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On spectral gap properties and extreme value theory for multivariate affine stochastic recursions
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We consider a general multivariate affine stochastic recursion and the associated Markov chain on R d . We assume a natural geometric condition which implies existence of an unbounded stationary solution and we show that the large values of the associated stationary process follow extreme value properties of classical type, with a non trivial extremal index. We develop some explicit consequences such as convergence to Fréchet's law or to an exponential law, as well as convergence to a stable law. The proof is based on a spectral gap property for the action of associated positive operators on spaces of regular functions with slow growth, and on the clustering properties of large values in the recursion.

Introduction

Let V = R d be the d-dimensional Euclidean space and let λ be a probability on the affine group H of V , µ the projection of λ on the linear group G = GL(V ). Let (A n , B n ) be a sequence of H-valued i.i.d. random variables distributed according to λ and let us consider the affine stochastic recursion on V defined by X n = A n X n-1 + B n for n ∈ N. We denote by P the corresponding Markov kernel on V and by P the product measure λ ⊗N on H N . Our geometric hypothesis (c-e) on λ involves contraction and expansion properties and is robust for the relevant weak topology if d > 1 ; it implies that P has a unique invariant probability ρ on V , with unbounded support. In our situation (see [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF]), the quantity ρ{|v| > t} is asymptotic (t → ∞) to α -1 c t -α with α > 0, c > 0. More precisely the measure ρ is multivariate regularly varying, a basic property for the development of extreme value theory i.e. for the study of exceptionally large values of X k (1 ≤ k ≤ n) for n large (see [START_REF] Resnick | Extreme Values, Regular Variation, and Point Processes[END_REF]), our main goal in this paper. One non trivial aspect of hypothesis (c-e) is that it implies unboundness of the subsemigroup of G generated by supp(µ), hence multiplicity of large values of |X n |. Also, from a heuristic point of view, hypothesis (c-e) allows us, to reduce the d-dimensional linear situation to a 1-dimensional setting.

In such a situation of weak dependance, spectral gap properties of operators associated to P play an important role via a multiple mixing condition described in [START_REF] Davis | Point processes and partial sum convergence for weakly dependent random variables with infinite variance[END_REF] for step functions. We observe that the same idea has been used in various closely related situations : limit theorems for the largest coefficient in the continued fraction expansion of a real number (see [START_REF] Phillip | A conjecture of Erdös on continued fractions[END_REF], [START_REF] Vardi | The St. Petersburg game and continued fractions[END_REF]), limit theorems for the ergodic sums n Σ k=1 X k along the above stochastic recursion (see [START_REF] Guivarc | On spectral properties of a family of transfer operators and convergence to stable laws for affine random walks[END_REF]), geodesic excursions on the modular surface (see [START_REF] Guivarc | Asymptotic winding of the geodesic flow on modular surfaces and continued fractions[END_REF], [START_REF] Pollicott | Limiting distributions for geodesic excursions on the modular surface[END_REF]), "shrinking larget" problem (see [START_REF] Pène | Poisson law for some non uniformly hyperbolic dynamical systems with polynomial rate of mixing[END_REF], [START_REF] Rousseau | Hitting time statistics for observations of dynamical systems[END_REF]). In our setting, spectral gap properties of operators associated to P allow us to study the path behaviour of the Markov chain defined by P . In the context of geometric ergodicity (see [START_REF] Rosenblatt | Markov processes. Structure and asymptotic behaviour[END_REF]) for the Markov operator P acting on measurable functions, assuming a density condition on the law of B n , partial results were obtained in [START_REF] Klüppelberg | Extremal behaviour of models with multivariate random recurrence representation[END_REF]. However simple examples show (see below) that, in general, P has no spectral gap in L 2 (ρ). Here we go further in this direction replacing geometric ergodicity by condition (c-e). Condition (c-e) implies that the operator P has a spectral gap property in the spaces of Hölder functions with polynomial growth considered below, a fact which allow us to deduce convergence with exponential speed on Hölder functions. A typical example of this situation occurs if the support of λ is finite and generates a dense subsemigroup of the affine group H. If Z + is the set of non negative integers, we denote by P ρ the Markov probability on V Z + defined by the kernel P and the initial probability ρ. In this paper we establish spectral gap properties for the action of P on Hölder functions and we deduce fundamental extreme value statements for the point processes defined by the P ρ -stationary sequence (X k ) k≥0 . Our results are based on the fact that the general conditions of multiple mixing and anticlustering used in extreme value theory of stationary processes (see [START_REF] Basrak | Regularly varying multivariate time series[END_REF], [START_REF] Davis | Point processes and partial sum convergence for weakly dependent random variables with infinite variance[END_REF]) are valid for affine stochastic recursions, under condition (c-e). We observe that, in the context of Lipschitz functions, the above mixing property is a consequence of the spectral gap properties studied below ; it turns out that the use of advanced point process theory allows us to extend this mixing property to the setting of compactly supported continuous functions considered in [START_REF] Basrak | Regularly varying multivariate time series[END_REF]. Using these basic results, we give proofs of a few extreme value properties, following closely [START_REF] Basrak | Regularly varying multivariate time series[END_REF]. Then, our framework allow us to develop extreme value theory for a large class of natural examples in collective risk theory, including the so-called GARCH process as a very special case (see [START_REF] Embrechts | Modelling Extremal Events for Insurance and Finance[END_REF]). In this context, some of our results have natural interpretations as asymptotics of ruin probabilities or ruin times [START_REF] Collamore | First passage times of general sequences of random vectors : a large deviations approach[END_REF]. In order to sketch our results, we recall that Fréchet's law Φ a α with positive parameters α, a is the max-stable probability on R + defined by the distribution function Φ a α ([0, t]) = exp(-at -α ). Also, we consider the associated stochastic linear recursion Y n = A n Y n-1 , we denote by Q the corresponding Markov kernel on V \ {0} and by Q = µ ⊗N the product measure on Ω = G N ; we write S n = A n • • • A 1 for the product of random matrices A k (1 ≤ k ≤ n). Extending previous work of H. Kesten (see [START_REF] Kesten | Random difference equations and renewal theory for products of random matrices[END_REF]), a basic result proved in [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF] under condition (c-e) is that for some α > 0, the probability ρ is α-homogeneous at infinity, hence ρ has an asymptotic tail measure Λ = 0 which is a α-homogeneous Q-invariant Radon measure on V \ {0}. The multivariate regular variation of ρ is a direct consequence of this fact. Also, it follows that, if U t ⊂ V is the closed ball of radius t > 0 centered at 0 ∈ V and U ′ t = V \ U t , then we have Λ(U ′ t ) = α -1 ct -α with c > 0. In particular, Λ(U ′ t ) is finite and the projection of ρ on R + , given by the norm map v → |v| has the same asymptotic tail as Φ c α . We write Λ 0 = c -1 αΛ hence Λ 0 (U ′ 1 ) = 1 and we denote by Λ 1 the restriction of Λ 0 to U ′ 1 . If u n > 0 satisfies (u n ) α = α -1 cn, it follows that the mean number of exceedances of u n by |X k | (1 ≤ k ≤ n) converges to one. It will appear below that u n is an estimate of sup{|X k | ; 1 ≤ k ≤ n} and that normalization by u n reduces extreme values for the process X n to excursions at infinity for the linear random walk S n (ω)v and the measures Λ 0 , Λ 1 . Then, one of our main results is the convergence in law of the u n -normalized maximum of the sequence |X 1 |, |X 2 |, . . . , |X n | towards Fréchet's law Φ θ α with θ ∈]0, 1[. A closely related point process result is the weak convergence of the time exceedances process

N t n = n Σ k=1 ε n -1 k 1 {|X k |>un}
towards a compound Poisson process with intensity θ and cluster probabilities depending on the occupation measure

π ω v = ∞ Σ i=0
ε S i (ω)v of the associated linear random walk S i (ω)v and on Λ 1 . The expression ε x denotes the Dirac mass at x. The significance of the relation θ < 1 is that, in our situation, values of the sequence (|X k |) 0≤k≤n larger than u n , appear in localized clusters with asymptotic expected cardinality θ -1 > 1. This reflects the local dependance of large values in the sequence (X k ) k≥0 and is in contrast with the well known situation of positive i.i.d. random variables with tail also given by Φ c α , where the same convergences with θ = 1 is satisfied. If Euclidean norm is replaced by another norm, the value of the extremal index θ is changed but the condition θ ∈]0, 1[ remains valid. For affine stochastic recursions in dimension one, if A n , B n are positive and condition (c-e) is satisfied, convergence to Fréchet's law and θ ∈]0, 1[ was proved in [START_REF] De Haan | Extremal behaviour of solutions to a stochastic difference equation with applications to ARCH processes[END_REF], using [START_REF] Kesten | Random difference equations and renewal theory for products of random matrices[END_REF]. We observe that our result is the natural multivariate extension of this fact. Here, our proofs use the tools of point processes theory and a remarkable formula (see [START_REF] Basrak | Regularly varying multivariate time series[END_REF]) for the Laplace functional of a cluster point process C = Σ j∈Z ε Z j on V \ {0}, which describes in small time the large values of (X n ) n≥0 . As a consequence of Fréchet's law and in the spirit of [START_REF] Pollicott | Limiting distributions for geodesic excursions on the modular surface[END_REF], we obtain a logarithm law for affine random walk. To go further, we consider the linear random walk S n (ω)v on V \ {0}, we observe that condition (c-e) implies lim n→∞ S n (ω)v = 0, Q-a.e. and we denote by Q Λ 0 (resp. Q Λ 1 ) the Markov measure on (V \ {0}) Z + defined by the kernel Q and the initial measure Λ 0 (resp. Λ 1 ). We show below the weak convergence to a limit process N of the sequence of space-time exceedances processes

N n = n Σ i=1 ε (n -1 i,u -1 n X i )
on [0, 1] × (V \ {0}). In restriction to [0, 1] × U ′ δ , with δ > 0, N can be expressed in terms of C and of a Poisson component on [0, 1] with intensity θδ -α ; the expression of the Laplace functional of C involves the occupation measure π ω v and Q Λ 1 . Using the framework and the results of ( [START_REF] Basrak | Regularly varying multivariate time series[END_REF], [START_REF] Basrak | A functional limit theorem for dependent sequences with infinite variance stable limits[END_REF], [START_REF] Davis | Point processes and partial sum convergence for weakly dependent random variables with infinite variance[END_REF]), we describe a few consequences of this convergence. In particular we consider also, as in ( [START_REF] Davis | Point processes and partial sum convergence for weakly dependent random variables with infinite variance[END_REF], [START_REF] Davis | The sample autocorrelation function of heavytailed processes with application to ARCH[END_REF]), the convergence of the normalized partial sums n Σ i=1 X i towards stable laws, if 0 < α < 2, in the framework of extreme value theory. Also, as observed in [START_REF] Davis | Point processes and partial sum convergence for weakly dependent random variables with infinite variance[END_REF], this convergence is closely connected to the convergence of the sequence of space exceedances point processes on

V N s n = n Σ i=1 ε u -1 n X i ,
towards a certain infinitely divisible point process N s . Another consequence of this convergence is the description of the asymptotics of the normalized hitting time of any dilated Borel subset of U ′ 1 with positive Λ-measure, and negligible boundary : weak convergence to a non trivial exponential law is valid. We observe that convergence of normalized hitting times to an exponential law is a well studied property in the context of the "shrinking target" problem. Here we are concerned with a special "random dynamical system" (see [START_REF] Rousseau | Hitting time statistics for observations of dynamical systems[END_REF]) associated to the affine action on R d and the hitting times of shrinking neighbourhoods of the sphere at infinity of R d considered as a weakly attractive target. The point process approach and the use of spectral gap properties allow us to deal with this geometrically more complex situation which involves a non trivial extremal index. In these studies we follow closely the approaches previously developed in ( [START_REF] Basrak | Regularly varying multivariate time series[END_REF], [START_REF] Davis | Point processes and partial sum convergence for weakly dependent random variables with infinite variance[END_REF]) in the context of extreme value theory for general stationary processes, in particular we make full use of the concepts of tail and cluster processes introduced in [START_REF] Basrak | Regularly varying multivariate time series[END_REF]. This allow us to recover, in a natural setting, the characteristic functions of the above α-stable laws, as described in [START_REF] Guivarc | On spectral properties of a family of transfer operators and convergence to stable laws for affine random walks[END_REF] if d = 1 and in [START_REF] Gao | Stable laws and spectral gap properties for affine random walk Ann[END_REF] if d > 1, completing thereby the results of ([1], [START_REF] Basrak | Regularly varying multivariate time series[END_REF], [START_REF] Davis | Point processes and partial sum convergence for weakly dependent random variables with infinite variance[END_REF]). Furthermore, in view of our results we observe that, with respect to the Q-invariant measure Λ 0 , the potential theory of the associated linear random walk enters essentially in the description of the extreme value asymptotics for the affine random walk X n , through excursions, occupation measures and capacities. For self containment reasons we have developed anew a few arguments of ( [START_REF] Basrak | Regularly varying multivariate time series[END_REF]) in our situation. However we have modified somewhat the scheme of ( [START_REF] Basrak | Regularly varying multivariate time series[END_REF], [START_REF] Segers | Approximate distributions of clusters of extremes[END_REF]) for the construction of the tail process, introducing a shift invariant measure Q Λ 0 on (V \ {0}) Z which governs the excursions at infinity of the associated linear random walk S n (ω)v. This lead us to an essentially self-contained presentation for the extremal index and the point process asymptotics. It is the use of its restriction Q Λ 1 , which allows one to express geometrically the point processes N, N s , N t , as in ( [START_REF] Basrak | Regularly varying multivariate time series[END_REF], [START_REF] Basrak | A functional limit theorem for dependent sequences with infinite variance stable limits[END_REF]).

Here is the structure of our paper. In section 2, we recall a basic result of [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF] and we define two processes of probabilistic significance. This allow us to connect the extreme values of the affine random walk to the excursions of its associated linear random walk, as in [START_REF] Basrak | Regularly varying multivariate time series[END_REF]. In view of the results in section 4, it is essential to deal with Z-indexed processes, hence to introduce the shift invariant measure Q Λ 0 . In section 3 we develop the spectral gap properties for affine random walks. In particular we deduce the multiple mixing property which plays an essential role in section 4. In section 4 we describe the new results and give the corresponding proofs. Section 5 describe briefly new proofs of the convergence to stable laws, in the context of point processes using the approach of [START_REF] Basrak | Regularly varying multivariate time series[END_REF], [START_REF] Basrak | A functional limit theorem for dependent sequences with infinite variance stable limits[END_REF], [START_REF] Davis | Point processes and partial sum convergence for weakly dependent random variables with infinite variance[END_REF]. In section 6 we show that our basic hypothesis (c-e) is "generic" in the weak topology of measures on the affine group H. We refer to ( [START_REF] Guivarc'h | Asymptotique des valeurs extrêmes pour les marches aléatoires affines[END_REF], [START_REF] Guivarc | Spectral properties and limit theorems for some random walks and dynamical systems[END_REF]) for surveys of the above results. After submission of this paper the authors became aware of the content of the book [START_REF] Buraczewski | Stochastic Models with Power Law Tails[END_REF], where closely related results are proved by different methods. We thank the referees for substancial and useful comments. We thank also J.P. Conze for suggesting the use of dynamical methods in the above context.
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The tail process and the cluster process

Homogeneity at infinity of the stationary measure

We recall condition (c-e) from [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF], for the probability λ on the affine group of

V . A semigroup T of GL(V ) = G is said to satisfy i-p if a)
T has no invariant finite family of proper subspaces b) T contains an element with a dominant eigenvalue which is real and unique. Condition i-p implies that the action of T on the projective space of V is proximal ; heuristically speaking this means that, T contracts asymptotically two arbitrary given directions to a single one, hence the situation could be compared to a 1-dimensional one. Condition i-p for T is valid if and only if it is valid for the group which is the Zariski closure of T , (see [START_REF] Onishchik | Lie groups and Algebraic groups[END_REF]). We recall that a Zariski closed subset of an algebraic group like G or H is a subset defined as the set of zeros of a family of polynomials in the coordinates. The corresponding topology is much weaker that the usual locally compact topology . In particular the Zariski closure of a subsemigroup is a subgroup which is closed in the usual topology and which has a finite number of connected components. Hence condition i-p is valid if T is Zariski dense in G (see [START_REF] Prasad | Existence of regular elements in Zariski dense subgroups[END_REF]) ; also it is valid for T if it is valid for T -1 . Below we will denote by T the closed subsemigroup generated by supp(µ), the support of µ. For g ∈ G we write γ(g) = sup(|g|, |g -1 |) and we assume logγ(g)dµ(g) < ∞. For s ≥ 0 we write k(s) = lim n→∞ ( |g| s dµ n (g)) 1/n where µ n denotes the n th convolution power of µ and we write L(µ) for the dominant Lyapunov exponent of the product

S n (ω) = A n • • • A 1 of random matrices A k (1 ≤ k ≤ n) i.e. L(µ) = lim n→∞ 1 n log|g|dµ n (g) = k ′ (0)
. We denote by r(g) the spectral radius of g ∈ G. We say that T is non arithmetic if r(T ) contains two elements with irrational ratio. Condition (c-e) is the following :

1) supp(λ) has no fixed point in V .

2) There exists α > 0 such that k

(α) = lim n→∞ (E|S n | α ) 1/n = 1.
3) There exists ε > 0 with

E(|A| α γ ε (A) + |B| α+ε ) < ∞. 4) If d > 1, T satisfies i-p and if d = 1,
T is non arithmetic. The above conditions imply in particular that L(µ) < 0, k(s) is analytic, k(s) < 1 for s ∈]0, α[ and there exists a unique stationary probability ρ for λ acting by convolution on V ; the support of ρ is unbounded. Property 1 guarantees that ρ has no atom and says that the action of supp(λ) is not conjugate to a linear action. Properties 2,3 imply that T is unbounded and are responsible for the α-homogeneity at infinity of ρ described below ; if k(s) is finite on [0, ∞[ and there exists g ∈ T with r(g) > 1, then Property 2 is satisfied. Also if d > 1, condition i-p is basic for renewal theory of the linear random walk S n (ω)v and it implies that T is non arithmetic. In the appendix we will show that if d > 1 condition (c-e) is open in the weak topology of probabilities on the affine group, defined by convergence of moments and of values on continuous compactly supported functions. Below, we use the decomposition of V \ {0} = S d-1 × R >0 in polar coordinates, where S d-1 is the unit sphere of V . We consider also the Radon measure ℓ α on R >0 (α > 0) given by ℓ α (dt) = t -α-1 dt. We recall (see [START_REF] Kesten | Random difference equations and renewal theory for products of random matrices[END_REF]) that, if (A n , B n ) n∈N is an i.i.d. sequence of H-valued random variables with law λ and L(µ) < 0, then ρ is the law of the P-a.e. convergent series

X = ∞ Σ 0 A 1 • • • A k B k+1 .
The following is basic for our analysis.

Theorem 2.1 ( see [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF], Theorem C) Assume that λ satisfies condition (c-e). Then the operator P has a unique stationary probability ρ, the support of ρ is unbounded and we have the following vague convergence on V \ {0} : lim

t→0 + t -α (t.ρ) = Λ = c(σ α ⊗ ℓ α )
where c > 0 and σ α is a probability on S d-1 . Furthermore Λ is a Q-invariant Radon measure on V \ {0} with unbounded support.

We observe that, for d > 1, if supp(λ) is compact and has no fixed point in V , L(µ) < 0, T is Zariski dense in G and is unbounded, then condition (c-e) is satisfied. For d = 1, if supp(λ) is compact, the hypothesis of ( [START_REF] De Haan | Extremal behaviour of solutions to a stochastic difference equation with applications to ARCH processes[END_REF], Theorem 1.1) is equivalent to condition (c-e).

The existence of Λ stated in the theorem implies multivariate regular variation of ρ. Since the convergence stated in the theorem is valid we say that ρ is homogeneous at infinity ; below we will make essential use of this property. We note that the fact that supp(Λ) is unbounded follows from condition 2 above, hence of the unboundness of T . Under condition (c-e), Λ gives zero mass to any proper affine subspace and σ α has positive dimension. We observe that, if the sequence (A n , B n ) n∈N is replaced by (A n , tB n ) n∈N with t ∈ R * , then the asymptotic tail measure is replaced by t.Λ, in particular the constant c is replaced by |t| α c. In subsection 2.2 below, in view of normalisation, it is natural to replace Λ by Λ 0 = c -1 αΛ ; this takes into account the magnitude of B n and implies Λ 0 (U ′ 1 ) = 1. Also, as shown in [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF], the Q-invariant Radon measure Λ 0 is extremal or can be decomposed in two extremal measures. Hence, if the action of T on S d-1 has a unique minimal subset, then Λ 0 is symmetric, supp(σ α ) is equal to this minimal subset and the shift invariant Markov measure Q Λ 0 on (V \ {0}) Z + is ergodic. Otherwise Q Λ 0 decomposes into at most two ergodic measures. Hence Λ 0 depends only of µ, possibly up to one positive coefficient. The following is a consequence of vague convergence.

Corollary 2.2 Let f be a bounded Borel function on V \ {0} which has a Λ-negligible discontinuity set and such that supp(f ) is bounded away from zero. Then we have lim

t→0 + t -α (t.ρ)(f ) = Λ(f ).

The tail process

We denote Ω = G N , Ω = G Z , and we endow Ω with the product probability Q = µ ⊗N . We define the G-valued cocycle S n (ω) where ω = (A k ) k∈Z ∈ Ω, n ∈ Z by :

S n ( ω) = A n • • • A 1 for n > 0, S n ( ω) = A -1 n+1 • • • A -1 0 for n < 0, S 0 ( ω) = Id
We consider also the random walk S n (ω)v on V \ {0}, starting from v = 0, ω ∈ Ω and we denote by Q Λ 0 the Markov measure on (V \ {0}) Z + for the random walk S n (ω)v with initial measure Λ 0 . This measure is invariant under the shift on (V \ {0}) Z + . We recall that the shift s (resp. s) on the product space D Z + (resp. D Z ) is the map defined on ω = (ω k ) k∈Z + (resp. ω = ( ω k ) k∈Z ) by s(ω) k = ω k+1 (resp. s( ω) k = ω k+1 . We recall below Proposition 4 of [START_REF] Guivarc | Recurrence and ergodicity of random walks on linear groups and homogeneous spaces[END_REF] which extends the construction of the natural extension for a non invertible transformation (see also [START_REF] Silva | On µ-recurrent non singular endomorphisms[END_REF]) ; this construction is standard for finite invariant measures. Let ∆ (resp. ∆) be the shift on Ω (resp. Ω), σ (resp. σ) the map of Ω ×

(V \ {0}) = E into itself (resp. Ω × (V \ {0}) = E) defined by σ(ω, v) = (∆ω, A 0 (ω)v) (resp. ( σ( ω, v) = ( ∆ ω, A 0 ( ω)v).
We denote by τ (resp. τ ) the shift on (V \{0}) Z + (resp. (V \{0}) Z ) and we note that Q⊗Λ 0 is σ-invariant we observe that the map (ω, v) → (S k (ω)v) k∈Z + defines the dynamical system ((V \ {0}) Z + , τ, Q Λ 0 ) as a measure preserving factor of (E, σ, Q ⊗ Λ 0 ). The construction of a natural extension has been detailed in [START_REF] Guivarc | Recurrence and ergodicity of random walks on linear groups and homogeneous spaces[END_REF] and we state the result. Proposition 2.3 (see [START_REF] Guivarc | Recurrence and ergodicity of random walks on linear groups and homogeneous spaces[END_REF]) There exists a unique σ-invariant measure Q ⊗ Λ on E with projection Q ⊗ Λ en E.

Since the map defined by

p(ω, v) = (S k (ω)v) k∈Z + (resp. p( ω, v) = (S k ( ω)v) k∈Z ) commutes with σ, τ (resp. σ, τ ) and Q ⊗ Λ 0 is σ-invariant with projection Q ⊗ Λ 0 on Ω × (V \ {0}) it follows, that the push-forward measure p( Q ⊗ Λ 0 ) = Q Λ 0 on (V \ {0}) Z , is τ -invariant and has projection Q Λ 0 = p(Q ⊗ Λ 0 ) on (V \ {0}) Z + .
The definition of Q Λ 0 is used below in the construction of the tail process (see [START_REF] Basrak | Regularly varying multivariate time series[END_REF]) of the affine random walk (X k ) k∈Z . We define the probability

Q Λ 1 by Q Λ 1 = (1 U ′ 1 • π) Q Λ 0 where π denotes the projection of (V \ {0}) Z on V \ {0}. The restriction of Λ 0 to U ′ 1 is denoted Λ 1 , hence Λ 1 (U ′ t ) = t -α if t > 1
and we denote by Q Λ 1 the Markov measure defined by Q and the initial measure Λ 1 . We note that the probability Q Λ 1 (resp Q Λ 1 ) extends to V Z + (resp V Z ) and its extension will be still denoted Q Λ 1 (resp Q Λ 1 ). In order to illustrate the above contruction, we take d = 1, hence V \ {0} = R * , Λ = c|x| -α-1 dx where α > 0 and µ satisfies log|a|dµ(a) < 0. Since |a| α dµ(a) = 1, we can denote by µ α the new probability defined by dµ α (a) = |a| -α dµ * (a) and µ * is the push forward of µ by the map a → a -1 ; it follows log|a|dµ α (a) < 0. We denote by Q * the Markov kernel defined by convolution with µ α on R * , hence

Q * Λ = Λ. Then it is easy to verify that Q ⊗ Λ 0 = Q * α ⊗ Λ 0 ⊗ Q where Q * α = µ ⊗(-N) α and E is identifixed with G -N × V × G N . Also we denote by Q * v ⊗ ε v (resp.ε v ⊗ Q v ) the Markov probability on (V \ {0}) ⊗(-Z + ) (resp. (V \ {0}) ⊗Z + ) associated to Q * (resp. Q) and the inititial measure ε v . Then we have Q Λ 1 = Q * v ⊗ ε v ⊗ Q v dΛ 1 (v). If d > 1, such formulae remain valid, with Q * equal to the adjoint operator to Q in L 2 (Λ).
We consider the probability ρ, the shift-invariant Markov measure P ρ (resp P ρ ) on V Z + (resp V Z ), where ρ is the law of X 0 and P ρ is the projection of P ρ on V Z + . Since ρ({0}) = 0, we can replace V by V \ {0} when working under P ρ . For 0 < j ≤ i we write S i j = A i • • • A j and S i+1 i = I. Expectation with respect to P or Q, will be simply denoted by the symbol E. If expectation is taken with respect to a Markov measure with initial measure ν, we will write E ν . For a family Y j (j ∈ Z) of V -valued random variables and k, ℓ in Z ∪{-∞, ∞}, we denote M ℓ k (Y ) = sup{|Y j | ; k ≤ j ≤ ℓ}. We observe that, if t > 0, condition (c-e) implies ρ{|x| > t} > 0, hence as in [START_REF] Basrak | Regularly varying multivariate time series[END_REF], we can consider the new process (Y t i ) i∈Z deduced from t -1 (X i ) i∈Z by conditioning on the set {|X 0 | > t}, for t large, under P ρ . We recall (see [START_REF] Resnick | Extreme Values, Regular Variation, and Point Processes[END_REF]) that a sequence of point processes on a separable locally compact space E is said to converge weakly to another point process if there is weak convergence of the corresponding finite dimensional distributions. The following is a detailed form in our case of the general result for multivariate jointly regularly varying stationary processes in [START_REF] Basrak | Regularly varying multivariate time series[END_REF]. The tail process appears here to be closely related to the stationary process (with infinite measure) Q Λ 0 , which plays therefore an important geometric role.

Proposition 2.4 a) The family of finite dimensional distributions of the point process

(Y t i ) i∈Z converges weakly (t → ∞) to those of the point process (Y i ) i∈Z on V given by Y i = S i Y 0 where (Y i ) i∈Z has law Q Λ 1 . b) We have Q Λ 1 {M ∞ 1 (Y ) ≤ 1} = Q Λ 1 {M -1 -∞ (Y ) ≤ 1}, lim n→∞ lim t→∞ P ρ { sup 1≤k≤n |X k | ≤ t/|X 0 | > t} = Q Λ 1 {M ∞ 1 (Y ) ≤ 1} := θ c) In particular θ ∈]0, 1[ Proof a) We observe that, since for any i ≥ 0, X i = S i X 0 + i Σ j=1 S j+1 i B j and lim t→∞ 1 t i Σ j=1
S j+1 i B j = 0, P ρ -a.e, the random vectors (t -1 X i ) 0≤i≤p+q and (t -1 S i X 0 ) 0≤i≤p+q have the same asymptotic behaviour in P ρ -law, conditionally on |X 0 | > t. Also by stationarity of P ρ , for f continuous and bounded on V p+q+1 we have

E ρ {f (t -1 X -q , • • • , t -1 X p )/|X 0 | > t} = E ρ {f (t -1 X 0 , t -1 X 1 , • • • , t -1 X p+q ) / |X q | > t}.
From above, using Corollary 2.2, Λ{|x| = 1} = 0 and the formula Λ{|x| > 1} = α -1 c, we see that the right hand side converges to :

c -1 α E{f (x, S 1 x, • • • , S p+q x)1 {|Sqx|>1} }dΛ(x) = Q Λ 0 (f 1 {S -1 q (U ′ 1 )} )
We observe that Corollary 2.2 can be used here for fixed ω ∈ Ω since the condition |X q | > t reduces the transformed expression under E ρ to a bounded function supported in S -1 q (U ′ 1 ). Hence, using stationarity of Q Λ , we get the weak convergence of the process (Y t i ) i∈Z to (Y i ) i∈Z as stated in a). b) In view of a) and Corollary 2.2, since the discontinuity sets of the functions 1 ]0

,1] (M n 1 (Y )) and 1 [1,∞[ (Y 0 ) on V n are Q Λ 1 -negligible, we have lim t→∞ P ρ { sup 1≤k≤n t -1 |X k | ≤ 1/t -1 |X 0 | > 1} = Q Λ 1 {M n 1 (Y ) ≤ 1}. Hence θ = lim n→∞ lim t→∞ P ρ { sup 1≤k≤n |X k | ≤ t/X 0 > t} = Q Λ 1 {sup k≥1 |Y k | ≤ 1}. We write Q Λ 1 {M -1 -∞ (Y ) ≤ 1} = 1 -Q Λ 1 {M -1 -∞ (Y ) > 1} and we define the random time T by T = inf{k ≥ 1 ; |Y -k | > 1} if there exists k ≥ 1 with |Y -k | > 1 ; if such a k does not exist we take T = ∞. We have by definition of T : Q Λ 1 {M -1 -∞ (Y ) > 1} = ∞ Σ k=1 Q Λ 1 {T = k}, Q Λ 1 {T = k} = Q Λ 1 {|Y -1 | ≤ 1, |Y -2 | ≤ 1, • • • , |Y -k+1 | ≤ 1 ; |Y -k | > 1}, Using τ -invariance of Q Λ , the definition of Q Λ 1 and a), we get Q Λ 1 {T = k} = Q Λ 1 {|Y 1 | ≤ 1, • • • , |Y k-1 | ≤ 1 ; |Y k | > 1}, Q Λ 1 {M -1 -∞ (Y ) > 1} = ∞ Σ k=1 Q Λ 1 {|Y 1 | ≤ 1, • • • , |Y k-1 | ≤ 1 ; |Y k | > 1} = Q Λ 1 {M ∞ 1 (Y ) > 1}. The formula Q Λ 1 {M -1 -∞ (Y ) ≤ 1} = Q Λ 1 {M ∞ 1 (Y ) ≤ 1} follows. c)The formula θ = Q Λ 1 {M ∞ 1 (Y ) ≤ 1} and the form of Y i (i ≥ 0) given in a) imply θ = E( 1 {sup i≥1 |S i x| ≤ 1} dΛ 1 (x)) ≤ 1. The condition θ = 1 would imply for any i ≥ 1 : |S i x| ≤ 1, Q ⊗ Λ 1 -a.e., hence {0} ⊂ supp(S i Λ 1 ) ⊂ U 1 . This would contradict the fact that supp(Λ 1 ) is unbounded, hence we have θ < 1. The condition θ = 0 implies Q Λ 1 {M ∞ 1 (Y ) ≤ 1} = 0 and, since Y j = S j Y 0 , we have |S j y| > 1 Q Λ 1 -a.e for some j > 1. Since Λ is Q-invariant,
the corresponding hitting law of supp(Λ 1 ) is absolutely continuous with respect to Λ 1 . Then, using Markov property we see that S k (ω)y returns to supp(Λ 1 ) infinitely often Q Λ 1 -a.e. Since condition (c-e)implies lim j→∞ |S j y| = 0, Q-a.e. for any y = 0, this is a contradiction.

Anticlustering property

We will show in section 2.4 that, asymptotically, the set of large values of X k consists of a sequence of localized elementary clusters. An important sufficient condition for localization (see [START_REF] Davis | Point processes and partial sum convergence for weakly dependent random variables with infinite variance[END_REF]) is proved in Proposition 2.5 below and will allow us to show the existence of a cluster process, following [START_REF] Basrak | Regularly varying multivariate time series[END_REF]. It is called anticlustering and is used in section 4 to decompose the set of values of

X k (1 ≤ k ≤ n) into successive quasi-independent blocks. For k ≤ ℓ in Z we write M ℓ k = sup k≤i≤ℓ |X i | , R ℓ k = ℓ Σ i=k P ρ {|X i | > u n /|X 0 | > u n },
where u n = (α -1 cn) 1/α . For k > 0, we write also

M k = M k 1 . We observe that M ℓ k ≤ ℓ Σ k |X i |. Let r n be any sequence of integers with r n = o(n), lim n→∞ r n = ∞. Then we have P ρ {M rn 1 > u n } ≤ r n P ρ {|X 0 | > u n }, hence the homogeneity of ρ at infinity gives lim n→∞ P ρ {M rn 1 > u n } = 0. The condition r n = o(n) allows us to localize the influence of one large value of X k (1 ≤ k ≤ n).
It follows that the event {M rn 1 > u n } can be considered as "rare". The homogeneity at infinity of ρ and the arbitrariness of r n allow us to restrict the study to the sequence u n instead of tu n (t > 0). The following is based on the homogeneity at infinity of ρ, the inequality 0

< k(s) < 1 if 0 < s < α. Proposition 2.5 Assume r n ≤ [n s ] with 0 < s < 1, lim n→∞ r n = ∞. Then lim m→∞ lim n→∞ R rn m = 0. In particular lim m→∞ lim n→∞ P ρ {sup(M -m -rn , M rn m ) > u n /|X 0 | > u n } = 0, hence the random walk X n satisfies anticlustering. Furthermore we have Q Λ 1 { lim |t|→∞ |Y t | = 0} = 1.
Proof We observe that :

P ρ {M rn m > u n /|X 0 | > u n } ≤ R rn m , P ρ {M -m -rn > u n /|X 0 | > u n } ≤ R -m -rn = R rn m
where we have used stationarity of X k in the last equality. Hence it suffices to show

lim m→∞ lim n→∞ R rn m = 0. For i ≥ 0 we have X i = S i X 0 + i Σ j=1 S j+1 i B j where S i , X 0 are in- dependent, as well as X 0 , i Σ j=1 |S j+1 i B j |. We write I i n = P ρ {|X i | > u n /|X 0 | > u n }, J i n = P ρ {|S i X 0 | > 2 -1 u n /|X 0 | > u n }, K i n = P ρ { i Σ j=1 |S j+1 i B j | > 2 -1 u n /|X 0 | > u n }, hence R rn m = rn Σ i=m I i n ≤ rn Σ i=m J i n + rn Σ i=m K i n .
We are going to show lim

m→∞ lim n→∞ rn Σ i=m J i n = lim m→∞ lim n→∞ rn Σ i=m K i n = 0.
We apply Chebyshev's inequality to the χ-moments of X n with χ ∈]0, α[. We have :

J i n ≤ (2u -1 n ) χ E ρ (|S i X 0 | χ /|X 0 | > u n } ≤ (2u -1 n ) χ E(|S i | χ )E ρ (|X 0 | χ /|X 0 | > u n ),
where independance of S i and X 0 has been used in the last formula. Since the law of X 0 is α-homogeneous at infinity we have :

lim x→∞ x -χ E ρ (|X 0 | χ /|X 0 | > x) = α(α -χ) -1 , lim sup n→∞ J i n ≤ 2 χ (E|S i | χ )α(α -χ) -1 . It follows lim sup n→∞ ( rn Σ i=m J i n ) ≤ 2 χ α(α -χ) -1 E( ∞ Σ i=m |S i | χ ), hence lim m→∞ lim n→∞ rn Σ i=m J i n = 0, since lim i→∞ (E|S i | χ ) 1/i = k(χ) < 1.
Also, using independence of X 0 and

i Σ j=1 |S j+1 i B j | : K i n = P ρ { i Σ j=1 |S j+1 i B j | > 2 -1 u n } ≤ (2u -1 n ) χ E( i Σ j=1 |S j+1 i B j |) χ ≤ (2u -1 n ) χ E( ∞ Σ j=1 |S j-1 B j |) χ .
From above using independance of S j-1 and

B j we know that R 0 = ∞ Σ 1 |S j-1 B j | has finite χ-moment if χ ≤ 1.
Then by Chebyshev's inequality :

rn Σ i=m K i n ≤ (2u -1 n ) χ r n E(R χ 0 ). Also if χ ∈ [1, α[
we can use Minkowski's inequality and independance in order to show the finiteness or

E(|R 0 | χ ). Since 0 < s < 1, we can choose χ ∈]0, α[ such that α -1 χ > s, hence lim n→∞ r n u -χ n = 0.
Then, for any fixed m : lim 

n→∞ rn Σ i=m K i n = 0. From [13] we know that, since 0 < χ < α, we have k(χ) < 1, hence E(|S i | χ ) decreases exponentially fast to zero ; then the series E( ∞ Σ i=1 |S i | χ ) converges and lim m→∞ E( ∞ Σ i=m |S i | χ ) = 0, lim m→∞ lim n→∞ ( rn Σ i=m J i n ) = 0.
P ρ {sup(M -m -rn , M rn m ) > u n /|X 0 | > u n } = 0
shows that, given ε > 0, u > 0 and using Proposition 2.4, there exists m ∈ N such that for r ≥ m we have

Q Λ 1 { sup m≤|j|≤r |Y j | ≥ u} ≤ ε. Hence Q Λ 1 { lim |j|→∞ |Y j | = 0} = 1.

The cluster process

In general, for a stationary V -valued point process with an associated tail process, the properties of anticlustering and positivity of the extremal index θ for a sequence r n = o(n) with lim n→∞ r n = ∞, imply the existence of the cluster process (see [START_REF] Basrak | Regularly varying multivariate time series[END_REF]). For self containment reasons we give in Proposition 2.6 below a proof of this fact, using arguments of [START_REF] Basrak | Regularly varying multivariate time series[END_REF] ; this gives us also the convergence of θ n defined by θ

-1 n = E ρ { rn Σ 1 1 [un,∞[ (|X k |)/M rn > u n } to θ defined in Proposition 2.4. We note that the condition rn Σ 1 1 [un,∞[ (X k ) > 0 implies M rn > u n , hence we have θ -1 n = r n (P ρ {|X 0 | > u n })(P ρ {M rn > u n }) -1 .
For later use we include also in the statement the formula of ([2], Theorem 4.3) giving the Laplace functional for the cluster process restricted to U ′ 1 . We recall that the Laplace functional of a random measure η on a locally compact separable metric space E, where the space M + (E) of positive Radon measures on E is endowed with a probability m, is given by ψ η (f ) = exp(-ν(f ))dm(ν) with f continuous non negative and supp(f ) compact. We recall also that weak convergence of a sequence of point processes is equivalent to convergence of their Laplace functionals. We denote by r n a sequence as above and we consider the sequence of point processes

C n = rn Σ i=1 ε u -1 n X i , on E = V \ {0} under P ρ and conditionally on M rn = M rn 1 > u n . In particular θ -1 n = E ρ (C n (U ′ 1 )
). Using the tail process (Y n ) n∈Z defined in Proposition 2.4 above, we show that C n converges weakly to the point process C ; C is a basic quantity for the asymptotics of X n and is called the cluster process of X n . As shown in Proposition 2.6 below, the law of C can be expressed in terms of Q Λ 1 and depends only of µ, Λ 1 . By definition, C selects the large values of the process X n and describes the local multiplicity of large values in a typical cluster for the process X n . We denote

F = (V \{0}) Z , F -= {v ∈ F ; sup k≤-1 |v k | ≤ 1}. Since lim |i|→∞ Y i = 0, Proposition 2.5 implies Q Λ 1 ( F -) > 0, hence we can define the conditional probability Q Λ 1 on F -by Q Λ 1 = ( Q Λ 1 ( F -)) -1 (1 F -Q Λ 1 ). Proposition 2.6 below implies that the law of C is Q Λ 1 , hence we can define a natural version of C as C = Σ j∈Z ε Z j where Z j (v) is defined as the j-projection of v = (v k ) k∈Z ∈ F -, where F -is endowed with the probability Q Λ 1 .
We denote by π ω v the occupation measure of the random walk S n (ω)v on V \ {0}, given by

π ω v = ∞ Σ 0 ε S i (ω)v . For v fixed, the mean measure of π ω v is the potential measure ∞ Σ 0 Q i (v, .
) of the Markov kernel Q ; if L(µ) < 0 the asymptotics (|v| → ∞) of this Radon measure are described in [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF]. The formula below for the Laplace functional of C involves the occupation measure π ω v of the linear random walk S n (ω)v and Λ 1 ; it plays an essential role below. With the above notations we have the. Proposition 2.6 Under P ρ , the sequence of point processes C n converges weakly to a point process C. The law of the point process C is equal to the Q Λ 1 -law of the point process

Σ j∈Z ε S j x conditional on sup j≤-1 |S j x| ≤ 1. In particular we have for C = Σ j∈Z ε Z j with Z j as above Q Λ 1 { lim |i|→∞ |Z i | = 0} = 1, Q Λ 1 {sup i≥1 |Z i | ≥ 1} = 1.
Furthermore the sequence θ n defined above converges to the positive number θ and :

sup n∈N E ρ {( rn Σ 1 1 [un,∞[ |X i |) 2 /M rn > u n } < ∞, θ -1 = E Λ 1 ( Σ j∈Z 1 U ′ 1 (Z j )) < ∞. If supp(f ) ⊂ U ′ 1 , the Laplace functional of C on f is given by 1 -θ -1 E Λ 1 [(expf (v) -1)exp(-π ω v (f ))].
Proof Let f be a non negative and continuous function on

V \ {0} which is compactly supported, hence f (x) = 0 if |x| ≤ δ with δ > 0. We write for k ≤ ℓ with k, ℓ ∈ Z ∪ {±∞}, M ℓ k (Y ) = sup k≤j≤ℓ |Y j | with Y j = S j Y 0 . For k, ℓ, f as above we write C ℓ k = exp(- ℓ Σ k f (u -1 n X j )), C ℓ k (Y ) = exp(- ℓ Σ k f (Y j )
) and we observe that

C ℓ k ≤ 1.
We fix m > 0 and we take n so large that the sequence r n of the above proposition satisfies r n > 2m + 1. When convenient we write

r n = r, hence E ρ (C r 1 ; M r 1 > u n ) = r Σ 1 E ρ (C r 1 ; M j-1 1 ≤ u n < X j ). We observe that, for r -m ≥ j > m + 1, we have C r 1 = C j+m j-m except if sup(M j-m-1 1 , M r j+m+1 ) > u n δ. We are going to compare E ρ (C r 1 ; M r 1 > u n ) and (r -2m) E ρ (C m -m ; M -1 -m-1 ≤ u n < |X 0 |) using those j ′ s which satisfy m + 1 < j ≤ r -m and we denote by ∆ n,m their difference. If we write ∆ n,m (j) = E ρ (C r 1 ; M j-1 1 ≤ u n < |X j |) -E ρ (C j+m j-m ; M j-1 j-m-1 ≤ u n < |X j |
), then we have using stationarity and

C ℓ k ≤ 1 : |∆ n,m | ≤ r-m Σ m+1 |∆ n,m (j)| + 2m P ρ {|X 0 | > u n }.
Using stationarity of X n with respect to P ρ and the above observation we have

|∆ n,m (j)| ≤ P ρ {sup(M -m-1 -r , M r m+1 ) > u n δ; |X 0 | > u n }. Also using the formula θ n = (r n P ρ {|X 0 | > u n }) -1 P ρ {|M r 1 | > u n }, we have θ n E ρ (C r 1 /M r 1 > u n ) = r -1 n E ρ (C r 1 ; M r 1 > u n )P ρ {|X 0 | > u n }) -1 .
Then the use of stationarity and the above estimations for ∆ n,m (j) and ∆ n,m give the basic relation,

|θ n E ρ (C r 1 /M r 1 > u n ) -r -1 (r -2m) E ρ (C m -m ; M -1 -m-1 ≤ u n /|X 0 | > u n )| ≤ P ρ {sup(M -m-1 -r , M r m+1 ) > u n δ/|X 0 | > u n } + 2m r -1 n . Using Proposition 2.4, we see that the discontinuity set of the function 1 ]0,1] (M -1 -m-1 (Y )) is Q Λ 1 -negligible, hence using again Proposition 2.4, lim n→∞ E ρ (C m -m ; M -1 -m-1 ≤ u n /|X 0 | > u n ) = E Λ 1 (C m -m (Y ); M -1 -m-1 (Y ) ≤ 1). Also lim n→∞ r -1 n (r n -2m) = 1 since lim n→∞ r n = ∞. We observe that, by definition of θ n and C r 1 ≤ 1, we have θ n E ρ (C r 1 /M r 1 > u n ) ≤ θ n ≤ 1. The anticlustering property of X n implies that the limiting values (n → ∞) of P ρ {sup(M -m-1 -r , M r m+1 ) > δu n /|X 0 | > u n } are bounded by ε m > 0 with lim m→∞ ε m = 0. Then the above inequality implies lim sup n→∞ |θ n E ρ (C r 1 /M r 1 > u n ) -E Λ 1 (C m -m (Y ); M -1 -m-1 (Y ) ≤ 1)| ≤ ε m + 2m r -1 n . Since lim m→∞ E Λ 1 (C m -m (Y ); M -1 -m-1 (Y ) ≤ 1) = E Λ 1 (exp(- ∞ Σ -∞ f (Y j )) ; M -1 -∞ (Y ) ≤ 1) := I, we have lim n→∞ θ n E ρ (C r 1 /M r 1 > u n ) = I.
In particular with f = 0 and using Proposition 2.4, we get lim

n→∞ θ n = Q Λ 1 {M -1 -∞ (Y ) ≤ 1} = θ > 0.
Then we get lim

n→∞ E ρ (C rn 1 /M rn 1 > u n ) = θ -1 I = E Λ 1 (exp(- ∞ Σ -∞ f (Y j ))/M -1 -∞ (Y ) ≤ 1
) hence the first assertion, using Proposition 2.4. The expression of (Z j ) j∈N in terms of F -and Q Λ 1 explained above and the relation lim

|n|→∞ Y n = 0, Q Λ 1 -a.e. stated in Proposition 2.5 gives Q Λ 1 { lim i→∞ Z i = 0} = 1.
Since the discontinuity set of 1 U ′ 1 is Λ 1 -negligible, using the weak convergence of C n to C, the continuous mapping theorem (see [START_REF] Resnick | Extreme Values, Regular Variation, and Point Processes[END_REF]) and the convergence of θ -1 n to θ -1 , we get the formula θ

-1 ≥ E Λ 1 ( Σ j∈Z 1 U ′ 1 (Z j )).
To go further we write

W n = rn Σ 1 1 [un,∞[ (X i
) and we observe that the stated formula for lim

n→∞ θ -1 n is a consequence of the uniform boundedness of E ρ {W 2 n /M rn > u n }. We have E ρ {W 2 n /M rn > u n } = θ -1 n + 2 Σ 1≤i<j≤rn P ρ {|X i | > u n , |X j | > u n /M rn > u n },
hence using the convergence of θ -1 n to θ -1 , we see that it suffices to bound the second term in the above formula. Writing j -i = p, stationarity gives

P ρ {|X i | > u n , |X j | > u n /M rn > u n } = P ρ {|X 0 | > u n , |X p | > u n }(P ρ {M rn > u n }) -1 . We know already that θ -1 = lim n→∞ (r n P ρ {|X 1 | > u n })(|P ρ (M rn > u n ))
-1 and we will now use a calculation similar to the one in the proof of Proposition 2.5. In particular we have :

P ρ {|X 0 | > u n , |X p | > u n } ≤ P ρ {|X 0 | > u n , |S p X 0 | > 2 -1 u n } + P ρ {|X 0 | > u n , p Σ 1 |S j+1 p B j | > 2 -1 u n }.
With 0 < χ < α we have using independance :

P ρ {|X 0 | > u n , |S p X 0 | > 2 -1 u n } ≤ 2 χ u -χ n E(|S p | χ )E ρ (|X 0 | χ 1 {|X 0 |>un}
). Since the law of X 0 is homogeneous at infinity, the right hand side is bounded by

C(χ)P ρ {|X 0 | > u n }E(|S p | χ ).
On the other hand we have

P ρ {|X 0 | > u n , |S p | > 2 -1 u n } = P ρ {|X 0 | > u n }P ρ {|S p | > 2 -1 u n } ≤ (2u -1 n ) χ (E|S p | χ )(P ρ {|X 0 | > u n }) ≤ C ′ (χ)u -χ n P ρ {|X 0 | > u n } It follows that P ρ {|X p | > u n /|X 0 | > u n } is bounded by C ′′ (χ)(u -χ n + E(|S p | χ )), hence Σ 1≤i<j≤rn P ρ {|X i > u n , |X j | > u n /M r>n } is bounded by D(χ)r 2 n ( ∞ Σ 1 (E|S p | χ + u -χ n )(P ρ {|X 0 | > u n })(P ρ {M rn > u n }) -1 ≤ D ′ (χ)r n ( ∞ Σ 1 E(|S p | χ ), since r n (P ρ {|X 0 | > u n })(P ρ {M rn > u n }) -1 converges to θ -1 . Then the uniform boundedness of E ρ (W 2 n /M rn > u n ) will follow if r n u -χ n is bounded.
In view of the form of r n , u n , this amounts to the boundedness of n s n -χ/α with s < 1. Hence it suffices to choose χ with αs ≤ χ < α in order to get the result. The last formula is proved in ([2], Theorem 4.1). A different proof is sketched in section 5.

A spectral gap property and multiple mixing

We denote X x k (k ∈ N) the affine random walk on V governed by λ, starting from x ∈ V and we write P ϕ(x) = ϕ(hx)dλ(h) = E(ϕ(X x 1 )). In this section we use a spectral gap property for a family of operators associated to the process X k (1 ≤ k ≤ n), in order to show the quasi-independance of its successive blocks of length r n , where r n is defined in subsection 2.3.

Spectral gap property

It was proved in ([10], Theorem 1) that, given a probability λ on H which satisfies condition (c-e), the corresponding convolution operator P on V satisfies a "Doeblin-Fortet" inequality (see [START_REF] Ionescu-Tulcea | Théorie ergodique pour des classes d'opérations non complètement continues[END_REF]) for suitable Banach spaces C χ and H χ,ε,κ defined below. In particular, it will be essential here to use that the operator P on H χ,ε,κ is the direct sum of a 1dimensional projection π and a contraction U where π and U commute, hence we give also a short proof of this fact below. In order to obtain the relevant multiple mixing property, we show a global Doeblin-Fortet inequality for a family of operators closely related to P . For χ, κ ≥ 0, we consider the weights ω, η on V defined by ω(x) = (1+|x|) -χ , η(x) = (1+|x|) -κ . The space C χ is the space of continuous functions ϕ on V such that ϕ(x)ω(x) are bounded and we write |ϕ| χ = sup x∈V |ϕ(x)|ω(x).

For ε ∈]0, 1] we write :

[ϕ] ε,κ = sup

x =y |x -y| -ε η(x)η(y)|ϕ(x) -ϕ(y)|, ϕ = |ϕ| χ + [ϕ] ε,κ ,
and we denote by H χ,ε,κ the space of functions ϕ on V such that ϕ < ∞. We observe that C χ and H χ,ε,κ are Banach spaces with respect to the norms |.| χ and . defined above. Also H χ,ε,κ ⊂ C χ with compact injection if κ + ε < χ. We observe that the operator P acts continuously on C χ and H χ,ε,κ . For a Lipschitz function f on V with non negative real part we define the Fourier-Laplace operator P f by P f ϕ(x) = P (ϕexp(-f )). In [START_REF] Gao | Stable laws and spectral gap properties for affine random walk Ann[END_REF], spectral gap properties for Fourier operators were studied for

f (v) = i < x, v >, x ∈ V .
Here the calculations are analogous but f will be Lipschitz and bounded. We observe that for functions f k (1 ≤ k ≤ n) and ϕ as above we have :

P f 1 P f 2 • • • P fn ϕ(x) = E{ϕ(X x n )exp(- n Σ k=1 f k (X x k ))} Also we note that, for f bounded, with k(f ) = sup x =y |x -y| -1 |f (x) -f (y)| < ∞ |x -y| -ε |f (x) -f (y)| ≤ inf x =y (2|f | ∞ |x -y| -ε , k(f )|x -y| 1-ε ) ≤ 2|f | ∞ + k(f ) := k 1 (f ), For u, v with non negative real parts we have |exp(-u) -exp(-v)| ≤ |u -v|. In particular, for f as above, |exp(-f (x)) -exp(-f (y))| ≤ k 1 (f ))|x -y| ε .
It follows that multiplication by exp(-f ) acts continuously on C χ , H χ,ε,κ , hence P f is a bounded operator on C χ and H χ,ε,κ . For m, γ > 0 we denote by O(m, γ) the set of operators 

P f such that |f | ∞ ≤ m and k(f ) ≤ γ, hence k 1 (f ) ≤ 2m + γ. For p ∈ N let O p (m,
≤ χ < 2κ < 2κ + ε < α, there exists C(m, γ) ≥ 1 such that for any Q ∈ O(m, γ) the norm Q of Q on H χ,ε,κ is bounded by C(m, γ). Furthermore there exists r ∈ [0, 1[, p ∈ N, D > 0 such that for any Q ∈ O p (m, γ), ϕ ∈ H χ,ε,κ : Qϕ ≤ r ϕ + D|ϕ| χ .
In particular O(m, γ) is a bounded subset of End(H χ,ε,κ ) and C(m, γ), r, D depend only of m, γ.

The proof depends on the two lemmas given below, and of calculations analogous to those of [START_REF] Gao | Stable laws and spectral gap properties for affine random walk Ann[END_REF] for Fourier operators.

Lemma 3.2 O(m, γ) is a bounded subset of End(C χ ). Proof Since Re(f ) ≥ 0 we have for Q ∈ O ℓ (m, γ) with ℓ ∈ N , ϕ ∈ C χ : |Qϕ| χ ≤ |P ℓ |ϕ|| χ , hence it suffices to show that the set {P ℓ ; ℓ ∈ N} is bounded in End(C χ ). We have for ϕ ≥ 0, with M = P ℓ : ω(x)M ϕ(x) = ω(x)E(ϕ(X x ℓ )) ≤ |ϕ| χ E[ω(x)ω -1 (X x ℓ )]. If χ ≤ 1, using independance and the expression of X x ℓ we get ω(x)M ϕ(x) ≤ |ϕ| χ (1 + E|S ℓ | χ + ℓ Σ 1 (E|S k+1 ℓ | χ )| (E(|B k | χ ), hence sup x∈V ω(x)M ϕ(x) ≤ |ϕ| χ (1 + sup ℓ≥1 E|S ℓ | χ + (E(|B 1 | χ )( ∞ Σ 1 E|S ℓ | χ ).
Since χ < α, we have lim

ℓ→∞ (E|S ℓ | χ ) 1/ℓ = k(χ) < 1, hence sup x∈V ω(x)|M ϕ(x)| is bounded by C χ |ϕ| χ with C χ < ∞.
If χ > 1, we use Minkowski's inequality in L χ and write :

ω(x)|M ϕ(x)| ≤ |ϕ| χ (1 + (E|S ℓ | χ ) 1/χ + ℓ Σ 1 E(|S k+1 ℓ | χ ) 1/χ (E(|B k | χ ) 1/χ )
As above we get sup

x∈V ω(x)|M ϕ(x)| ≤ C χ |ϕ| χ with C χ < ∞. Lemma 3.3 a) For β ∈ [0, α[ we have sup n E|X 0 n | β < ∞. b) For β 1 , β > 0 and β + β 1 < α, we have lim n→∞ (E(|S n | β 1 |X 0 n | β )) 1/n < 1. c) If χ + ε < α the quantity C n = E( n Σ 1 |S i | ε (1 + |S n | + |X 0 n |) χ ) is bounded. Furthermore, if 2κ + ε < α, then D n = E(|S n | ε (1 + |S n | + |X 0 n |) 2κ ) satisfies lim n→∞ ( D n ) 1/n < 1. Proof a) We write |X 0 n | β = | n Σ 1 S k+1 n B k | β . If β ≤ 1 we get : E(|X 0 n | β ) ≤ n Σ 1 (E|S k+1 n | β )(E|B k | β ) = (E|B 1 | β )( n-1 Σ 0 E|S j | β ) Since lim j→∞ (E|S j | β ) 1/j < 1 if β < α we get sup n≥0 E|X 0 n | β ≤ (E|B 1 | β )( ∞ Σ 0 E|S j | β ) < ∞.
If β > 1, we use Minkowski's inequality in L β as in the proof of Lemma 3.2. b) Using Hölder's inequality we have

E(|S n | β 1 |X 0 n | β ) ≤ (E|S n | β+β 1 ) β 1 /β+β 1 )E|X 0 n | β+β 1 ) β/β+β 1
), hence the result follows from a) and the fact that lim n→∞

(E|S n | β+β 1 ) 1/n < 1 since β + β 1 < α.
c) The assertions follows from easy estimations as in b) and the conditions χ + ε < α, 2κ + ε < α.

Proof of Theorem 3.1 We start with a basic observation. For n > 0 we have

X x n = h n • • • h 1 x = S n x + n Σ 1 S k+1 n B k , hence |X x n -X y n | = |S n (x -y)| ≤ |S n ||x -y|. It follows for k(f ) ≤ γ, x and y in V : |f (X x n ) -f (X y n )| ≤ γ|S n ||x -y|.
We write

M = T 1 T 2 • • • T n with T i = P f i ∈ O(m, γ) 1 ≤ i ≤ n. We have using Markov property, M ϕ(x) -M ϕ(y) = I n (x, y) + J n (x, y) with I n (x, y) = E([exp(- n Σ 1 f i (X x i )) -exp(- n Σ 1 f i (X y i ))ϕ(X x n )]) J n (x, y) = E((exp(- n Σ 1 f i (X y i )))(ϕ(X x n ) -ϕ(X y n ))) Since Re(f ) ≥ 0 we have : |exp(- n Σ 1 f i (X x i )) -exp(- n Σ 1 f i (X y i ))| ≤ n Σ 1 |f i (X x i ) -f i (X y i )| ≤ (2m + γ) n Σ 1 |X x i -X y i | ε .
The basic observation gives :

I n (x, y) ≤ (2m + γ)|ϕ| χ |x -y| ε C n (x) with C n (x) = E( n Σ 1 |S i | ε (1 + |X x n |) χ J n (x, y) ≤ E|ϕ(X x n ) -ϕ(X y n )| ≤ [ϕ] ε,κ |x -y| ε D n (x, y), with D n (x, y) = E(|S n | ε (1 + |X x n |) κ (1 + |X y n |) κ ). Using symmetry of |M ϕ(x) -M ϕ(y)|, χ ≤ 2κ and |X x n | ≤ |S n ||x| + |X 0 n |, we get [M ϕ] ε,κ ≤ (2m + γ)|ϕ| χ C n + [ϕ] ε,κ D n where C n , D n are as in Lemma 3.3. Using Lemma 3.3 we can choose p ∈ N such that r = D p < 1, hence for M ∈ O p (m, γ), [M ϕ] ε,κ ≤ k 1 (f ) C p |ϕ| χ + r[ϕ] ε,κ . Using Lemma 3.2 we see that there exists C χ ≥ 1 such that |M ϕ| χ ≤ C χ |ϕ| χ for M ∈ O(m, γ), ϕ ∈ C χ . Then for M ∈ O p (m, γ), ϕ ∈ H χ,ε,κ and p as above : M ϕ ≤ r ϕ + (C χ + 2m + γ) C p |ϕ| χ = r ϕ + D|ϕ| χ with D > 0.
For the last assertion, assume M ∈ O n (m, γ) and write n = pn 1 + n 0 with n 1 ∈ N, 0 ≤ n 0 < p. We have

M = Q 1 • • • Q n 1 R 1 • • • R n 0 with Q i ∈ O p (m, γ) (1 ≤ i ≤ p) and R j ∈ O(m, γ) (0 ≤ j ≤ n 0 ), hence R j ≤ C χ (m, γ). Finally we get M ϕ ≤ C χ (m, γ) n 0 r n 1 ϕ + D|ϕ| χ (r n 1 -1 + C χ n 1 -2 Σ 0 r k ) , M ≤ C χ (m, γ) p 1 + D(1 + C χ (1 -r) -1 ) := C(m, γ
), which gives the result.

For χ ∈]0, α[ we consider the function W χ on V defined by W χ (x) = |x| χ . In Proposition 3.4 below we show that, due to the inequality 0 < k(χ) < 1 for χ ∈]0, α[, P satisfies a drift condition (see [START_REF] Meyn | Markov chains and stochastic stability[END_REF]) with respect to W χ . The same inequality implies also a spectral gap property in the Banach space H χ,ε,κ considered in Proposition 3.4 below. For reader's convenience we recall the Doeblin-Fortet spectral gap theorem (see [START_REF] Ionescu-Tulcea | Théorie ergodique pour des classes d'opérations non complètement continues[END_REF]). Let (F, |.|) be a Banach space, (L, . ) another Banach space with a continuous injection L → F . Let P be a bounded operator on F , which preserves L and satisfies the following conditions 1) The sequence of operator norms |P n | in is bounded.

2) The injection L → F is compact.

3) There exists an integer k and r ∈ [0, 1[, D > 0 such that for any v in L :

P k v ≤ r v + D|v| 4) If v n ∈ L is a sequence and v ∈ F are such that v n ≤ 1 and lim n→∞ |v -v n | = 0, there v ∈ L and v ≤ 1
Then in restriction to L, P is the commuting direct sum of a finite dimensional operator π with unimodular spectral values and a bounded operator U with spectral radius r(U ) < 1. We observe that, frequently the norm . on L is given as a sum of a semi-norm [.] and the norm |.| ; then the inequality in condition 3 can be replaced by [P k v] ≤ r[v] + D|v| such an inequality is called Doeblin-Fortet's inequality. Our substitute for the strong mixing property (see [START_REF] Resnick | Extreme Values, Regular Variation, and Point Processes[END_REF]) uses regularity of functions and is the following. Proposition 3.4 For any β ∈]0, 1] there exists ℓ ∈ N and b ≥ 0 such that P ℓ W χ ≤ βW χ + b for n ≥ ℓ. In particular the sequence of norms |P n | χ is bounded. Furthermore, if 0 < κ + ε < χ < 2κ < 2κ + ε < α, the injection of H χ,ε,κ into C χ is compact and on H χ,ǫ,κ , the Markov operator P satisfies the direct sum decomposition P = ρ ⊗ 1 + U where r(U ) < 1 and U (ρ ⊗ 1) = (ρ ⊗ 1)U = 0 If α = 1 and 0 < ε < χ < 1, κ = 0, the same result is valid.

Proof We verify successively the four above conditions. First we observe that for any

x ∈ V , |X x n -X 0 n | ≤ |S n ||x|, |X x n | ≤ |X 0 n | + |S n ||x|. If χ ≤ 1, it follows E|X x n | χ ≤ E|X 0 n | χ + (E|S n | χ )|x| χ . Using the expression of X 0 n and independence we get E|X 0 n | χ ≤ (E|B 1 | χ )( ∞ Σ 0 E|S k | χ ). Since χ < α, we have E(|X 0 n | χ ) ≤ b < ∞.
On the other hand we have lim

n→∞ (E(|S n | χ )) 1/n = k(χ) <
1, hence for some ε > 0 k(χ) + ε < 1, and for n ≥ ℓ,

|S n | χ ≤ β ′ ≤ (k(χ) + ε) n . It follows, for n ≥ ℓ : P n W χ (x) = E|X x n | χ ≤ β ′ W χ (x) + b If χ > 1we use Minkowski's inequality, hence : E|X x n | χ ≤ 2 χ (E|X 0 n | χ + E|S n | χ |x| χ ) As above, using k(χ) + ε < 1 and n ≥ ℓ we get E(|X x n | χ ) ≤ 2 χ b + 2 χ (k(χ) + ε) n |x| χ , P n W χ ≤ β ′′ W χ + b ′ with β ′′ < 1, b ′ < ∞.
We take β = β ′ or β ′′ depending on χ ≤ 1 or χ > 1. This allow us now to show that |P n | χ is bounded. We observe that |ϕ(x)| ≤ (1 + W (x)) χ |ϕ| χ , hence the positivity of P and P 1 = 1 implies for n ∈ N,

|P n ϕ|(x) ≤ |ϕ| χ P n (2 χ + 2 χ W χ (x)) = |ϕ| χ (2 χ + 2 χ P n W χ (x)).
From above we get

|P n ϕ|(x) ≤ |ϕ| χ [2 χ + 2 χ (b + βW χ (x))].
Then the definition of

|P n | χ gives |P n | χ ≤ 2 χ (1 + b + β), hence the boundedness of |P n | χ .
In order to show that if κ + ε < χ, the injection of H κ,ε,χ in F = C χ is compact, we use Ascoli's argument and consider a large ball U t with t > 0. We consider ϕ n ∈ H κ,ε,χ with ϕ n || < 1. The definition on ϕ n implies for any x, y ∈ U t |ϕ n (x)| ≤ (1 + t) χ , |ϕ n (x) -ϕ n (y)| ≤ (1 + t) 2κ |x -y| ε Hence, the restrictions of ϕ n to U t are equicontinuous and we can find a convergent subsequence ϕ n k . Using the diagonal procedure and a sequence t i with lim i→∞ |t i | = ∞, we get a convergent subsequence ϕ n j ∈ H κ,ε,χ with limit a continuous function ϕ on V . From above we have |ϕ n j (x) -ϕ n j (0)| ≤ (1 + |x|) κ |x| ε . hence for some A, B > 0, since κ + ε < χ

|ϕ n j (x) -ϕ n j (0)| ≤ (1 + |x|) κ+ε , |ϕ(x)| ≤ A + B(1 + |x|) χ .
It follows that ϕ ∈ C χ . The above inequalities for ϕ n j imply

|(ϕ n j (x) -ϕ n j (0)) -(ϕ(x) -ϕ(0))| ≤ 2(1 + |x|| κ+ε .
Then the convergence of ϕ n j to ϕ, implies with

ε n j = |ϕ n j (0) -ϕ(0)|, |ϕ n j (x) -ϕ(x)| ≤ ε n j + 2(1 + |x|) κ+ε , (1 + |x|) -χ |ϕ n j (x) -ϕ(x)| ≤ ε n j + 2(1 + |x|) κ+ε-χ
with lim j→∞ ε n j = 0. Also for t sufficiently large, and |x| ≥ t, since κ + ε < χ we have (1 + |x|) κ+ε-χ ≤ ε n j . Furthermore, the uniform convergence of ϕ n j to, ϕ on U t implies lim j→∞ (sup{|ϕ n j (x) -ϕ(x)| ; |x| ≤ t}) = 0. The convergence of |ϕ n j -ϕ| χ to zero follows.

The convergence of ϕ n j (x) to ϕ(x) for any x ∈ V and the definition of ϕ n j , implies ϕ ≤ lim j→∞ ϕ n j ≤ 1, hence ϕ ∈ L, and condition 4 is satisfied.

With f = 0 in Theorem 3.1 we have P f = P . In particular there exists k > 0 such that P k ϕ ≤ r ϕ + D|ϕ| χ if ϕ ∈ H χ,ε,κ . Hence from [START_REF] Ionescu-Tulcea | Théorie ergodique pour des classes d'opérations non complètement continues[END_REF], we know that the above conditions imply that P is the direct sum of a finite rank operator and a bounded operator U which satisfies r(U ) < 1. Now it suffices to show that the equation P ϕ = zϕ with |z| = 1, ϕ ∈ H χ,ε,κ implies that ϕ is constant and z = 1. From the convergence in law of X x n to ρ we know that for any x ∈ V , the sequence of measures P n (x, .) converges weakly to ρ. Also we have |ϕ| ∈ H χ,ε,κ and the sequence n -1 n Σ 1 P k |ϕ| converges to ρ(|ϕ|). andX x n converges in law to ρ, we get lim n→∞ z n ϕ(x) = ρ(ϕ). This implies z = 1 and ϕ(x) = ρ(ϕ) for any x ∈ V . For the last assertion, in view of the above, we have only to verify the contraction condition.

Since |ϕ(x)| = |z n ϕ(x)| ≤ P n (x, |ϕ|) we get |ϕ(x)| ≤ ρ(|ϕ|), hence |ϕ| is bounded. Since z n ϕ(x) = E(ϕ(X x n ))
We write [ϕ] ε = sup

x =y |x -y| -ε |ϕ(x) -ϕ(y)|. Then we have E(|ϕ(X x n ) -ϕ(X y n )|) ≤ [ϕ] ε |X x n -X y n | ε ≤ [ϕ] ε |x -y| ε E(|S n | ε ). Since ε < α, we have 0 < k(ε) < r < 1 for some r, hence [P n ϕ] ε ≤ r[ϕ] ε for n large.
3.2 A mixing property with speed for the system (V Z + , τ, P ρ ).

In general, if the law of B n has no density with respect to Lebesgue measure, the operator P on L 2 (ρ) doesn't satisfy spectral gap properties, hence the stationary process X n is not strongly mixing in the sense of [START_REF] Rosenblatt | Markov processes. Structure and asymptotic behaviour[END_REF] but Proposition 3.4 above shows that it is still ergodic. A simple example is as follows. Let V = R and let P be the operator defined on L 2 (ρ) by the formula P ϕ(x) = 1 2 [ϕ( x x ) + ϕ( x+1 2 )]. Then P preserves [0, 1], ρ is uniform measure on [0, 1] and the adjoint P * in L 2 (ρ) of P can be identified with the map x → {2x} on [0, 1] endowed with Lebesgue measure. Then the spectrum of P * in L 2 (ρ) is contained in {|z| = 1} (and is in fact absolutely continuous). Hence P * has no spectral gap in L 2 (ρ) ; by duality this is true also of P . Then, using Theorem 3.1 and Proposition 3.4, it is shown below that the system (V Z + , τ, P ρ ) satisfies a multiple mixing condition with respect to Lipschitz functions. For a study of extreme value properties for random walks on some classes of homogeneous spaces, using L 2 -spectral gap methods, we refer to [START_REF] Kirsebom | Extreme value theory for random walks on homogeneous spaces[END_REF]. Since, using Proposition 2.4, the stationary process (X n ) n∈N satisfies also anticlustering, we see below that extreme value theory can be developed for (X n ) n∈N following the arguments of ([2] , [START_REF] Basrak | A functional limit theorem for dependent sequences with infinite variance stable limits[END_REF]) which were developed under mixing conditions involving continuous functions. However it turns out that the mixing property A ′ (u n ) of [START_REF] Basrak | A functional limit theorem for dependent sequences with infinite variance stable limits[END_REF] for continuous functions can be proved, as a consequence of the corresponding convergences involving Lipschitz functions and point process theory. This conditon plays an essential role in the study of space-time convergence (see [START_REF] Basrak | A functional limit theorem for dependent sequences with infinite variance stable limits[END_REF]). Let f be a bounded continuous function with non negative real part on [0, 1] × (V \ {0}). Let r n be an integer valued sequence with lim n→∞

r n = ∞, r n = o(n) and k n = [r -1 n n]. For 0 ≤ i ≤ n, 0 ≤ j ≤ n, x ∈ V \ {0}, ω ∈ V Z + we write : f j n (x) = f (n -1 j, u -1 n x), f i,n (ω) = f i n (X i ), f j i,n (ω) = f j n (X i ).
In view of heavy notations, in some formulae we will write r n = r, k n = k, ℓ n = ℓ. For f Lipschitz we denote by k(f ) the Lipschitz constant of f , and assume supp(f ) ⊂ [0, 1] × U ′ δ with δ > 0. We consider below the quantity E ρ (exp(-

n Σ i=1 f i,n )) which is the Laplace functional of the point process n Σ i=1 ε (n -1 i,u -1 n X i ) .
For its analysis we use the classical Bernstein method of gaps, i.e. we decompose the interval [1, n] into large subintervals separated by smaller but still large ones.

Proposition 3.5 Let f be a compactly supported Lipschitz function on [0, 1] × (V \ {0}) with Ref ≥ 0. Assume that the sequence r n ∈ N satisfies r n = o(n), lim n→∞ (logn) -1 r n = ∞ and write |f | ∞ = m, k(f ) = γ, supp(f ) ⊂ [0, 1] × U ′ δ , δ > 0.
Then, with the above notations there exists C(δ, m, γ) < ∞ such that,

I n (f ) := |E ρ {exp(- n Σ i=1 f i,n )}- kn Π j=1 E ρ {exp(- jrn Σ (j-1)rn+1 f jrn i,n )}| ≤ C(δ, m, γ) sup(r -1 n , n -1 r n ).
In particular with

r n = [n 1/2 ] we get sup(n -1 r n , r -1 n ) ≤ 2n -1/2
Proof We write [0, n] = [0, k n r n ]∪]k n r n , n], we decompose the interval [0, k n r n ] into k n intervals J j = [jr n , (j + 1)r n [ and we distinguish in J j the subinterval of length ℓ n J ′ j = [(j + 1)r n -ℓ n , (j + 1)r n [ ; the large integer ℓ n will be specified below.

We write for f fixed,

I(n) = |E ρ (exp(- n Σ 1 f i,n )) - k Π j=1 E ρ (exp(- jr Σ i=(j-1)r+1 f jr i,n ))|. Then the triangular inequality gives I(n) ≤ I 1 (n) + I 2 (n) + I 3 (n) + I 4 (n) with I 1 (n) = |E ρ (exp(- n Σ 1 f i,n )) -E ρ (exp(- kr Σ 1 f i,n ))| I 2 (n) = |E ρ (exp(- kr Σ 1 f i,n )) -E ρ (exp(- k Σ j=1 jr-ℓ Σ i=(j-1)r+1 f i,n ))| I 3 (n) = |E ρ (exp(- k Σ j=1 jr-ℓ Σ i=(j-1)r+1 f i,n )) - k Π j=1 E ρ (exp(- r-ℓ Σ i=1 f jr i,n ))| I 4 (n) = | k Π j=1 E ρ (exp(- r-ℓ Σ i=1 f jr i,n )) - k Π j=1 E ρ (exp(- r Σ i=1 f jr i,n ))
| where stationarity of P ρ has been used in the expressions of I 3 (n), I 4 (n). The quantities I 1 , I 2 , I 4 are boundary terms ; their estimation below is based only on the fact that r n (resp. ℓ n ) is small with respect to n (resp. r n ), the form of u n , and f has non negative real part. On the other hand, estimation of I 3 depends on Theorem 3.1 and Proposition 3.4.

Using the inequality |exp(-x) -exp(-y)| ≤ |x -y| for x, y with non negative real parts we

get I 1 (n) ≤ n Σ kr+1 E ρ (f i,n ).
Let δ > 0 be as above such that f (t, x) = 0 for t ∈ [0, 1], |x| < δ, and observe that n -kr < r. Then the above bound for I 1 (n) gives :

I 1 (n) ≤ r n |f | ∞ P ρ {u -1 n |X 1 | ≥ δ}. Since lim n→∞ n -1 r n =
0, the definition of u n and Theorem 2.1 give lim n→∞ I 1 (n) = 0. Also I 1 (n) is bounded by n -1 r n , up to a coefficient depending only on m, δ. For I 2 (n), a similar argument involving each interval J j and the subinterval J ′ j gives :

I 2 (n) ≤ k n ℓ n |f | ∞ P ρ {u -1 n |X 1 | ≥ δ}. Using k n r n ≤ n we get lim n→∞ n -1 k n ℓ n ≤ lim n→∞ r -1 n ℓ n , i.e. lim n→∞ I 2 (n) = 0 if lim n→∞ r -1 n ℓ n = 0. Also we can bound I 2 (n) by r -1
n ℓ n , up to a coefficient depending only on m, δ. For I 4 (n), we use the inequality

| n Π 1 z j - n Π 1 w j | ≤ n Σ 1 |z j -w j | if |z j | and |w j | are less than 1.
Hence :

I 4 (n) ≤ k Σ j=1 |E ρ (exp(- r-ℓ Σ 1 f jr i,n )) -E ρ (exp(- r Σ 1 f jr i,n ))| ≤ |f | ∞ k n ℓ n P ρ {|X 1 | > δu n } As above we get lim n→∞ I 4 (n) = 0 if lim n→∞ r -1 n ℓ n = 0,
and a bound for I 4 (n) of the same form as for I 2 (n). The estimation of I 3 (n) is more delicate and depends on Lemma 3.6 below. We begin with the inequality :

I 3 (n) ≤ D(n) + I 5 (n) + I 3 (n -r n ) where D(n) = |E ρ (exp(- k Σ j=1 jr-ℓ Σ (j-1)r+1 f i,n ))-E ρ (exp(- r-ℓ Σ i=1 f i,n ))E ρ (exp(- k Σ j=2 jr-ℓ Σ (j-1)r+1 f i,n ))|, I 5 (n) = |E ρ (exp(- r-ℓ Σ 1 f i,n )E ρ (exp(- k Σ j=2 jr-ℓ Σ (j-1)r+1 f i,n )) -E ρ (exp(- r-ℓ Σ 1 f r i,n )) E ρ (exp(- k Σ j=2 jr-ℓ Σ (j-1)r+1 f i,n ))|, I 3 (n -r) = |E ρ (exp(- k Σ j=2 jr-ℓ Σ (j-r)r+1 f i,n )) - k Π j=2 E ρ (exp(- r-ℓ Σ 1 f jr i,n ))|.
Using as above the inequality |exp(-x) -exp(-y)| ≤ |x -y|, and Re(f ) ≥ 0 we get :

I 5 (n) ≤ |E ρ ( r-ℓ Σ 1 f i,n ) -E ρ ( r-ℓ Σ 1 f r i,n )|. Since f is Lipschitz we have, for t ′ , t ′′ in [0, 1], x ∈ V \{0} : |f (t ′ , x)-f (t ′′ , x)| ≤ k(f )|t ′ -t ′′ |. Since |n -1 i -n -1 r n | ≤ n -1 r n we have I 5 (n) ≤ (r n -ℓ n )n -1 r n k(f )P ρ {u -1 n |X 1 | ≥ δ} ≤ r 2 n n -1 k(f )P ρ {|X 1 | ≥ δu n }. Using Theorem 2.1 we get I 5 (n) ≤ Cn -2 r 2
n with a constant C depending on k(f ) and δ.

In order to estimate D(n) we consider the family of operators P i,n on the space H χ,ε,κ with χ, ε, κ as in Proposition 3.4, defined by P i,n ϕ(x) = E((exp(-f i,n (ω)))ϕ(X x i )) and the function ψ n defined by ψ n (y) = E{exp(-

k Σ j=2 jr-ℓ Σ i=(j-1)r+1 f i+r i,n )/X x r = y}. Since, u n ≥ 1, for n large with m = |f | ∞ , γ = k(f ), the functions f i,n satisfy |f i,n | ∞ ≤ m, k(f i,n ) ≤ γ, hence
the operators P i,n belong to O(m, γ) ⊂ EndH χ,ε,κ . With the above notations, the products of operators P i,n belong to O(m, γ). Also, using Proposition 3.4 we know that on H χ,ε,κ we can write P = ρ ⊗ 1 + U where U has spectral radius r(U ) less then 1 and U commutes with the projection ρ ⊗ 1. We note also that for f as above and ψ ∈ H χ,ε,κ we have :

|ρ(P f ψ)| ≤ ρ(P |ψ|) = ρ(|ψ|) ≤ ψ Then Lemma 3.6 below implies the convergence of D(n) to zero with speed. Now, in order to prove the proposition, we are left to show lim n→∞ I 3 (n) = 0. We iterate k n times the inequality :

I 3 (n) ≤ D(n) + I 5 (n) + I 3 (n -r n ).
We get, using Lemma 3.6 :

I 3 (n) ≤ I 3 (n -r n ) + C ′ (f )(n -2 r 2 n + r ℓn 1 (U )) ≤ C ′ (f )(k n r ℓn 1 (U ) + n -1 r n ), with C ′ (f ) ≥ 1, depending on m, γ. Since r n = o(n), it remains to choose ℓ n such that ℓ n = o(r n ) with lim n→∞ k n r ℓn 1 (U ) = 0.
These conditions can be written as lim n→∞ r -1 n ℓ n = 0, lim n→∞ r -1 n nr ℓn 1 (U ) = 0. The choice of ℓ n with the above properties is possible since :

r 1 (U ) < 1, lim n→∞ n -1 r n = 0 and lim n→∞ (logn) -1 r n = ∞.
One can take ℓ n < r n with (logn) -1 ℓ n = ∞. The above estimations of I 1 , I 2 , I 3 , I 4 , I 5 give bounds by sup(n -1 r n , r -1 n ), up to a coefficient depending on δ, m, γ only.

Lemma 3.6 There exist positive numbers C 1 (U ), r 1 (U ) ∈]r(U ), 1[ and C(f ) depending only of m, γ such that, for n ∈ N and ℓ n < r n , D(n), as above :

D(n) = |ρ(P 1,n • • • P rn-ℓn,n U ℓn ψ n )| ≤ C 1 (U )C(f )(r 1 (U )) ℓn .
Proof We observe that Markov's property implies E(e -f (X x 1 ) g(ω)) = P f (E(g(ω))) where f is as above, g(ω) is a function depending on ω throught the random variables X x k (k ≥ 1) and E(g(ω)) is a function of x. We apply this property to H χ,ε,κ with f = f i,n (1 ≤ i ≤ r -ℓ) or f = 0, g = ψ n as above, hence writing

P ℓ = ρ ⊗ 1 + U ℓ and D(n) = |ρ(P 1,n • • • P r-ℓ,n P ℓ ψ n ) -ρ(P 1,n • • • P r-ℓ,n 1)ρ(ψ n )| = |ρ(P 1,n • • • P r-ℓ,n U ℓ ψ n )|, Proposition 3.4 implies the existence of C 1 (U ) < ∞, r 1 (U ) ∈]r(U ), 1[ with U ℓ ψ n ≤ C 1 (U )r ℓ 1 (U ) ψ n . On the other hand, since ψ n is of the form ψ n = M 1 with M ∈ O(m, γ) we have, using Theo- rem 3.1, ψ n ≤ C(f ) with C(f ) depending on m, γ. It follows D(n) ≤ C 1 (U )C(f )(r 1 (U )) ℓn .

Asymptotics of exceedances processes 4.1 Statements of results

Let E be a complete separable metric space which is locally compact, M + (E) the space of positive Radon measures on E, M p (E) its subspace of point measures,

C c + (E) (resp L c
+ (E)) the space of non negative and compactly supported continuous (resp Lipschitz) functions. Then it is well known that the vague topology on M + (E) is given by a metric and with respect to this metric, M + (E) is a complete separable metric space. Furthermore this metric is constructed (see [START_REF] Resnick | Extreme Values, Regular Variation, and Point Processes[END_REF] Lemma 3.11, Proposition 3.17) using a countable family (h i ) i∈I of functions in L c + (E) and M p (E) is a closed subset of M + (E). It follows that, in various situations with respect to weak convergence of random measures, C c + (E) can be replaced by L c + (E). Below, assuming condition (c-e), we describe the asymptotics of the space-time exceedances

process N n = n Σ i=1 ε (n -1 i,u -1 n X i )
under the probability P ρ and we state a few corollaries. The results are formally analogous to results for stationary processes proved in ( [START_REF] Basrak | Regularly varying multivariate time series[END_REF], [START_REF] Basrak | A functional limit theorem for dependent sequences with infinite variance stable limits[END_REF]) under general conditions. Here however, corresponding conditions have been proved in sections 2, 3 for the affine random walk hence the results described below are new for affine random walks but the scheme of the proofs is given in [START_REF] Basrak | Regularly varying multivariate time series[END_REF], [START_REF] Basrak | A functional limit theorem for dependent sequences with infinite variance stable limits[END_REF]. It is convenient to express the Laplace formulae below in terms of the occupation measure |S n | = 0, P-a.e. it is possible to replace P ρ by P and X n by X x n with x fixed, in the statements. We give the corresponding proof for the logarithm law only.

π ω v = ∞ Σ 0 ε Sn(ω)v of
Theorem 4.1 The sequence of normalized space-time point processes

N n = n Σ i=1 ε (n -1 i,u -1 n X i )
on the space [0, 1] × (V \ {0}) converges weakly to a point process N . For any δ > 0, the law of the restriction of N to [0, 1] × U ′ δ is the same as the law of the point process on [0, 1] × U ′ δ given by :

Σ i≥0 Σ j∈Z ε (T δ i ,δZ ij ) 1 {|Z ij |>1} . If η denotes the law of N , f ∈ C c + ([0, 1] × U ′ δ ) and ψ η is the Laplace functional of η, then -logψ η (f ) is equal to θδ -α 1 0 E Λ 1 (1 -exp(-Σ j∈Z f (t, δZ j )))dt = 1 0 E Λ 0 (exp f t (v) -1)exp(-π ω v (f t ))dt where f t (x) = f (t, x)
Assuming the mixing and anticlustering conditions for compactly supported continuous functions, this statement was proved in [START_REF] Basrak | A functional limit theorem for dependent sequences with infinite variance stable limits[END_REF]. Here we will use Propositions 2.6, 3.4 and point Corollary 4.5 For any x ∈ V and t > 0 we have the convergence in law of u

-1 n M x n to Fréchet's law Φ θ α , lim n→∞ P{u -1 n M x n < t} = exp(-θt -α ) = Φ θ α ([0, t]) with θ = Q Λ 1 {sup n≥1 |S n (ω)v| ≤ 1}.
Furthermore the law of the normalized hitting time t -α τ x t of U ′ t by the process |X x n | converges to the exponential law with parameter cθ, i.e. lim t→∞ P{t -α τ x t > u} = exp(-cθu).

For d = 1, another proofs of Laplace formulae in 4.3, 4.5 were given in [START_REF] Buraczewski | Stochastic Models with Power Law Tails[END_REF] (see 3.1.1, 3.2.1)

It was observed in [START_REF] Pollicott | Limiting distributions for geodesic excursions on the modular surface[END_REF] that Sullivan's logarithm law for excursions of geodesics around the cusps of hyperbolic manifolds (see [START_REF] Sullivan | Disjoint spheres, Approximation by imaginary quadratic numbers and the logarithm law for geodesics[END_REF]), in the case of the modular surface, is a consequence of Fréchet's law for the continuous fraction expansion of a real number uniformly distributed in [0, 1] (see [START_REF] Phillip | A conjecture of Erdös on continued fractions[END_REF]). Here, in this vein, we have the following logarithm law. e Corollary 4.6 For any x ∈ V , we have the P-a.e. convergence lim sup

n→∞ log|X x n | logn = 1 α = lim sup n→∞ log M x n log n .
If x is random, we observe that a logarithm law and a modified Fréchet law have been obtained in [START_REF] Kirsebom | Extreme value theory for random walks on homogeneous spaces[END_REF] for random walks on some homogeneous spaces of arithmetic character, using L 2 -spectral gap methods. Given a Borel subset A of U ′ 1 and a real number t > 1, we can also consider the hitting time τ x tA of the dilated set tA under by the process X x n (see [START_REF] Spitzer | Principles of random walks[END_REF] p. 290). In the context of collective risk theory this hitting time can be interpreted as a ruin time associated to the entrance of X x n in the set tA (see [START_REF] Collamore | First passage times of general sequences of random vectors : a large deviations approach[END_REF]). We observe that, in contrast to the associated linear random walk, the event of ruin (in infinite time) occurs here with probability 1, due to the finiteness of the stationary measure ρ. However, in law, the ruin scenario is the same : excursion at infinity of the associated linear random walk. Then the convergence to the point process N s stated in Corollary 4.3 gives the Corollary 4.7 Let A be a Borel subset of V such that A ⊂ U ′ 1 , Λ(A) > 0 Λ(∂A) = 0. Then for any x ∈ V , the normalized hitting time t -α τ x tA of the set tA converges in law to the exponential law with parameter cθ(A) with

θ(A) = (Λ 0 (A)) -1 Q Λ 0 { ∞ Σ 1 1 A (S i y) = 0, y ∈ A} ∈]0, θ].
We observe that, in the notation of [START_REF] Spitzer | Principles of random walks[END_REF], the quantity Q{ ∞ Σ 1 1 A (S i y) = 0} is, for y ∈ A, the escape probability from A for the linear random walk S i y on V \ {0}. Hence the number

γ(A) = Q Λ 0 { ∞ Σ 1 1 A (S i y) = 0, y ∈ A} ∈]0, Λ 0 (A)]
is the corresponding capacity with respect to the Q-invariant measure Λ 0 . The positivity of θ(A) is a simple consequence of the formula for θ(A) and of the dynamical argument used in the proof of Proposition 2.4 for the inequality θ > 0. The inequality τ x tA ≥ τ x t implies θ(A) ≤ θ < 1. We observe that, in the context of statistics of hitting times for hyperbolic dynamical systems, convergence to an exponential law is also valid, but since almost every point is repulsive, the corresponding condition θ = 1 is then generically satisfied (see for example [START_REF] Pène | Poisson law for some non uniformly hyperbolic dynamical systems with polynomial rate of mixing[END_REF], [START_REF] Rousseau | Hitting time statistics for observations of dynamical systems[END_REF]). Here the property θ(A) ∈]0, 1[ is a consequence of the contraction-expansion property, which follows from the unboundness of the semigroup generated by supp(µ). Heuristically speaking, the sphere at infinity of V is weakly attractive for the affine random walk.

Proofs of point process convergences

The proof of Theorem 4.1 will follow of three lemmas. We denote by (X k,j ) k∈N an i.i.d. sequence of copies of the process (X j ) j∈N and we write

N k,n = krn Σ j=1+(k-1)rn ε (n -1 krn,u -1 n X k,j ) , N n = kn Σ k=1 N k,n ,
where r n , k n are as in section 2.

For k n > 0 we denote by E (kn) ρ the expectation corresponding to the product probability of k n copies of P ρ . If f is a non negative and compactly supported Lipschitz function on [0, 1] × V \ {0}, we have, using independance :

E (kn) ρ (exp(-N n (f ))) = kn Π k=1 E ρ (exp(- krn Σ j=1+(k-1)rn f (n -1 kr n , u -1 n X k,j ))
). This relation and the multiple mixing property in Proposition 3.5 show that, on functions f as above, the asymptotic behaviour of the Laplace functionals of N n under E ρ , and N n under E (kn) ρ , are the same. We begin by considering the convergence of E (kn) ρ (exp(-N n (f ))). Lemma 4.8 below is a general statement giving the weak convergence of a sequence of random measures, using only the convergence of the values of the Laplace functionals on Lipschitz functions. Lemmas 4.9, 4.10 are reformulations of parts of the proof of Theorem 2.3 in [START_REF] Basrak | A functional limit theorem for dependent sequences with infinite variance stable limits[END_REF], which was considered in a general setting.

Lemma 4.8 Let E be a locally compact separable metric space. Let η n be a sequence of random measures on E and, for f non negative Lipschitz and compactly supported, assume that the sequence of Laplace functionals ψ ηn (f ) converges to ψ(f ) and ψ(sf ) is continuous at s = 0 ; then the sequence η n converges weakly. A random measure η on E, is well defined by the values of its Laplace functional on Lipschitz functions.

Proof We begin by the last assertion and we use the family of Lipschitz functions (h i ) i∈I considered in the above subsection. If the random measures η, η ′ satisfy ψ η (f ) = ψ η ′ (f ) for

any f ∈ L c + (E) and λ 1 , λ 2 , • • • , λ p are non negative numbers then we have ψ η ( i=p Σ i=1 λ i h i ) = ψ η ′ ( i=p Σ i=1 λ i h i ). It follows that the random vectors (η(h 1 ), • • • , η(h p )) and (η ′ (h 1 ), • • • , η ′ (h p ))
have the same Laplace transforms, hence the same laws. Furthermore, for rational numbers r j < r ′ j the finite intersections of sets of the form {µ ∈ M + (E), µ(h i ) ∈]r j , r ′ j [)} define a countable basic U of open subsets in M + (E) stable under finite intersection, hence a πsystem (see [START_REF] Resnick | Extreme Values, Regular Variation, and Point Processes[END_REF]). Then from above, η, η ′ are equal on U ; since the sigma-field generated by U coincides with the Borel sigma-field, one has η = η ′ . We observe that, if a sequence of random measures η n is such that for any f ∈ L + (E) the sequence of real random variables η n (f ) is tight, then the sequence η n itself is tight. This follows for a corresponding result in [START_REF] Resnick | Extreme Values, Regular Variation, and Point Processes[END_REF] for f ∈ C

+ (E) since any such f is dominated by an element of L c + (E). Assuming the convergence of ψ ηn (f ) to ψ η (f ) for any f ∈ L c + (E) and the continuity at s = 0 of ψ η (sf ), we get that ψ η (sf ) is the Laplace transform of the real random variable η(f ), hence the convergence of the sequence η n (f ) to η(f ) for any f ∈ L c + (E). From above and the continuity hypothesis of ψ(sf ) at s = 0, we get that the sequence η n is tight. If η n i is a subsequence converging weakly to the random measure η we have the convergence of the corresponding Laplace functionals for any f ∈ L c + (E). Since such a limit is independant of the subsequence, we get from above that two possible weak limits of random measures are equal. Hence the sequence η n converges weakly to η. which is independant of the sequence of cluster processes

Σ j∈Z ε Z ij .
Then for any non negative and compactly supported continuous function f on [0, 1]×U ′ δ , the Laplace functional of the point process

Q δ = Σ i≥0 Σ j∈Z ε (T δ i ,δZ ij ) 1 {|Z ij |>1} restricted to [0, 1]×U ′ δ satisfies : logψ δ (f ) = -p(δ) 1 0 E Λ 1 (1 -exp(-Σ j∈Z f (t, δZ j )))dt
Proof of Theorem 4.1 Let f be a non negative and compactly supported Lipschitz function on [0, 1] × U ′ δ . Using Proposition 3.5, Lemma 4.9 implies that, on such functions the Laplace functionals of N n and N n have the same limit, namely

ψ δ (f ) = exp[-p(δ) 1 0 E Λ 1 (1 -exp -Σ j∈Z f (t, δZ j ))dt].
We observe that, for fixed f as above, the function s → ψ δ (sf ) is continuous at s = 0. Since the function s → ψ n (sf ) = E ρ (exp(-sN n (f ))) is the Laplace transform of the non negative random variable N n (f ), the continuity theorem for Laplace transforms implies that the sequence N n (f ) converges in law to some random variable. Since the sequence of Laplace functionals ψ n (f ) converges to ψ δ (f ), Lemma 4.8 implies that there exists a unique point process N on [0, 1] × (V \ {0}) such that the sequence N n converges weakly to N . As stated in Lemma 4.10, for f as above the restriction of N to [0, 1] × U ′ δ is given by the point process formula in the theorem. A density argument shows that the Laplace functional of N on the function

f ∈ C c + ([0, 1] × U ′ δ is equal to ψ δ (f ) = exp[-p(δ) 1 0 E Λ 1 [1 -exp(-Σ j∈Z f (t, δZ j ))dt].
The point process formula for N follows, as as the first part of the formula giving the Laplace functional of N . The second part is a consequence of the last formula in Proposition 2.6 applied to the function v → f (t, δv) and of the α-homogeneity of Λ 0 .

Proof of Corollary 4.2 The first term E ρ (exp(-

n Σ 1 f i,n )) in I n (f )
is the value of the Laplace functional of N n on the continuous function f . Hence the weak convergence in Theorem 4.1 implies its convergence to the Laplace functional of N on f . The same remark is valid for the second term in I n (f ), if N n is replaced by N n : the limit of N n is also N , using Lemma 4.8 and Proposition 3.5. Then for any

f in C c + ([0, 1] × (V \ {0}) we have : lim n→∞ I n (f ) = lim n→∞ |E ρ (exp(-N n (f ))) -E (kn) ρ (exp(-N n (f )))| = 0
Proof of Corollary 4.3 The point process N s n is the projection of N n on V \ {0}. Since [0, 1] is compact and the projection is continuous, the continuous mapping theorem implies the required convergence, using the first part of Theorem 4.1. The formula for the Laplace functional of N s is a direct consequence of the second part in Theorem 4.1 applied to a function independent of t.

Proof of Corollary 4.4 For

ϕ ∈ C c + ([0, 1]) we have N t n (ϕ) = N n (ϕ ⊗ 1 U ′ 1 ). Since the discontinuity set of 1 U ′ 1 is Λ-negligible, Theorem 4.1 gives the convergence of N t n (ϕ) to N t (ϕ). With f = ϕ ⊗ 1 U ′
1 , the formula for the Laplace functional ψ η (f ) of N gives the Laplace functional ψ η t (ϕ) of N t in the logarithmic form log ψ η t (ϕ) = -θ

1 0 E Λ 1 [1 -exp -ϕ(x)γ]dt.
The expression of the generating function of the random variable γ = Σ j∈Z 1 U ′ 1 (Z j ) follows from the last formula in Proposition 2.6 :

∞ Σ 1 e -sk ν k = 1 -(e s -1)θ -1 E Λ 1 [exp(-s π ω v (U ′ 1 ))]. Hence ν k = θ -1 (ζ k -ζ k+1 )
In view of Theorem 4.1, the point process N t can be written as N t = Σ If M n is replaced by M x n with x ∈ V , the same proof as the one given below for the logarithm law remains valid. The last assertion in the corollary is a direct consequence of Fréchet's law.

Proof of logarithm's law

The proof of logarithm's law is based on Fréchet's law and depends on two lemmas as follows. 

Proof Let ε > 0, α n (ε) = {|X n | ≥ n 1/α+ε } ⊂ V Z + , α ′ n (ε) = V Z + \ α n (ε). Stationarity of X n implies P ρ {α n (ε)} = P ρ {|X 0 | ≥ n 1/α+ε }. Since lim n→∞ n 1+αε ℓ α (n 1/α+ε , ∞) = 1, with ℓ α (dt) = t -α-1 dt, Corollary 2.2 gives ∞ Σ 1 P ρ {α n (ε)} < ∞. Then Borel-Cantelli's lemma implies that P ρ { ∞ ∪ 1 ∩ j≥n α ′ j (ε)} = 1
log|X n | logn ≥ 1 α . Proof Let ε ∈]0, 1/α[, β(ε) = lim sup n→∞ log|X n | logn ≤ 1 α -ε , β n (ε) = sup j≥n log|X j | logj ≤ 1 α - ε 2 .
The sequence β n (ε) is increasing and

β(ε) ⊂ ∞ ∪ 2
β n (ε). We are going to show P ρ {β n (ε)} = 0.

For p ≥ n ≥ 2, p ∈ N, we define

β n,p (ε) = { sup n≤j≤p |X j | ≤ p 1/α-ε/2 }, hence β n (ε) ⊂ β n,p (ε).
Using stationarity we get P ρ {β n,p (ε)} ≤ P ρ {p -1/α M p-n+1 ≤ p -ε/2 }. Also, using Corollary 4.5, we have lim We see that P ρ -a.e., lim sup Furthermore, for any n ≥ 1, x ∈ V : 

n→∞ log|X n | logn ≥ 1 α -ε,
|M x n -M n | ≤ sup{|S k |; 1 ≤ k ≤ n}|x -X 0 |

Proof of the normalized hitting time convergence

The proof depends on the following lemma. In particular we have

Q Λ 1 {N s (A) = 0} = exp(-Q Λ 1 { ∞ Σ 1 1 A (S i y) = 0, y ∈ A)} and Q Λ 1 {N s (∂A) = 0} = 1.
Proof Corollary 4.3 says that the above logarithmic formula is valid if 1 A is replaced by an arbitrary function f in C c + (U ′ 1 ). We observe that if A ⊂ U ′ 1 is compact, then 1 A is the decreasing limit of a sequence in C c + (U ′ 1 ), hence dominated convergence implies the validity of the formula in this case. Also, if A is bounded, ∂A is compact, hence the formula is valid for ∂A. Taking the limit in the formula at λ = ∞ we get, logP

Λ 0 {N s (∂A) = 0} = -Q Λ 1 { ∞ Σ 1 1 ∂A (S i y) = 0, y ∈ ∂A}. Since Λ 0 (∂A) = 0 we have Q Λ 1 -a.e., ∞ Σ 1 1 A (S i y) = ∞ Σ 1 1 A (S i y), hence for A bounded, logE(exp(-λN s (A))) = -(1 -exp(-λ1 A (y)))E(exp(-λ ∞ Σ 1 1 A (S i y)))dΛ 1 (y).
For A unbounded we proceed by exhaustion in U ′ 1 with the sets U t ∩ U ′ 1 . Using again the formula for general A as above, we get

Q Λ 0 {N s (∂A) = 0} = exp(-Q Λ 1 { ∞ Σ 1 1 ∂A (S i y), y ∈ ∂A}). Since Λ 1 (∂A) = 0, we have Q Λ {N s (∂A) = 0} = 1.
Proof of Corollary 4.7 We have by definition, with n(t) = [zt α ] : P ρ {t -α τ x tA > z} = P ρ {N s n(t) (tA) = 0} and we know the weak convergence of N s n to N s . We observe that, for a sequence a n > 0 converging to a > 0, and for any function ϕ on U ′ 1 with N s -negligible discontinuities, the convergence of N ′ n (ϕ) = ϕ(a n v)dN s (v) to ϕ(av)dN s (v) is valid. Since Λ 0 (∂A) = 0 and lim t→∞ tn(t) -1/α = z -1/α :

lim t→∞ P ρ {N s n(t) (tA) = 0} = Q Λ 1 {N s (z -1/α A) = 0}
. Using Lemma 4.13 and the expression of the Laplace transform of N s (A), we get lim t→∞ P ρ {t -α τ x tA > z} = exp(-czθ(A)). In this formula, we can replace P ρ by P, since for any x ∈ V , the point process N s n converges also weakly to N s under P. This follows from the use of ε-Hölder functions for ε < inf(1, α), Lemma 4.8 and the inequality

|ϕ(S n x) -ϕ(S n y)| ≤ [ϕ] ε |S n | ε |x -y| ε , since ∞ Σ 1 |S n | ε < ∞, Q-a.e. and |y| ε dρ(y) < ∞.
The proof of positivity for θ(A) is the same as in Proposition 2.4 with A instead of supp(Λ 1 ) and θ(A) instead of θ.

Convergence to stable laws

The convergence to stable laws of the normalized sums n Σ i=1 X i under (c-e) was shown in ( [START_REF] Gao | Stable laws and spectral gap properties for affine random walk Ann[END_REF], [START_REF] Guivarc | On spectral properties of a family of transfer operators and convergence to stable laws for affine random walks[END_REF]) where explicit formulae for the corresponding characteristic functions were given and non degeneracy of the limiting laws was proved. It was observed that these formulae involved the asymptotic tail Λ of ρ, as well as the occupation measure

π ω v = ∞ Σ 0 ε S i (ω)v .
A similar situation occured in the dynamical context of [START_REF] Gouézel | Central limit theorem and stable laws for intermittent maps[END_REF], where the limiting law was expressed in terms of an induced transformation. We observe that the connection with convergence to stable laws for n Σ i=1 X i , where (X i ) i∈N is a stationary process, and point process theory had been already developed in [START_REF] Davis | The sample autocorrelation function of heavytailed processes with application to ARCH[END_REF]. For an analysis of the involved properties in this setting see [START_REF] Mikosch | The cluster index of regularly varying sequences with applications to limit theory of multivariate Markov chains[END_REF]. For another approach, not using spectral gap properties, see chapter 4 of the recent book [START_REF] Buraczewski | Stochastic Models with Power Law Tails[END_REF]. Here we give new proofs of the results given in ( [START_REF] Gao | Stable laws and spectral gap properties for affine random walk Ann[END_REF], [START_REF] Guivarc | On spectral properties of a family of transfer operators and convergence to stable laws for affine random walks[END_REF]), following and completing the point process approach of [START_REF] Davis | Point processes and partial sum convergence for weakly dependent random variables with infinite variance[END_REF] in the case of affine stochastic recursions.

In particular we get also a direct proof of the convergence for the related space point process

N s = n Σ i=1 ε u -1 n X i ,
via a detailed analysis of Laplace functionals and without use of the cluster process.

On the space exceedances process

We give here a direct proof of the convergence of N s n , already shown in Corollary 4.3 above and we deduce the convergence of the characteristic function for the random variable N s n (f ), for f compactly supported. We make use of the mixing property in Proposition 3.5 for Lipschitz functions depending only on v ∈ V . Theorem 5.1 Let f be a complex valued compactly supported Lipchitz function on V \ {0} which satisfies Re(f ) ≥ 0. Then we have

-log lim n→∞ E ρ exp(-N s n (f )) = E Λ 0 [(expf (v) -1)exp(-π ω v (f ))].
The proof depends on two lemmas where notations for r n , k n explained above are used.

For i ≤ j we write C n (i, j) = exp(-

j Σ k=i f (u -1 n X k ))
-1, and we note the equality

C n (1, r n ) = rn Σ i=1 [C n (i, r n ) -C n (i + 1, r n )]
where C n (r n + 1, r n ) = 0 and r n is a sequence as in Proposition 2.6. We note also that

|C n (i, j)| ≤ 2, |C n (i, j) -C n (i + 1, j)| ≤ 2. We are going to compare C n (1, r n ) to C n,k (1, r n ) for k large, where C n,k (1, r n ) = rn Σ i=1 [C n (i, i + k) -C n (i + 1, i + k)],
we write ∆ n,k for their difference, ε n = r n P ρ {|X| > u n } and we assume that supp(f ) ⊂ U ′ δ with δ > 0. Using anticlustering we will obtain the approximation of the small quantity C

n (1, r n ) by C n,k (1, r n ) up to ε n . Then taking k n = [nr -1
n ] large and using the definition of Λ, we will get the limiting form of

k n E ρ [C n,k (1, r n )], hence of k n E ρ [C n (1, r n )].
We need the two following lemmas.

Lemma 5.2 lim k→∞ lim sup n→∞ ε -1 n E ρ (|∆ n,k |) = 0. Proof We observe that 1 + C n (i, r n ) = (1 + C n (i + 1, r n ))exp(-f (u -1 n X i )). Also C n (i + 1, r n ) -C n (i + 1, i + k) = (exp(- i+k Σ j=i+1 f (X j )))(exp(- rn Σ j=i+k+1 f (X j )) -1). Hence we have ∆ n,k = rn Σ i=1 (exp(-f (u -1 n X i )) -1)[C n (i + 1, r n ) -C n (i + 1, i + k)] = ∆ ′ n,k + ∆ ′′ n,k
where ∆ ′ n,k (resp. ∆ ′′ n,k ) is the above sum with index i restricted to [1, r n -k] (resp. ]r n -k, r n ]). As observed above, the expression under Σ is bounded by 4 and vanishes unless |X i | > δu n for some i ∈ [1, r n -k] and M rn k+i+1 > δu n . Then we get using stationarity,

E ρ (|∆ ′ n,k |) ≤ 4r n P ρ {|X 0 | > δu n , M rn k+1 > δu n }. Since the process (X k ) k∈Z + satisfies anticlustering, it follows lim k→∞ lim sup n→∞ ε -1 n E ρ (|∆ ′ n,k |) = 0. Also, stationarity implies E ρ (|∆ ′′ n,k |) ≤ 4 rn Σ i=rn-k+1 P ρ {|X i | > δu n } = 4kP ρ {|X| > δu n }.
Since ρ is homogeneous at infinity and lim 

1) For any

k ≥ 1 lim n→∞ k n E ρ [C n,k (1, r n )] = E Λ 0 [(expf (v) -1)exp(- k Σ i=0 f (S i v))] 2) lim k→∞ lim sup n→∞ k n E ρ (|∆ n,k |) = 0 Proof 1) Using stationarity we have k n E ρ [C n,k (1, r n )] = k n r n E ρ [C n (1, k + 1) -C n (2, k + 1)] = k n r n E ρ [exp(- k Σ j=0 f (u -1 n X j )) -exp(- k Σ j=1 f (u -1 n X j ))].
The function f (k) on (V \ {0}) k+1 given by

f (k) (x 0 , x 1 • • • , x k ) = exp(- k Σ j=0 f (x j )) -exp(- k Σ j=1 f (x j )) = -(exp( f (x 0 )) -1)exp(- k Σ j=0 f (x j ))
is bounded, uniformly continuous on (U ′ δ ) k+1 and lim

n→∞ n -1 k n r n = 1. Hence, Proposition 2.4 implies lim n→∞ k n E ρ [C n,k (1, r n )] = -E Λ 0 [(expf (v) -1)exp(- k Σ j=0 f (S j v))]. 2) We have the equality, k n E ρ (|∆ n,k |) = k n r n P ρ {|X| > u n }ε -1 n E ρ (|∆ n,k |).
Then, using Lemma 5.2, the relation lim 

[E ρ (exp(-N s n (f ))) -(E ρ (1 + C n (1, r n ))) kn ] = 0,
hence it suffices to study the sequence (1

+ E ρ (C n (1, r n ))) kn . Since Ref ≥ 0 and supp(f ) ⊂ U ′ δ we have : E ρ (|C n (1, r n )|) ≤ E ρ (|1-exp(- rn Σ i=1 f (u -1 n X i ))|) ≤ E ρ ( rn Σ i=1 |f (u -1 n X i )|) ≤ r n |f | ∞ P ρ {|X 0 | > δu n }.
The last inequality implies the L 1 -convergence to zero of We recall that, for v fixed, the series (n -j)E ρ (< u, ψ a,n (X 0 ) >< u, ψ a,n (X j )).

rn Σ i=1 f (u -1 n X i ). Then the first one gives lim n→∞ E ρ (|C n (1, r n )|) = 0. It follows that the behaviour of the sequence [1 + E ρ (C n (1, r n ))] kn for n large is determined by the behaviour of k n E ρ (C n (1, r n )). We have for k ≥ 1, k n E ρ (C n (1, r n )) = k n E ρ (C n,k (1, r n )) + k n E ρ (∆ n,k ).
Now the proof splits into two parts a) and b) corresponding to the studies of A n,a , B n,a . a) We have, using the above estimation of f a,n ,

nE ρ (| < u, ψ a,n (X 0 ) > | 2 ) ≤ nE ρ (|f a,n (X 0 )| 2 ) ≤ nE ρ (u -2 n |X 0 | 2 1 {|X 0 |<2aun} ).
Then Karamata's lemma implies that, for n large, the right hand side is equivalent to n 1-2α -1 (2au n ) 2 ((2a) α n) -1 , i.e. to a 2-α . Hence, since α ∈]0, 2[, we get lim b) Markov property for the process (X i ) i≥0 implies for i ≥ 1, E ρ (< u, ψ a,n (X 0 ) >< u, ψ a,n (X i ) >) = E ρ (< u, ψ a,n (X 0 ) >< u, P i ψ a,n (X 0 ) >). First we consider the case α ∈]1, 2[ and we apply Proposition 3.4 to P acting on the Banach space H = H χ,ε,κ with χ ∈]1, α[, ε = 1 and κ choosen according to Proposition 3.4. We observe that for h ∈ H we have |h(v)| ≤ h (1 + |v|). Since ψ a,n ∈ H, we have E ρ (< u, ψ a,n (X 0 ) >< u, P i ψ a,n (X 0 ) >) = E ρ (< u, f a,n (X 0 ) >< u, U i f a,n (X 0 ) >), where we have used the decomposition P i = ρ⊗1+U i . The Schwarz inequality allows us to bound the right hand side by the square root of E ρ (|f a,n (X 0 )| 2 )E ρ (|U i f a,n (X 0 )| 2 1 {|X 0 |<2an} ). Since |U i f a,n (v)| ≤ (1+|v|) U i f a,n , the quantity E ρ (< u, f a,n (X 0 ) >< u, U i f a,n (X 0 ) >) is bounded by

U i f a,n [u -2 n E ρ (|X 0 | 2 1 {|X 0 |<2aun} )] 1/2 [E ρ (1 + |X 0 |) 2 1 {|X 0 |<2aun}
)] 1/2 . Then Karamata's lemma implies that, up to a coefficient independant of n, the above expression is bounded by U i f a,n [n -1/2 a 1-α/2 ] [1 + n α -1 -1/2 a 1-α/2 ]. Since f a,n ≤ nu -1 n , it follows that B n,a , uniformly in u ∈ S d-1 and up to a coefficient, is bounded by n(

∞ Σ i=0 U i )n -1 [n 1/2-α -1 a 1-α/2 + a 2-α ] = ∞ Σ i=0 U i [a 2-α + a 1-α/2 n 1/2-α -1 ].
Since r(U ) < 1 we have We insert the expression i < u, v > (ϕ 1 -ϕ a (v)) with the adequate sign in each of the above factors inside the expectation E Λ 0 . Then dominated convergence (a → 0) shows that T a 1 -b(a) converges in law to the random variable T with characteristic function given in logarithmic form by

∞ Σ i=0 U i < ∞,
Φ(u) = -E Λ 0 [A(u, v) + B(u, v)] with A(u, v) = (exp(-i < u, v >) -1 + i < u, v >)ϕ 1 (v), B(u, v) = i < u, v > ϕ 1 (v)(exp(i < u, ∞ Σ j=1 S j v >) -1).
As in ( [START_REF] Gao | Stable laws and spectral gap properties for affine random walk Ann[END_REF], [START_REF] Guivarc | On spectral properties of a family of transfer operators and convergence to stable laws for affine random walks[END_REF]), the stability of the limiting laws follow from the formula for Φ(u). If 0 < α < 2, α = 1 the formula for Φ(u) shows that for any n ∈ N we have Φ n (u) = Φ(n 1/α u), hence T has a stable law of index α.

If α = 1, we have with γ n = c E Λ 0 [v(ϕ 1 (n -1 v)-ϕ 1 (v))], Φ n (u) = Φ(n u)exp(-in < u, γ n > ). This implies that T follows a stable law with index 1.

Remark 1 The idea used above in the proof of the limiting form of N s n can be used in other similar situations, using only anticlustering and the definition of Λ. This is the case for the Laplace functional of the cluster process C stated in Proposition 2.6. There we write, as in the proof of Theorem 5.1

C ′ n (k, ℓ) = exp(- ℓ Σ k f (u -1 n X i ))1 {M k,ℓ >un} ) C ′ n (1, r n = exp(- rn Σ 1 f (u -1 n X i ))1 {Mr n >un} ) C ′ n,k (1, r n ) = exp(- rn Σ 1 [C ′ n (i, i + k) -C ′ n (i + 1, i + k)]
) Then the approximation of C ′ (1, r n ) by C ′ n,k (1, r n ) up to ε n is still valid. Furthermore, the definition of Λ 0 shows that for k n large k n E ρ [C ′ n (1, r n )] is close to

  γ) be the set of products of p elements in O(m, γ) and O(m, γ) = ∪ p>0 O p (m, γ). We will endow O(m, γ) with the natural norm from End(H χ,ε,κ ). Then we have the Theorem 3.1 With the above notations and 0

Lemma 4 . 9 0 E

 490 Let f be a non negative and compactly supported continuous function on [0, 1] × U ′ δ and let Σ j∈Z ε Z j be the cluster process for the affine random walk (X k ) k∈N . Then :a) lim n→∞ [logE (kn) ρ (exp(-N n (f ))) + kn Σ k=1 (1 -E ρ (exp(-N k,n (f ))))] = 0. E ρ (exp(-N k,n (f )))) = θδ -α 1 Λ 1 (1 -exp(-Σ j∈Z f (t, δZ j )))dt.Lemma 4.10 Let Σ i≥0 ε T δ i be a homogeneous Poisson process of intensity p(δ) > 0 on [0, 1],

  γ k are i.i.d. with the same law as γ, hence N t coincides with the compound Poisson process described in the statement. Proof of Corollary 4.5 Replacing u n by δu n (δ > 0) in Corollary 4.4, we see that the point process on [0, 1] given by N t n,δ = n Σ k=1 ε n -1 k 1 {|X k |>δun} converges to N t δ process on [0, 1] with intensity θ δ -α and the γ k are i.i.d. random variables as in the proof of Corollary 4.4. It follows that for any δ > 0, lim n→∞ P ρ {N t n,δ (1) = 0} = exp(-θ δ -α ). Since P ρ {N t n,δ (1) = 0} = P ρ {M n ≤ u n δ}, the convergence of u -1 n M n to Fréchet's law follows.

Lemma 4 . 11

 411 We have P ρ -a.e. : for any ε > 0, and for n large wehave |X n | ≤ n 1/α+ε .

|P

  ρ {n -1/α M n ≤ t} -e -cθt -α |) = 0 which gives lim p→∞ P ρ {β n,p (ε)} = 0. Since β n (ε) = ∩ p≥n β n,p (ε) we have for n ≥ 2 : P ρ {β n (ε)} ≤ lim p→∞ P ρ {β n,p (ε)} = 0, i.e. P ρ {β(ε)} = 0.

  where the sequence on the right is P-a.e. bounded. Then, it follows that, P-a.e.

Lemma 4 . 13 1 1

 4131 For any λ ≥ 0, we havelogE(exp(-λN s (A))) = -(1 -exp(-λ1 A (y)))E(exp(-λ ∞ Σ A (S i y)))dΛ 1 (y).

  n E ρ (|∆ ′′ n,k |) = 0, hence the required assertion. Lemma 5.3 We have the following convergences.

  n→∞ n -1 k n r n = 1 and the homogeneity at infinity of ρ, assertion 2 follows. Proof of Theorem 5.1 With r n as in Proposition 4.2 above, the multiple mixing property in Proposition 3.5 for functions depending only of v ∈ V gives lim n→∞

Corollary 5 . 4

 54 Since supp(f ) ⊂ U ′ δ and lim j→∞ |S j v| = 0 Q-a.e., the series ∞ Σ j=1 f (S j v) converges Q-a.e. Since Ref ≥ 0, it follows lim k→∞ E(exp(-k Σ j=1 f (S j v))) = exp(-π ω v (f )). Then dominated convergence and Lemma 5.3 imply lim k→∞ lim n→∞k n E ρ (C n,k (1, r n )) = -E Λ 0 [(expf (v) -1)exp(-π ω v (f ))].This equality and the second assertion in Lemma 5.3 give the result. Let m > 0, δ > 0, γ ≥ 0, and let f be a R m -valued continuous function onV \ {0} which satisfies the conditions 1) f is locally Lipschitz 2) f (v) = 0 for |v| < δ 3) sup v∈V |v| -γ |f (v)| = c γ < ∞ Then we have , for any u ∈ R m , log lim n→∞ E ρ (exp(-i < u, N s n (f ) >) = -E Λ 0 [(exp( i < u, f (v) >) -1)exp(-i < u, π ω v (f ) >)]Proof We consider the R m -valued random variable Y n = N s n (f ). For a ≥ 1, let θ a (v) be the function from V \ {0} to [0, 1] defined byθ a (v) = 1 for |v| ≤ a, θ a (v) = a + 1 -|v| for |v| ∈ [a, a + 1], θ a (v) = 0 for |v| ≥ a + 1.Then θ a is Lipschitz, hence f θ a is Lipschitz and compactly supported. Then Theorem 5.1 gives, in logarithmic form limn→∞ E ρ (exp i < u, N s n (f θ a ) >) = -E Λ 0 [(exp(-i < u, f θ a (v) >) -1)exp(π ω v (i < u, f θ a (v) > ))] = Φ a (u) Since Λ(U ′ δ ) < ∞, the function u → Φ a (u) is continuous on R m . Itfollows that the sequence of random variables Y a n = N s n (f θ a ) converges in law to the random variable Y a ∞ which has characteristic function Φ a . On the other hand we have lim a→∞ θ a = 1, hence by dominated convergence we get in logarithmic form, lim a→∞ Φ a (u) = -E Λ 0 [(exp(-i < u, f (v) >) -1)exp(i < u, π ω v (f ) >)] = Φ(u).

  j v) converges Q-a.e. to a finite sum, hence the function u → Φ(u) is continuous. In other words, Y a ∞ converges in law (a → ∞) to the random variable Y with characteristic function Φ. If we choose β ∈]0, 1[, γ > 0 such that βγ ∈]0, α[, then for any ε > 0, Markov's inequality givesP ρ {|Y a n -Y n | > ε} ≤ ε -β E ρ [ n Σ j=1 (f (u -1 n X j )1 {|X j |>aun} ) β ], P ρ {|Y a n -Y n | > ε} ≤ ε -β c β γ nE ρ [|u -1 n X| βγ 1 {|X|>aun}) ].Using Corollary 2.2, it follows lim supn→∞ P ρ {|Y a n -Y n | > ε} ≤ ε -β c β γ Λ(W βγ 1 {W >a} )), where W (x) = |x|. Since 0 < βγ < α, we get lim a→∞ lim sup n→∞ P ρ {|Y a n -Y n | > ε} = 0 Since ε > 0 isarbitrary, the convergence in law of Y n to the random variable Y follows, hence the corollary. In order to prepare the study of limits for the sumsT n = n Σ j=1 X j if 0 < α < 2, we write for a > 0 ψ a (v) = v(1 -ϕ a (v)), where ϕ a (v) = 1 if |v| ≤ a, ϕ a (v) = 2 -a -1 |v| if a ≤ |v| ≤ 2a, ϕ a (v) = 0 if |v| > 2a. Hence 0 ≤ ϕ a ≤ 1 [0,2a] and k(ϕ a ) ≤ a -1 . In particular we will use below the function ϕ 1 corresponding to a = 1. Then a consequence of Corollary 5.4, if γ = 1 is the following Corollary 5.5 The sequence of V -valued random variables N s n (ψ a ) converges in law to the random variable with characteristic function which logarithm isE Λ 0 [(exp(-i < u, ψ a (v) >) -1)exp(i < u, π ω v (ψ a ) >)].Proof It suffices to show that for any u ∈ S d-1 :lim a→0 lim sup n→∞ E ρ (| < u, N s n (ψ a ) > -E ρ (< u, N s n (ψ a ) > | 2 ) = 0. We write f a,n (v) = ψ a (u -1 n v), ψ a,n = f a,n -ρ(f a,n ). Hence |f a,n (v)| ≤ u -1 n |v|1 {|v|≤2aun} , k(f a,n ) ≤ 3u -1 n .We have the equality E ρ (| < u, N n (ψ a ) > -E ρ (< u, N n (ψ a ) >)| 2 ) = A n,a + 2B n,a with A n,a = nE ρ (| < u, ψ a,n (X 0 ) > | 2 ), B n,a = n Σ j=1

  a = 0 uniformly in u ∈ S d-1 .

n

  hence lim sup n→∞ B n,a is bounded by a 2-α , up to a coefficient independant of n. Since 1 < α < 2, and in view of the two above convergences the lemma follows. If α = 1, we need to use the Banach space H ′ = H χ,ε,κ with 0 < ε < χ < 1, κ = 0, considered in Proposition 3.4. We use also the inequalityf a,n ≤ c 1 a 1-χ n -ε with c 1 > 0, where α > 1 gives ∞ Σ j=1 E|S j | < ∞.Continuity of Φ at zero follows also from the above inequalities. Then, as in[START_REF] Davis | Point processes and partial sum convergence for weakly dependent random variables with infinite variance[END_REF], we deduce the convergence in law of the sequence Y n to T .If α = 1, we write Y n = n Σ j=1 n -1 X j -E ρ (ϕ 1 (n -1 X)) and -1 X i (1 -ϕ a (n -1 X j )) -b n (a) = N s n (ψ a ) -b n (a) where b n (a) = E ρ [X(ϕ 1 -ϕ a )(n -1 X)].With the new notations, the above inequalities are still valid. The homogeneity at infinity of ρ gives now limn→∞ b n (a) = c -1 E Λ 0 (v(ϕ 1 -ϕ a )) = b(a).It follows that the sequence Y a n converges in law (n → ∞) to the random variable T a 1 with characteristic function given in logarithmic form by -E Λ 0 [(exp(-i < u, ψ a (v) >) -1)(exp(i(< u, π ω v (ψ a ) >) -i < u, b(a) >)]

  the linear random walk S n (ω)v on V \{0}. We observe that these formulae depend only of the linear part of the affine random walk ; this is a consequence of the choice of the normalization by u n . We denote by Σ

i≥0 ε T δ i the homogeneous point Poisson process on [0, 1] with intensity p(δ) = θδ -α and by Σ j∈Z ε Z ij (i ≥ 0) an i.i.d. collection of copies of the cluster process C = Σ j∈Z ε Z j described in Proposition 2.6, independant of Σ i≥0 ε T δ i . Since we have |X x n -X y n | ≤ |S n ||x -y| and lim n→∞

  , hence P ρ -a.e. there exists n 0 (ω) such that for n ≥ n 0 (ω),|X n (ω)| ≤ n 1/α+ε .Then we deduce that P ρ -a.e. : lim sup We have P ρ -a.e. : lim sup

	lim sup n→∞	logM n logn	≤	1 α	.	n→∞	logM n logn	≤	1 α	+ ε. Since ε is arbitrary we get :
	Lemma 4.12 n→∞				

  and, since ε is arbitrary we conclude Also|log|X n | -log|X x n || ≤ |S n ||X 0 -x| sup(|X n | -1 , |X x n | -1), hence for any x ∈ V , P ρ -a.e. : lim

	lim sup n→∞	log|X n | logn	≥	1 α	.
	Proof of Corollary 4.6 From Lemmas 4.11, 4.12 we have P ρ -a.e.,
	lim sup n→∞ On the other hand, for n large and ε > 0, Lemma 4.11 gives logM n logn ≥ lim sup log|X n | logn = 1 α . n→∞ lim sup n→∞ logM n logn = 1 . α Then, for a set of ρ ⊗ P-probability 1 in V × H N we have	logM n logn	≤	1 α	+ 2ε, hence
	1 α = lim sup n→∞	log|X n |(ω) logn	= lim sup n→∞	logM n logn	,
	hence for a subsequence n k (ω), 1 α = lim k→∞ On the other hand we have for any x ∈ V : |X n -X x log|X n k (ω)| . logn k n | ≤ |S n ||X 0 -x| and lim n→∞ P-a.e.	|S n | = 0,
	|log|X n | -log|X x n || = 0. It follows lim n→∞ k→∞ log|X x n k | logn k = 1 α , and P-a.e., lim sup n→∞ A similar argument shows that P-a.e., lim sup n→∞ log|X x log|X x n | logn n | logn ≤	≥ 1 α .	1 α	.

process theory. We observe that, due to the normalization by u n the law of N depends only of µ, Λ 0 . Now as a consequence of Theorem 4.1, the mixing property stated in Proposition 3.5 for Lipschitz functions can be extended to compactly supported continuous functions. Then, in particular, the mixing conditions A(u n ) and A ′ (u n ) of ( [START_REF] Basrak | Regularly varying multivariate time series[END_REF], [START_REF] Basrak | A functional limit theorem for dependent sequences with infinite variance stable limits[END_REF]) are valid here and the basic conditions of extreme value theory (see [START_REF] Davis | The sample autocorrelation function of heavytailed processes with application to ARCH[END_REF]) are satisfied in our context. ε u -1 n X i is the projection of N n on V \ {0} we have the Corollary 4. [START_REF] Basrak | A functional limit theorem for dependent sequences with infinite variance stable limits[END_REF] The normalized space exceedances process N s n converges weakly to a point process N s . The law of the restriction of N s to U ′ δ is the same as the law of the point process

where T δ is a Poisson random variable with mean p(δ

The Laplace functional of N s is given in logarithmic form by

Assuming the mixing and anticlustering conditions for continuous functions, this statement was proved in [START_REF] Basrak | Regularly varying multivariate time series[END_REF], using the formula for Laplace functionals in Proposition 2.6.

We consider the N-valued random variable ζ = π ω v (U ′ 1 ) and we write

converges weakly (n → ∞) to the homogeneous compound Poisson process N t on [0, 1] with intensity θ, and cluster probabilities ν k (k ≥ 1) where

Under special hypotheses, including density of the law of B n with respect to Lebesgue measure, this statement was proved in [START_REF] Klüppelberg | Extremal behaviour of models with multivariate random recurrence representation[END_REF].

Fréchet's law for M x n = sup{|X x k |; 1 ≤ k ≤ n} is a simple consequence of Corollary 4.4 as follows.

Convergence to stable laws for

In this subsection we write ψ(v) = v and we study the convergence of N s n (ψ) = u -1 n T n towards a stable law, relying on the weak convergence of N s n studied in the above subsection. We need here the last part of the spectral gap result in Proposition 3.4 for the operator P . We have the Theorem 5.6 Let 0 < α < 2. Then there exists a sequence d n in V such that the sequence of random variables n -1/α (T n -d n ) converges in law to a non degenerate stable law.

Explicit expressions for the characteristic functions of the limits are given in the proofs. Non degeneracy of the limit laws are proved in [START_REF] Gao | Stable laws and spectral gap properties for affine random walk Ann[END_REF] and [START_REF] Guivarc | On spectral properties of a family of transfer operators and convergence to stable laws for affine random walks[END_REF]. For the proofs, we follow the approach of [START_REF] Davis | Point processes and partial sum convergence for weakly dependent random variables with infinite variance[END_REF] and we need two lemmas corresponding to the cases 0 < α < 1 and 1 ≤ α < 2.

In the proofs below we use the normalization u n = (α -1 cn) 1/α instead of n 1/α as in the theorem.

Lemma 5.7 Assume 0 < α < 1. Then for any u ∈ V and with the notation of Corollary 5.5,

Also, for any δ > 0 we have

Proof Using dominated convergence, the first part follows from Corollary 5.5. On the other hand, Markov's inequality gives

The homogeneity at infinity of ρ and Karamata's lemma (see [START_REF] Resnick | Extreme Values, Regular Variation, and Point Processes[END_REF] p.26) gives that the right hand side is equivalent to

where ϕ a is defined in the proof of Corollary 5.4. Then we have the convergence lim

shown below. We note that for h ∈ H ′ , we have |h(v)| ≤ h (1 + |v| ε ) in particular and up to a constant independant of n and a, we have

Hence we can bound

, which can be estimated using Karamata's lemma, for ε > 1/2, by 2c

It follows that B n,a can be estimated by 2c 2

Proof of Theorem 5.6 For α ∈]0, 1[ the proof follows from Lemma 5.7. We observe that dominated convergence implies the continuity of Φ at zero, hence Φ is a characteristic function. From Lemma 5.7 we know that if

Then, for any ε > 0, Lemma 5.8 gives, lim

), as follows from α > 1 and the homogeneity at infinity of ρ. Hence the sequence Y a n converges in law (n → ∞) to T a -b(a) = Y a . Finally Y a converges in law (a → 0) to the random variable T with characteristic function Φ defined in logarithmic form by

This follows of Theorem 5.1, of dominated convergence (a → 0) and of the following

To conclude we write using the notation of 2.4

rn nPρ{Mr n >un} ). From above the first factor converges to I. The second factor is asymptotic to We denote by T µ the closed subsemigroup of G generated by supp(µ), where µ is a probability on G. We consider weak topologies for probability measures on G and on H. We denote by M 1 (G) (resp.M 1 (H)) the set of probabilities on G(resp. H). We denote by W(H) the weak topology on M 1 (H) defined by the convergence on continuous compactly supported functions as well as of the moments (γ k (g) + |b| k (h))dλ(h) for any k ∈ N. An element γ ∈ G is said to be proximal if it has a unique simple dominant real eigenvalue. Proof Assume µ ∈ M 1 (G), satisfies i-p and let µ n ∈ M 1 (G) be a sequence which converges weakly to µ. Then supp(µ n ) and T µn are closed subsets of G which converges to supp(µ) and T µ respectively. If γ is a proximal element of T µ , then by perturbation theory there exists a neighbourhood of γ in G which consists of proximal elements. Hence there exists γ n ∈ T µn which is also proximal. On the other hand T µn is irreducible for large n. Otherwise there exists a proper subspace W n ⊂ V with T µn (W n ) = W n . Let W ⊂ V be the limit of a subsequence of W n . Then, clearly T µ (W ) = W , which contradicts the irreducibility of T µ . In order to show the strong irreducibility of T µn for n large, we show the irreducibility of Zc 0 (T µn ), the connected component of the Zariski closure Zc(T µn ) of T µn (see [START_REF] Onishchik | Lie groups and Algebraic groups[END_REF]). Since T µn is irreducible, the Lie group Zc 0 (T µn ) is reductive and has finite index in Zc(T µn ). We decompose V as the direct sum of its isotypic components

i . Since Zc 0 (T µn ) has finite index in Zc(T µn ) we can assume, by taking a suitable power, that γ n ∈ Zc 0 (T µn ). The uniqueness of the above decomposition of V and the relation

i , with λ n a simple dominant eigenvalue of γ n implies γ n v i = λ n v i ; hence the proximality of γ n implies that v belongs to a unique

say. Also the irreducibility of T µn implies that T µn permutes the subspaces

1 ) since gγ n g -1 is also proximal, for g ∈ T µn . Assume Zc 0 (T µn ) is not irreducible for n large ; then it follows that p n ∈]1, d] and r n = dim V Proof of Theorem 6.1 Let λ n ∈ M 1 (H) be a sequence which converges to λ ∈ M 1 (H) in the weak topology W(H) and let us denote by µ n the projection of λ n on G. We verify the stability of conditions 1, 2 in (c-e) if d > 1, since condition 3 follows of the definition of W(H) and condition 4 is a direct consequence of Proposition 6.2. We denote by S d-1

∞ the sphere at infinity of V and we observe that the group H acts continuously on the compactification (V ) ∪ S d-1 ∞ endowed with the visual topology.

1) Assume that supp(λ n ) has a fixed point x n ∈ V for n large. Since the closed subset supp(λ n ) converges to supp(λ), we can find a convergent subsequence of x n to a point x in (V ) ∪ (S d-1 ∞ ), such that x is supp(λ)-invariant. If x ∈ V we have a contradiction since supp(λ) has no fixed point in V . If x ∈ S d-1 ∞ , we have also a contradiction since condition i-p implies that the projective action of supp(µ) has no fixed point, if d > 1.

2) Using Lemma 6.4, since finiteness of moments for µ n is valid, we get that for µ n and for any s ≥ 0, the corresponding operator P s has a spectral gap on the relevant Hölder space on S d-1 ∞ (see [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF]). The moment condition implies that perturbation theory is valid for the operators P s . Hence the spectral radius k(s) varies continuously. In particular, since we have k(s) > 1 for µ and s > α, and L(µ) < 0, the same is valid for µ n with n large. Hence there exists α n > 0 close to α such that k(α n ) = 1 and L(µ n ) < 0. Acknowledgment This research, did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
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