‘k_;__l_a_(.a_A[_a_{‘)

! 2ep (A +p)oy  2muodd’ \ox’ oy'/)’ 7).

A+2% 0 1 o M oL\ | 7

et (41

T 2xp(N+p)od  2muoy \o oy’

_ 1 9 (oM 3L
2wy = 2wade (o7 ~5)

158. Determination of the Displacement w.
To find %, v, w as functions of (2', ¥, #) we have to find solu-
tions of such equations as
Pu u u A+ poA
%7+5§"+W'——Ta—w’ ............... (48),
with the boundary-conditions

_2I‘g7ul+2l-“""n=F,

— 2 % T (49)

—2/.4.2-?5—M =H

when 2 =0.
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The determination of w is comparatively simple. It has to
satisfy the equation

Pw Fw Fw_ 1 P

TR BT s SO (50),
and the boundary-condition
ow__H A 2 (51)
P Amiut il =y wrant RIS
when 2/ =0.
A particular solution of the differential equation (50) is
__1 0
w=—gm? 5
and this makes
ow__ 1 9
of 4dmuod
when & = 0.

We have to add complementary solutions which make
w_ H w1 %

-5 ™ Tt aar
respectively, when 2 =0, and these are
1 oN é
o ™ EoE
Hence the complete value of w is
1 oN ¢ Z o¢

w = 4'Il_l"az,'l'r’r(m) 4'”_”3‘, ............

159. Determination of the Displacements « and v.
The form for w suggests that for  and v we should take

T rudd T hwpdd | (53).
poyy LM 203

dwpds  dmudy
Then ' and v’ must satisfy the equation

A a’V B’V

& Taptan=0
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and the boundary-conditions

o 1 2, 1 3 (M 0oL
3~ dwr(\+p)od hpa_«/(oi‘a?/)’ . (54)
o 1 9 1 2 M oL
a_z'“mma?‘ma?(ad ay')
when # =0.

We introduce now four new functions L', M’, N, ¢’ defined by
the equations

L' = [[Fydady,
= [[Grdzdy, t 3
N =[[Hydady, — p-oeeeeereeeeseraneess (55),
,_oL oM  oN }
¢'= o ¥ oy to
where 4 is the function (z+2")log (2 + 2 + R) — R defined in
art, 154 and possessing the property

o oy
2 o7
We deduce
ol/ oo .. N o’
Fris A P s
The boundary-conditions become
We— L0 1 0 (@{_3_1/)
T dm(N+p)or’  4mupoy \o oy /’

Vel 10 i ol
T AT (A4 p)oy Mpax'(aa:’ oy i
Since L', M’, N, ¢’ are finite, continuous, and one-valued
within the solid, and satisfy the equation
8’17 B’V (A4
oa By" o
we conclude that these values of w/, v/ also satisfy this differential
equation, and, since they satisfy the boundary-conditions, we con-
clude that the complete values of » and v are
1 9L 7 9 1 o 1 B(BM’ oL

omp 7 dmudd o I (5.
1M 703 1 3 1aM'aL')

=0,

Tdmpdd " dmpdy T dn(\¥p) 0y dmpdd \0d oy
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Thus the displacements u, v, w are completely determined, in
terms of the functions L, M, N, ¢, L', M, N, ¢’ introduced and
defined by equations (46) and (55).

160. Particular example.

The simplest example of these formule will be found by
supposing the surface-traction to be purely normal. Then if]
as in art. 149, we take the bounding plane horizontal and the
axis ¢ vertically downwards, this example corresponds to the
case where the plane supports a weight distributed over its
surface.

We shall proceed with the example of a single weight W,
supposed distributed over a small area dw at the origin, and we

shall take
W = Pldw,

so that p, is the weight per unit area supported at the origin, and
therefore H = p, near the origin, and H =0 elsewhere.
Then the functions L, M, N, ¢ of the previous work are as
follows
L=0, M=0, N=Wlg(s+n, ¢=2 =27
and the functions L', M’, N’, ¢’ are
L'=0, =0, N=W{zlog(z+r)—7r}, ¢'=Wlog(e+r)=N
where, as in art. 146, we have changed the notation, since the
only (z, y, £) that occurs is the origin, and have suppressed the
accents on (2, ¥/, ).
The displacements are
- ¥ sz W
dr(Atp)r(z+7r)  dmp r*’
-V Y Wy L
dr(A+p)r(z+r) dmp r’
WA+2u)1 + W
drp(A+p)r  dmprt
We shall give an elementary discussion of the results.

161. Simple Solutions of S8econd Type.
It can be readily verified that the displacements

T 1
u—r(z+r)’ v—r(z_*_r): w Fo (59),

v=
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where r is the distance of the point (z, y, z) from the origin, satisfy
the general equations of equilibrium at all points, not indefinitely
near the origin, which lie on the side z positive of the plane z=0.
They constitute M. Boussinesq’s second type of simple solutions.

Now these may be written
0 0 0 .
u=%log(z+r), v=@log(z+r), w=a—zlog(z+r)...(60),

and, generalising as in art. 147, we may conclude that, if X be the
“logarithmic potential” of a distribution of surface-density p, on
the plane z = 0, given by

X=[[plog(z+r)dzdy............... (61),

where r is the distance of («, y, 2) from (@, ¥/, 0), then the dis-
placements

_0X _ X .4

= aw— s V= @ f w= —a—z— ............

satisfy the equations of equilibrium.

u

We may verify at once by differentiation that V*log (z+7)=0,

and therefore that V2.X =0; also that % is the ordi inverse

potential f % da'dy’ of the distribution p,.

The system of displacements (60) is a system for which the
dilatation is zero, and we easily find for the stresses 7, S, R across
any plane parallel to the bounding surface

=2 2y __2uz
==, s=-%, Rr--L. .. (63).

162. Weight supported at single point. Rest of Sur-
face Free.

Now, comparing these stresses (63) with the stresses found in
(20) of art. 148, we see that we can reduce the tangential stress to
zero at all points of the plane z=0, by taking for the displacements
certain multiples of those of the first type, compounded with
certain multiples of those of the second type.

Take then for the displacements the product of W/4ru and the
simple solutions of the first type given by (17) of art. 147, viz.:

_m - _2 A+t8ul
'u—r,, 1)—1_,, w-r*+k.+,u.r’



270 SOLID BOUNDED BY PLANE. [162

and the product of — W/4ar (A + 1) and the simple solutions of the
second type given by (59), thus we have

" e, Wz
Y= T O ) r(z+r)  dmp P’
W y W zy

STt r@An) dmp
Fo+2w)1, We
drp(AN+p)r  4dmpr
These correspond to displacements produced by a single weight
W supported at the origin; for the surface-tractions on any plane
2z =const. are
_3Wae , 3Wey . 8Ws
F—2;F’ G—EF, H—g;ﬁ .........
The resultant of H has a limiting value when z=0, which is
the limit of

3 ([ ,
%[fﬁ P da?,dy ..................... (66),

where [[p,d2’dy’=W. As in art. 148 we find H =p,, and the
resultant of H over the very small surface to which it is applied
is W.

The stress at any point across any plane parallel to the surface
is in the direction joining the point to the origin (where the
weight is supported), and is, as it were, a repulsion from that point
of amount

3w
2‘;.‘2 cos? 0,

where 6 is the angle the radius-vector makes with the vertical.

If we describe a sphere to pass through the origin and the
point (z, y, z), and to have its centre on the axis of 2, and if D be
the diameter of this sphere, we shall have 7 = Dz, and the stress
across horizontal planes will be the same at all points of such
a sphere, and its amount is

1.4
2r D’

We notice that the expressions for the stresses (65) do not
contain any elastic constant, so that the transmission of force
across the horizontal planes is of the same character for all isotropic
solids.
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The horizontal displacement is along the radius perpendicular
to the axis 2, and is equal to
W sin 0 B 1
dorur [0080_7\.+,u, 1+c080] ’

where 6 is the angle the radius-vector from the origin makes with
the axis z.

Within the cone whose generators are given by the equation
cos® @ +cos 8 = u/(A + p),
this displacement is from the axis, and without this cone it is
towards the axis,. When A = u the angle of this separating cone is
cos™' 4 (4/3 — 1) or 68° 32’ nearly.
The vertical displacement is
W A+2u
drur ( Atp

+e 5’0)

and is always downwards.
At the surface the vertical displacement downwards is
1 Wr (A + 2p)/fur (L + )},
and the horizontal displacement towards the origin is
1 Wrfr v+ )

The form assumed by the free surface is approximately the
surface formed by the revolution round the axis z of the hyperbola

drp (A + p)ze=(N+2u) W.

163. Weight distributed in any manner on Surface.

In general taking, in the notation of art. 150, ® for the direct
potential of the distribution p,, and X for the logarithmic pobentia.l

of the same distribution on z=0, and compoundmg———- of the

displacements of the first type given by (29), viz.:
o*® P 8’<I> A + 2,4. Vi,

Y= T Ty YT @ T
1 . .
and — T TR of the displacements of the second type given by
(62), viz.:
oX 0X oX
u=—, v=-=,

ox oy N
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we obtain displacements
-1 X 1 2o
4 (A +p) Oz 4mp 0zox’
o1 X 1w s
4r(A+p) 0y 4mwpdedy
w=— 1__3£_i3_’¢i+—7\-+2ﬂ \'A
dr(A+pu)0z 4dmp 028 drp(A+p)

where
X=ffp,log(z+r)¢h'd3/,} (68);
O=[lprdddy = Jee ;
and these are the displacements produced by purely normal surface-
traction p, per unit area applied at z=0.

M. Boussinesq has given several examples of the application of
these formule to determine the displacements produced in a solid
bounded by a horizontal plane which supports a load distributed
in a given manner.

U=



CHAPTER X.

LAME'S PROBLEM .

164. Statement of the Problem.

Lamé was the first to solve the problem of determining the
displacements in an elastic sphere or spherical shell whose surface
is subject to any system of tractions, and whose particles attract
each other according to the Law of Qravitation. Sir W, Thomson
has considered the more general problem where the sphere is
subject also to the action of forces having a potential which
satisfies Laplace’s equation. The most general problem of the
kind which has been solved is as follows:

A gravitating solid elastic sphere, of homogeneous isotropic
material, is rotating slowly about a diameter, and is subject to the
action of bodily forces derivable from a potential expressible in
spherical harmonic series; it is required to determine the resulting
displacements.

We shall begin with the problem of the elastic equilibrium
of the sphere when there is no bodily force, and the displacement
at any point of the surface is a given function of position on the
surface. We shall then proceed to the same problem when the

1 The following among other authorities may be consulted :

Lamg, Légons sur les Coordonnées Curvilignes.

Thomson and Tait, Natural Philosophy, Part 1.

Sir W. Thomson, Matkematical and Physical Papers, Vol, L

@G. H. Darwin, ‘On the Stresses produced in the interior of the Earth by the
Weight of Continents and Mountains’, Phil. Trans. R. S. 1882, and ‘On the
Dynamioal Theory of the Tides of long period’. Proc. R. S. 1886.

Chree, ‘On the Equations of an Isotropie Elastio Solid in Cylindrical and
Polar Coordinates’, and ‘On the Stresses in rotating Spherieal SBhells’, Camb. Phil,
Soc. Trans. x1v., 1889. ‘A new solution of the equations of an isotropic elastic
solid...’. Quarterly Journal, 1886 and 1888, and ‘Some Applications of Physics
and Mathematics to Geology’, Pkil. Mag. xxxu., 1891.

L. 18
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surface-tractions are given. Finally we shall investigate the general
problem. The general solution of the problem of elastic equili-
brium of a spherical shell with given displacements or surface-
tractions at the inner and outer surfaces is very complicated, and
the reader is referred for it to Thomson and Tait’'s Natural
Philosophy. We shall consider only the particular case of a
spherical cavity in an infinite solid, which has an important
practical application.

165. The sphere with given surface-displacements.
We have to find solutions of the equations

0A
(A +p) 5 + V=0,
oA
(X + #)@ + ;LV’v = 0, ................. (1),

A+ ) 2 4 T =0

du ov ow
where A= =t 3 Fg e (2),

which are finite, continuous, and one-valued within a sphere of
radius a, and make u, v, w given functions of position on the
surface.

We may suppose the given surface-values of u, v, w expanded in
spherical surface-harmonics, and thus we may take at the surface

u="3 As, v=732 By, w='3 Cpreor... ®),
n=1 n=1 n=1

where A,, B,, C, are spherical surface-harmonics of order .

We seek a solution of equations (1) expressed in terms of
spherical harmonics.

Differentiate equations (1) with respect to «, ¥, 2, add, and use
(2), and we find

A+20) VA =0..ccieniinniiinnianneen. (4).

Thus A satisfies Laplace’s equation, and therefore, within a
sphere whose centre is the origin, A may be expanded in a series
of spherical solid harmonics, so that we may write

D=3 O eeeoereeereerereererenn, ),

n=0

where 0, is a spherical solid harmonic of order n.
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Now 06,/0x is a spherical solid harmonic of order (n —1), and
thus
00,

i (rl)=2(2n+ 1)‘?% .................. ),

where r is the distance of the point («, y, 2) from the origin. Thus
we get a particular solution of the equation

0A
aViu=—(A + p) Bg CTeetertenesseesees )

in the form
Atp "5 1 00,
2u woo2n+1 0z
and we have similar particular integrals of the equations for
v and w.

We have to add to the particular solutions complementary
solutions, so arranged that the complete expression of
Ou/oz + 0v/oy + dw/oz
may be identical with A. Suppose these complementary solutions

are 3U,, 2V,, ZW,, where U,, V,, W, are spherical solid
harmonics of order n, then we have identically

a Uﬂv-l-l aV,.+1 aW,..H A+ » n _
2[ oy Spmn  Lan | _Mbhy B G=36,..0)

where we have picked out the terms containing spherical solid
harmonies of the same order n.

Thus, if we write

OUnys , 0Vap  0Waps _
5t 3 L el CURPRY (10),
+ry, will be a spherical solid harmonic of order », and
_M+uBn+1)
LR vy T (1),

and the complete expressions for u, v, w are of the forms

v= °>;. (V= Mot a\,;;_ 3 I — (12)
w= OE:; (W;.—M,.r’a‘gz_l)

18—2
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oU, oV, oW,

where ‘\P‘”_l = a-’ﬂ— + W + —aT ............... (13),
- htp :
and Mu=d oD 3w @y (14).

In (12) we have picked out the terms which are homogeneous
of the nth degree in (2, y, 2), we may also pick out the terms
which contain spherical surface-harmonics of order », and thus
write

@

=S(7. - 0¥
u—%(U,. Mpr® az) ............... (15),

with similar expressions for v and w.

Now, to satisfy the boundary-conditions (3) we have such
equations as
Orn, ™
3 [( Uy =M, paa? ia;-) -4, a—,,] =0 oo, (16),
when r=a,

The left-hand side satisfies Laplace’s equation within the
sphere of radius @, and vanishes at the surface, it is therefore
identically zero. There are three such equations as (16) which
are all true identically, and it is clear that the terms of any order
n separately vanish for all values of ».

Differentiating equations such as (16) with the sign 3, omitted
with respect to 2, ¥, z, and adding, we find

0 " 0 " 0 i
Voa= g (40 5) + 55 (B T5) + 55 (0w )
which determines the function 4, ,, and in like manner all the

functions {r are determined. Then U, is determined from (16),
and V,, W, are given by similar equations. Thus we have finally

u= 'g:’ [A,.%-{- (@2 —1°) Moy a"'—a;t] ......... (18),

with similar expressions for » and w, where
0 ™t 9 rt 0 o+
Vo = 3% (Aﬂ+z a‘,.:,‘) + @ (Bn+= T + by (Cnﬂ a"_“') -..(19),
and
=y ME
MM’—' }h(1b+1)+p(3'n+4) ---------------
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166. Displacement in any Solid.

Equations (12) express in terms of rational integral functions
of the coordinates quite general solutions of the equations of
equilibrium for a simply-connected region containing the origin.
For such a region A can always be expressed in a series of
spherical solid harmonics such as 6,, and the displacements consist
of particular integrals of the differential equations of the form given
by (8) and complementary solutions of the same equations ex-
pressible in a series of spherical solid harmonics, and the four sets
of harmonics thus introduced are connected by the set of relations
involved in the equation du/0x + 9v/oy + ow/oz =A. Mr Chree?
has applied this method to the determination of general solutions
expressed in positive integral powers of the coordinates, and has
obtained by this means the displacements in a rotating ellipsoid.
He has also shewn that Saint-Venant’s solution of the problem of
the flexure of an elliptic beam is the only possible solution which
contains no higher power than the third of the coordinates of a
point on the cross-section.

167. The sphere with given surface-tractions.

Suppose that, at r = a, the surface-tractions F, G, H are given.
We may suppose them expressed in spherical harmonic series in
the forms

F=3F, G-= zan, H= zH ............ 1),
1

where F,, G,, H, are spherical surface-ha.rmomcs of order n.
Now the boundary-conditions are three such equations as

F—--m+2ﬂ§2+ y(a"+a“)+p (a“ a‘”) (22)

éz oy Bz
when r = a, and these are equivalent to three such as
i} ou ot
Fr—MA+p(r$+aw—u) ereereenans (23),
where C=Ur + vy +WZ cocieniinniiiniinnnieneens (24),

so that ¢/r is the radial displacement.
Suppose %, v, w found so as to satisfy the differential equations

1 Quarterly Jowrnal, 1886 and 1888,
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and the boundary-conditions, and their surface-values expressed in

spherical surface-harmonics, then we shall have, when r=a,
u=3A4,, v=2B,, w=2C,,

where A,, By, C, are spherical surface-harmonics, and we know

that at all internal points u, v, w can be expressed in such

forms as

— ~ Nrnn 0rna
u=3 (A,. VA L T L ) ...... (25),

where

0 ™ 0 ™ 0 "
Yo (4 5) 1 (B ) 45 (00 5):
A+ p
An—-1)+p@Bn-2)
Thus if 4, B,, O, could be expressed in terms of the surface-
tractions the problem would be solved.

We have to calculate the surface-tractions corresponding to
displacements such as (25).

For this purpose we first write down the value of A; it is
_s2p(2n—1)
A=3 N+ h M,
Then we transform A by the aid of the identity
r [of oH 9 (amh
af (z, y, 2) = S+l [az @ iz (r,,,.ﬂ S )] ...... (26).

We thus find (wntmg n— 1 for n and ¥, for £)

ot =r 2 2[ {a;-‘ ;'::z(ﬁ_'_, «p,._,)}]...(m).

We now mtroduce a new function ¢_p—,, which is a spherical
solid harmonic of negative order — (n + 2) defined by the equation

broim (A E0)+ B (0 50) 4 2 (05

and use the identity (26) to transform the expression

M,=%

(24 + yBa+ 50) =

We find

e+l

re r
(zA,,+ an + ZG,.) prt = _21!—4'1 (‘P‘n—l — g ¢—ﬁ—l) .
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Thus we obtain
1« powi1
§= 3 [2—n—+‘—i (‘P‘n—l _a_g,,‘.ﬁ ¢—n—a)
+ Mpsa* (n+ 1) Yrpp —Mpri(n-1) 1}:-,,_1] ...... (29),

where the terms expressed are homogeneous of the (n+ 1)th
degree in 2, v, 2.

Hence we find

t 2[ ,.+,a’(n+1)a¢;“

1 2 (rm )

on+1 9z \gmh ¥

+r'{27n1;—1 ~(n-1) M,.} At
tant{mrn— @~ D W - T g (S v

where we have used an identity similar to (26) to simplify ayr,_,,
and have picked out the terms of degree =.

Also we find easily

¥ _u=3 [(n 1) (40 S+ My Hur _ a‘g;-)] @1).

Hence the terms of degree n in Fr/u are

™ 'n—
(n=1) 40 2 4+ 0,y a";;* —2(n-9) M,.ﬂa"’ :
1 0 /rmis rntl g
2n +1 ax (am+1 ¢—'H) E am—l az (rm—l ‘P‘n—l) (32)’

1 A@n+2)—p(m=3)
+IA(n—1)+pu(Bn-2)"

Rearranging, and picking out terms that contain surface-
harmonics of order n, we have the surface-tractions required to
produce surface-displacements A, ... expressed in terms of the
given surface-tractions Fy,, ... by equations of the form

where E,= ...(33).

™ il g /g
(n—l)Ana;.— nﬁ%(r_‘m-"i )
1 9 (b Furn
2n— a—» (—a’n—“ —H) —'Fa—"_i = 0 ............ (34),

when r=a.
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The left-hand side of (34) satisfies Laplace’s equation within
the sphere of radius a, and vanishes at the surface, it is therefore
identically zero. We have three such equations as (34) which are
all true identically, and these hold for each value of n and for all
values of 7.

Introduce two new functions ¥, ,, ®_, ,, which are spherical
solid harmonics of orders indicated by their suffixes, and defined
by the equations

o /™ .0 (™ a(r

\I’n—l = a;(&; FQ) +§.;/ (E Gn) +a—"z (&T"Hﬂ) [}

a antl a antt a antl
Dons= 55 (om Fa) + g5 (50m On) + 5 (s o)
Take equation (84) and the two similar equations, differentiate

them with respect to z, ¥, 2, add, and we get
__Mn-1D+p(r-2) ag

Yo = @m D+ @ —ns D ™

..(35).

Take the same equations, multiply them by , ¥, 2, add, and
use identity (26) and equation (36), and we get

a
¢_,,._g = —2-1?,'; (b._"_’ ................... (37 ).

Thus the functions y,-, and ¢_,,, defined in equations (17)
and (28) in terms of surface-displacements, are definite multiples
of the corresponding functions ¥, , and ®_,,, defined in like
manner in terms of surface-tractions, and are, therefore, completely
determined. Hence, by equation (34), 4, is completely deter-
mined, and B, and C, are given by like equations. Finally u, v,
w are given by (25) and the similar equations in terms of the
An, By, Cy, Yrpy, and thus u, v, w are completely determined.

The possible values of » must be chosen, so that the system of
applied surface-tractions may satisfy the conditions of equilibrium
of a system of forces applied to a rigid body. It is easy to shew
that n=0 does not occur, and that, if n=1, »F,, G, rH, are
the partial differential coefficients with respect to @, y, z of
a bomogeneous quadratic function of these variables. In the
general problem of art. 170 these conditions are satisfied
identically.



168] NORMAL SURFACE-TBACTIONS. 281
168. Case of purely normal surface-tractions.

Suppose the surface-tractions equivalent to a normal traction
equal at any point of the surface to

S R.,
1

where R, is a spherical surface-harmonic of order n; then we
must have when r=a

Fr= %R,, (g)" , Gr= y$R,. (5)" , Hr= %R,. (g)" .(38).

Now the surface-tractions that must be applied to the surface
r=a to produce the system of displacements (25) are given by
(34), and may be written in forms of which the type is given by

- p__ o (rm*
F‘I‘—E[ (n I)A“aﬂ. %Tia_w(am+!¢_ﬂ_.a)

— By oo ai (\l‘ﬂ)] ......... (39).

The surface-tractions actually applied can be written in forms
of which the type is

b gy [0 £ (B ) 20 e 23]

If we equate the right-hand sides of (39) and (40) it is easy
to shew, as in the last article, that we have an equation which
is true identically; and we can obtain, by considering the expres-
sions for Gr and Hr, two other like identities. We first differen-
tiate these with respect to &, y, z and add; then we multiply
them by «, y, 2 and add. We thus get the two equations

S+ 1)+ (n +2) (20 + 5) Enyd Yue
(n+2) (2n + 5) (7 a
~2 R Q) (Benie).

2n_
m+1amh T2

n+1l iy (04 2) s gnh
=% [Zn 32 (Bongam) + * (n + 8) g Lo F»::] :

and

S [0+ 1) + (1 +2) (20 + 5) Eara] 2%-):#
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At the surface the first of these gives us
pl(n+1)+(n+2) 20+ 5) Bnss] Yo

(n+2) (2n +5) (r\*"
-+ D(En+5) (E) Ropre.....(41)

and, using this to simplify the second, we get at the surface
2n  (r\m n+1l /r\n
bt (O b= (5 a8
where we have picked out the terms containing surface-harmonics
of the (n+1)th order. As the equations obtained are relations

between the surface-values of spherical solid harmonics of the
same order they hold throughout the sphere.

To determine the A’s, B’s, and ("s we shall suppose the
surface-traction expressed by a single term R,,,. In this case
Ynn and ¢_,, are the only functions ¢ and ¢ that occur.
Equating (39) and (40), and picking out terms which contain
surface-harmonics of order » and of order n+2, we get

,Jl
F("—I)Au'&.

_ n 0 /rmis 1 2 o+l
=a [2n+1 ox (Fﬂ"’"’“) ton+30z (R"“W) ’

1ﬂl+’
p+1) dnss o5

and

1 o9 a®
= + ntl = —
a2 ( =) In+ 8 a5 Iz (R"“ P

Simplifying these by means of (41) and (42), we find

pd, o= 1 2 (’"“R,. ) ............ (43)

a’l—l

and
,rn+!
- "‘Aﬂ-ﬂ ant?
1 s 9
TAA1l+(m+2)(2n+5) By Cn+ 3) a2 02 (rw R"*‘) A(44).

These are the only A’s that occur, and the B’s and C’s can be
found by writing y and # respectively for =.
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169. Spherical Cavity in infinite solid mass!.

By analogy with the solutions for space inside a sphere we
may write down those for space outside in forms of which the

type is w= 2{ Ry Ic,.'r’a ( r;;;)} ............... (45),

where v and w are found by cyclical interchanges of the letters
(U, V, W), (, y, £), and Y., is given by the equation

Vg =17 {ai (,ZL) + % ( r%;) +5a; (L"l)} ...... (46).

Also U,, V,, W, are spherical solid harmonics of positive degree
n, and therefore 4,4, is a spherical solid harmonic of degree n+ 1.

These forms satisfy the differential equations of equilibrium

. _ AN p
Q) if *(n+ DA+ GrEs) (47),
and it can be shewn that the cubical dilatation A is given by the
: @r+3)p ;. Yan
equation —23, Nt A o gy +eeeveseeaceees (48).

It can be shewn in the manner of art. 167 that the surface-
tractions F, @, H at the surface of the cavity r = a, required to
maintain the state of strain expressed by such equations as (45),
are given by formule of which the type is

~ 3P () 0.2

R kil 2 U,
P,, ma—z(,&_:)—(n'*' 2) aT'_:_l] .............. (49),
. . _ U, 0V, oW,
in which x,,_,——%+-a—y- g e (50),
and
2\ n+1 a'
Puo=ak, {).+ +2(n +2)2n+3} 2n+8’
L TGRS ) N3 G e .
"—a’"‘“{2n+3 rral T @rrD) @+’ G
’ 1
Po'= “on+1

From the equations of type (49), it is easy, by the method of
art. 167, to express Y4, and y,— in terms of given surface-
1 Only the leading steps of the analysis are given.
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tractions, and thence to infer the values of U,, V,, W,. We
shall consider a particular example.

Suppose that at a very great distance there is a finite shear s,
so that the displacement, when »= 0, can be expressed by

u=gy, v=0, w=0..cccoivreeres. (52).

In this case, it can be shewn, by the above analysis, that, if
the surface r7=a be free, the only harmonics 4 and y that occur
are proportional to «y, and that the only harmonics U that occur
are U, and U;; also that U, and V, are respectively proportional

to y and &, while W, =0, and that U, is proportional to r* 8% (’l—g),

and Vg7, Wy are the same multiples of the differential co-
efficients of zyr—® with respect to y and .

We thus find for the forms of u, v, w

u=A%+Ba-a (zy) + O aa (g)+sy,
v=a S4B (B rorg (B). (53),
w= Baaz(””-")+0,a: ()

where A4, B, C are constants.
If the spherical cavity be free from stress, the constants 4, B, C

are given by the equations!

3\ +8u "

O+ 14p 14»;1.

S(A+p) .

Oh+ T4y 12 R (54).
3(A+p) ,

T OA+14u

The most important point concerns the shear — ou +g:

easy to shew that the value of this, when =0, y = 0 r=a,is

15\ + 30u
*ﬁ‘:llp— 8.iiavnannes eesecssn Ty (55),

It is

1 Bee Phil. Mag. Jan. 1892, p. 77.
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so that if A = u (Poisson’s condition), the value of the shear near
the cavity may be very little less than twice that at a considerable
distance. This shews that the existence of a flaw!, in the form of
a spherical cavity, may cause a serious diminution of strength in a
body subjected to shearing forces.

170. General Problem.

We shall now consider the following problem :

A solid isotropic homogeneous elastic sphere, formed of gram-
tating matter, 78 rotating slowly about a diameter, and s subject to
the action of forces derivable from a potential expressible in spherical
harmonic series—it 18 required to find the state of strain in the in-
terior.

Suppose a’ is the unstrained radius of the sphere. Then, as
part of the bodily force is radial, the sphere will be compressed,
and the equation of the surface of the strained sphere will be of
the form

r=a+ EeﬂQﬂ+l ........................ (56),
where @ is slightly different from a’, Qn, denotes a spherical solid
harmonic of order n+ 1, and e, is a small constant coefficient.

We next consider the composition of the bodily forces. In
the first place, owing to the rotation, we shall have to include
terms depending on “centrifugal force ”. These may be regarded
as derivable from a potential §w%? (1 — P,), where P, is Legendre’s
second coefficient, and w is the angular velocity of rotation about
the axis 2. Suppose now that g is the value of gravity at the
mean strained surface r=a, and that w'a/g is a small quantity
which may be neglected if it occurs as a factor in a product of
which some other factor is considered small. Then the bodily
forces consist of three sets:

(i) Radial forces — gr/a + §or.
(ii) External forces derivable from a potential expressible in

the form % W,,,, where W,,, is a solid harmonic of ordern +1. This
includes the terms — jw*2P;, arising from the “ centrifugal force ”.

(iii) Forces arising from the attraction of the harmonic in-

equalities and derivable from a potential which is % 273_'(:_-3 €aQnir

1 Cf. arts. 95, 96.
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. 3
Let us write Y, u=Wan+ ﬁ%; €nlnsreeerrecreccnnannd (67),
and V=3 (-% +g.»*) TS A (58).
Then the differential equations are three such as
0A oV
(k+p)a—z+pvm+p§;=0 ............ (59).

We have to find values of , v, w from these which are finite and
continuous within the surface 7=a+ ZeaQns1, and satisfy the
condition that this surface is free from stress.

The solution consists of two parts. We have first to find any
particular solutions of the above system of equations. The par-
ticular solutions that we can most easily find do not satisfy the
boundary-condition. We must therefore add to them complemen-
tary solutions of the equations that would be derived by putting
V equal to zero. When the complementary solutions are properly
chosen the boundary-condition will be satisfied.

Now, as V is a sum of terms, and the equations linear, it is
clear that we may find the particular solutions corresponding to
each term separately and add the results. We shall therefore
consider V to consist of two terms, viz.: } (3e*—g/a)7* and ¥, ;.
Our process consists in finding separately the particular integrals
depending on these two terms, and the terms contributed by these
particular integrals to the tractions at the surface 7=a + Se,Qpia.
We shall assume that terms in which such products a8 en@m+1 ¥ a1
OF €xém@ni1@m+s Occur may be neglected, also we shall neglect
the product w%,, but we shall suppose that ge, is a quantity of the
order retained. This is equivalent to supposing that the strains
produced by gravitation are large compared with those produced
by the external disturbing force or the “centrifugal force”. It does
not require us to suppose the gravitational strain large enough to
be necessarily accompanied by permanent set.

171. Particular Integral for the Radial Forces.

We have given in art. 127 the solution of the differential
equations of displacement due to radial forces proportional to r.
We found that they were satisfied by supposing the displacement
purely radial and equal to A7 + H»?, where 4 is an arbitrary con-
stant and H is a given constant.
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We therefore have particular solutions of the equations such
as

oA 0
A +”')8-:c+ ,u-V*u+p%{1}r’ (ﬁw’— %)}=0 ...... (60)
in the forms
=2(4r+ Hr?), v=Y(4r+ HrY), w=1(4r+Hr)..(61),

where H=4 (g L P —— (62).

We found in the same article that the traction across a sphere
of radius r is radial and equal to

(3N +2u) A + (BA+ 6p) Hro.............. (63).

It follows from this that the surface-tractions F, G, H across
the surface r = @ + 2€,Qn+1 Will contain terms such as

2{(37» +2p) A+ (5\ + 6p)Ha?},

as well as terms depending on the spherical harmonics.

All the terms contributed to the surface-tractions by the
particular integrals depending on Y,.,, and by the complemen-
tary solutions, will contain spherical harmonics like ¥ay; or Qnys,
and thus the terms found above will have to vanish.

This finds the same value for A as that given in art. 127, viz.:

5A + 6p
B+ 2 Had.....cccnvvvinennae. (64).

In what follows we shall suppose A to have this value.

172. Surface-tractions depending on Radial Forces,
These arise from the displacements
u=Az+ Hr'z, v=Ay+ Hry, w=Az+Hrz.
The six strains ¢, f, g, a, b, ¢ are given by such equations as
e=A + H(r*+ 22°),...a =4Hys,...
and the cubical dilatation A is given by the equation
A=34+5Hr.

The six stresses P, @, R, S, T, U, hence arising, are given by such

equations as
P=2A+2pue,.. S=pa,...



288 SPHERE UNDER BODILY FORCE. [172

Now the direction-cosines I, m’, n’ of the outward-drawn
normal to the surface
=0+ enQnii
where Q. is a spherical solid harmonic, and e, is small, are given
by such equations as

r=Zie, {("_ﬂ:;ll? Qo ~ agrl} .......... (65),

and m/, n’ are similar expressions.
The surface-tractions at the deformed surface that arise from
the purely radial forces are three such expressions as
VP+m'U+n'T.
Now

PZ4 UL+ 7%= [Hr (51 +64) + 4 (3% + 2]

r

...(66),

and

aQn-l-l aQﬂ-l-l aQﬂ-l-l
pP o0 T U P +T P

Thus the part contributed to Fr is
(n+1)
a

w[Ha? 5\ + 64) + 4 (31 + 2)] [1 + e,.Q,.ﬂ]

+ 2Haen,Qnsr (BA + 6p) & — ae, [Ha’ 5\ +2p) a%’;ﬂ
+ 4 H (n+ 1) 2Qupr + (1 + 20) 4 %ﬂ] ,

of which the first term vanishes identically by (64), and the
second is obtained by substituting for » its value & + €,Qn4; in
(66).

Thus, collecting the terms in 2Q,4, and 8;%?
ing by means of the identity (26), we have for the part contributed
to Fr by the strain produced by the radial forces

5%. - (2n — 4) [ aQn+1 aQn+1
Hae, [2 43 | aw T,

—9 2‘7(35.4)!‘ pants % (Q’*—t‘)] .......... (68).

, and transform-
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This is the typical term arising from the spherical harmonic term
enQn+1 in the equation of the surface.

Since we neglect €., eném, and e,»?, we may take H to be
25 ot 2 Da’ and write a® = aQ"“ for 7 aQ;“ in the surface-value
of (68), so that this surface- va.lue becomes
Se, [5x+ 2(n+35) L, 2 0@n11

2n 4+ 3 ox

_ %&,«m a% (%;ﬂ)] ...... (69).

This is the part contributed to the value of Fr at the free
surface by the strain produced by the radial forces.

*x+2

173. Digression on certain tractions.

The formula we have just obtained is very important. To see
its meaning we may with advantage consider particular cases.

Take first the case where the solid is incompressible. In this
case A is infinite, and the formula may be written

_r 0@nsr +s 0 Q’_'il
9pZen 9,13 [ o az(mﬁ)
and this is, by (26),
nyEGnQnﬂ-
Thus the traction in question is a radial traction equal to the
weight of the harmonic inequality.

In general the normal traction on the surface of the mean
sphere is
BA+2(n+8)ul(n+1)+ {BA—2(n—2) u}(n+2)
%QPE (2”1: + 3) (x + 2#’) enQn+1,
which is equal to

6\ + 6
19p x +2: D U (70),
so that the normal traction is equal to 4 (6M + 6u)/(M + 2u) times
the weight of the harmonic inequality, and there are also tan-
gential tractions.

According to (70) the z-component of the normal traction is

5N + 6u
'k T+ 2 2O r zenQn+l)
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and thus the terms of Fr contributed by the tangential traction
are
§I0_ %, [?_(n+2)na,aQ,.+l L2@+Dp D (Q,.H)]'

A+2 on+3 oz 2n+3 oz \ron+s
o

That the traction thus given is really tangential admits of
immediate verification.

In the theory of Hydrostatics we have to consider the effects
of harmonic disturbing forces upon a sphere of gravitating in-
compressible fluid, and it is always supposed that there is a
pressure at the mean surface equal to the weight of the harmonic
inequality. In like manner in the case of an incompressible solid
sphere which is elastic in opposing change of shape, and subject
to the mutual gravitation of its parts, some writers have supposed
that there will be such a pressure on the mean sphere. This
supposition finds here its justification.

If we begin with a sphere of radius @, and deform it into an
oblate spheroid by paring down the parts near the poles, and
adding mass near the equator, it is clear that there must be
tractions across the mean sphere to support the weight of the
added mass.

In the case of an elastic solid mass we now see that the cor-
responding traction is not in general normal, nor is its normal
component equal to the weight of the harmonic inequality. If
we cut out a small part of the harmonic inequality by planes
through the centre of the sphere, the weight of the part cut out
will be partly supported by the normal pressure on its base and
partly by the tangential stresses on its sides. The existence of
such tangential stresses involves, according to Cauchy’s theorem
(art. 14), the existence of tangential stresses in the tangent plane
to the mean sphere.

174, Particular Integral for the Disturbing Forces.
Returning to the problem stated in art. 170, we have next to
find a particular integral of the equations such as
(X+#);;—:+;LV%+ palg—;m= R ¢ ) 8
where Y., is a spherical solid harmonic of order (n+ 1), with a
small coefficient of the same order as «,.

Now such a particular integral can be found by assuming that
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the strain throughout the sphere is irrotational, ¢.e. that there is a
displacement-potential ¢ such that
=0 20,0
aw’ Ty YT
for then A = V2@, and the equations can be satisfied if
ON+20) V2 + p¥pis = Ouvverennen (72).

Just as in (8) of art. 165 we have a particular integral of this

equation in the form
N r
b ity RS

Thus the particular integrals u, v, w of equations (71) are given
by three such equations as

1
2(2n+5) x+2#aw

U= -

AP A Y (73).

176. Surface-tractions depending on the particular
integrals.

The terms contributed to the cubical dilatation A by the
particular integrals (73) reduce to

- P
A+ ZF' Yn+l°

The terms contributed to ¢ (the product of the radius and the

radial displacement) are easily found from (73) to be
P n+38
A+2u2(@n+5)

Thus the terms contributed to Fr by the particular integrals

(738) are found by using the formula (23) to be

P n+1 n+3 ) 0

A+ [MY"“ +a {2 @n+3) T2 5)} 5 " V)

and this becomes after differentiation, by using an identity similar
to (26) with (n + 1) in place of =,

p [x +a0+2) 2V

Yo

A+ 2| 2243 "
_@n+5)A+2(n+2)p 4y, D Y,.ﬂ]
(@n+3)(2n+0b) rmEs 3 (r‘"’”") .......... (74).

At the free surface we may put a for r after differentiation for the
reasons explained in art. 170.
19—2
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176. The Complementary Solutions.

These can be written in the form given in (18) of art. 165, viz.:

u=3 [A,. :—" +(a— ) M,,,, a‘%ﬂ} ;

so that the complete expressions for the displacements are three
such as

w=Az+ Hrz
P 1
~ N+ % >3 (201 3) s - (*¥a)
+3 [A,. %, +(a*—1) My a‘g;“} ............ (75),
in which
S\ + 6u 2
H= 1’%+z,u( §"”) A*"3x+2 Ha ] 16)
o rn ...(76).
AR+ D) +p@Br+d)

177. Formation of the boundary-conditions.

Now we may write the expression for the typical terms con-
tributed to the value of Fr when r=a by the complementary
functions, as given in (34), in the form

Y N it
p(n—1) A” @ 2n+1ox (a’"‘+1 4)_"_2)

/r?ll+6 a a‘HH-
= Bats o o (Vs oo ),

and the typical terms in the surface-tractions are this and the
terms given in (69) and (74). Since the surface is supposed free
we must add these terms together and equate the result to zero.
We thus obtain an equation which may be written

z[ L N (Y,m) + e 2821 g g 3 (Qm)

o 3z \rmts pte

vet (i o (f) -] o

when r=a.
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The coefficients a.,, b,,... are
p Adtu(n+2) ,

=T34+ 2%  2m+3 O

_ p_(@nt5)A+2(n+2)p
" A+2u (@2n+3)(2n+5)
a'= } gp ok+2(n+5)y,a2

A+2%  2m+3 ’ &...(79).

" i‘7x+2,4 2n+3 ’

" __ [
Ay = Tont+1’
g B A@td=p(n=1)
n T T T s A+ D)+ u(3n+ 4)
Now the left-hand side of (78) is finite, continuous, and one-
valued within the sphere r=a, satisfies Laplace’s equation and
vanishes at the surface, it is therefore identically zero for all
values of ». We have two other identities of the same form
which can be derived from (78) by cyclical interchanges of the
letters 4, B, C and z, y, z, and the terms of any order n separately
vanish.

We can utilise these equations to express the unknown har-
monics Yy 4+, and ¢, in terms of Yy, and Qpy..

If we differentiate these equations with respect to z, y, z and
add, we obtain the equation

- (2"' + 5) (n + 2) [bnYn+l + bn,GnQﬂﬂ + bn”‘hbﬂ] +p (n + 1) Yo = 0

where we have picked out the terms which contain surface-
harmonics of order =z + 1.

Again if we multiply equation (78) and the like equations by
z, 9, z, add, and use (26) we get

’ 3 r
(n+1) (anY,m + a, e’nQ’nH + a,"a? (E)

m+3

o)

-,42n+1 a)m bng=0ueeeen (81),

where we have picked out the terms containing surface-harmonies
of order n+ 1, and observed that, in virtue of (80), the terms in
by, by, b,” and ¥y, disappear.
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The above equations give
Yo {n+1)+(n+2)(2n+5) E, .}
=(n+2)(2n + 5) (0 Yo + bi'en@n+1) "

r\?+8 2n R i
(a) bn-app o+ 1 a'= (" +1) (an Yn+1 + ay enQn+l) )

In these we can substitute from (57) W, + %—3 €n@nya for

Yo+1; and thus we have ¥rpy, and ¢_,_, expressed in terms of
Wor and Q.

To determine Q,,, we remark that, since »=a + Ze,Qp4, is the
equation of the surface, the radial displacement contains the
harmonic terms e,Q,.; and no others.

Now the radial displacement arising from the particular
integrals (61) is

Ar+ Hr

The value of the harmonic terms of this at the surface

r=a+ 2¢"nQ1|+1 is
3 [AenQnH + 3Ha2€nQn+1]-

The surface-value of the radial displacement arising from the

particular integrals (73) is
_ p n+3
2 1 3Tt 5)

The surface-value of the radial displacement arising from the

complementary functions is by (29)

Yn+1 .

a a r omn+3
z (272 +5 ¥an T2+ (E) ¢—"_2) )
Hence equating the sum of these surface-values to Ze Qi+, We
get the equation

al {_‘P_"il - ")’m+3 $-n—s

a 2n+1

2n+5 \a
___(+3)p 89 )}
2(2n + 5)(A.+ 2#) (W’IH-I + 2n + 3 eﬂQﬂ+l

=(1=A4 —8Ha*) ZenQnireceerevecreceensen (83),

where we have substituted for ¥,,, from (57).
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r\mis . .
Now Yrp41, (&) ¢_n—, and Q,,, are spherical solid har-

monics of order n +1, and we have obtained in (82) and (83)
three equations which determine these in terms of W, It is
clear that, if =W, be reduced to a single term, Ze,Qn4, Will at
the same time be reduced to a single term containing the same
solid harmonic, and 4, and r+3¢_,_, will be the only 4 and ¢
functions that occur.

178. Determination of the unknown harmonics.

We may now suppose that the disturbing potential consists of
a single spherical solid harmonic Wy,. Then the 4+ and ¢ func-
tions are determined, and likewise the harmonic inequality €,Qn+1,
and we seek to determine the unknown harmonies £4,, =B,,

3C,.

From the equation (78) pick out the terms containing spherical
solid harmonics of order , and of order n+2. We find two equa-
tions

™ 3¥m Qs 3 (rme
—p,('n—].)A,,,—” (179 o +0m » oz + a,” aw(amﬂ#’—"—ﬂ)’

prts
—p(n+ I)An+2a_,,‘.ﬁ‘

=g (o) b £ () b £ (B,

Simplifying these by means of equations (80) and (81), we
may write

= S NP
a”_(n+1)(2n+1)8w am+ ’

_ A rﬂ+2 r!n+! ‘P‘n+1)
"ot = (n+ 2) (2n + 5) 0w (r“"'*’

Since we have already shewn how to express . and

7\ . .
(E) ¢_n— in terms of W,,,, the functions 4, and A,,, are

determined, and it is clear that these are the only functions 4
that occur. The functions B,, C, and B,,;, Css: can be written
down by symmetry.

This completes the analytical solution of the problem We
shall consider some particular cases.
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179. Case where the sphere is not gravitating.

If we apnul gravitation in the interior of the sphere the
problem is very much simplified. We may replace ¥Y,i, by Woy,
and reject the surface-tractions of art. 172 contributed by the
radial strain. We give the results and leave their verification
to the reader.

The typical terms of the particular integral for the disturbing
forces are given in (73); they are

1
2(2n+5))~+2y.aa:

The terms contributed to Fr by the particular integrals are
given in (74), they are
X+[L(n+ 2) ’r’aW,H.l
P T2t e
@n+d5)r+2(n+2)p ... 0 (Wnﬂ)
PONF2m) (2n +93) (2n +5) o \ 7+

The complementary solutions are the same as those given in
art. 176.

YU = =

(7" Wan).

Fr=

+

The boundary-conditions can be written in the form

2 [an 2528 4 bt 2 (08 0 7 (s $m)

oz Oz \ 7+ oz \a™
+b"” (‘;!::i;)+ (n_l) Aﬂ 11,:| =0:
when 7 =a; and just as in art. 177 we find
A+ 4)—pm—1))
n 2
‘P+1{n+1+(n+ )X(n+1)+“(3n+4‘)[ ]
_n+2 »p (2n+5)7\+2(n+2)y.W
2n+ 32+ 2 n nl
(r)”"“ __n+l2n+1 op 7\.+y(n+2)W
a T 2 2430+ 2u “ i
......... (85).

The functions A,, A,., may then be written down by means
of equations (84).

In connexion with this problem we may notice in particular
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the case of incompressible material, for which the ratio u/A
vanishes. We find

Van[n+ 1+ +2) @nt5) Enyy] =0T+ W

2n+3 u

- C)’”*’ 20 _ntl Wan,

(a 4"”_’2n+1 “on+3P

and equations (84) become
pa? Wi
“A"a 2n(2n+3) oz °’
— s = e 2 (o
et T (n+ 1)+ (n + 2) (@n + 5) Epra (20 + 8) Oz \ 13 )

Comparing these with (43) and (44) we see that the com-
plementary solutions when the displacements are due to a
potential W,,, and the surface is free are the same as
those produced by purely normal surface-tractions pW,4, Z’%:,
provided the material of the sphere be incompressible. Now, as
in this case the particular integrals (73) are negligible, it follows
that purely normal surface-tractions R, produce the same dis-
placements in an incompressible sphere of radius a as would be
produced by bodily forces derivable from a potential p—' R, (r/a)™
This result is otherwise obtained by Mr Chree (Camb. Phil. Soc.
Trans. X1v. p. 265).

Returning now to the general case we find that the bounding
surface, » = a, becomes after strain r=a + 2¢,Q,,,, where

c Q "P'n+1 _(_)MH 4’—1»—2 ___P n+3 W
et =945 \a 2n+1 A+2u2@2n+5) "M

Any other concentric spherical surface r» = r,, (7, < a), becomes

=7+ 26 Quit’

where
, 1 A+u)(n+1) .
en' Qnar’ = 2o A(m+1)+u@Bn+4) (@ = 7) Yo

"P'n+1__( 2n+sa2¢ . p n+3
+7 |:2n+5 a) rE2n+1 7\.+2;4.2(2//»+-:))W"+l

and we are to give to each spherical harmonic function that occurs
its value when r=r7,.
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Substituting for ¥4, and ¢_,_, their values from (85), we find
that the height of the harmonic inequality is given by
apWapn+1 @Crn+3)A+(Cn+2)p

u 2n 2n*+8n+ DA+ +6n+6)pu
and the radial displacement is given by
rpWonn+1 @Cn+3)A+(2n+2)p

“ 2n (2 +8n+ A+ (2n*+6n+6)u

...(86),

€nQn+1 =

6)1,Qn+1’ =
a? -1y n+3)A+(n+2)p
72 (r+1) @ +8n+ DN +(2n*+6n+6)p +(87).

The particular case n =1 is interesting. For this case we
find

+

_ 5A+4u apW,
€]Q2 = 19Wl4ﬂ T ................................. (88),
e[ SA+6p . 3N+2u ,)sz
and &'Q) = (19)‘ +14a @ = Jox + 14 7 el (89).

These are equivalent to the expressions otherwise obtained by
Sir W. Thomson. Since W,,, is the product of 72+ and a func-
tion independent of r, the radial displacement vanishes with r.
The result for W, can be expressed in the statement: A homo-
geneous elastic isotropic sphere held strained by balancing attrac-
tions from without, is deformed into an harmonic spheroid, of the
same type as the potential of the disturbing forces, and all the
concentric spherical surfaces are deformed into harmonic spheroids
of the same type. These surfaces are not similar, but the ellipticities
of all the principal sections increase from the outermost to the
centre, the ratio of the extreme values being (5A + 4u)/(8N + 6u).

180. Gravitating nearly spherical mass.

Another simple case is that of a nearly spherical mass held
strained by its own gravitation. Suppose the strained form is

r=0+ e,Qns,
where ¢, is small and @,y is a spherical solid harmonic, of order
n+1. The potential of the bodily forces is

79 39
-9 a +T+3 en@nn
so that we have 3ge,Qn./(2n + 3) instead of Yy,

! Thomson and Tait, Natural Philosophy, Part 11, art. 835.
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The terms contributed to Fr by the particular integral for
this bodily foree are given by
(X+2/.c.)(2n+3) 2n+3 ox

Cn+5)AM+(2n+4)p 3ger™ts 9 (Qn+l>
POA+2u)@n+8)(2n+5) 2n+3 oz \rns

The terms contributed to Fr by taking the stress produced by
the radial force of gravitation at the deformed surface are given by
gp €n P aQn+1
~ s Bt [{5x+2(n+5),b}a
— {BA— (20 —4) p} rmre (f?;,;i;)]

The terms contributed to Fr by the complementary functions
are given by (77).
Thus collecting the terms the boundary-condition can be written

Fr=—

aQn s 0 Qn /, 5 n. ” 0
ay, —2H 4 Byt ( 1"“"1;)-'-'8" e ( r,,,j:;)+ @’ > (T 5d_p )
+p2('n—1)A,.E.=O ......... (90),
where
gpend® 5X+2(n+5)p_3X+(n+2)ﬂ-}
(2/n+'3)(x+2p,) 5 2n +3 ’
8, = gpen { @Cn+5)A+(2n+4)p  5SA—(2n - 4)/1.}
T (2n+3)(A +2u) (2n+38)(2n +5) 5 ]
oy == (W ’
" 2n+5A(n+1)+pu(8n+4) J

The three equations such as (90) give
n+l A(m+4)—n@®m-—1)
{n+ 2 +x(n+ 1)+uBn+4) H¥an

_ 2045 gpen@nit 3(2n+5)x+(2n+4)p 5A—(2n— 4);4}
“9%m+8 A+2u (2n+3) (20 +5) 5

o (7

2n+1" \a
(n+1)gpe,,Q,.+1 BA+2(n+5)n 3k+(n+2)p}
T 2n+3 A+2u 5 2n+3 )
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Thus Y1, and ¢_,,, are determined in terms of €,@n+1, and
the A’s are given by the equations
™ 0 oy
—p@-1)4," = Qa"“ +an'5 (1 n-s)

pnia . Qn Y (93).
a4 1) dgea o =rms 8, 2 () 1 gy 2 (Yo
The displacement « is given by the equation

rﬂ r’l+’
u=Ax+ Hrz+ A, b An+2&;;§

Atp Vat
An+L)+p@Bn+4) ox

P 1 3ge, 0
TA+2u)2(2n+ 5) 2n+ 30w (r*Qns) -eve.(94).

This, and the similar expressions which can be written down from
symmetry, constitute the complete solution of the problem.

Prof. G. H. Darwin! has used the solution of this problem to
find an expression for the stresses, produced in the interior of the
earth by the weight of continents, and thence to obtain an
estimate of the strength of the materials of the earth. Mr Chree?
has shewn that if the material be regarded as incompressible, so
that u/\ is very small, then the tendency to rupture as measured
by the difference of the greatest and least principal stresses (Prof.
Darwin’s measure) depends on the harmonic inequality €,Qn+1, %.e.
the question can be discussed by the aid of the above or a similar
analysis; if u/A be not very small, the maximum stress-difference
depends on the radial strain. The same writer has also shewn
that, if u/A be very large or very small, the tendency to rupture,
as measured by the greatest principal extension, would again
depend on the harmonic inequality, but unless u/A be very large
or very small it depends on the radial strain. When p and A are
comparable we have seen already (art. 127) that the materials of
the earth, regarded as homogeneous and isotropic, would have to
be very much stronger than any known material in order to resist
the tendency to rupture near the surface, arising from gravitation.
Prof. Darwin’s conclusion as to the great strength of the materials
of the earth appears to require some modification, depending on

+@ =)}

1 Phil, Trans. R. S. 1882, pp. 187 sq.
2 Camb. Phil. Trans, x1v. 1887, pp. 278 sq. and Phil, Mag. xxx11. 1891,
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the internal heterogeneity. An account of his results is given in
Thomson and Tait’s Nat. Phil. part IL art. 832",

181. Disturbing Potential a spherical harmonic of the
second order.

The cases of the general problem of art. 170 of greatest interest
are those in which the disturbing potential is a spherieal solid
harmonic of order 2. These include the theory of the equilibrium
figure of the rotating sphere, and the theory of the bodily tides
in an elastic solid earth.

Suppose then that n=1 and seek to determine €@, the height
of the harmonic inequality. We have to use the equations
obtained from (82) and (83), viz.:

s [2+ 21 ;] = 21 [b/e,Q; + by (W, + 39€,Q5)],
(D)6 =3 T0e@+a (Wt 196Q0) 95).

(r) ‘t—_“ f,u+2#

The constants H, 4, E;, a1, ', b, b/ are given by the
equations

(W.+496Q@) = (1 - 4 — 3Ha) 2%

7

\

H= 51 sya’

__5A+6u , gpa
4== 37\.+2p]16X+2p.’
5A
Bt
MRS . L, 96
= %X+.2F' ’ - sevesserresesse ( ),

SA+12u
'QLK_X__i_ 2,‘ Pa

where the terms in w have been rejected from H and 4 as en
p- 289.

We shall consider the particular cases where p/A=0 and
pA =1
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182. Incompressible material

When the material of the sphere is incompressible we have A
infinite and the constants become

A=0, H=0, E;= 4,
@ =—}pa’, @’ =}gpa’, by=4p, b'=—}gp.
Hence the first two of equations (95) become

1R unr, =3l p (W,— %.qerz),
b () b= o (W= 19602
and the third of equations (95) then gives

Q= apW,
G = 2gpa 19,u. )
We shall write this result
159 W
aQ,= G I g "o 97),
where Y =3gpa/p,

so that (3%)-# is the ratio of the velocity of waves of distortion in
the material to that due to falling through half the radius of the
sphere under gravity kept constant and equal to that at the
surface.

183. Material fulfilling Poisson’s condition.

When the material fulfils Poisson’s condition (A=) the
constants become

A=—H9, H=1162;, By=,
S

7 S ’
——;" c o= S, b=, b=~
where & is the number defined in the last article.

Also the first two of equations (95) become

=211 [ﬁ( '+ ge Q) - Jge,Q,],

() 8m23 [~ (T 50+ 1]
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Hence
bo() en Tl
so that the third of equations (95) becomes

S S _2D\ el
B 2W-HTa-13 (Sr44a0) = (1-35) %2
From this equation we obtain the height of the harmonic
inequality
(0 225 W,
1%3 — 275 ¥ 935 g ---------------------

The result (97) of the last article is that when the material is
incompressible the height of the harmonic inequality is

Qi 22 W,
%= 585 + 905 g

The difference between the result which holds when the
material is incompressible and that which holds when the material
fulfils Poisson’s condition is a very small fraction of either for any
the same value of %, 80 that in case it is uncertain which hypothesis
is the best to make no very great error can arise in our estimate
of the harmonic inequality if we assume the material to be in-
compressible.

In the applications that we shall make to problems relating to
the earth, considered as an elastic solid globe, we shall have to
assume the material incompressible to avoid the difficulties ex-
plained in art. 127.

184. Rotating Sphere.

Consider the problem of a solid globe of incompressible elastic
material rotating with angular velocity .

We have W,=—310%?P,,
where P, is Legendre’s second coefficient
§cos?f—14%,

and @, is given by

15
o= 5 P, 5ot B +19°
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The equation of the surface is

r=a|1-3P, %% d | .. (99),

g 1+1,&g—’;a

so that the ellipticity of the surface is

For a liquid sphere the ellipticity would be §w?a/g.

If the globe be of the same mass and diameter as the Earth,
and of the rigidity of steel or iron, we have

a =640 x 10° centimetres,
p=53,
p =780 x 10° grammes’ weight per sq. centimetre.
The ellipticity of the surface due to the rotation is diminished
by the rigidity in the ratio
1:1422 1640
or nearly 1:8.
If the rigidity were that of glass,
p# =244 x 10° grammes’ weight per square centimetre ;

and the ratio is 1:1+1’21,%%%6

or nearly 3: 5.

The same numbers apply generally to a globe of the same
mass and diameter of the Earth whatever may be the forces whose
potential is W,, and we have

Y =§ nearly for a rigidity equal to that of steel,
Y =5 nearly for a rigidity equal to that of glass.

185. Tide-generating Forces.

The attraction of the Moon or any distant body at any point
within the Earth’s surface can be regarded as compounded of a
radial force between the centres of the two bodies and forces

1 This is the value for wrought iron given in the table, p. 77.
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which vary from point to point. The first produces a motion
of the centre of gravity of the Earth, and the remaining forces
are a system which applied to a rigid body would produce
equilibrium. Applied to the Earth, they produce small relative
motions of its parts, which, by analogy to the corresponding
motions of the Sea relative to the Earth, may be called tides.
Now the tide-generating forces are derivable from a potential
expressible in spherical harmonic series, and the most important
terms are those of the second order. (See Thomson and Tait,
Nat. Phil., Part II, arts. 804 sq.) The expression for W, the
tide-generating potential referred to the line joining the centres
of the Earth and Moon as axis of the harmonic is

=20 oo 0-3)

correct to terms of the second order, where M is the Moon’s mass,
a the Earth’s radius, D the Moon’s distance, and  the constant of
gravitation. When this expression is referred to axes fixed in the
Earth, it still consists solely of spherical harmonics of the second
order, but the coefficients of these are periodic functions of the
time. The principal terms are diurnal and semi-diurnal, depending
on the rotation of the Earth, fortnightly and monthly depending
on the motion of the Moon in its orbit, and nineteen-yearly
depending on periodic changes in this orbit characterised by the
revolution of the nodes in the ecliptic.

The Sun produces tides as well as the Moon, and the tide-
generating forces have periodic variations of semi-annual and
annual periods, depending on the motion of the Earth in its
orbit.

The complete expression for the tide-generating potential
therefore consists of a sum of spherical harmonics of the second
order, and these have coefficients among which there is one with
a semi-diurnal period, one with a diurnal period, and so on. Each
of these terms would produce in a liquid globe, or in a mass of
liquid resting on a rigid spherical nucleus, a deformation of the
surface into an harmonic spheroid of the second order (called a
“tide”), and the ellipticity of the spheroid would be proportional
to the corresponding term of the tide-generating potential, and
would be a periodic function of the time with a period coincident
with that of the term. We therefore speak of diurnal and semi-

L. 20
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diurnal tides, fortnightly and monthly tides, annual and semi-
annual tides, and of a nineteen-yearly tide.

186. Elastic Tides in Solid Earth.

Exactly the same kind of deformation would be experienced
by an elastic solid globe, and we have seen how the elevation €@,
of the surface can be expressed in terms of the tide-generating
potential W,.

If the globe be homogeneous and incompressible, of radius a,
density p, and rigidity u, the ellipticity of the surface is

1
1 + ] L
1“_.‘IP“
of that in a liquid globe of the same size and density.

Sir W. Thomson calls attention to the smallness of the part
played by rigidity, as compared with gravity, in resisting the
deforming influence. We can see by using the results of art. 184
that the ratio of the ellipticities for a liquid globe and one as
rigid as steel and incompressible is only about 3, and it is only
about § when the rigidity is that of glass.

The height of the tide, measured by rise and fall of sea relative
to land, is reduced by the elastic yielding of the nucleus to the
fraction

o M
i&&
1412 K
lg&.‘IPa
of the true equilibrium height, the material being incompressible.

This ratio is about § when p is the same as that for steel, and
about 4 when u is the same as that for glass.

187. ‘Tidal Effective Rigidity.

Sir W. Thomson has applied the calculation, in the case of
incompressible material, to test the geological hypothesis of the
internal fluidity of the Earth. The problem may be stated
thus :—

Supposing that, for purposes of discussion, the Earth is re-
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placed by a homogeneous incompressible elastic solid globe of the
same mass and diameter, what degree of rigidity must be ascribed
to the solid, in order that ocean-tides upon it may be of the same
height as those on the Earth ?

If this question were answered, the rigidity found would be
that which Sir W. Thomson calls the tidal effective rigidity of the
Earth.

There are many difficulties in the way of a complete answer to
this question. In the first place we have here investigated only
the equilibrium of the sphere under bodily forces, and therefore
the tide considered must be one that follows very nearly the
equilibrium law. The diurnal and semi-diurnal tides may there-
fore be dismissed. We shall see hereafter that the longest period
of free vibration of the sphere, (supposed as rigid as steel,) in which
its surface would be deformed according to a spherical harmonic
of the second order, is 1 hr. 6 min. and thus an equilibrium
theory would apply to fortnightly tides in the elastic solid globe.
It has however been pointed out by Prof. G. H. Darwin? that it is
very doubtful whether such a theory applies to the fortnightly
ocean-tides. That it may do so requires a very great frictional
resistance at the ocean-bed, much greater than is considered
probable. There remain the tides of long period, the annual and
semi-annual tides and the minute nineteen-yearly tide. The
former are difficult to estimate on account of annual fluctuations
of ocean-level, due to the melting of ice in the polar regions; the

latter is probably too small to be observed. So far the difficulties
of the tidal theory.

Supposing these difficulties could be surmounted, and the tidal
effective rigidity determined, we should still have to consider what
light the determination throws upon the question of internal
fluidity. The Earth is not a homogeneous elastic solid globe, its
material is heterogeneous, and it is conceivable that a much
smaller degree of rigidity of the materials in a heterogeneous
globe might suffice to produce considerable resistance to deforma-
tion of the surface than would be required if the material were
homogeneous. This matter has not been considered mathema-
tically ; but until it is settled it remains open to question whether

1 ¢On the Dynamical Theory of the tides of long period’. Proc. R. S. 1886.
20—2
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the tidal effective rigidity defined above throws any light on the
hypothesis of the internal fluidity of the Earth, We may observe
that heterogeneity has a marked effect on the ellipticity of the
surface of rotating incompressible fluid. For a homogeneous liquid
globe of the same size and mass as the Earth, rotating once in
24 hrs,, the ellipticity of the surface is about g}, while there is no
difficulty in inventing a law of density which shall make it equal
to giy, the observed value in the case of the Earth. This shews
that the part of the resistance to deformation arising from gravity
can be considerably increased by supposing the material hetero-
geneous, but it is not at all clear & priori how the resistance
depending on the rigidity would be influenced by heterogeneity.

188. Rigidity of the Earth.

If the Earth be regarded as homogeneous, and incompressible,
and of rigidity equal to that of steel, the height of the ocean-tides
is reduced by the elastic yielding to § of the true equilibrium
height. If the rigidity be that of glass, the fraction is %.

From certain observations made in the Indian Ocean, Prof.
G. H. Darwin concluded! that the observable fortnightly tide is
really not much less than §, and certainly much greater than § of
the true equilibrium height; and Sir W, Thomson argued thence
that the tidal effective rigidity of the Earth must be much greater
than the rigidity of glass, and very nearly as great as that of steel,
He has on this and other independent grounds held that the
geological hypothesis of internal fluidity is disproved. The diffi-
culties we have pointed out in the last article appear to lead to the
conclusion that, in the present state of knowledge, tidal phenomena
do not yield any result which we can apply in a satisfactory
manner to test this hypothesis. Prof. G. H. Darwin in his most
recent work? upon the subject is of the same opinion, viz., that
tidal theory is not decisive either for or against the hypothesis,

1 See Thomson and Tait, Nat., Phil, Part 1., art. 848,
2 Proc, R. S. 1886.



CHAPTER XI.

VIBRATIONS OF A SPHERE!

189. THE problem of determining the normal modes and
periods of vibration of an isotropic elastic solid sphere or spherical
shell whose surface is free was first completely solved by Prof.
Lamb. It is a most interesting example of the general theory of
the free vibrations of solids explained in arts. 79 and 80.

We shall consider, in the first place, the theory of the free
vibrations of a solid sphere or spherical shell, and afterwards the
problem of forced vibrations in a solid sphere produced by forces
derivable from a potential expressible in spherical harmonic series,

190. Differential equations of Free Vibration.

We have to find solutions of the equations of displacement

oA Pu
A+ p)z, +pVu=p =,

oA o
(X+y)@+pV’v=p-ﬂ,, ............... (1),
oA o*w
O+ p) =, +eVw=p=;
ou ov ow
and A—%—+a—y+ a7........................(2),

1 The following among other authorities may be consulted :

Jaerisch ¢ Ueber die elastischen Schwingungen einer isotropen Kugel®’. Crelle’s
Journal, uxxxvirr. 1880,

Lamb ¢ On the Vibrations of an elastic sphere’. Proc. Lond. Math. Soc. xu.
1882, and ¢ On the Vibrations of a spherical shell’. Proc. Lond. Math. Soc. xIv.
1883,

Love ¢ The free and forced Vibrations of an elastic spherical shell...’. Proc,
Lond. Math. Soc. xrx. 1888,

Chree ¢ On the equations of an isotropic elastic solid in eylindrical and polar
coordinates’, Camb. Phil, Soc. Trans. x1v. 1887.

Rayleigh ¢ On Waves propagated along the plane surface of an elastic solid’.
Proc. Lond. Math. Soc, xvir, 1886.
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which are simple harmonic functions of the time, are finite,
continuous, and one-valued within the boundary, and satisfy the
condition that the bounding surface is free from stress.

Suppose the solid performing free vibrations whose period
is 2 /p; then for%’;—f... we may substitute — p*u..., and thus the
equations (1) become of the type

oA
A+ Py BV +ppu=0...ccevruenreni(8)
Differentiating these with respect to =z, y, z, adding, and
writing
R=po/A+2p), B=pp/p.cccuereenn.. (4),
we have (VHR)A=0.ceitiiiinieiiairenees (5),

and the equations can be written
(Vo +e)u=(1- k) 2,

(V4 ) v = (1 — w3/AY) g?, ............... (6).
(Ve 4w = (1 — ) 2

Equations (6) can be satisfied by putting

10A 10A 10A
_E 5;, Q)=—’T’ a-?l—, w=-’;,a—z .-.......(7),

where A satisfies (5), and these satisfy (2).

u=

Hence the complete solutions of the equations of vibration
consist of the sums of these solutions and the general solutions
of the equations

Vr+)u=0, (V+)v=0, V*'++)w=0,
G T (8)

191. Description of method

Before proceeding we point out the kind of results to be
obtained. According to the theory explained in art. 79, there will
be an indefinite number of normal modes of oscillation, and the
oscillations of any normal mode can be executed independently.
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If the system be oscillating in a normal mode then at any instant
the displacements can be expressed in the form
u=uAcos(pt+e), v=v'Acos(pt+e), w=w'Acos(pt+e),
where 27/p is the period, 4 is a small arbitrary constant, and
v, o, w' are functions of z, y, z. These functions are called
normal functions, and the determination of the vibrations of any
elastic system is effected when the normal functions are known and
the frequency-equations have been formed and solved. In what
follows we shall first determine the forms of the normal functions;
and no confusion ought to arise if we denote them by u, v, w,
instead of #', ¢/, w’, and write A for du/ox + 0v/0y + dw/dz, where
u, v, w are simply normal functions. In strictness each term of the
cubical dilatation also contains a factor of the form A cos (pt + ¢).

Among the vibrations of a sphere we shall find that for some
modes there are spherical surfaces at which the displacement
vanishes, just as in the vibrations of a string there may be one or
more nodal points. Such surfaces will be called nodal surfaces,
and their number and position are determined by the type of
vibration and the frequency, and, conversely, if the number and
position of these surfaces be given the type and the frequency are
determinate. We shall find also other modes for which there are
no surfaces at which the displacement vanishes, but there will
then be surfaces at which the radial displacement vanishes,
and we shall term such surfaces quasi-nodal. The number of the
quasi-nodal surfaces for a particular class of vibrations does not in
general determine the frequency or the type.

We proceed now to the consideration of the vibrations of an
isotropic elastic sphere.

192. Determination of the Dilatation.

We have to find a solution of the equation (V2+A*)A=0 in
a form adapted to satisfy boundary-conditions at the surface of
a sphere. We therefore suppose A, at the surface of the sphere,
expressible in spherical surface-harmonics, and we treat the typical
term A= R,S,, where S, is a spherical surface-harmonic, and R,
is a function of r, defined by the equation

2
;%7), (rRy) +rRo— ﬁi(’%,ﬁ (rRp)=0......... ).

This is the case of Riccati’s equation which is integrable in
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terms of circular functions, and the solution which remains finite
in space containing the origin is
1 d\* /sin hr
Bp=r(; =) (* i J— (10).

This function can be expanded in a convergent series of powers
of r, beginning with 7%, and, if we take such a multiplier as will
make the first coefficient unity, and write ™S, =w,, we shall
have as the general form of A

where w,, i8 a spherical solid harmonic of order 2, and
1d
Ya@=(-r1.3.5..@+1)(; 2) (’“_‘H) .(12).
We add a few properties of the functions yry () which admit
of ready verification :
The equations connecting consecutive s are

2 4 Yurs (0) = = gy ¥al@) = @=D) Y s@ Y (@)} (13).
The differential equation is
I42(@) , 2041 d o)
z
The series tor Ya(z) is
=1 z z 15):
V(@ =1-35 3t 3. @nrp@rs 1
and thus ¥, (2)=4+/(27)1.3...(2n+ 1)z J, 1 (2)...(16),
where Jy44 (2) is the Bessel’s function of order n + §.

+¥n(@)=0......... (14).

The function v,(z) of the complex variable z is a uniform
function in all parts of the plane of z which exclude the point
at infinity. This point is an essential critical point .of the
function.

193. Determination of the Displacements.
The forms of u, ¥, w, which satisfy (8), can be written down in
the same way ; thus
u=ZUpry (1), v=2Vayra(xr), w=2ZWaiy (xr)...... amn,
where U,, V,, W, are spherical solid harmonics of order n, and
these have to be arranged to satisfy the condition
' ou v ow

a_z.|.a—y-}-a—z=0 ..................... (18).
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Now this condition is
Ve oW, N (er) (2Un+yVa+ 2W,
[“'"( )(“‘+ay+az)+ o r )
=0.cuuenen (19).

If x, be a spherical solid harmonic of order n, then the

forms
aXn al’_b _ a&l aXn aXn BXn
Un=y35 —2 %y Vn=23; ~ %5 Wo=03 9%
satisfy the equations
2Up+yVa+2W,=0, and 0U,fox+ 0V, /oy +0W,[oz =0,
and U,, V,, W, are spherical solid harmonics of order =.
a‘bn n—

Again if U, be /> — a,.r’"“a (i"_:) ,and V, and W, be
similar expressions w1th y and ¢ respectively for «, these will be
spherical solid harmonics of order n provided ¢,4, be one of order
n + 1, and we shall have

oU, oV, oW,
o5 +-a;+ 2=n(2n+1) dupn,
and U+ yVa+ 2Wo=(n+1) ¢ppa + a0, ;.

Thus the terms contributed to (19) by such functions U, V,,
W, will contain ¢,, multiplied by

+1 n a n
MLV s 0+ 2) P L4 (14 2) 204 5) G,

where v, is written for yr, (x7).
By using (13) the multiplier becomes

[- (n+1) 2—75_—3 +(n+2)(2n+35) am] Yot

This vanishes identically if we take

n+1 s

n+2(2n+3)(2n +5)°

Thus we have found solutions of (8) in the form
a¢n+l aXn %

w3 [ Gor) (B2 4y o - 5 %0
_ntl .
“n+2@2n+3)(2n+5) Vo ()3, ox \ront ( )] """ (20),

where v and w are to be derived from this by cyclical interchanges

of the letters z, y, z, and y, and ¢,4, are spherical solid harmonics
of orders indicated by the suffixes. This solution contains two

OApig =
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unknown spherical harmonic fanctions, and therefore constitutes
the general solution of the form required.

The complete expressions for the normal fanctions will be found
by adding together the left-hand sides of the equations such as (20),
and the particular solutions given by (7) and (11} They depend
upon three sets of unknown spherical solid harmonics, @, y, ¢,
and we shall shew how to determine the ratios of these from the
boundary-conditions.

For convenience of reference we state here the results so far
obtained. The cubical dilatation is

SAe . (hr)cos(pt+¢€)
The displacement u is
ZA cos(pt+¢€) [ h,az{u.+.(hr)+1h(n') (yal—zax")
Ohy 2 aniie 9

+‘+ﬁ-—l(l7') oz *l—l-l( )n+l(2n+l)(2n+3)az(¢.‘)]
and the displacements » and w are to be derived by cyclical
interchanges of the letters z, y, z. The summations extend to all
integral values of n, and to all values of p given by the frequency-
equations with the corresponding values of A and «.

It is also convenient to state that the product of the radius-
vector and the radial displacement is given by the equation

{=uz+oy+wzr=— ,—}—, 34 cos (pt + €) [{nya (hr) + hr./ (hr)}@,]
+ 2 A cos (pt + €) [nyra (x7) Pu].

194 Surface-tractions depending on Dilatation.
We saw in art. 167 that, if F, G, H be the surface-tractions on
a sphere of radius 7, )
0 u
Fr=MA+p£_(u+vy+wz)+p(rir—u) ...... (21).

We shall first calculate the part of this expression depending
on the dilatation, for which, omitting the constant and the time-

factor,
A= Emn“’n(hr),
10A 10A 1 aAf -------- (22)
i O T ¥ 4
Using the identity

of (=, y, )= 27::_ ; {g{; i a% (—rfﬁ)} ...... (23),
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we find
oA = 1S [‘g; f:”l) {a;;,. ponta a‘ai(r%)}] ......... (24).
The terms of uz + vy + wz depending on A are — ’:, ?)ﬁ
or -1 Sa, {m]r,, (hr) + 1 ”-l"’"—(’"—)} ............ 25).

The terms contributed hereby to = (ua; + vy + wz) are

L3 22 oy 4 ¥50)
+ a—:;;" {(n +1) d"’;’ghr) +r d’\gshr)}] crevenenss(26),

W

which, by using the identity (23), and the differential equation
{14), become

h dra (hr)| Do
_}% b3 [{n«p,, (hr) -fn% ¥ (hr) +2n’:_1 \Pdi r); aam

+ {w,. () + 231 d"’;ﬁ’")} 2:":1 2 (r‘,”-,-:—;-)] ...... @,

r

The terms of » ou_ u, depending on A, are

or
C A (2= 1) 2 [y gk g0

_ %"% d‘i’_gr(_@ a% (,;’M"_l)] .......... (28),

which, by using the differential equation (14) to eliminate

d’% (hr)

, become

32 {0 -2t 5 iy + 3 r T 00 B

.\ {h,% try+ 1 3 dwk:.i ihr)} 2::":1 a% (7;‘;1)] .......... (29).

195. Surface-tractions independent of Dilatation.

We next calculate the part of the expression (21) for which
A =0 and u, v, w are such expressions as

Syt (52 az aa’,f,")

+32 ["’H () B2 = (o) i +x;1;2;; T30 (:;11)] :
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The terms of uz + vy + wz not depending on A are

[ s (67) it s (o) o e |

which, by (13), reduce to
Znrn (k1) bn.

The terms contributed hereby to % (uz + vy + wz) are

EI:”{‘P',; (kr) + r_dyn (xr)}% __n r’""”d w(xr) 0 (L"l)]

2n+1 dr }jdr 2n+1 dr Oz
............ (30).
The terms of r %—Z — u not depending on A are
d¥rn (m')} Oxn _ , %xn
z [{(n =) n (er) + r =7 (y 2 ay)
d{rn_ 0d,
s pi

d¥np(er))  wirts bn
T+l {n«k,.+1(xr)+ T dr j(@n+1)(2n+38)0x (r’""'l) ~(81)-
196. Formation of the boundary-conditions.

The surface » =a being free from stress, we have to form three
such equations as

by 0 ou
;zA+%(uw+vy+wz)+rar—u—0

when »=a. This equation can be formed by adding together the
terms of (24) multiplied by ”—: (27), (29), (30), and (31), and equa-

ting the sum to zero. The equation obtained can be written

= [ (o500 4 ou b 1 (25)

+c,.ag”‘+d r"""’a ( ¢n )] =0......(32),

when r=a.

We find, after a few reductions by means of the equations (13),
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and remembering that A/u=—2+ «*/h3, the following values of
the coefficients

Pu=(n—1)Yr, (xa) + xayry’ (xa), 3

o= 5| gy ¥l = 2 (0= 1) ¥ ()

2( +2)
bo=— h=2n+1["’"(’“‘) . ""’"(’“‘)] L ...(33).

Cp=— [éyﬁ—i ‘\P'" (Ka) - 2 (n - 1)"”1»—1("“)] ’

n ..(n+2)

=~ n+12n+1 [‘P"( )+

in which v’ (2) is ‘ﬁ#.

ca (e |

J

197. Formation of the frequency-equations.

There are three such equations as (32), which hold when r=a,
The left hand sides of these are finite, continuous, and one-valued
within the sphere 7 =q, they satisfy Laplace’s equation, and vanish
at the surface, They are therefore identically zero. In equation
(82) and the like equations we may suppress the sign of summation,
and the equations thus obtained hold for each value of » and
for all values of r.

Differentiating these equations with respect to 2, », z and
adding, we have

TR, S SR (34).

Multiplying these equations by #, y, 2, adding, and using the

equation just found, we have

nn+CuPn=0.00vriirininininnnninen, (35).
Using (34) and (35) in the equation obtained from (32), we have
Pn=01errerrirrrniniiiirrinenniee. (36).

Now p, =0 is an equation involving only &, a, and the number
n; x depends only on the frequency p/2w, the rigidity u, and the
density p. Thus p,=0 is a frequency-equation,

In like manner the equation

Ay — 030 =0..ccceiiiiiiiirecniess 37
obtained by eliminating w,, ¢, from equations (34) and (35) is a
frequency-equation.
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198. Vibrations of the First Class.

We now see that the vibrations fall naturally into two classes.
For the first of these y, is the only harmonic that occurs, A=0,
and uz + vy + wz =0, s0 that the motion is purely tangential. The
frequency-equation is p, =0, or

(n — 1)Yrn (xa) + kayrs (ka) =0.

Prof. Lamb gives an account of the simpler cases, We shall

follow his description of the different species of vibrations.

Species n=1. Rotatory Vibrations.

If we take the axis of the harmonic », as axis of z, we shall
get for the normal functions

u=vy, (kr)y, v=—=A(x,r)z, w=0.

Each of the infinitely thin concentric spherical strata of which
the sphere may be supposed built up turns round the axis of
2z through a small angle proportional to 4, («r). The frequency-
equation is ¥~ (xa)=0, and this may be written

3xa
3 —«'a?’
The first six roots of this equation are!

"—:=1'834s6, 2:8950, 3-9225, 49385, 59489, 6-9563.

tan xa =

The number 7/xa is equal to the ratio of the period of oscil-
lation to the time taken by a wave of distortion to travel a
distance equal to the diameter of the sphere. In any mode, after
the first, the roots of lower order give the positions of the spherical
loop surfaces (where the radial stress vanishes). Thus for the
second mode there is a loop given by r=:6337a. The positions
of the spherical nodes are given by ¥, (x7) =0, or tan &r=xr and
the first six roots of this are

wr[m=14303, 24590, 3-4709, 44774, 54818, 6'4844.

Species n=2.
The frequency-equation is
V¥ (ka) + ko, (ka) =0,
which may be written
tanxka 12 —&la?
ka 12 —5x%a*’
! For the analysis by which this and the similar results in the present and the

following article are reached the reader is referred to Prof. Lamb’s paper in Proc.
Lond. Math. Soc. x111., 1882,
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The first six roots are found to be
xafm="7961, 2:2715, 33469, 4-3837, 54059, 6-4209.

The character of the vibration depends on the form of x,. In
the case where x, is the zonal harmonic 22* — 2*— 4% we have for
the normal functions

u=v,(kr)yz, v=—Y(xkr)az, w=0.
All the particles on the same parallel move along the parallel

through a small distance proportional to the sine of the latitude,
and the equatorial plane is nodal.

199. Vibrations of the Second Class.

For these x, is zero, and the harmonics that occur are w, and
¢n, and we shall find that in general the motion is partly radial
and partly tangential. The frequency-equation is

bucn — andn =0,

where a,, b,, ¢,, d, are given by (33). It will be seen that in
general both A and « occur in this equation, and therefore its
solution cannot be reduced to a question of arithmetic until the
ratio of the elastic constants A and u is given. In general we
shall consider two cases (1) where the material is incompressible,
or A\ is very great compared with u, for which A is very small
compared with «; and (2) where A = u, (Poisson’s condition,) for
which & = 4/8A.

Species n=0. Radial Vibrations.
For these the normal functions are

1z ’, 1 ’ 1z ’
u== g W ) o= IW (), w=— gt ()

and the frequency-equation becomes simply b, =0, or

Y (ha) + 3 hay (ha) =0.

This is tan ha = 4ha / (4- ).
When A =g, this becomes
(tan ka)/ha = 1/(1 — § h?a?)
and the first six roots are given by
hajmw=-8160, 19285, 2:9359, 3:9658, 49728, 59774
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The number =/ha is the ratio of the period of oscillation to
the time taken by a wave of compression to travel a distance
equal to the diameter of the sphere.

For the higher modes of vibration the roots of lower order
give the position of the spherical loop-surfaces across which there
is no stress. The spherical nodes are given by +, (Ar)=0, or
tan hr = hr and the roots of this are given in art. 198. It appears
that, in the sth mode, there are $—1 nodal spheres at which the
displacement vanishes, The theory of the free radial vibrations is
an interesting example of the general theory of those classes of
vibrations, for which the displacement of any point can be expressed
by means of a single function. This is the class of cases treated
in Lord Rayleigh’s Theory of Sound, arts. 93, 94, and 101. The
displacement ¢ of those articles can be taken to be the radial
displacement of any point within the sphere, and is given by an
equation of the form

= ud, + u2¢s +
where u;, 4y,... are the normal functions, and ¢,, ¢s,... are the
normal coordinates. Suppose %,, A,,... are the values of & obtained
from the frequency-equation, and p,/2w, p,/2w,... the corre-
sponding frequencies. Then the normal coordinates ¢,, ¢.,...
are identical with quantities of the form

A, cos(pit+e), A,cos(pd+e),...

where 4,, 4,,... and ¢, &,... are arbitrary constants. The normal
functions u,, us, ... are given by

ul = "P'O, (hlr), uﬁ = “P‘O, (hl'r)) v
Species n=1. Incompressible material.
The frequency-equation reduces to

kayn (ka) + 2¢, (ka) =0,
or tanxa _ 6 — «%a*
k@ 6 —3x%a®’

and the first six roots are given by
xa/r=12319, 2:3692, 34101, 44310, 54439, 6-4528.
We may take ¢, =z, and then equation (35) becomes

hg “P‘l (xa) ,
BN A ()
so that o, may be taken =0, but w,/h* is not =0. The radial
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displacement at any point is proportional to 7 {yr, (k1) — ¥, (xa)} 2,
so that in the sth mode there are s— 1 spherical surfaces at which
the radial displacement vanishes. We may term these surfaces
“ quasi-nodal ”, and the equatorial plane is in like manner a quasi-
nodal surface.

Species n=1. Material fulfilling Poisson’s condition.
Equations (34) and (35) become

Vi (ha) 7 = ¥ (xa) . =0,

[ (ha) + b )} 32+ 3 o o)+ 9 (e} =0,

and the frequency-equation, obtained by eliminating w,/h* and ¢,
and supposing & = /3h, is

LB ) o
+ K + xay (xa) ’
«ay: (75)

The first three roots can be shewn to be
ka/m =1090, 2155, 2465,..,
The radial displacement is proportional to

2[4 er) = LCB g, oy gt

2 being written for ¢,, and the quasi-nodal spherical surfaces are
found by equating the function in square brackets to zero. The
radial displacement is finite at the free surface, and it can be
shewn that, for the second mode of vibration, there exists one
internal quasi-nodal spherical surface. In general for the sth
mode there do not exist so many as s—1 of these surfaces,

Species n = 2.
Equations (34) and (35) become

{54 () — 241 ) 2= {504 (e) = 290 ()] =0,
{% (ha) + oo () 52 + 3 o) + 5 ko (e} =0

The lowest root of the equation for xa/m found by eliminating
L. 21
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w,/h? and ¢,, when & is great compared with 2 or the material is
incompressible, is ‘848, and, when x=4/3h or the material fulfils
Poisson’s condition, ‘840.

For a sphere of the size and mass of the earth supposed
incompressible, and as rigid as steel or iron, (art. 184), the period
of the gravest free vibration, in which the surface becomes a
harmonic spheroid of the second order, is about 1 hr, 6 min, If
it be as rigid as glass the period is 2 hrs. nearly.

200. Vibrations of a spherical shell

In case the vibrating solid is bounded by two concentric
spheres we shall have to introduce the second solution ¥, (z)
of the differential equation (14) of art. 192. The equations of
motion are equations (1) of art. 191, and these lead, just as in
that article, to equations (5) and (8).

The complete solution of (5) for space between two concentric

spheres is
A =3[, (k) + Q¥ a(hr)]eeeneeennene... (38),

where o, and (2, are spherical solid harmonics, and +, ()
and ¥, (kr) are defined by the equations

Va(@)=(-)"1.3...(2n+]1) Gc é)“(m%z)\i
..(39).
\Ifn(w)=(—)"1.3...(2n+1)({%£)“(cos¢)j (39)

z

Both these functions are finite, continuous, and one-valued
for the space considered, and they satisfy the same differential
equation, the same difference-equation, and the same mixed
difference-equations. These equations are (14) and (13) of art.
192. The function ¥, (z) is connected with Bessel's function
of the second kind by a relation of the form

2V, (2) = AY iy (2),

where the constant A depends on the form assumed for the
Bessel’s function. This function ¥, (z) has two critical points,
the origin and the point at infinity. The first is a pole of the
(2n + 1)th order, t.e. the product 2*"t' ¥, () has a finite limit
when =0, the second is an essential critical point of the function.

With the same notation we can write down the general
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solutions of the equations of vibration for an isotropic homo-
geneous solid bounded by two concentric spheres; we have, just
as in art. 198,

__1loa
h? oz
+3 [ynen) (M4 y P2 - 450
-2 ; @n +x:;1;;n T35y ¥ () 5, (%ﬂ)]

od,,,
+2[\1r (m‘)( + +yaa%” a;")

_n+ 1 Kants ®,,,
Tn+2@n+3)(2n+5) Yoia (a7) 5 (,m:a)] --------- (40),

where A is given by (38), and xn, Xn, $nt1, Puss are spherical
solid harmonics whose orders are indicated by the suffixes.

The boundary-conditions can be obtained just as in arts,
194—196, and they can be written in the form

[ B e on 2 e ()

+ Py (-'/ a;(z aa}; ) + A"aaz +B"aaw (rg—:'l)
+C, a;b + Dn ai (:;H)] =Onrrrenne (41),

where p,, @y... are the functions of a given in equations (33), and
P,, A,... are the same functions with ¥’s in place of y’s. There
are six equations such as (41). Of these two are obtained from
(41) by cyclical interchanges of the letters #, y, 2, and the other
three are obtained from (41) by putting b for a, b being the radius
of the outer surface and a that of the inner. If p,, a,...Py/, 4, ...
denote the same functions of b that p,, an...Py, 4,... are of a, we
can deduce from these, by the process of art. 197, the following
conditions

P (y 45 a""")+P (ya;" a;;") =0

o az"’ A (42),
(v~ aJ)*P( % "'37) =0
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and
Qn Wp + Cp ¢n+AnQn+ Cn ®,=0

bnﬂ’n+dn¢n+BnQn+Dn ®,=0

, i , P S PrrS (43).
Gy @n + Cn' Py +A4,Q,+ C/ D, =0
by’ wa + dn,¢n + Bn,‘Qn + D“'QJ,. =0
From (42) we find
PP’ —p'Pp=0...ccovveriurrann.n. (44),
and from (48) we find
Gn, Cn, An, Oy
ba, dus Ba, Da =0.covrerenn. vee (45)

ax, ¢, 4., G
bﬂ,’ dﬂ’, B ﬂ’) D ﬂ’
These are the frequency-equations.
For the particular case of an indefinitely thin shell we have to
put b =a + 8a, and then the second equation of (42) becomes
OPn (, Oxn _ Bx,, oP, [ 09X, BX,,
a (:'/ 0z ay)+aa( 2z W)’
and the third and fourth of (43) become
%ﬂ @y + acn ¢n ” Q aaa * D,
Bb Bt a ¢” BB,. Q, 831‘)1,. ®,
The frequency-equatlons have the same forms as before, but the

accented letters must now be regarded as the differential coefficients
of the unaccented letters with respect to the radius,

It should be noticed that to a first approximation the resulting
equations depend only on the radius of the shell, the elastic
constants, the density, and the frequency, and are independent of
the thickness. This result is of importance in the theory of thin
shells. It shews that for a complete thin spherical shell all the
periods of free vibration are independent of the thickness of the
shell.

201. Forced vibrations of solid sphere.

We shall next consider the vibrations produced in a sphere
whose surface is free by the action of periodic forces derivable from
a potential expressible in spherical harmonic series.
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Suppose that a single term of the series is the real part of
W e,
where W, 4, is a spherical solid harmonic of degree n + 1.
The forced vibrations will be obtained by assuming that as
functions of ¢ the displacements u, v, w are all proportional to et
The equations of motion can be written in such forms as

O+ p) = + pVu=—p (p’u +—m aW"*‘) ......... (46),

where u is written for the coefficient of e'?* in the expression for
the displacement parallel to z, and A for the coefficient of et
in the expression for the cubical dilatation.

We have already in art. 139 given the particular integrals
of these differential equations in the form

1 oWap 10Wan 1 BW,.Jrl
"—‘—5 am , V=-— 5 ay y W= — P’ aZ (4!7).

These solutions make the cubical dilatation A vanish, and
they give for ¢ the product of the radial displacement and the
radius-vector, the expression

1
o W
The surface-tractions hence arising are easily shewn to be

given by such equations as
2np 0 Wipa

P g e
omitting the time-factor.

For the complementary solutions we shall assume the forms

U=-— I Emnﬁ Yo (h"')

0 ne1 M+ 1 Kmts n-+1
+ 2 [‘P‘nﬂ (") ¢ n+ 2 (2n + 3) (2"2 + 5) ""Ml (I:‘I‘) aw (fm+a)] ’
omitting the x terms from the general solution. The vibrations
depending on these terms would not be forced by the actions
considered.
The surface-tractions arising from the complementary solutions
are known to be given by such equations as

Owy, 0 [@np o
Fr= I"'2 [an+l aa) wﬂ + bpyy TS % (::n:l) + Cata %;1

iy 1S —(f,;::;)] ............ (49).
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To get the boundary-conditions we have simply to add the
parts of Fr arising from thes complementary solutions and the
particular integrals and equate the result to zero; we find in
this way three equations of which the type is

2 [onn 255 +baron  (225) wonn P e (2]

_2noW,,
i SRERRLR

Now, operating upon these equations in the same way as in art.
197 upon the equations of the form (32), we obtain the following :

bns10nsy + dpyyPpya =0
............. (61),
Gnp1 @npa + Cog1 Pasr = ? Wanr
which give
Untr _ Pan Worr (52).

= e—
dn+1 —bn+1 P’ Gns18ni1 = bnirCaia

These equations determine the unknown harmonics w,,, and
¢n+: that occur in the complementary solutions, and they shew
that to each term W,,, of the disturbing potential there corre-
sponds one function » and one function ¢.

It is easy to shew that the height of the harmonic inequality is

‘1; [(n + 1) Y41 (£0) P

- {(” +1) Ynia (ha) + @ d‘P"J;(ha)} - n;’ :

8o that this is of the form i’%eﬂ", where ¢, is & number; and

W,m] ert,, (53),

the equation of the surface of the sphere at time ¢ is

e W,
r=a+i‘.ﬂ.

202. Disturbing Potential a spherical harmonic of the
second order.

The case n=1 is the most interesting. In this case the
disturbing potential is a spherical solid harmonic of order 2. We
have
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-~

&= 3 {5y ) - 241 ).
b, {_ Vb + Shay G}
c,——{ ¥ (k) = 2 (e}
=2 {,p, (k) +— x, Ky, (xa)}

/
The height of the harmonic inequality is

o 2¥s(xa) by + {2% (ha) + havr; (ha)} do/h*
o [ falle)d] 2] o2, (56).

We give the arithmetical result for the special case when the

material is incompressible and so rigid that the fourth power of
xa may be neglected.

We have by (15)
ha=0, 4«<ha>=1 Vo (ha) =1, ¥ (ha)=0,

Ba? x‘a‘
"P:l ("a) 1- ”T()' ’ \P‘B ("a’) 1- 14 504 .

Thus the constants are given by

a-h(F) 0e 5

“a
= 2(1-—5 ’
22 K 8 Ka® Kat
da = E{ ﬁ*@?(“r+m)}'

The height of the harmonic inequality becomes, when we reject
x%a* in the numerator and denominator of (56),

2W, §§ + a* AR
R

Simplifying, we get for the height of the harmonic inequality
& ‘3;3 W oo, vrerereeneenes (57,

which agrees with the result of the corresponding equilibrium
problem in art. 182,
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For a sphere of the mass and diameter of the earth, and of
the rigidity of steel or iron, executing vibrations of the species
considered with a semi-diurnal period, we have, in C.G.8. units

2mp=12 x 60 x 60, p =56, u=2800 x 1(°, a= 640 x 107,
so that xa =} nearly.

It follows from this that the neglect of (xa)* would be fairly
justifiable in the case of such a body. We conclude that in the
case of an elastic solid earth the bodily tides would follow the
equilibrium law. '

203. Plane Waves propagated at the surface of an
elastic solid.

Another extension of Prof Lamb’s analysis is that of Lord
Rayleigh?, who has applied a similar method to discuss waves
propagated at the plane surface of an elastic solid, the disturbance
being practically confined to a superficial region comparable with
the wave-length. We give an account of Lord Rayleigh’s method
and results.

The differential equations of the problem are the same as
those established in art. 191. Taking £=0 for the free surface,
and z positive within the solid, we suppose that, as functions of z
and y, the displacements are proportional to e*U=+#), Then (5)
takes the form

?T? —rA=0 i, (58),

where el A o e (59).
Supposing r real and positive, we have

A=Pe™ . .cevvrininiininnnne. (60),

where P « g:Uztar+r9; and the particular solutions (7) become

4 Per, v=—~F Pev, w=1 Pe......(61).

=" Tk
The complementary solutions satisfy equations such as
Pu ou  Ov  ow
a—z,—-s"u—o, a_.’l:+a_y+$=o ............... (62),
where B=f 40—k ceriiiiiiiiiiierriine (63);

L Proc, Lond. Math. Soc. xvi. 1886.
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80 that we have

u=Ae%, v=Be %, w=Ce%......... (64),
where JA+gB—-80=0.. .cceveuurreecrnnnen. (65),
and 4, B, C contain a factor e:(/=+gy+pt),

Hence the expressions for the displacements

u=—%;Pe-”+Ae-”, v Pere 4 Be®, w= T, Pe + Cov

The boundary-conditions and equation (65) give, by taking
.P = 1’
sB=g"—‘Z—T+LgG, sA=2;'§r+l:ﬂ7, ]

|3
0(8-1+f2+gn)hn+2'r(f9+ga)=0, Cesbeanns (67)’

e-2(f*+g)—2hsC=0
and the frequency-equation is
&% — 8" + 24" — 164 — 1641 + 164" = 0......(68),
where *=)(f*+ g%, and A*=R/(f*+¢%) ......... (69).
When the solid is incompressible £ =0, and the equation for

K" viz.:

KO B+ 24k —16=0 ..cvveerennenn. (70),

has one real root &' ='91275, while the complex roots make the
real parts of r and s have opposite signs, so that they may he
rejected. We now have

K2 ="91275 (f*+ g7, r=f2+g, &=08725(f+g),

and By = of (- € + "5438¢%) g+ (pt+fz+0v)
h = og (— e~ +°5433¢%) ¢+ (Pt HSztoy) | ... (71)
hw = /(2 + g*) (772 — 1'8406~%) ¢+ (pt+/x+0v)

For progressive waves whose fronts are parallel to the axis of

y, we have
u=U (¢7?—"5433¢~%) sin ( pt + fz),}

w = U (¢ — 1'840¢%) cos ( pt + fr)
where U is a constant ; and the velocity of propagation is
plf = 9554 /(u/p),
which is slightly less than that of waves of distortion in an
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unlimited medium. The horizontal motion vanishes at a certain
depth. The motion at the surface is given by

u= 45670 sin (pt + fx)

w=—"840 U cos(pt+ fz)
so that the particles move in elliptic orbits whose axes are nearly
in the ratio 2 : 1.

Lord Rayleigh also considers the cases where A=y, or the
material fulfils Poisson’s condition, where A =0, or longitudinal
extension is unaccompanied by lateral contraction, and where
A = — }u, or the bulk-modulus vanishes. For A =y he finds

K =-8453 (f* + g%, r="T182(f* + g%, &' ="1547 (f* + ¢*).
For a progressive wave
u=U (¢ —"5773¢ %) sin ( pt + fz),
w= U (-8475¢ " — 1-4679¢ %) cos ( pt + f)
and the ratio of the axes of the elliptic orbit, described by a
surface-particle, is reduced to about §.

Lord Rayleigh suggests that these surface-waves may play an
important part in earthquakes and in collision, as they diverge
from the source of disturbance in two dimensions only, and con-
sequently gain increasing relative importance at a considerable
distance.



CHAPTER XIL

APPLICATIONS OF CONJUGATE FUNCTIONS,

204. So far as I am aware, the only successful attempt hitherto
made, to obtain general solutions of the equations of elastic equi-
librium in a form adapted to satisfy arbitrary boundary-conditions
at any other surface than a sphere or a plane, is that of Herr
Wangerin!. He has shewn how to obtain solutions in terms of
conjugate functions of the equations of equilibrium, under no
bodily forces, for an isotropic body bounded by a surface of
revolution for which Laplace’s equation can be solved. We shall
give a résumé of his results, and shall then proceed to illustrate
the application of conjugate functions to problems of elastic equi-
librium by solving some questions relating to plane strain,

205. Wangerin’s Problem.

Consider in the first place cylindrical coordinates w, ¢, z, where
z is the distance of any point from a fixed plane, = the distance of
the point from the axis z, and ¢ the angle between the axial plane
through the point, and a fixed axial plane through the axis z. In
the meridian plane (z, =) suppose two systems of orthogonal curves
a =const. and 8 =const. given by the equation

a+iB=f(Z+tT)ccerriiiriiiraennnn. ).

These curves being rotated about the axis z give rise to a system
of orthogonal surfaces whose parameters are a, 8, ¢, and we may

1 «Ueber das Problem des Gleichgewichts elastischer Rotationskdrper’, Grunert’s
Archiv, Lv. 1878,
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use the formule of ch. vi1. The &'s are h, = h, =h say, and hy ==,
and we have
. 0 (ﬁ, ﬂ)

To(z,w)’
In Herr Wangerin’s work & is replaced by J-2, and J? is the Jaco-
bian of z, = with respect to a, 8, or we have

_dGtw)
J=mod m ........................ (2).

Laplace’s equation takes the form
9( oV, o ( oV\ K J*V
a—a(“’ a) +aTe(""'z‘aTe) t e
The solution of this equation takes different forms according as
V is or is not a function of ¢. In the first case we may suppose
that so far as it depends upon ¢ it contains a factor e** where
8 18 an integer, and we may denote a solution by X, ¢*%, where X,
is a function of a and 8. In the second case we may denote a
solution by X,.
The cubical dilatation A may be expressed in the form

Y, S 3).

A=A,+3 A, e,
1

and it is shewn that A, is a function of the same form as X,, and
A, is a function of the same form as X,. We therefore write
D, QU5 G SRR (4).
1

The three rotations =, w,, @; can be most simply found by

putting
200/ =0, 20 J=0,, 20,w5=6,............ (5).

Then 6,, ©,, 8, can be expressed in the forms
0,=L,+ % L

®,=M,+ % ) 3 S (6),

O,= N, +3 N
1

and the L’s, M’s and N’s can be written as follows:

A2 8X 8X
N =— 20
’ /3 28 e T o
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which is the integral of a complete differential in virtue of the
equation satisfied by X,, also

o, 4y 0T,

B M,= BB e (8),
where Y, is a function of the same form as X, 1.e. a solution inde-
pendent of ¢ of equation (3).

L,=

Also we have

N,=7,+ 2%, %,
oY, A+2u 3 7\.+2;4 X,
wly=t+ T X+ T T 0),
Y, A+4+2u 8 _7\.+2,u. oX,
LSMa—“aTB— +'7 =5 (3X,) F- e

where Y, is a function of the same form as X,, 7.e. a solution
containing ¢*¢ of equation (3).

To determine the displacements we have to introduce three
functions P, Q, R of a and 8, defined as follows:

P-4 (o5

Q + «R is a function of the complex variable a + ¢,
QJ 3 0 (RJ™
@ and R satisfy the equatlona ( 378 (_wT') =J2

There is no difficulty in determining particular values of @
and R which satisfy the conditions just given, and any values
that do so are sufficient for the purpose.

The displacements u, v, w in the directions =, ¢, z can be ex-
pressed in the forms

u= U.,+§ Uyt
1

Then we have
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which is the integral of a complete differential in virtue of the
differential equation for Y,.

Also it can be shewn that
v,=%-s2 (Px.+Q% +25Y) ’
-4 a%( PN,+QOV+ R %1;) o
V=a-sp(PRregrBg) | |
+3%%(—PN0+Q—;VGI—°+R%—1§)J

where N, is the function defined by (7) and Z, is a function of the
same form as X,. Further it can be shewn that

aW

=72 + oM,
..................... (13),
wV—%g— wl,
and
W, =2, +z Y+11,“2“(w=+z=)x,
L O R)E = (4 20) 0,
D (PX+Qa +Raﬁ) ...... 14),

where L, and M, are defined by (9), and Z, is a function of the
same form as X,.

The solution is thus expressed in terms of three sets of
unknown potential functions X, ¥, Z and these can be adapted
to satisfy the boundary-conditions. The forms of these functions
are known for a few surfaces of revolution such as quadrics, cones,
and tores.

206. Plane Strain.

As a further example of the use of curvilinear coordinates we
may consider the problem of, strain in two dimensions, the position
of a point being determined by means of conjugate functions a, 8
such that

A+ iB=F(Z+6Y)rreeerernierennins (15).
Let A be the cubical dilatation, and = the elementary rotation
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of the medium at any point (a, 8); then the equations of equili-
brium under no bodily forces are

R L W

~2ugg =0
ow
(7\+2p.)5§+2p.$=0

These are found from (87) of ch. viL by taking hy=1, hy=h,,
and remembering that @ (=w,) is the only one of the components
of rotation that occurs.

It is clear from the above equations that (A + 2x)A and 2uw
are conjugate functions of « and B and therefore also of z and y.

We have next to find the displacements » and v from the

equations ) ) ;
8= {5 () + 5o (B}

%y = k3 {5807(%) "5%(9}

in which A and 2w are to be regarded as known functions, and %
is written for A, or A,.

If we can find any particular solutions of these, then the
general solution may be obtained by adding to the particular
values of u/h and v/h any others which make A and 2w =0, z.e. by
taking for the complementary solutions v/h and u/h conjugate
functions of @ and B, such that (v +.u)/h is a function of a + ¢8.

To obtain the particular solutions we may put

and then
(7
b (ko) =2
s0 that 79 g’y"’
o St
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and a particular value of ¢ is the potential of a plane distribution
of density — A/27, and likewise of 4 for a distribution — w/m.

This completes the solution in the general case, it will be seen
to be arbitrary in two ways viz. (A + 2x) A + 2uw¢, and the com-
plementary (v + wu)/h are any functions of a+ ¢8.

The above includes as a particular case the theory of solutions
in rectangular coordinates  and y. In particular problems it is
generally better to use conjugate functions a and B, if it can be
arranged that curves a=const. and 8= const. shall represent the
whole of the boundary.

207. Polar Coordinates.
Consider first the case of polar coordinates given by

il o ] N (20),

and suppose the bounding surfaces are cylinders of the family a
The forms of A and 2= are given by the equations

A= 7£+2 -3 [e"(A4,co8nB+B,sinnB)+e (A, 'cosnB+By,'sinnS)]

20 = i 2 [en* (—BpcosnfB+ A ,sin nfB)+e (B, cosnB—4, sinnB)]

The value of % is ¢7*; and thus ¢ and 4 have to satisfy the
equations

&’ Pp 1

Ba_’+—B’ TR —— 2 [emte (4, cosnB + B, sin nB)

+¢~"%= (4,' cos nS + B, sin nB)],
8;;}: o _ P 2 [en+2e (— B, cos B + A,, sin nf3)
+ e ™24 (B,/ cosnB — A, sinnf)].

Particular integrals of these equations are

1 1 .
$=xr 00" |GG a ™ (4nconns + Bysinng)

1
- 4__(n =) e~ (4 'cosnfB + B, sin n,B)] R

‘\P‘=’1—l’ 3 I:‘lTnl:ﬁ ¢4 (— B, cos nf3 + A, sin nfB)

- (nl_—“«) e~"3e(B,.’ cosnB — A, sin nﬁ)] ;
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and particular integrals of equations (17) are therefore
ue'=2[ ! (n+2 —ﬁ) en+32 (4, cos nfB + B, sin nB)

A+ \N+2% n
+ 1(71:‘1—) (:—J,_;; - %) ¢34 (4, cosnB + B, sin nﬁ)] .-(22),
and
vt == [4. (n:,l+ 1) (n:2 —7\,:’2") e™+e (— B, cos B + A, 8in ng)
" 4(n1- 1 (n;2 ‘xfzu) o~ (By' 008 n3 —A»'sinnﬁ)]

We have to add to these complementary solutions of the forms
ue*=23, [¢"*(— D, cos nf8 + Cy sin nB) + e (D, 'cos nB —C,’ sin nf)]
ver=2[e™( O, cosnB +DysinnfB)+ e (C,/'cos nB + D,/ sin nf)] }

The tangential and normal tractions F and G across any
cylindrical surface of the family « are, by (38) of ch. vir,

F=7\.A+2;.¢e"g—:,

G=—2pw+2;.¢e“g%;

and the values of these are easily written down.

In general there is also a traction AA perpendicular to the
plane of (a, 8).

208. Failing Cases.

The general formule fail when n=0 or 1. In the first of these
cases we may consider separately the solutions in which A is
constant and those in which = is constant.

When = is constant and A is zero we have ¢=0 and Y= }we™,
also u=0 and v=we*+ Ae¢—*. The tractions F and @ are F=0,
and G =—2ude. If any cylinder be free we must have 4 =0.
This corresponds to the torsion of a cylindrical shaft, and the
strain at any point is the same. whether there be a coaxal
cylindrical cavity or the shaft be complete up to the axis.

When A is constant and = is zero we have ¢ =}Ae* and
¥ =0, also u=4Ae* + Ad¢ and v=0. The tractions F and G are
F=(A+p)A—-2ude™, @G=0,

L. 22
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If there be a cylindrical cavity in an infinite solid and the
displacement at infinity be — ce* towards the axis of the cavity, we
have v=0 and

where a is the radius of the inner boundary, and » is the distance
¢* of any point from the axis. This corresponds to the case of a
bar under extension when there is a cylindrical cavity parallel to
the axis of the bar, the distance of the cavity from the axis of the
bar being large compared with the diameter of the cavity and
small compared with the diameter of the bar. The radial strain
in the neighbourhood of the cavity becomes an extension equal
to A/u times the radial contraction that would have place if there
were no cavity.

The failure in the case of n=1 is caused by the occurrence of
(n —1) in the denominator of (22) and (23). In order to find the
forms applicable to this case we may start by supposing
1

7\.+2 ¢* (A cos 8+ Bsin B),

2w=%e—-(BcosB-Asin,s).

Then we have
A__1_ s(4cosf+BsinB),
B A+2u
2 1
,;' = ¢e*(BcosB— A sin B);
and the functions ¢ a.nd 1[r are given by
¢= 1}7\+2 ag® (4 cos B+ Bsin B),

1p=—27‘ae‘(BcosB-—Asin/3).

Thus the particular integrals for u and , so far as they depend
upon these terms, are

(é;:; )(AcosB+BsmB)

v=(§x_:2“ 1+“)(B cos 8 — 4 sin B)
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209. General Formule,

Now taking ordinary polar coordinates » and 6 so that e*=r,
B =06, we have for the general forms of « and v

=(§1+1°gr 1°g’)(A c0s 6+ B/ sin 6)

A 20
n+2 n e
+2(X+2“ ,“)4("+1)(A cos né + B, sin nd)

n—2 n\ r
E(X+2“ “)4‘(1‘ )(A ' cos nf + B, sin nf)

+ 8 [7"(= D c08 18 + Cysin ) 4751 (D, 005 n— Oy sinn6)]
1

............ (26),
and
logr  l+logr\ o, '
v= (} X+2“+ % )(.B1 cosf — 4, sin )
2 /m+2 n ot .
+§ ( P —x+2"> Tt (- B, cosnf+ 4, sin nf)
® m—2 n A , '
+§ ( “ _x+2,¢) T 1)(B,, cos nf — 4, sin n8)
+ s [ (C,, cos nd + D, sin nf) + r—®+0 (C,/ cos nf + D, sin nf)]
1
............ (7).
In the same notation we have
A= E[r"(A,,cosn8+B sinn@)+r—"(4, cosnf+ B,'sinnb)]

X+ A2
2% = -’; E [ (— B, cos nf+ A, sin nf) + r (B, cos nf — A,/ sinnb)]
1

............ (28);
and the tractions at a cylindrical surface r = const. are given by
ou
F=\A4+2u= o>
.................... (29).

G=—2pw+2pg—r J

This gives means for the complete analytical solution of any
problem of plane strain in a solid bounded by coaxal circular
cylinders.

210. Particular Example,

As an example we may consider the case where there is a
cylindrical cavity of radius @ in an infinite solid, and at an infinite

22—2-
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distance there is a distribution of shear. To represent this we may

take the displacements referred to the system of fixed axes of «

and y to be U and V, and suppose that at an infinite distance
U=sy, V=0

In the notation of the last article the conditions at infinity

become
% cos @ —vsin @ = srsin 6,
usin @ +vecos6=0;
or u = 4srsin 20,
v = }sr cos 20 — }sr.

We have already seen that uw=0, v=— }sr satisfy the equa-
tions, and make the tractions F' and G vanish at every cylindrical
surface, so that we shall have to add this solution to the solution for

u={orsin 20, v = }srcos 26,
when » is very great.

From the general solutions (26) and (27) we have to keep the
terms in B,, C,, Cy. To satisfy the conditions when » is very
great we have to take C,=4s. The condition that there is mo
traction across the surface r=a gives two relations among the
three constants by which B, and C,” are determined. The work
may be left to the reader, and the result is that
u= (7;':_?%’+ }r—&fg) &sin 26,

—(r. 1‘) -
v-(x+“r+§r+1}r, 8 cos 20 — }er

It may be as well perhaps to remark that this problem does
not, like the corresponding one in art. 169, yield a result in
connexion with the theory of torsion. In the case of torsion a
very important part of the shear consists as we know of a shifting
of the fibres of the twisted prism parallel to the axis of the prism,
and our work above, being confined to displacements in one plane,
does not take this into account.

211. Eliptic Coordinates.
We shall next consider the case of elliptic coordinates given by
z+y=ccosh(a@a+¢B)..covveniennennnnns (31),

and suppose in the first place that the elastic medium extends to
infinity, and is bounded internally by an elliptic cylindrical surface
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of the family a, say a= a,, which is deformed in a given manner.
Then, according to art. 206, we have to take for A and 2 series of
the form

A =3A, e " em,

2@ = A -;2" S A, e,

in which A4, is a complex constant ; and we may at the end keep
only the real part of the solution.
Now the displacements have to be found from the equations

2-2()+a0)

2 9 (v 0 (u
'hT=8_a(ﬁ) _iﬁ(ﬁ)’
where h=2= }¢*(cosh 2a — cos 28).
The functions Ak 2wh~ can each be expressed as sums of
terms of the forms
_mtnal COBNB _nlcOB(n+2)8
{e o } sin n8’ and {e } sin(n+2)8’°
and the equations for » and v can clearly be satisfied by assuming
for u and v sums of terms of these forms with suitable coefficients
These are the particular integrals of the equations for the dis-
placements, and the complementary functions will be found by
taking (v+ «w)/h any function of (x+ 43) and therefore by taking
for v/h and u/h functions of the same forms as A and 2uw/(A + 2u).
Now suppose definitely that

4 .
A—mze"“(xﬂncosn,3+3nmnﬁ)] ...... o,
P c;i# Sem (B, cosnB — A, sin nf) f

then we can easily verify that
(A + 2u) 7?’ =3 [e“”‘”’ ¢{(An— A nys)cosnB+(By — Byys) sin nB} )
+ 6% (A, — Ay_s) cosnB + (By— Bay) sin n,B}]

% =3 [e“”*’)‘{(B,. — Bay) c08n8 — (A= Ay sinnf)

+ g {(B”— Bﬂ—‘l) co8s nB—(An "‘An—a) sin nB}] )
ceereen(33);
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and again we can easily verify that u/h and v/h are given by

gmna +2 :
%= ;W_'_ 1) (:_: - ;L_'_—mb) {(An—Anﬂ) cos nB+(Bn—Bn+!) smnﬂ
_3 e e /n

(n—1) x+2u){

|
(An—An) o8 nB+(Ba B,,_,)sinnﬂ}

+ g (DpcosnB — Cp8IN NB) wevvevvneriennnnerenieennneneanns (34),
=2 1o e~ s BB cosnf~(As— Ay )sinn)}
e e rp__9 n
(G ) {(B —B,_)cosnS—(An—d,_, )smnﬂ}

+ 36 (CrcosnB+ D8N 78) e ieinirineineiieneneenrernnnnnens (35).
Suppose the boundary-conditions given in the form

3\
;_: = ¢ (L, cos nB + M, sin nB)

=3¢ (M, cosnB+ L, sin nB)

when a=a, By equating the coefficients of cosn8 and sinng8
we get four equations to determine the four sets of constants
An; B’H Crn -Dn-

These equations are

45?1) (:—:—7;":22“) (4dn = dasa) )
e S
1:;:"1) ('n+2_x_:_‘2“) (An — Ani)
_4(:“—“1)( ;2 x+2p,)(“1 —4n2)+Du=Ly |
......... @1
and |
4(‘::1) B-fffﬂ)(Bn—Bm)
4(:“—01>(Z x+z,,)<B ~B)=G=M, |
4(87‘—:01)(7L+2 x+2 )(B = Buya)
g (2 - ) Bam Be) — Cam = M
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From the first two we get a difference-equation for the 4’s,
and from the second two we get a difference-equation for the
B's. When these are solved D, and C, are given by one of (37)
and one of (38).

As an example! suppose the cylinder a,, whose principal semi-

axes are a and b, turned through a small angle ¢. The boundary-
conditions are

%=e""v (a,-;b)’ ¢ sin 28, %:abqb, when a=a,.

All the 4’s vanish, B, and all the odd B’s vanish, and B,=B, =...
all the D's vanish and all the C’s except C, and C,, and we find

B,=2C,e™ (A + 2),

Cy=abe + } (a + b)? pe—*= Mt 2

»+3u’

F=t@+dy

¢(e_“+7\.+2p.
p.

e”'v) sin 28,

>

X+3p

= abs

e

a2 (7\+2y.)e‘“°+pcos2,8

+3(a+b)P (e~ T34

It appears that at a very great distance the displacements of
points on a confocal cylinder vanish, since A vanishes. The
cubical dilatation of the medium is

4B,
(A +2p) m=

and the rotation of the medium is

2 ™= gin 2mB,

45, 2 ™= cos 2mf3,
c’p m=1

which vanish at an infinite distance.

1 This example was suggested by Mr Webb.
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The corresponding problem of displacement within a cylinder
due to a rotation of its boundary is much simpler.

Consider a solution in which A =0, and @ is constant and equal
to ¢, we have

2h—ﬁ:=c’¢(cosh2a-cos2ﬂ)
~ §0% | 2. Ginh 20) — 7 (in 26) .
8o that v/h=}c*¢p sinh 2a, u/h =}c*¢psin 28.
When a =a, we find
v/h =abg, u/h=3}e>(a+b) ¢$sin 28.

Thus the above solution satisfies all the conditions.



NOTES.

NoTe A. ON SHEAR AND SHEARING STRESS,

THE term “shear ” was first used by engineers to denote tangential stress,
and is so used in Rankine’s Applied Mechanics. The usage of it for aliding
strain in this work might be justified by reference to 8ir W. Thomson, now
Lord Kelvin, and many other eminent authorities, theoretical and practical.
The kind of strain called shear has been considered in ch. 1, and the kind of
stress called shearing stress has been considered in ch. 1. The object of
this note is to insist more fully. than is done in those chapters on the twofold
character of both shear and shearing stress as they occur in the mathematical
expressions. For simplicity we shall limit our consideration to the case of
infinitesimal displacements.

The shears are represented by such expressions as ow/dy + 0v/0z. Now
this expression is the sum of two simple shears, viz. ;: & simple shear dw/dy of
the planes y=const. parallel to the axis z, and a simple shear dv/0z of the
planes z=const. parallel to the axis y. In like manner if we define the
(infinitesimal) shear of two initially rectangular lines (1) and (2) to be the
cosine of the angle between them after strain—a definition which has been
shewn to coincide with the definition in terms of sliding motion—then this
shear will be made up of a simple shear parallel to (2) of the planes perpen-
dicular to (1), and a simple shear parallel to (1) of the planes perpendicular
to (2). The shears that occur in mathematical expressions are in fact
generally the sums of two such simple shears which are not at first separated.
Thus in the energy-function the terms in a for example are just the same
whatever be the proportion in @ of the simple shear parallel to y to that
parallel to 2.

Shearing stress also is of a twofold character, but the like ambiguity does

not occur. Shearing stress consists of tangential stresses across two perpen-
dicular planes, but these are always equal.

We know that a simple shear ¢ is equivalent to equal extension and
contraction each 4¢, and conversely that equal extension and contraction
each ¢ are equivalent to a simple shear of amount 2¢, and in the same way
the extension and contraction might be taken to be equivalent to two simple
shears each of amount e, which combine in the manner explained above;
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or again the same extension and contraction will be the equivalents of two
simple shears whose sum is 2¢ and whose ratio is anything whatever.

Equal pressure and tension each P are in like manner equivalent to a
shearing stress, but the amount of the shearing stress is . This shearing
stress is really a stress-system consisting of equal tangential stresses P on two
perpendicular planes.

The above remarks appear to contain the secret of the “discrepant
reckonings of shear and shearing stress” to which Lord Kelvin has frequently
called attention. (See e.g. Thomson and Tait’'s Nat. Phil. Part II. art. 681,
and Lectures on Molecular Dynamics p. 176.) The discrepancy appears
to arise from the combination in a shear of two simple shears whose ratio
it is unnecessary to know, while the tangential stresses combined in a
shearing stress are always equal. Writing the discrepant statements in
parallel columns we have

Equal extension and contraction Equal pressure and tension each
each ¢ are equivalent to two simple | P are equivalent to tangential stresses
shears of perpendicular planes; the | on two perpendicular planes ; each of
sum of the shears is 2¢ and their | these is of amount P.
ratio may be anything whatever.

Finally we may note that the values of the two simple shears will be equal
if the strain be pure. It follows that, if we regard any small strain as
analysed into a small rotation and a small pure strain, then the extensions
and contractions to which the pure shears are equivalent are always obtained
from the simple shears by precisely the same rule as that by which the
pressures and tensions are obtained from the tangential stresses.

Note B. ON AoLoTRoPIC BODIES,

Zolotropy has been defined in art. 24 as variability of the physical
character of a body depending on directions fixed with reference to the
body. Fibrous and luminated bodies as well as crystals exhibit such
variability of elastic character, and in regard to other physical properties
(optical, magnetic, thermal &c.) such variability is exhibited by many well-
known crystalline bodies. The theory of elastic crystals given in the text
takes account of elastic properties only. This theory is not proved, and it
is not here suggested that, even supposing it proved for elastic properties,
it would hold for other physical properties. In other words it is not
suggested that the molotropy of a body for the transmission of light waves
(for example) is similar to its seolotropy for elastic reactions.

The theory connects elastic quality with crystallographic form; and it
leads, in the case of each crystal form, to a certain number of elastic constants.
In the absence of definite experimental evidence the assumption that the
maximum number of these constants for a given body, and the way they
enter into the stress-strain relations, are correctly given appears to have
considerable probability. I think it will be generally admitted that a spheri-
cal portion of a cubic crystal, for example, would exhibit identity of physical
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properties after rotation through 90° about any one of the crystallographic axes,
It may however be questioned whether the constants given by the theory are
really independent. In other words I think it will be generally admitted that
crystalline bodies are at least as nearly isotropic as the theory makes them,
but it may be questioned whether they are not more nearly isotropic. Optical
experiments appear in some cases to favour an affirmative answer to this
question,

Taking again the case of cubic crystals, it is easy to shew that the rigidity
(art. 42) for two directions in a principal plane of symmetry, making half
right angles with the two principal axes of symmetry that lie in the plane, is
1 (@), — ay5), while the rigidity for two principal axes of symmetry is a,,.

This is the property which Lord Kelvin has noted as characteristic of
“cubic asymmetry” or “cyboid solotropy”, and he has, on optical grounds,
questioned the existence of bodies possessing the property. (Lectures on
Molecular Dynamsics p. 158,) The experiments of Prof. Voigt (art. 45) appear
to shew that % (a;, —a,,) and a, have, for some well-known cubic crystals,
widely different values.

With regard to cubic crystals it may be as well to notice further two
points :

(2) That if the luminiferous ether in any body were similar in elastic
quality to the elastic cubic crystals discussed in art. 37 the body would
be doubly refracting and would exhibit conical refraction, but the wave-
surface would be much more complicated than Fresnel’s.

() That although the three principal Young’s moduluses, the three
principal rigidities, and the three principal Poisson’s ratios are equal, such
bodies are not *transversely isotropic”.

With regard to “transverse isotropy” it may be noticed that a body
cannot be transversely isotropic in the plane (z, ¥) unless its energy-function
reduce to the form for hexagonal crystals, viz :

A (e+f P+ Ca2+2F (e+f) g+ N (2 —4ef )+ L (a®+ 1)
For example a tetragonal crystal is not transversely isotropic although it has
two principal Young’s moduluses, two principal rigidities, and two principal
Poisson’s ratios equal.

Nore C. ON BETTI'S METHOD OF INTEGRATION.

Mr Larmor suggests to me that the analysis in arts. 141, 142 admits of a
physical interpretation.

Suppose a small spherical element of a solid whose centre is a given point
is uniformly extended. If the solid be unlimited and under no bodily force,
the displacements at any point can be shewn to be proportional to or—1/oz,
Or—1/oy, 0r—1/0z. If the solid be limited by a free surface certain displacements
will take place at the surface. If the surface be fixed certain tractions will
have to be applied to the surface. The interpretation to be made involves the
displacements that exist when the surface is free and the spherical element
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about a given point is extended, and the surface-tractions that must be applied
to hold the surface fixed when the same state of dilatation is produced in the
spherical element.

Equation (40) on p. 244 shews that the dilatation produced at any point by
a given system of surface-displacements is proportional to the work done by
the tractions that must be applied to hold the surface fixed, when there is
dilatation of the spherical element about the point, acting through the given
surface-displacements ; and equation (41) on the same page shews that the
dilatation produced at any point by a given system of surface-tractions is
proportional to the work done by these tractions acting through the displace-
ments that take place when the surface is free and there is dilatation of the
spherical element about the point.

There is a like interpretation of such equations as (48) and (46) on p. 246
for rotation about any given line in terms of the tractions that must be applied
to hold the surface fixed when a spherical element about & given point is made
to rotate about the line, and of the displacements that take place when the
surface is free and a similar rotation is effected at the point. In fact in the
above statements we have merely to read ‘rotation about a given line’ for
¢ dilatation’,
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Invariants, of strain, 41, 47, 211; of
stress, 64.

Iron (wrought), constants for, 77.

Isotropy, defined, 71; transverse, 347.

Jaérisch, on vibrations of sphere, 80,

Kelvin, Lord : see Thomson, Sir W.

Kirchhoff, experiments on steel, 18;
constants for isotropic solids, 22;
theorems on energy-funection, 120 ;
theory of thin rods, 174.

Lagerhjelm, on static and kinetic modu-
luses, 24.

Lamb, on vibrations of sphere, 30, 309.

Lamé, geometrical theorems on stress,
6, 64; on the general equations, 12;
constants for isotropic solids, 22; on
curvilinear coordinates, 25, 200; on
free vibrations, 27; his problem, 28,
273.

Lamé and Clapeyron, on the general
equations, 12; on solid bounded by
plane, 27.

Larmor, on gyrostatic inertia, 61; on
the influence of flaws on strength,
161; on Betti’s method of integration,
347.

Lead, constants for, 77.

Limit of elasticity : see Elastic Limit.

Load, strain linear in terms of, 70;
effect of repeated, 105; sudden ap-
plication or reversal of, 108, 144;
equivalence of statically equipollent
systems of, 177.
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Marriotte, on Galilei’s problem, 3.

Matter, kinetic theory of, 16.

Mazwell, method of obtaining general
equations, 11 ; on viscosity and elas-
tic after-working, 104.

Modulus, static and kinetic, 24, 120;
defined, 71; of compression, 72, 91;
of rigidity, 72, 92; Young’'s, 78, 75, 98.

Molecular force, hypothesis of, 8; stress
deduced from, 112 ; elastio constants
deduced from, 113,

Monoclinic crystals, 81.

Navier, on the general equations, 8;
on torsion and flexure, 81; Legons,
121,

Neumann, F. E., theory of elastic cry-
stals, 22, 81; thermo-elastic equa-
tions, 24, 115.

Neutral line : see Axis.

Nodal surfaces, of vibrating sphere, 818,
320,

Normal coordinates, explained, 141.

Normal functions, explained, 142 ; for a
vibrating sphere, 311, 820.

Notations, double suffix, 99; symbolical,
120, 136,

Orthogonal surfaces, theory of, 200;
line element, 201; rotations of nor-
mals, 203 ; systems of, 218. See also
Curvilinear Coordinates.

Pearson, on the methods of the older
writers on Mechanics, 8; on rari-
constancy and multi-constancy, 14;
on the equivalence of statically equi-
pollent systems of load, 33; on beams
subject to continuous load, 34; on
the yield-point, 102; on Wohler’s ex-
periments, 105; on the Bernoulli-
Eulerian theory of beams, 180 ; Elas-
tical Researches of Barré de Saint-
Venant, 196, 230,

Perturbations, local, 28, 259,

Piezometer, 281.

Plane, solid bounded by, history of
problem, 27; Cerruti's solution, 251,
267.

Plane-strain, general equations for, 835;

INDEX.

polar coordinates, 836; elliptio co-
ordinates, 340,

Plasticity: see Flow.

Poisson, on the general equations, 9;
criticised by Stokes, 10; integral of
the equations of wave-motion, 25, 130.

Poisson’s ratio, 75, 95.

Poncelet, on stress-strain diagrams, 101 ;
theory of rupture, 108; on load sud-
denly applied, 108.

Potassium Chloride, constants for, 96.

Potential, direct, 358 ; logarithmie, 269.

Pressure, arrived at kinematically, 67.
See also Stress.

Prism : see Beams.

Purser, 168,

Pyrites, constants for, 19, 96.

Quartz, elastic character of, 90; con-
stants for, 97.
Quasi-nodal surfaces, 811, 321.

Radial strain, polar coordinates, 217;
cylindrical coordinates, 224.

Ray, equations of, 139.

Rayleigh, Lord, theory of free vibrations,
26, 141, 320; reciprocal theorem, 128;
on waves at surface of solid, 828.

Rhombic crystals, 83.

Rhombohedral crystals, 89.

Rigidity, introduoed by Vieat and Navier,
21; defined, 72; depends on two di-
rections, 98; torsional, 168; flexural,
178; of the earth, 29, 808.

Rock-salt, constants for, 96.

Rods : see Beams.

Rotation, of a figure, 48; of the normals
to orthogonal surfaces, 203.

Rotation, components of, in Cartesian
coordinates, 58; in curvilinear oo-
ordinates, 206; in polar coordinates,
216; in a solid with given surface
displacements or surface tractions,
246; in solid bounded by plane, 265;
in solid of revolution, 832; in case of
plane strain, 335.

Rupture, theories of, 106; examples of
theories, 225.

Saint-Venant, on shear, 7; on the gene-
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ral equations, 10; objection to Green’s
process, 20; on the distribution of
elastioity, 28; semi-inverse method,
81, 146; theory of torsion, 32; on
amorphous bodies, 98; theory of
safety, 107; torsion-factor, 158; ap-
proximate formula for torsiom, 171;
on the neutral axis, 182; on piezo-
meter experiments, 231.

Secrew-propeller shafts, 107.

Set, defined, 69; Coulomb-Gerstner law
of, 109.

Shear, simple, defined, 37; strain-quadric
for, 42; equivalent to extemsion and
compression, 7, 48; twofold character
of, 345,

Shearing-stress, defined, 62; cone of, 64;
twofold character of, 845.

Shells : see Spherical Shell and Cylin-
drical Shell.

Solutions, uniqueness of, 123 ; possibility
of, 135, 186; for bodily forces, equi-
librium, 287; for bodily forces, forced
vibrations, 238; for solid bounded by
plane, 251, 266; simple, of first type,
253; simple, of second type, 268;
in potential functions, 258, 272; in
spherical harmonics, 276; for a solid
of revolution, 331; by conjugate func-.
tions, 385.

Sphere, compression of by its own gravi-
tation, 219; with given surface dis-
placements, 274; with given surface
tractions, 277; with normal surface
tractions, 281; under bodily forces,
285, 296; rotating, 303; free vibra-
tions of, 809; radial vibrations, 319;
forced vibrations, 324. See also Radial
Strain and Solutions.

Spherical eavity, in infinite solid, 283.

Spherical shell, radial vibrations, 222;
under pressure, 221, 230; general
theory of vibrations of, 822.

Stability, strength dependent on, 109;
in connexion with theorem of unique-
ness of solution, 124,

State of ease, 69, 102.

Steel, elastic constants for, 77.

Stokes, Sir G., criticism of Poisson, 10;
on the general equations, 13; con-
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stants for isotropic solids, 22; on
diffraction, 25, 133.

Strain, history of analysis of, 6; homo-
geneous, defined, 36; ellipsoid, 36;
principal axes of, 36 ; components of,
88; quadric, 89; transformation of,
40; invariants, 41, 47, 51, 211; pure,
44; composition of, 47 ; infinitesimal,
50; in a body, 52; produced by heat,
115; conditions of compatibility of
components of, 122; mean values of
components of, 128; in ocurvilinear
coordinates, 205 ; in polar coordinates,
215; in cylindrieal coordinates, 216;
in solid bounded by plane and sup-
porting a weight, 256. See also Radial
Strain and Plane Strain.

Strength, of materials, 101; of a beam
under torsion, 161; of a beam under
flexure, 182; of a beam under com-
bined strain, 183.

Stress, history of analysis of, 6; at a
point, 56; transformation of, 61;
quadrie, 62; principal planes of, 62;
geometrical theorems on, 64; measure-
ment of, 66; in a medium, 66; ther-
mal, 115; in a twisted prism, 157;
in a bent beam, 175; in solid bounded
by plane and supporting a weight,
256, 270; on mean surface of strained
gravitating sphere, 289; due to the
weight of continents, 300.

Stress-difference : see Rupture.

Stress-strain diagrams, 101.

Stress-strain relations, forisotropic solids,
73; for wmolotropic solids, 78; for
amorphous bodies, 98; deduced from
point-atom hypothesis, 113,

Tetragonal crystals, 84.

Thermo-elastic equations, history of, 24;
establishment of, 114; deduced by
energy-method, 118.

Thomson, Sir W., strain-ellipsoid, 7; on
the energy-function, 13, 116; model
of molotropic molecule, 16; on Lamé’s
problem, 29, 298 ; on the rigidity of
the earth, 29, 808; on cubic erystals,
96, 347; on wmolotropy produced by
permanent set, 105; on fatigue, 106 ;

23
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on the possibility of solving the gene-
ral equations, 126; on discrepant
reckoning of shear and shearing stress,
346.

Tidal effective rigidity, 306,

Tides, foroe producing them, 804; elastie,
808 ; equilibrium theory of, 828.

Time-effects, 108,

Topaz, constants for, 97,

Torsion, Coulomb’s theory of, 4; Young,
81; Saint-Venant, 82, 157; hydro-
dynamical analogies for, 83, 159, 161;
strength of & beam under, 161; of a
circular bar, 163; of an elliptic bar,
168; of an equilateral triangular prism,
165; of a rectangular bar, 166,171 ; of
sectors, 169; approximate formulae
for, 171, 173.

Tractions, at the extremitiee of a beam,
under extension, 154 ; uniform flexnre,
155 ; torsion, 157; non-uniform flex-
ure, 177; at surface of sphere, radial
strain, 218; oylinder, radial strain,
224; at surface of solid supporting
weight, 255, 270.

Tresca, on the flow of solids, 108.

Triclinic crystals, 81,

Uniqueness of solution, 123.
Unwin, Testing of Materials of Construc-
tion, 101, 105.

Vector-differentiation, 201.

Vibration, equations of, 60, 76; prin.
cipal modes of, 141; theorems on,
143 ; radial of a spherical shell, 222;
radial of a cylinder, 226 ; of a sphere,
309; two classes of, 318 ; of a spheri-
cal shell, 322; of a sphere under
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periodic forces, 824; of a cylinder
under Saint-Venant's stress-oondition,
147 fin,

Vicat, on rigidity, 22; on time-effects,
108.

Viscosity, of solids, 104,

Voigt, on the constant controversy, 18;
theory of crystals, 22; experiments
on crystals, 96, 174; approximate
formula for torsion, 178.

Wangerin, on solids of revolution, 30,
381.

Warburg, on torsion, 105.

Waves, of compression and distortion,
134 ; at the surface of a solid, 828.

Wave-motion, history of theory of, 25;
in isotropic media, 130, 184 ; in aeolo-
tropic media, 140.

Wave-surface, 139.

Webb, on cylindrical and polar coor-
dinates, 200.

Weber, on elastic after-working, 108.

Weierstrass, oriticism of the proof of
Dirichlet’s principle, 126.

Wertheim, on Poisson’s ratio, 18.

Weyrauch, on the thermo-elastic equa-
tions, 115,

Wihler, on repeated loading, 105.

Wood : see Amorphous Bodies.

Work, done in increasing strain, 5. See
also Energy-Function.

Yield-point, 102,

Young, on shear, 4.

Young’s modulus, introduction of, 5; for
isotropic solids, 73, 76; for eolotropie
solids, 93 ; quartic for, 94.
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