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Abstract

We consider a general multivariate affine stochastic recursion and the associated Markov
chain on Rd. We assume a natural geometric condition which implies existence of an un-
bounded stationary solution and we show that the large values of the associated stationary
process follow extreme value properties of classical type, with a non trivial extremal index.
We develop some explicit consequences such as convergence to Fréchet’s law or to an ex-
ponential law, as well as convergence to a stable law. The proof is based on a spectral gap
property for the action of associated positive operators on spaces of regular functions with
slow growth, and on the clustering properties of large values in the recursion.

Keywords : Spectral gap, Extreme value, Affine random recursion, Point process, Extremal

index, Excursion, Ruin, Laplace functional.

1 Introduction

Let V = Rd be the d-dimensional Euclidean space and let λ be a probability on the affine
group H of V , µ the projection of λ on the linear group G = GL(V ). Let (An, Bn) be a
sequence of H-valued i.i.d. random variables distributed according to λ and let us consider
the affine stochastic recursion on V defined by

Xn = AnXn−1 +Bn

for n ∈ N. We denote by P the corresponding Markov kernel on V and by P the product
measure λ⊗N on HN. Our geometric hypothesis (c-e) on λ involves contraction and expan-
sion properties and is robust for the relevant weak topology if d > 1 ; it implies that P has
a unique invariant probability ρ on V , with unbounded support. In our situation (see [13]),
the quantity ρ{|v| > t} is asymptotic (t→ ∞) to α−1c t−α with α > 0, c > 0. More preci-
sely the measure ρ is multivariate regularly varying, a basic property for the development
of extreme value theory i.e. for the study of exceptionally large values of Xk(1 ≤ k ≤ n)
for n large (see [30]), our main goal in this paper. One non trivial aspect of hypothesis
(c-e) is that it implies unboundness of the subsemigroup of G generated by supp(µ), hence
multiplicity of large values of |Xn|. Also, from a heuristic point of view, hypothesis (c-e)
allows us, to reduce the d-dimensional linear situation to a 1-dimensional setting.

1. Corresponding author
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In such a situation of weak dependance, spectral gap properties of operators associated to
P play an important role via a multiple mixing condition described in [7] for step functions.
We observe that the same idea has been used in various closely related situations : limit
theorems for the largest coefficient in the continued fraction expansion of a real number (see

[27], [37]), limit theorems for the ergodic sums
n
Σ
k=1

Xk along the above stochastic recursion

(see [15]), geodesic excursions on the modular surface (see [17], [28]), ”shrinking larget”
problem (see [26], [32]). In our setting, spectral gap properties of operators associated
to P allow us to study the path behaviour of the Markov chain defined by P . In the
context of geometric ergodicity (see [31]) for the Markov operator P acting on measurable
functions, assuming a density condition on the law of Bn, partial results were obtained in
[22]. However simple examples show (see below) that, in general, P has no spectral gap
in L2(ρ). Here we go further in this direction replacing geometric ergodicity by condition
(c-e). Condition (c-e) implies that the operator P has a spectral gap property in the spaces
of Hölder functions with polynomial growth considered below, a fact which allow us to
deduce convergence with exponential speed on Hölder functions. A typical example of this
situation occurs if the support of λ is finite and generates a dense subsemigroup of the
affine group H.
If Z+ is the set of non negative integers, we denote by Pρ the Markov probability on V Z+

defined by the kernel P and the initial probability ρ. In this paper we establish spectral
gap properties for the action of P on Hölder functions and we deduce fundamental extreme
value statements for the point processes defined by the Pρ-stationary sequence (Xk)k≥0.
Our results are based on the fact that the general conditions of multiple mixing and an-
ticlustering used in extreme value theory of stationary processes (see [2], [7]) are valid for
affine stochastic recursions, under condition (c-e). We observe that, in the context of Lip-
schitz functions, the above mixing property is a consequence of the spectral gap properties
studied below ; it turns out that the use of advanced point process theory allows us to
extend this mixing property to the setting of compactly supported continuous functions
considered in[2]. Using these basic results, we give proofs of a few extreme value properties,
following closely [2].
Then, our framework allow us to develop extreme value theory for a large class of natural
examples in collective risk theory, including the so-called GARCH process as a very special
case (see [9]). In this context, some of our results have natural interpretations as asymptotics
of ruin probabilities or ruin times [6].
In order to sketch our results, we recall that Fréchet’s law Φa

α with positive parameters
α, a is the max-stable probability on R+ defined by the distribution function Φa

α([0, t]) =
exp(−at−α). Also, we consider the associated stochastic linear recursion Yn = AnYn−1, we
denote by Q the corresponding Markov kernel on V \ {0} and by Q = µ⊗N the product
measure on Ω = GN ; we write Sn = An · · ·A1 for the product of random matrices Ak(1 ≤
k ≤ n). Extending previous work of H. Kesten (see [20]), a basic result proved in [13] under
condition (c-e) is that for some α > 0, the probability ρ is α-homogeneous at infinity,
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hence ρ has an asymptotic tail measure Λ 6= 0 which is a α-homogeneous Q-invariant
Radon measure on V \ {0}. The multivariate regular variation of ρ is a direct consequence
of this fact. Also, it follows that, if Ut ⊂ V is the closed ball of radius t > 0 centered at
0 ∈ V and U ′

t = V \ Ut, then we have Λ(U ′
t) = α−1ct−α with c > 0. In particular, Λ(U ′

t)
is finite and the projection of ρ on R+, given by the norm map v → |v| has the same
asymptotic tail as Φc

α. We write Λ0 = c−1αΛ hence Λ0(U
′
1) = 1 and we denote by Λ1 the

restriction of Λ0 to U ′
1. If un > 0 satisfies (un)

α = α−1cn, it follows that the mean number
of exceedances of un by |Xk| (1 ≤ k ≤ n) converges to one. It will appear below that un
is an estimate of sup{|Xk| ; 1 ≤ k ≤ n} and that normalization by un reduces extreme
values for the process Xn to excursions at infinity for the linear random walk Sn(ω)v and
the measures Λ0,Λ1.
Then, one of our main results is the convergence in law of the un-normalized maximum of
the sequence |X1|, |X2|, . . . , |Xn| towards Fréchet’s law Φθ

α with θ ∈]0, 1[. A closely related
point process result is the weak convergence of the time exceedances process

N t
n =

n
Σ
k=1

εn−1k1{|Xk|>un}

towards a compound Poisson process with intensity θ and cluster probabilities depending

on the occupation measure πωv =
∞
Σ
i=0

εSi(ω)v of the associated linear random walk Si(ω)v

and on Λ1. The expression εx denotes the Dirac mass at x. The significance of the relation
θ < 1 is that, in our situation, values of the sequence (|Xk|)0≤k≤n larger than un, appear
in localized clusters with asymptotic expected cardinality θ−1 > 1. This reflects the local
dependance of large values in the sequence (Xk)k≥0 and is in contrast with the well known
situation of positive i.i.d. random variables with tail also given by Φc

α, where the same
convergences with θ = 1 is satisfied. If Euclidean norm is replaced by another norm, the
value of the extremal index θ is changed but the condition θ ∈]0, 1[ remains valid. For
affine stochastic recursions in dimension one, if An, Bn are positive and condition (c-e)
is satisfied, convergence to Fréchet’s law and θ ∈]0, 1[ was proved in [18], using [20]. We
observe that our result is the natural multivariate extension of this fact. Here, our proofs
use the tools of point processes theory and a remarkable formula (see [2]) for the Laplace
functional of a cluster point process C = Σ

j∈Z
εZj

on V \ {0}, which describes in small time

the large values of (Xn)n≥0. As a consequence of Fréchet’s law and in the spirit of [28], we
obtain a logarithm law for affine random walk.
To go further, we consider the linear random walk Sn(ω)v on V \ {0}, we observe that
condition (c-e) implies lim

n→∞
Sn(ω)v = 0, Q−a.e. and we denote by QΛ0

(resp. QΛ1
) the

Markov measure on (V \ {0})Z+ defined by the kernel Q and the initial measure Λ0 (resp.
Λ1). We show below the weak convergence to a limit processN of the sequence of space-time
exceedances processes

Nn =
n
Σ
i=1

ε(n−1i,u−1
n Xi)

on [0, 1]× (V \{0}). In restriction to [0, 1]×U ′
δ , with δ > 0, N can be expressed in terms of
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C and of a Poisson component on [0, 1] with intensity θδ−α ; the expression of the Laplace
functional of C involves the occupation measure πωv and QΛ1

. Using the framework and the
results of ([2], [3], [7]), we describe a few consequences of this convergence. In particular we

consider also, as in ([7], [8]), the convergence of the normalized partial sums
n
Σ
i=1

Xi towards

stable laws, if 0 < α < 2, in the framework of extreme value theory. Also, as observed
in [7], this convergence is closely connected to the convergence of the sequence of space
exceedances point processes on V

N s
n =

n
Σ
i=1

εu−1
n Xi

,

towards a certain infinitely divisible point process N s. Another consequence of this conver-
gence is the description of the asymptotics of the normalized hitting time of any dilated
Borel subset of U ′

1 with positive Λ-measure, and negligible boundary : weak convergence to
a non trivial exponential law is valid. We observe that convergence of normalized hitting
times to an exponential law is a well studied property in the context of the ”shrinking tar-
get” problem. Here we are concerned with a special ”random dynamical system” (see [32])
associated to the affine action on Rd and the hitting times of shrinking neighbourhoods
of the sphere at infinity of Rd considered as a weakly attractive target. The point process
approach and the use of spectral gap properties allow us to deal with this geometrically
more complex situation which involves a non trivial extremal index.
In these studies we follow closely the approaches previously developed in ([2], [7]) in the
context of extreme value theory for general stationary processes, in particular we make
full use of the concepts of tail and cluster processes introduced in [2]. This allow us to
recover, in a natural setting, the characteristic functions of the above α-stable laws, as
described in [15] if d = 1 and in [10] if d > 1, completing thereby the results of ([1], [2],
[7]). Furthermore, in view of our results we observe that, with respect to the Q-invariant
measure Λ0, the potential theory of the associated linear random walk enters essentially in
the description of the extreme value asymptotics for the affine random walk Xn, through
excursions, occupation measures and capacities.
For self containment reasons we have developed anew a few arguments of ([2]) in our
situation. However we have modified somewhat the scheme of ([2], [33]) for the construction
of the tail process, introducing a shift invariant measure Q̂Λ0

on (V \ {0})Z which governs
the excursions at infinity of the associated linear random walk Sn(ω)v. This lead us to
an essentially self-contained presentation for the extremal index and the point process
asymptotics. It is the use of its restriction Q̂Λ1

, which allows one to express geometrically
the point processes N,N s, N t, as in ([2], [3]).
Here is the structure of our paper.
In section 2, we recall a basic result of [13] and we define two processes of probabilistic
significance. This allow us to connect the extreme values of the affine random walk to the
excursions of its associated linear random walk, as in [2]. In view of the results in section
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4, it is essential to deal with Z-indexed processes, hence to introduce the shift invariant
measure Q̂Λ0

.
In section 3 we develop the spectral gap properties for affine random walks. In particular
we deduce the multiple mixing property which plays an essential role in section 4.
In section 4 we describe the new results and give the corresponding proofs.
Section 5 describe briefly new proofs of the convergence to stable laws, in the context of
point processes using the approach of [2], [3], [7].
In section 6 we show that our basic hypothesis (c-e) is ”generic” in the weak topology of
measures on the affine group H.
We refer to ([14], [16]) for surveys of the above results. After submission of this paper
the authors became aware of the content of the book [5], where closely related results are
proved by different methods. We thank the referees for substancial and useful comments.
We thank also J.P. Conze for suggesting the use of dynamical methods in the above context.

2 The tail process and the cluster process

2.1 Homogeneity at infinity of the stationary measure

We recall condition (c-e) from [13], for the probability λ on the affine group of V .
A semigroup T of GL(V ) = G is said to satisfy i-p if

a) T has no invariant finite family of proper subspaces
b) T contains an element with a dominant eigenvalue which is real and unique.

Condition i-p implies that the action of T on the projective space of V is proximal ; heuris-
tically speaking this means that, T contracts asymptotically two arbitrary given directions
to a single one, hence the situation could be compared to a 1-dimensional one. Condition
i-p for T is valid if and only if it is valid for the group which is the Zariski closure of T , (see
[25]). We recall that a Zariski closed subset of an algebraic group like G or H is a subset
defined as the set of zeros of a family of polynomials in the coordinates. The corresponding
topology is much weaker that the usual locally compact topology . In particular the Zariski
closure of a subsemigroup is a subgroup which is closed in the usual topology and which
has a finite number of connected components. Hence condition i-p is valid if T is Zariski
dense in G (see [29]) ; also it is valid for T if it is valid for T−1. Below we will denote by T
the closed subsemigroup generated by supp(µ), the support of µ.
For g ∈ G we write γ(g) = sup(|g|, |g−1|) and we assume

∫
logγ(g)dµ(g) < ∞. For s ≥ 0

we write k(s) = lim
n→∞

(

∫
|g|sdµn(g))1/n where µn denotes the nth convolution power of µ

and we write L(µ) for the dominant Lyapunov exponent of the product Sn(ω) = An · · ·A1

of random matrices Ak(1 ≤ k ≤ n) i.e. L(µ) = lim
n→∞

1

n

∫
log|g|dµn(g) = k′(0). We denote

by r(g) the spectral radius of g ∈ G. We say that T is non arithmetic if r(T ) contains two
elements with irrational ratio. Condition (c-e) is the following :
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1) supp(λ) has no fixed point in V .
2) There exists α > 0 such that k(α) = lim

n→∞
(E|Sn|

α)1/n = 1.

3) There exists ε > 0 with E(|A|αγε(A) + |B|α+ε) <∞.
4) If d > 1, T satisfies i-p and if d = 1, T is non arithmetic.

The above conditions imply in particular that L(µ) < 0, k(s) is analytic, k(s) < 1 for
s ∈]0, α[ and there exists a unique stationary probability ρ for λ acting by convolution on
V ; the support of ρ is unbounded. Property 1 guarantees that ρ has no atom and says
that the action of supp(λ) is not conjugate to a linear action. Properties 2,3 imply that T
is unbounded and are responsible for the α-homogeneity at infinity of ρ described below ;
if k(s) is finite on [0,∞[ and there exists g ∈ T with r(g) > 1, then Property 2 is satisfied.
Also if d > 1, condition i-p is basic for renewal theory of the linear random walk Sn(ω)v
and it implies that T is non arithmetic.
In the appendix we will show that if d > 1 condition (c-e) is open in the weak topology
of probabilities on the affine group, defined by convergence of moments and of values on
continuous compactly supported functions.
Below, we use the decomposition of V \{0} = Sd−1×R>0 in polar coordinates, where Sd−1

is the unit sphere of V . We consider also the Radon measure ℓα on R>0 (α > 0) given by
ℓα(dt) = t−α−1dt. We recall (see [20]) that, if (An, Bn)n∈N is an i.i.d. sequence of H-valued
random variables with law λ and L(µ) < 0, then ρ is the law of the P−a.e. convergent

series X =
∞
Σ
0
A1 · · ·AkBk+1. The following is basic for our analysis.

Theorem 2.1 ( see [13], Theorem C)
Assume that λ satisfies condition (c-e). Then the operator P has a unique stationary pro-
bability ρ, the support of ρ is unbounded and we have the following vague convergence on
V \ {0} :

lim
t→0+

t−α(t.ρ) = Λ = c(σα ⊗ ℓα)

where c > 0 and σα is a probability on Sd−1. Furthermore Λ is a Q-invariant Radon measure
on V \ {0} with unbounded support.

We observe that, for d > 1, if supp(λ) is compact and has no fixed point in V , L(µ) < 0,
T is Zariski dense in G and is unbounded, then condition (c-e) is satisfied. For d = 1, if
supp(λ) is compact, the hypothesis of ([18], Theorem 1.1) is equivalent to condition (c-e).
The existence of Λ stated in the theorem implies multivariate regular variation of ρ. Since
the convergence stated in the theorem is valid we say that ρ is homogeneous at infinity ;
below we will make essential use of this property. We note that the fact that supp(Λ) is
unbounded follows from condition 2 above, hence of the unboundness of T .
Under condition (c-e), Λ gives zero mass to any proper affine subspace and σα has positive
dimension. We observe that, if the sequence (An, Bn)n∈N is replaced by (An, tBn)n∈N with
t ∈ R∗, then the asymptotic tail measure is replaced by t.Λ, in particular the constant c is
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replaced by |t|αc. In subsection 2.2 below, in view of normalisation, it is natural to replace
Λ by Λ0 = c−1αΛ ; this takes into account the magnitude of Bn and implies Λ0(U

′
1) = 1.

Also, as shown in [13], the Q-invariant Radon measure Λ0 is extremal or can be decomposed
in two extremal measures. Hence, if the action of T on Sd−1 has a unique minimal subset,
then Λ0 is symmetric, supp(σα) is equal to this minimal subset and the shift invariant
Markov measure QΛ0

on (V \ {0})Z+ is ergodic. Otherwise QΛ0
decomposes into at most

two ergodic measures. Hence Λ0 depends only of µ, possibly up to one positive coefficient.
The following is a consequence of vague convergence.

Corollary 2.2 Let f be a bounded Borel function on V \ {0} which has a Λ-negligible
discontinuity set and such that supp(f) is bounded away from zero. Then we have

lim
t→0+

t−α(t.ρ)(f) = Λ(f).

2.2 The tail process

We denote Ω = GN, Ω̂ = GZ, and we endow Ω with the product probability Q = µ⊗N.
We define the G-valued cocycle Sn(ω) where ω = (Ak)k∈Z ∈ Ω̂, n ∈ Z by :

Sn(ω̂) = An · · ·A1 for n > 0, Sn(ω̂) = A−1
n+1 · · ·A

−1
0 for n < 0, S0(ω̂) = Id

We consider also the random walk Sn(ω)v on V \ {0}, starting from v 6= 0, ω ∈ Ω and
we denote by QΛ0

the Markov measure on (V \ {0})Z+ for the random walk Sn(ω)v with
initial measure Λ0. This measure is invariant under the shift on (V \ {0})Z+ . We recall
that the shift s (resp. ŝ) on the product space DZ+ (resp. DZ) is the map defined on
ω = (ωk)k∈Z+

(resp. ω̂ = (ω̂k)k∈Z) by s(ω)k = ωk+1 (resp. ŝ(ω̂)k = ω̂k+1. We recall below
Proposition 4 of [12] which extends the construction of the natural extension for a non
invertible transformation (see also [34]) ; this construction is standard for finite invariant
measures.
Let ∆ (resp. ∆̂) be the shift on Ω (resp. Ω̂), σ (resp. σ̂) the map of Ω× (V \ {0}) = E into
itself (resp. Ω̂× (V \ {0}) = Ê) defined by

σ(ω, v) = (∆ω,A0(ω)v) (resp. (σ̂(ω̂, v) = (∆̂ω̂, A0(ω̂)v).
We denote by τ (resp. τ̂) the shift on (V \{0})Z+ (resp. (V \{0})Z) and we note that Q⊗Λ0

is σ-invariant we observe that the map (ω, v) → (Sk(ω)v)k∈Z+
defines the dynamical system

((V \ {0})Z+ , τ,QΛ0
) as a measure preserving factor of (E, σ,Q⊗Λ0). The construction of

a natural extension has been detailed in [12] and we state the result.

Proposition 2.3 (see [12])

There exists a unique σ̂-invariant measure Q̂⊗ Λ on Ê with projection Q⊗ Λ en E.

Since the map defined by p(ω, v) = (Sk(ω)v)k∈Z+
(resp. p̂(ω̂, v) = (Sk(ω̂)v)k∈Z) commutes

with σ, τ (resp. σ̂, τ̂ ) and Q̂⊗ Λ0 is σ̂-invariant with projection Q⊗Λ0 on Ω× (V \ {0}) it

follows, that the push-forward measure p̂(Q̂⊗ Λ0) = Q̂Λ0
on (V \ {0})Z, is τ̂ -invariant and
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has projection QΛ0
= p(Q⊗Λ0) on (V \ {0})Z+ . The definition of Q̂Λ0

is used below in the
construction of the tail process (see [2]) of the affine random walk (Xk)k∈Z.
We define the probability Q̂Λ1

by Q̂Λ1
= (1U ′

1
◦ π)Q̂Λ0

where π denotes the projection of

(V \ {0})Z on V \ {0}. The restriction of Λ0 to U ′
1 is denoted Λ1, hence Λ1(U

′
t) = t−α if

t > 1 and we denote by QΛ1
the Markov measure defined by Q and the initial measure Λ1.

We note that the probability QΛ1
(resp Q̂Λ1

) extends to V Z+ (resp V Z) and its extension
will be still denoted QΛ1

(resp Q̂Λ1
).

In order to illustrate the above contruction, we take d = 1, hence V \ {0} = R∗, Λ =
c|x|−α−1dx where α > 0 and µ satisfies

∫
log|a|dµ(a) < 0. Since

∫
|a|αdµ(a) = 1, we

can denote by µα the new probability defined by dµα(a) = |a|−αdµ∗(a) and µ∗ is the
push forward of µ by the map a → a−1 ; it follows

∫
log|a|dµα(a) < 0. We denote by

Q∗ the Markov kernel defined by convolution with µα on R∗, hence Q∗Λ = Λ. Then it

is easy to verify that Q̂⊗ Λ0 = Q∗
α ⊗ Λ0 ⊗ Q where Q∗

α = µ
⊗(−N)
α and Ê is identifixed

with G−N × V ×GN. Also we denote by Q∗
v ⊗ εv(resp.εv ⊗Qv) the Markov probability on

(V \ {0})⊗(−Z+)(resp. (V \ {0})⊗Z+) associated to Q∗ (resp. Q) and the inititial measure
εv. Then we have Q̂Λ1

=
∫
Q∗

v ⊗ εv ⊗QvdΛ1(v). If d > 1, such formulae remain valid, with
Q∗ equal to the adjoint operator to Q in L2(Λ).
We consider the probability ρ, the shift-invariant Markov measure Pρ (resp P̂ρ) on V Z+

(resp V Z), where ρ is the law of X0 and Pρ is the projection of P̂ρ on V
Z+ . Since ρ({0}) = 0,

we can replace V by V \{0} when working under Pρ. For 0 < j ≤ i we write Si
j = Ai · · ·Aj

and Si+1
i = I. Expectation with respect to P or Q, will be simply denoted by the symbol

E. If expectation is taken with respect to a Markov measure with initial measure ν, we will
write Eν. For a family Yj(j ∈ Z) of V -valued random variables and k, ℓ in Z ∪{−∞,∞},
we denote M ℓ

k(Y ) = sup{|Yj | ; k ≤ j ≤ ℓ}. We observe that, if t > 0, condition (c-e)
implies ρ{|x| > t} > 0, hence as in [2], we can consider the new process (Y t

i )i∈Z deduced

from t−1(Xi)i∈Z by conditioning on the set {|X0| > t}, for t large, under P̂ρ. We recall (see
[30]) that a sequence of point processes on a separable locally compact space E is said to
converge weakly to another point process if there is weak convergence of the corresponding
finite dimensional distributions. The following is a detailed form in our case of the general
result for multivariate jointly regularly varying stationary processes in [2]. The tail process
appears here to be closely related to the stationary process (with infinite measure) Q̂Λ0

,
which plays therefore an important geometric role.

Proposition 2.4 a) The family of finite dimensional distributions of the point process
(Y t

i )i∈Z converges weakly (t → ∞) to those of the point process (Yi)i∈Z on V given by

Yi = SiY0 where (Yi)i∈Z has law Q̂Λ1
.

b) We have QΛ1
{M∞

1 (Y ) ≤ 1} = Q̂Λ1
{M−1

−∞(Y ) ≤ 1},
lim
n→∞

lim
t→∞

Pρ{ sup
1≤k≤n

|Xk| ≤ t/|X0| > t} = QΛ1
{M∞

1 (Y ) ≤ 1} := θ

c) In particular θ ∈]0, 1[
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Proof a) We observe that, since for any i ≥ 0,Xi = SiX0+
i
Σ
j=1

Sj+1
i Bj and lim

t→∞

1

t

i
Σ
j=1

Sj+1
i

Bj = 0, Pρ−a.e, the random vectors (t−1Xi)0≤i≤p+q and (t−1SiX0)0≤i≤p+q have the same

asymptotic behaviour in Pρ-law, conditionally on |X0| > t. Also by stationarity of P̂ρ, for
f continuous and bounded on V p+q+1 we have
Eρ{f(t

−1X−q, · · · , t
−1Xp)/|X0| > t} = Eρ{f(t

−1X0, t
−1X1, · · · , t

−1Xp+q) / |Xq| > t}.
From above, using Corollary 2.2, Λ{|x| = 1} = 0 and the formula Λ{|x| > 1} = α−1c, we
see that the right hand side converges to :

c−1α
∫
E{f(x, S1x, · · · , Sp+qx)1{|Sqx|>1}dΛ(x) = Q̂Λ0

(f1{S−1
q (U ′

1
})

We observe that Corollary 2.2 can be used here for fixed ω ∈ Ω since the condition |Xq| > t
reduces the transformed expression under Eρ to a bounded function supported in S−1

q (U ′
1).

Hence, using stationarity of Q̂Λ, we get the weak convergence of the process (Y t
i )i∈Z to

(Yi)i∈Z as stated in a).
b) In view of a) and Corollary 2.2, since the discontinuity sets of the functions 1]0,1](M

n
1 (Y ))

and 1[1,∞[(Y0) on V
n are QΛ1

-negligible, we have lim
t→∞

Pρ{ sup
1≤k≤n

t−1|Xk| ≤ 1/t−1|X0| > 1} =

QΛ1
{Mn

1 (Y ) ≤ 1}.
Hence θ = lim

n→∞
lim
t→∞

Pρ{ sup
1≤k≤n

|Xk| ≤ t/X0 > t} = QΛ1
{sup
k≥1

|Yk| ≤ 1}.

We write Q̂Λ1
{M−1

−∞(Y ) ≤ 1} = 1 − Q̂Λ1
{M−1

−∞(Y ) > 1} and we define the random time
T by T = inf{k ≥ 1 ; |Y−k| > 1} if there exists k ≥ 1 with |Y−k| > 1 ; if such a k does not
exist we take T = ∞. We have by definition of T :

Q̂Λ1
{M−1

−∞(Y ) > 1} =
∞
Σ
k=1

Q̂Λ1
{T = k},

Q̂Λ1
{T = k} = Q̂Λ1

{|Y−1| ≤ 1, |Y−2| ≤ 1, · · · , |Y−k+1| ≤ 1 ; |Y−k| > 1},
Using τ̂ -invariance of Q̂Λ, the definition of Q̂Λ1

and a), we get
Q̂Λ1

{T = k} = QΛ1
{|Y1| ≤ 1, · · · , |Yk−1| ≤ 1 ; |Yk| > 1},

Q̂Λ1
{M−1

−∞(Y ) > 1} =
∞
Σ
k=1

QΛ1
{|Y1| ≤ 1, · · · , |Yk−1| ≤ 1 ; |Yk| > 1} = QΛ1

{M∞
1 (Y ) > 1}.

The formula Q̂Λ1
{M−1

−∞(Y ) ≤ 1} = QΛ1
{M∞

1 (Y ) ≤ 1} follows.
c)The formula θ = QΛ1

{M∞
1 (Y ) ≤ 1} and the form of Yi(i ≥ 0) given in a) imply θ =

E(
∫
1
{sup
i≥1

|Six| ≤ 1}dΛ1(x)) ≤ 1. The condition θ = 1 would imply for any i ≥ 1 : |Six| ≤ 1,

Q⊗Λ1−a.e., hence {0} 6⊂ supp(SiΛ1) ⊂ U1. This would contradict the fact that supp(Λ1)
is unbounded, hence we have θ < 1. The condition θ = 0 implies QΛ1

{M∞
1 (Y ) ≤ 1} = 0

and, since Yj = SjY0, we have |Sjy| > 1 QΛ1
−a.e for some j > 1. Since Λ is Q-invariant, the

corresponding hitting law of supp(Λ1) is absolutely continuous with respect to Λ1. Then,
using Markov property we see that Sk(ω)y returns to supp(Λ1) infinitely often QΛ1

-a.e.
Since condition (c-e)implies lim

j→∞
|Sjy| = 0, Q−a.e. for any y 6= 0, this is a contradiction. �
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2.3 Anticlustering property

We will show in section 2.4 that, asymptotically, the set of large values ofXk consists of a
sequence of localized elementary clusters. An important sufficient condition for localization
(see [7]) is proved in Proposition 2.5 below and will allow us to show the existence of a
cluster process, following [2]. It is called anticlustering and is used in section 4 to decompose
the set of values of Xk(1 ≤ k ≤ n) into successive quasi-independent blocks. For k ≤ ℓ in
Z we write

M ℓ
k = sup

k≤i≤ℓ
|Xi| , Rℓ

k =
ℓ
Σ
i=k

P̂ρ{|Xi| > un/|X0| > un},

where un = (α−1cn)1/α. For k > 0, we write also Mk =Mk
1 .

We observe thatM ℓ
k ≤

ℓ
Σ
k
|Xi|. Let rn be any sequence of integers with rn = o(n), lim

n→∞
rn =

∞. Then we have Pρ{M
rn
1 > un} ≤ rnPρ{|X0| > un}, hence the homogeneity of ρ at infinity

gives lim
n→∞

Pρ{M
rn
1 > un} = 0. The condition rn = o(n) allows us to localize the influence of

one large value of Xk(1 ≤ k ≤ n). It follows that the event {M rn
1 > un} can be considered

as ”rare”. The homogeneity at infinity of ρ and the arbitrariness of rn allow us to restrict
the study to the sequence un instead of tun(t > 0).
The following is based on the homogeneity at infinity of ρ, the inequality 0 < k(s) < 1 if
0 < s < α.

Proposition 2.5 Assume rn ≤ [ns] with 0 < s < 1, lim
n→∞

rn = ∞. Then lim
m→∞

lim
n→∞

Rrn
m =

0. In particular lim
m→∞

lim
n→∞

P̂ρ{sup(M
−m
−rn , M

rn
m ) > un/|X0| > un} = 0, hence the random

walk Xn satisfies anticlustering. Furthermore we have Q̂Λ1
{ lim
|t|→∞

|Yt| = 0} = 1.

Proof We observe that :
P̂ρ{M

rn
m > un/|X0| > un} ≤ Rrn

m , P̂ρ{M
−m
−rn > un/|X0| > un} ≤ R−m

−rn = Rrn
m

where we have used stationarity of Xk in the last equality. Hence it suffices to show

lim
m→∞

lim
n→∞

Rrn
m = 0. For i ≥ 0 we have Xi = SiX0 +

i
Σ
j=1

Sj+1
i Bj where Si, X0 are in-

dependent, as well as X0,
i
Σ
j=1

|Sj+1
i Bj |. We write Iin = P̂ρ{|Xi| > un/|X0| > un},

J i
n = P̂ρ{|SiX0| > 2−1un/|X0| > un}, K

i
n = P̂ρ{

i
Σ
j=1

|Sj+1
i Bj | > 2−1un/|X0| > un},

hence Rrn
m =

rn
Σ

i=m
Iin ≤

rn
Σ

i=m
J i
n +

rn
Σ

i=m
Ki

n.

We are going to show lim
m→∞

lim
n→∞

rn
Σ

i=m
J i
n = lim

m→∞
lim
n→∞

rn
Σ

i=m
Ki

n = 0.

We apply Chebyshev’s inequality to the χ-moments of Xn with χ ∈]0, α[. We have :
J i
n ≤ (2u−1

n )χEρ(|SiX0|
χ/|X0| > un} ≤ (2u−1

n )χE(|Si|
χ)Eρ(|X0|

χ/|X0| > un),
where independance of Si and X0 has been used in the last formula. Since the law of X0

is α-homogeneous at infinity we have :
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lim
x→∞

x−χEρ(|X0|
χ/|X0| > x) = α(α− χ)−1, lim sup

n→∞
J i
n ≤ 2χ(E|Si|

χ)α(α − χ)−1.

It follows lim sup
n→∞

(
rn
Σ

i=m
J i
n) ≤ 2χα(α − χ)−1E(

∞
Σ

i=m
|Si|

χ), hence lim
m→∞

lim
n→∞

rn
Σ

i=m
J i
n = 0,

since lim
i→∞

(E|Si|
χ)1/i = k(χ) < 1.

Also, using independence of X0 and
i
Σ
j=1

|Sj+1
i Bj | :

Ki
n = Pρ{

i
Σ
j=1

|Sj+1
i Bj | > 2−1un} ≤ (2u−1

n )χE(
i
Σ
j=1

|Sj+1
i Bj|)

χ ≤ (2u−1
n )χE(

∞
Σ
j=1

|Sj−1Bj|)
χ.

From above using independance of Sj−1 and Bjwe know that R0 =
∞
Σ
1
|Sj−1Bj| has finite

χ-moment if χ ≤ 1. Then by Chebyshev’s inequality :
rn
Σ

i=m
Ki

n ≤ (2u−1
n )χrnE(R

χ
0 ).

Also if χ ∈ [1, α[ we can use Minkowski’s inequality and independance in order to show the
finiteness or E(|R0|

χ). Since 0 < s < 1, we can choose χ ∈]0, α[ such that α−1χ > s, hence

lim
n→∞

rnu
−χ
n = 0. Then, for any fixed m : lim

n→∞

rn
Σ

i=m
Ki

n = 0.

From [13] we know that, since 0 < χ < α, we have k(χ) < 1, hence E(|Si|
χ) decreases

exponentially fast to zero ; then the series E(
∞
Σ
i=1

|Si|
χ) converges and

lim
m→∞

E(
∞
Σ

i=m
|Si|

χ) = 0, lim
m→∞

lim
n→∞

(
rn
Σ

i=m
J i
n) = 0.

Hence lim
m→∞

lim
n→∞

rn
Σ

i=m
Iin = 0 and the result follows.

The anticlustering property lim
m→∞

lim
n→∞

P̂ρ{sup(M
−m
−rn ,M

rn
m ) > un/|X0| > un} = 0 shows

that, given ε > 0, u > 0 and using Proposition 2.4, there exists m ∈ N such that for r ≥ m
we have Q̂Λ1

{ sup
m≤|j|≤r

|Yj | ≥ u} ≤ ε. Hence Q̂Λ1
{ lim
|j|→∞

|Yj| = 0} = 1.

�

2.4 The cluster process

In general, for a stationary V -valued point process with an associated tail process, the
properties of anticlustering and positivity of the extremal index θ for a sequence rn = o(n)
with lim

n→∞
rn = ∞, imply the existence of the cluster process (see [2]). For self containment

reasons we give in Proposition 2.6 below a proof of this fact, using arguments of [2] ; this

gives us also the convergence of θn defined by θ−1
n = Eρ{

rn
Σ
1
1[un,∞[(|Xk|)/Mrn > un} to θ

defined in Proposition 2.4. We note that the condition
rn
Σ
1
1[un,∞[(Xk) > 0 impliesMrn > un,

hence we have θ−1
n = rn(Pρ{|X0| > un})(Pρ{Mrn > un})

−1. For later use we include also
in the statement the formula of ([2], Theorem 4.3) giving the Laplace functional for the
cluster process restricted to U ′

1. We recall that the Laplace functional of a random measure
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η on a locally compact separable metric space E, where the spaceM+(E) of positive Radon
measures on E is endowed with a probability m, is given by

ψη(f) =
∫
exp(−ν(f))dm(ν)

with f continuous non negative and supp(f) compact. We recall also that weak convergence
of a sequence of point processes is equivalent to convergence of their Laplace functionals.
We denote by rn a sequence as above and we consider the sequence of point processes

Cn =
rn
Σ
i=1

εu−1
n Xi

, on E = V \ {0} under Pρ and conditionally on Mrn = M rn
1 > un. In

particular θ−1
n = Eρ(Cn(U

′
1)). Using the tail process (Yn)n∈Z defined in Proposition 2.4

above, we show that Cn converges weakly to the point process C ; C is a basic quantity
for the asymptotics of Xn and is called the cluster process of Xn. As shown in Proposition
2.6 below, the law of C can be expressed in terms of Q̂Λ1

and depends only of µ,Λ1. By
definition, C selects the large values of the process Xn and describes the local multiplicity
of large values in a typical cluster for the process Xn. We denote F̂ = (V \{0})Z, F̂− = {v ∈
F̂ ; sup

k≤−1
|vk| ≤ 1}. Since lim

|i|→∞
Yi = 0, Proposition 2.5 implies Q̂Λ1

(F̂−) > 0, hence we can

define the conditional probability QΛ1
on F̂− by QΛ1

= (Q̂Λ1
(F̂−))

−1(1
F̂−

Q̂Λ1
). Proposition

2.6 below implies that the law of C is QΛ1
, hence we can define a natural version of C as

C = Σ
j∈Z

εZj
where Zj(v) is defined as the j-projection of v = (vk)k∈Z ∈ F̂−, where F̂− is

endowed with the probability QΛ1
.

We denote by πωv the occupation measure of the random walk Sn(ω)v on V \ {0}, given by

πωv =
∞
Σ
0
εSi(ω)v . For v fixed, the mean measure of πωv is the potential measure

∞
Σ
0
Qi(v, .) of

the Markov kernel Q ; if L(µ) < 0 the asymptotics (|v| → ∞) of this Radon measure are
described in [13]. The formula below for the Laplace functional of C involves the occupation
measure πωv of the linear random walk Sn(ω)v and Λ1 ; it plays an essential role below.
With the above notations we have the.

Proposition 2.6 Under Pρ, the sequence of point processes Cn converges weakly to a point

process C. The law of the point process C is equal to the Q̂Λ1
− law of the point process

Σ
j∈Z

εSjx conditional on sup
j≤−1

|Sjx| ≤ 1. In particular we have for C = Σ
j∈Z

εZj
with Zj as

above
QΛ1

{ lim
|i|→∞

|Zi| = 0} = 1, QΛ1
{sup
i≥1

|Zi| ≥ 1} = 1.

Furthermore the sequence θn defined above converges to the positive number θ and :

sup
n∈N

Eρ{(
rn
Σ
1
1[un,∞[|Xi|)

2/Mrn > un} <∞, θ−1 = EΛ1
( Σ
j∈Z

1U ′

1
(Zj)) <∞.

If supp(f) ⊂ U ′
1, the Laplace functional of C on f is given by

1− θ−1EΛ1
[(expf(v)− 1)exp(−πωv (f))].

Proof Let f be a non negative and continuous function on V \ {0} which is compactly
supported, hence f(x) = 0 if |x| ≤ δ with δ > 0.
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We write for k ≤ ℓ with k, ℓ ∈ Z ∪ {±∞}, M ℓ
k(Y ) = sup

k≤j≤ℓ
|Yj| with Yj = SjY0. For k, ℓ, f

as above we write Cℓ
k = exp(−

ℓ
Σ
k
f(u−1

n Xj)), C
ℓ
k(Y ) = exp(−

ℓ
Σ
k
f(Yj)) and we observe that

Cℓ
k ≤ 1. We fix m > 0 and we take n so large that the sequence rn of the above proposition

satisfies rn > 2m + 1. When convenient we write rn = r, hence Eρ(C
r
1 ;M

r
1 > un) =

r
Σ
1
Eρ(C

r
1 ;M

j−1
1 ≤ un < Xj). We observe that, for r−m ≥ j > m+1, we have Cr

1 = Cj+m
j−m

except if sup(M j−m−1
1 ,M r

j+m+1) > unδ. We are going to compare Eρ(C
r
1 ;M

r
1 > un) and

(r − 2m)Êρ(C
m
−m;M−1

−m−1 ≤ un < |X0|) using those j′s which satisfy m + 1 < j ≤ r −m
and we denote by ∆n,m their difference.
If we write

∆n,m(j) = Eρ(C
r
1 ;M

j−1
1 ≤ un < |Xj |)− Eρ(C

j+m
j−m ;M j−1

j−m−1 ≤ un < |Xj |)

then we have using stationarity, Cℓ
k ≤ 1 and disjointness of the sets {M j+1

1 ≤ un < |Xj |}

|∆n,m| =
r−m
Σ

m+1
|∆n,m(j)|.

Using stationarity of Xn with respect to P̂ρ and the above observation we have

|∆n,m(j)| ≤ P̂ρ{sup(M
−m−1
−r ,M r

m+1) > unδ; |X0| > un}.
Also using the formula θn = (rnPρ{|X0| > un})

−1Pρ{|M
r
1 | > un}, we have θnEρ(C

r
1/M

r
1 >

un) = r−1
n Eρ(C

r
1 ;M

r
1 > un)Pρ{|X0| > un})

−1. Then the use of stationarity and the above
estimations for ∆n,m(j) and ∆n,m give the basic relation,

|θnEρ(C
r
1/M

r
1 > un)− r−1(r − 2m)Êρ(C

m
−m;M−1

−m−1 ≤ un/|X0| > un)| ≤

P̂ρ{sup(M
−m−1
−r ,M r

m+1) > unδ/|X0| > un}.
Using Proposition 2.4, we see that the discontinuity set of the function 1]0,1](M

−1
−m−1(Y ))

is Q̂Λ1
-negligible, hence using again Proposition 2.4,

lim
n→∞

Êρ(C
m
−m;M−1

−m−1 ≤ un/|X0| > un) = ÊΛ1
(Cm

−m(Y );M−1
−m−1(Y ) ≤ 1).

Also lim
n→∞

r−1
n (rn − 2m) = 1 since lim

n→∞
rn = ∞. We observe that, by definition of θn and

Cr
1 ≤ 1, we have θnEρ(C

r
1/M

r
1 > un) ≤ θn ≤ 1. The anticlustering property of Xn implies

that the limiting values (n→ ∞) of P̂ρ{sup(M
−m−1
−r ,M r

m+1) > un/|X0| > un} are bounded
by εm > 0 with lim

m→∞
εm = 0. Then the above inequality implies

lim sup
n→∞

|θnÊρ(C
r
1/M

r
1 > un)− ÊΛ1

(Cm
−m(Y );M−1

−m−1(Y ) ≤ 1)| ≤ εm.

Since lim
m→∞

ÊΛ1
(Cm

−m(Y );M−1
−m−1(Y ) ≤ 1) = ÊΛ1

(exp(−
∞
Σ
−∞

f(Yj)) ; M−1
−∞(Y ) ≤ 1) := I,

we have lim
n→∞

θnEρ(C
r
1/M

r
1 > un) = I. In particular with f = 0 and using Proposition 2.4,

we get lim
n→∞

θn = Q̂Λ1
{M−1

−∞(Y ) ≤ 1} = θ > 0.

Then we get lim
n→∞

Eρ(C
rn
1 /M rn

1 > un) = θ−1I = ÊΛ1
(exp(−

∞
Σ
−∞

f(Yj))/M
−1
−∞(Y ) ≤ 1) hence

the first assertion, using Proposition 2.4. The expression of (Zj)j∈N in terms of F̂− and QΛ1
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explained above and the relation lim
|n|→∞

Yn = 0, Q̂Λ1
−a.e. stated in Proposition 2.5 gives

QΛ1
{ lim
i→∞

Zi = 0} = 1.

Since the discontinuity set of 1U ′

1
is Λ1-negligible, using the weak convergence of Cn to

C, the continuous mapping theorem (see [30]) and the convergence of θ−1
n to θ−1, we get

the formula θ−1 ≥ EΛ1
( Σ
j∈Z

1U ′

1
(Zj)). To go further we write Wn =

rn
Σ
1
1[un,∞[(Xi) and we

observe that the stated formula for lim
n→∞

θ−1
n is a consequence of the uniform boundedness

of Eρ{W
2
n/Mrn > un}. We have

Eρ{W
2
n/Mrn > un} = θ−1

n + 2 Σ
1≤i<j≤rn

Pρ{|Xi| > un, |Xj | > un/Mrn > un},

hence using the convergence of θ−1
n to θ−1, we see that it suffices to bound the second term

in the above formula. Writing j − i = p, stationarity gives
Pρ{|Xi| > un, |Xj | > un/Mrn > un} = Pρ{|X0| > un, |Xp| > un}(Pρ{Mrn > un})

−1.
We know already that θ−1 = lim

n→∞
(rnPρ{|X1| > un})(|Pρ(Mrn > un))

−1 and we will now

use a calculation similar to the one in the proof of Proposition 2.5.
In particular we have :

Pρ{|X0| > un, |Xp| > un} ≤ Pρ{|X0| > un, |SpX0| > 2−1un}+ Pρ{|X0| > un,
p

Σ
1
|Sj+1

p Bj| >

2−1un}.
With 0 < χ < α we have using independance :
Pρ{|X0| > un, |SpX0| > 2−1un} ≤ 2χu−χ

n E(|Sp|
χ)Eρ(|X0|

χ1{|X0|>un}).
Since the law of X0 is homogeneous at infinity, the right hand side is bounded by

C(χ)Pρ{|X0| > un}E(|Sp|
χ).

On the other hand we have
Pρ{|X0| > un, |Sp| > 2−1un} = Pρ{|X0| > un}Pρ{|Sp| > 2−1un} ≤
(2u−1

n )χ(E|Sp|
χ)(Pρ{|X0| > un}) ≤ C ′(χ)u−χ

n Pρ{|X0| > un}
It follows that Pρ{|Xp| > un/|X0| > un} is bounded by C ′′(χ)(u−χ

n + E(|Sp|
χ)), hence

Σ
1≤i<j≤rn

Pρ{|Xi > un, |Xj | > un/Mr>n} is bounded by

D(χ)r2n(
∞
Σ
1
(E|Sp|

χ + u−χ
n )(Pρ{|X0| > un})(Pρ{Mrn > un})

−1 ≤ D′(χ)rn(
∞
Σ
1
E(|Sp|

χ),

since rn(Pρ{|X0| > un})(Pρ{Mrn > un})
−1 converges to θ−1.

Then the uniform boundedness of Eρ(W
2
n/Mrn > un) will follow if rnu

−χ
n is bounded. In

view of the form of rn, un, this amounts to the boundedness of nsn−χ/α with s < 1. Hence
it suffices to choose χ with αs ≤ χ < α in order to get the result.
The last formula is proved in ([2], Theorem 4.1). A different proof is sketched in section 5.
�
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3 A spectral gap property and multiple mixing

We denote Xx
k (k ∈ N) the affine random walk on V governed by λ, starting from x ∈ V

and we write Pϕ(x) =
∫
ϕ(hx)dλ(h) = E(ϕ(Xx

1 )).
In this section we use a spectral gap property for a family of operators associated to the
process Xk(1 ≤ k ≤ n), in order to show the quasi-independance of its successive blocks of
length rn, where rn is defined in subsection 2.3.

3.1 Spectral gap property

It was proved in ([10], Theorem 1) that, given a probability λ on H which satisfies
condition (c-e), the corresponding convolution operator P on V satisfies a ”Doeblin-Fortet”
inequality (see [19]) for suitable Banach spaces Cχ and Hχ,ε,κ defined below. In particular,
it will be essential here to use that the operator P on Hχ,ε,κ is the direct sum of a 1-
dimensional projection π and a contraction U where π and U commute, hence we give also
a short proof of this fact below. In order to obtain the relevant multiple mixing property, we
show a global Doeblin-Fortet inequality for a family of operators closely related to P . For
χ, κ ≥ 0, we consider the weights ω, η on V defined by ω(x) = (1+|x|)−χ, η(x) = (1+|x|)−κ.
The space Cχ is the space of continuous functions ϕ on V such that ϕ(x)ω(x) are bounded
and we write |ϕ|χ = sup

x∈V
|ϕ(x)|ω(x).

For ε ∈]0, 1] we write :
[ϕ]ε,κ = sup

x 6=y
|x− y|−εη(x)η(y)|ϕ(x) − ϕ(y)|, ‖ϕ‖ = |ϕ|χ + [ϕ]ε,κ,

and we denote by Hχ,ε,κ the space of functions ϕ on V such that ‖ϕ‖ < ∞. We observe
that Cχ and Hχ,ε,κ are Banach spaces with respect to the norms |.|χ and ‖.‖ defined above.
Also Hχ,ε,κ ⊂ Cχ with compact injection if κ + ε < χ. We observe that the operator P
acts continuously on Cχ and Hχ,ε,κ. For a Lipschitz function f on V with non negative
real part we define the Fourier-Laplace operator P f by P fϕ(x) = P (ϕexp(−f)). In [10],
spectral gap properties for Fourier operators were studied for f(v) = i < x, v >, x ∈ V .
Here the calculations are analogous but f will be Lipschitz and bounded. We observe that
for functions fk(1 ≤ k ≤ n) and ϕ as above we have :

P f1P f2 · · ·P fnϕ(x) = E{ϕ(Xx
n)exp(−

n
Σ
k=1

fk(X
x
k ))}

Also we note that, for f bounded, with k(f) = sup
x 6=y

|x− y|−1|f(x)− f(y)| <∞

|x− y|−ε|f(x)− f(y)| ≤ inf
x 6=y

(2|f |∞|x− y|−ε, k(f)|x− y|1−ε) ≤ 2|f |∞ + k(f) := k1(f),

For u, v with non negative real parts we have |exp(−u)− exp(−v)| ≤ |u− v|. In particular,
for f as above, |exp(−f(x))− exp(−f(y))| ≤ k1(f))|x− y|ε.
It follows that multiplication by exp(−f) acts continuously on Cχ, Hχ,ε,κ, hence P

f is a
bounded operator on Cχ and Hχ,ε,κ. For m,γ > 0 we denote by O(m,γ) the set of operators
P f such that |f |∞ ≤ m and k(f) ≤ γ, hence k1(f) ≤ 2m + γ. For p ∈ N let Op(m,γ) be
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the set of products of p elements in O(m,γ) and Ô(m,γ) = ∪
p>0

Op(m,γ). We will endow

Ô(m,γ) with the natural norm from End(Hχ,ε,κ). Then we have the

Theorem 3.1 With the above notations and 0 ≤ χ < 2κ < 2κ + ε < α, there exists
C(m,γ) ≥ 1 such that for any Q ∈ O(m,γ) the norm ‖Q‖ of Q on Hχ,ε,κ is bounded by
C(m,γ). Furthermore there exists r ∈ [0, 1[, p ∈ N, D > 0 such that for any Q ∈ Op(m,γ),
ϕ ∈ Hχ,ε,κ :

‖Qϕ‖ ≤ r‖ϕ‖+D|ϕ|χ.

In particular Ô(m,γ) is a bounded subset of End(Hχ,ε,κ) and C(m,γ), r,D depend only
of m,γ.

The proof depends on the two lemmas given below, and of calculations analogous to those
of [10] for Fourier operators.

Lemma 3.2 Ô(m,γ) is a bounded subset of End(Cχ).

Proof Since Re(f) ≥ 0 we have for Q ∈ Oℓ(m,γ) with ℓ ∈ N , ϕ ∈ Cχ : |Qϕ|χ ≤
|P ℓ|ϕ||χ, hence it suffices to show that the set {P ℓ; ℓ ∈ N} is bounded in End(Cχ). We have
for ϕ ≥ 0, with M = P ℓ :

ω(x)Mϕ(x) = ω(x)E(ϕ(Xx
ℓ )) ≤ |ϕ|χE[ω(x)ω

−1(Xx
ℓ )].

If χ ≤ 1, using independance and the expression of Xx
ℓ we get

ω(x)Mϕ(x) ≤ |ϕ|χ(1 + E|Sℓ|
χ +

ℓ
Σ
1
(E|Sk+1

ℓ |χ)| (E(|Bk|
χ),

hence sup
x∈V

ω(x)Mϕ(x) ≤ |ϕ|χ(1 + sup
ℓ≥1

E|Sℓ|
χ + (E(|B1|

χ)(
∞
Σ
1
E|Sℓ|

χ).

Since χ < α, we have lim
ℓ→∞

(E|Sℓ|
χ)1/ℓ = k(χ) < 1, hence sup

x∈V
ω(x)|Mϕ(x)| is bounded by

Cχ|ϕ|χ with Cχ <∞.
If χ > 1, we use Minkowski’s inequality in Lχ and write :

ω(x)|Mϕ(x)| ≤ |ϕ|χ(1 + (E|Sℓ|
χ)1/χ +

ℓ
Σ
1
E(|Sk+1

ℓ |χ)1/χ(E(|Bk|
χ)1/χ)

As above we get
sup
x∈V

ω(x)|Mϕ(x)| ≤ Cχ|ϕ|χ with Cχ <∞. �

Lemma 3.3 a) For β ∈ [0, α[ we have sup
n

E|X0
n|

β <∞.

b) For β1, β > 0 and β + β1 < α, we have lim
n→∞

(E(|Sn|
β1 |X0

n|
β))1/n < 1.

c) If χ+ ε < α the quantity C̃n = E(
n
Σ
1
|Si|

ε(1 + |Sn|+ |X0
n|)

χ) is bounded. Furthermore, if

2κ+ ε < α, then D̃n = E(|Sn|
ε(1 + |Sn|+ |X0

n|)
2κ) satisfies lim

n→∞
(D̃n)

1/n < 1.
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Proof a) We write |X0
n|

β = |
n
Σ
1
Sk+1
n Bk|

β . If β ≤ 1 we get :

E(|X0
n|

β) ≤
n
Σ
1
(E|Sk+1

n |β)(E|Bk|
β) = (E|B1|

β)(
n−1
Σ
0

E|Sj|
β)

Since lim
j→∞

(E|Sj|
β)1/j < 1 if β < α we get sup

n≥0
E|X0

n|
β ≤ (E|B1|

β)(
∞
Σ
0
E|Sj|

β) <∞.

If β > 1, we use Minkowski’s inequality in Lβ as in the proof of Lemma 3.2.
b) Using Hölder’s inequality we have

E(|Sn|
β1 |X0

n|
β) ≤ (E|Sn|

β+β1)β1/β+β1)E|X0
n|

β+β1)β/β+β1),
hence the result follows from a) and the fact that lim

n→∞
(E|Sn|

β+β1)1/n < 1 since β+β1 < α.

c) The assertions follows from easy estimations as in b) and the conditions χ + ε < α,
2κ+ ε < α. �

Proof of Theorem 3.1 We start with a basic observation. For n > 0 we have

Xx
n = hn · · · h1x = Snx+

n
Σ
1
Sk+1
n Bk, hence |X

x
n −X

y
n| = |Sn(x− y)| ≤ |Sn||x− y|. It follows

for k(f) ≤ γ, x and y in V :

|f(Xx
n)− f(Xy

n)| ≤ γ|Sn||x− y|.

We write M = T1T2 · · ·Tn with Ti = P fi ∈ O(m,γ) 1 ≤ i ≤ n. We have using Markov
property,

Mϕ(x) −Mϕ(y) = In(x, y) + Jn(x, y) with

In(x, y) = E([exp(−
n
Σ
1
fi(X

x
i ))− exp(−

n
Σ
1
fi(X

y
i ))ϕ(X

x
n)])

Jn(x, y) = E((exp(−
n
Σ
1
fi(X

y
i )))(ϕ(X

x
n)− ϕ(Xy

n)))

Since Re(f) ≥ 0 we have :

|exp(−
n
Σ
1
fi(X

x
i ))− exp(−

n
Σ
1
fi(X

y
i ))| ≤

n
Σ
1
|fi(X

x
i )− fi(X

y
i )| ≤ (2m+ γ)

n
Σ
1
|Xx

i −Xy
i |

ε.

The basic observation gives :

In(x, y) ≤ (2m+ γ)|ϕ|χ|x− y|εCn(x) with Cn(x) = E(
n
Σ
1
|Si|

ε(1 + |Xx
n |)

χ

Jn(x, y) ≤ E|ϕ(Xx
n)− ϕ(Xy

n)| ≤ [ϕ]ε,κ|x− y|εDn(x, y),
with Dn(x, y) = E(|Sn|

ε(1 + |Xx
n |)

κ(1 + |Xy
n|)κ).

Using symmetry of |Mϕ(x)−Mϕ(y)|, χ ≤ 2κ and |Xx
n | ≤ |Sn||x|+ |X0

n|, we get [Mϕ]ε,κ ≤

(2m+ γ)|ϕ|χC̃n + [ϕ]ε,κD̃n where C̃n, D̃n are as in Lemma 3.3.

Using Lemma 3.3 we can choose p ∈ N such that r = D̃p < 1, hence for M ∈ Op(m,γ),

[Mϕ]ε,κ ≤ k1(f)C̃p|ϕ|χ + r[ϕ]ε,κ.
Using Lemma 3.2 we see that there exists Cχ ≥ 1 such that |Mϕ|χ ≤ Cχ|ϕ|χ for M ∈

Ô(m,γ), ϕ ∈ Cχ. Then for M ∈ Op(m,γ), ϕ ∈ Hχ,ε,κ and p as above :

‖Mϕ‖ ≤ r‖ϕ‖+ (Cχ + 2m+ γ)C̃p|ϕ|χ = r‖ϕ‖+D|ϕ|χ with D > 0.
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For the last assertion, assume M ∈ On(m,γ) and write n = pn1 + n0 with n1 ∈ N,
0 ≤ n0 < p. We have M = Q1 · · ·Qn1

R1 · · ·Rn0
with Qi ∈ Op(m,γ) (1 ≤ i ≤ p) and

Rj ∈ O(m,γ) (0 ≤ j ≤ n0), hence ‖Rj‖ ≤ Cχ(m,γ). Finally we get

‖Mϕ‖ ≤ Cχ(m,γ)
n0

[
rn1‖ϕ‖+D|ϕ|χ(r

n1−1 + Cχ

n1−2
Σ
0
rk)

]
,

‖M‖ ≤ Cχ(m,γ)
p
[
1 +D(1 + Cχ(1− r)−1)

]
:= C(m,γ), which gives the result. �

For χ ∈]0, α[ we consider the function W χ on V defined by W χ(x) = |x|χ. In Proposition
3.4 below we show that, due to the inequality 0 < k(χ) < 1 for χ ∈]0, α[, P satisfies a
drift condition (see [23]) with respect to W χ. The same inequality implies also a spectral
gap property in the Banach space Hχ,ε,κ considered in Proposition 3.4 below. For reader’s
convenience we recall the Doeblin-Fortet spectral gap theorem (see [19]).
Let (F, |.|) be a Banach space, (L, ‖.‖) another Banach space with a continuous injection
L → F . Let P be a bounded operator on F , which preserves L and satisfies the following
conditions

1) The sequence of operator norms |Pn| in is bounded.
2) The injection L→ F is compact.
3) There exists an integer k and r ∈ [0, 1[, D > 0 such that for any v in L :

‖P kv‖ ≤ r‖v‖+D|v|
4) If vn ∈ L is a sequence and v ∈ F are such that ‖vn‖ ≤ 1 and lim

n→∞
|v − vn| = 0,

there v ∈ L and ‖v‖ ≤ 1
Then in restriction to L, P is the commuting direct sum of a finite dimensional operator π
with unimodular spectral values and a bounded operator U with spectral radius r(U) < 1.
We observe that, frequently the norm ‖.‖ on L is given as a sum of a semi-norm [.] and the
norm |.| ; then the inequality in condition 3 can be replaced by

[P kv] ≤ r[v] +D|v|
such an inequality is called Doeblin-Fortet’s inequality.
Our substitute for the strong mixing property (see [30]) uses regularity of functions and is
the following.

Proposition 3.4 For any β ∈]0, 1] there exists ℓ ∈ N and b ≥ 0 such that P ℓW χ ≤
βW χ + b for n ≥ ℓ. In particular the sequence of norms |Pn|χ is bounded. Furthermore, if
0 < κ+ ε < χ < 2κ < 2κ+ ε < α, the injection of Hχ,ε,κ into Cχ is compact and on Hχ,ǫ,κ,
the Markov operator P satisfies the direct sum decomposition

P = ρ⊗ 1 + U
where r(U) < 1 and U(ρ⊗ 1) = (ρ⊗ 1)U = 0
If α = 1 and 0 < ε < χ < 1, κ = 0, the same result is valid.

Proof We verify successively the four above conditions. First we observe that for any
x ∈ V ,

|Xx
n −X0

n| ≤ |Sn||x|, |X
x
n | ≤ |X0

n|+ |Sn||x|.
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If χ ≤ 1, it follows
E|Xx

n |
χ ≤ E|X0

n|
χ + (E|Sn|

χ)|x|χ.

Using the expression of X0
n and independence we get E|X0

n|
χ ≤ (E|B1|

χ)(
∞
Σ
0
E|Sk|

χ). Since

χ < α, we have E(|X0
n|

χ) ≤ b <∞. On the other hand we have lim
n→∞

(E(|Sn|
χ))1/n = k(χ) <

1, hence for some ε > 0 k(χ) + ε < 1, and for n ≥ ℓ, |Sn|
χ ≤ β′ ≤ (k(χ) + ε)n. It follows,

for n ≥ ℓ :
PnW χ(x) = E|Xx

n |
χ ≤ β′W χ(x) + b

If χ > 1we use Minkowski’s inequality, hence :
E|Xx

n |
χ ≤ 2χ(E|X0

n|
χ + E|Sn|

χ|x|χ)
As above, using k(χ) + ε < 1 and n ≥ ℓ we get

E(|Xx
n |

χ) ≤ 2χb+ 2χ(k(χ) + ε)n|x|χ, PnW χ ≤ β′′W χ + b′ with β′′ < 1, b′ <∞.
We take β = β′ or β′′ depending on χ ≤ 1 or χ > 1. This allow us now to show that |Pn|χ is
bounded. We observe that |ϕ(x)| ≤ (1+W (x))χ|ϕ|χ, hence the positivity of P and P1 = 1
implies for n ∈ N,

|Pnϕ|(x) ≤ |ϕ|χP
n(2χ + 2χW χ(x)) = |ϕ|χ(2

χ + 2χPnW χ(x)).

From above we get
|Pnϕ|(x) ≤ |ϕ|χ[2

χ + 2χ(b+ βW χ(x))].

Then the definition of |Pn|χ gives |Pn|χ ≤ 2χ(1 + b+ β), hence the boundedness of |Pn|χ.

In order to show that if κ + ε < χ, the injection of Hκ,ε,χ in F = Cχ is compact, we use
Ascoli’s argument and consider a large ball Ut with t > 0. We consider ϕn ∈ Hκ,ε,χ with
‖ϕn|| < 1. The definition on ‖ϕn‖ implies for any x, y ∈ Ut

|ϕn(x)| ≤ (1 + t)χ, |ϕn(x)− ϕn(y)| ≤ (1 + t)2κ|x− y|ε

Hence, the restrictions of ϕn to Ut are equicontinuous and we can find a convergent sub-
sequence ϕnk

. Using the diagonal procedure and a sequence ti with lim
i→∞

|ti| = ∞, we get a

convergent subsequence ϕnj
∈ Hκ,ε,χ with limit a continuous function ϕ on V . From above

we have |ϕnj
(x)− ϕnj

(0)| ≤ (1 + |x|)κ|x|ε. hence for some A,B > 0, since κ+ ε < χ

|ϕnj
(x)− ϕnj

(0)| ≤ (1 + |x|)κ+ε, |ϕ(x)| ≤ A+B(1 + |x|)χ.

It follows that ϕ ∈ Cχ. The above inequalities for ϕnj
imply

|(ϕnj
(x)− ϕnj

(0))− (ϕ(x) − ϕ(0))| ≤ 2(1 + |x||κ+ε.

Then the convergence of ϕnj
to ϕ, implies with εnj

= |ϕnj
(0)− ϕ(0)|,

|ϕnj
(x)− ϕ(x)| ≤ εnj

+ 2(1 + |x|)κ+ε, (1 + |x|)−χ|ϕnj
(x)− ϕ(x)| ≤ εnj

+ 2(1 + |x|)κ+ε−χ

with lim
j→∞

εnj
= 0. Also for t sufficiently large, and |x| ≥ t, since κ + ε < χ we have

(1 + |x|)κ+ε−χ ≤ εnj
. Furthermore, the uniform convergence of ϕnj

to, ϕ on Ut implies
lim
j→∞

(sup{|ϕnj
(x)− ϕ(x)| ; |x| ≤ t}) = 0. The convergence of |ϕnj

− ϕ|χ to zero follows.
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The convergence of ϕnj
(x) to ϕ(x) for any x ∈ V and the definition of ‖ϕnj

‖, implies
‖ϕ‖ ≤ lim

j→∞
‖ϕnj

‖ ≤ 1, hence ϕ ∈ L, and condition 4 is satisfied.

With f = 0 in Theorem 3.1 we have P f = P . In particular there exists k > 0 such
that ‖P kϕ‖ ≤ r‖ϕ‖ + D|ϕ|χ if ϕ ∈ Hχ,ε,κ. Hence from [19], we know that the above
conditions imply that P is the direct sum of a finite rank operator and a bounded operator
U which satisfies r(U) < 1. Now it suffices to show that the equation Pϕ = zϕ with
|z| = 1, ϕ ∈ Hχ,ε,κ implies that ϕ is constant and z = 1. From the convergence in law
of Xx

n to ρ we know that for any x ∈ V , the sequence of measures Pn(x, .) converges

weakly to ρ. Also we have |ϕ| ∈ Hχ,ε,κ and the sequence n−1
n
Σ
1
P k|ϕ| converges to ρ(|ϕ|).

Since |ϕ(x)| = |znϕ(x)| ≤ Pn(x, |ϕ|) we get |ϕ(x)| ≤ ρ(|ϕ|), hence |ϕ| is bounded. Since
znϕ(x) = E(ϕ(Xx

n)) and X
x
n converges in law to ρ, we get lim

n→∞
znϕ(x) = ρ(ϕ). This implies

z = 1 and ϕ(x) = ρ(ϕ) for any x ∈ V .
For the last assertion, in view of the above, we have only to verify the contraction condition.
We write [ϕ]ε = sup

x 6=y
|x− y|−ε|ϕ(x) − ϕ(y)|. Then we have

E(|ϕ(Xx
n)− ϕ(Xy

n)|) ≤ [ϕ]ε|X
x
n −Xy

n|
ε ≤ [ϕ]ε|x− y|εE(|Sn|

ε).

Since ε < α, we have 0 < k(ε) < r < 1 for some r, hence [Pnϕ]ε ≤ r[ϕ]ε for n large. �

3.2 A mixing property with speed for the system (V Z+ , τ,Pρ).

In general, if the law of Bn has no density with respect to Lebesgue measure, the
operator P on L2(ρ) doesn’t satisfy spectral gap properties, hence the stationary process
Xn is not strongly mixing in the sense of [31] but Proposition 3.4 above shows that it is
still ergodic. A simple example is as follows. Let V = R and let P be the operator defined
on L2(ρ) by the formula Pϕ(x) = 1

2 [ϕ(
x
x) + ϕ(x+1

2 )]. Then P preserves [0, 1], ρ is uniform
measure on [0, 1] and the adjoint P ∗ in L2(ρ) of P can be identified with the map x→ {2x}
on [0, 1] endowed with Lebesgue measure. Then the spectrum of P ∗ in L2(ρ) is contained
in {|z| = 1} (and is in fact absolutely continuous). Hence P ∗ has no spectral gap in L2(ρ) ;
by duality this is true also of P .
Then, using Theorem 3.1 and Proposition 3.4, it is shown below that the system (V Z+ , τ,Pρ)
satisfies a multiple mixing condition with respect to Lipschitz functions. For a study of
extreme value properties for random walks on some classes of homogeneous spaces, using
L2-spectral gap methods, we refer to [21]. Since, using Proposition 2.4, the stationary
process (Xn)n∈N satisfies also anticlustering, we see below that extreme value theory can
be developed for (Xn)n∈N following the arguments of ([2] , [3]) which were developed under
mixing conditions involving continuous functions.
However it turns out that the mixing property A′(un) of [3] for continuous functions can be
proved, as a consequence of the corresponding convergences involving Lipschitz functions
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and point process theory. This conditon plays an essential role in the study of space-time
convergence (see [3]).
Let f be a bounded continuous function with non negative real part on [0, 1] × (V \ {0}).
Let rn be an integer valued sequence with lim

n→∞
rn = ∞, rn = o(n) and kn = [r−1

n n]. For

0 ≤ i ≤ n, 0 ≤ j ≤ n, x ∈ V \ {0}, ω ∈ V Z+ we write :

f
j
n(x) = f(n−1j, u−1

n x), fi,n(ω) = f
i
n(Xi), f

j
i,n(ω) = f

j
n(Xi).

In view of heavy notations, in some formulae we will write rn = r, kn = k, ℓn = ℓ.
For f Lipschitz we denote by k(f) the Lipschitz constant of f , and assume supp(f) ⊂

[0, 1] × U ′
δ with δ > 0. We consider below the quantity Eρ(exp(−

n
Σ
i=1

fi,n)) which is the

Laplace functional of the point process
n
Σ
i=1

ε(n−1i,u−1
n Xi)

. For its analysis we use the classical

Bernstein method of gaps, i.e. we decompose the interval [1, n] into large subintervals
separated by smaller but still large ones.

Proposition 3.5 Let f be a compactly supported Lipschitz function on [0, 1] × (V \ {0})
with Ref ≥ 0. Assume that the sequence rn ∈ N satisfies rn = o(n), lim

n→∞
(logn)−1rn = ∞

and write |f |∞ = m,k(f) = γ, supp(f) ⊂ [0, 1]×U ′
δ , δ > 0. Then, with the above notations

there exists C(δ,m, γ) <∞ such that,

In(f) := |Eρ{exp(−
n
Σ
i=1

fi,n)}−
kn
Π
j=1

Eρ{exp(−
jrn
Σ

(j−1)rn+1
f jrni,n )}| ≤ C(δ,m, γ) sup(r−1

n , n−1rn).

In particular with rn = [n1/2] we get sup(n−1rn, r
−1
n ) ≤ 2n−1/2

Proof We write [0, n] = [0, knrn]∪]knrn, n], we decompose the interval [0, knrn] into
kn intervals Jj = [jrn, (j + 1)rn[ and we distinguish in Jj the subinterval of length ℓn
J ′
j = [(j + 1)rn − ℓn, (j + 1)rn[ ; the large integer ℓn will be specified below.

We write for f fixed, I(n) = |Eρ(exp(−
n
Σ
1
fi,n))−

k
Π
j=1

Eρ(exp(−
jr

Σ
i=(j−1)r+1

f jri,n))|.

Then the triangular inequality gives I(n) ≤ I1(n) + I2(n) + I3(n) + I4(n) with

I1(n) = |Eρ(exp(−
n
Σ
1
fi,n))− Eρ(exp(−

kr
Σ
1
fi,n))|

I2(n) = |Eρ(exp(−
kr
Σ
1
fi,n))− Eρ(exp(−

k
Σ
j=1

jr−ℓ

Σ
i=(j−1)r+1

fi,n))|

I3(n) = |Eρ(exp(−
k
Σ
j=1

jr−ℓ

Σ
i=(j−1)r+1

fi,n))−
k
Π
j=1

Eρ(exp(−
r−ℓ
Σ
i=1

f jri,n))|

I4(n) = |
k
Π
j=1

Eρ(exp(−
r−ℓ
Σ
i=1

f jri,n))−
k
Π
j=1

Eρ(exp(−
r
Σ
i=1

f jri,n))|

where stationarity of Pρ has been used in the expressions of I3(n), I4(n). The quantities
I1, I2, I4 are boundary terms ; their estimation below is based only on the fact that rn
(resp. ℓn) is small with respect to n (resp. rn), the form of un, and f has non negative real
part. On the other hand, estimation of I3 depends on Theorem 3.1 and Proposition 3.4.
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Using the inequality |exp(−x)− exp(−y)| ≤ |x− y| for x, y with non negative real parts we

get I1(n) ≤
n
Σ

kr+1
Eρ(fi,n). Let δ > 0 be as above such that f(t, x) = 0 for t ∈ [0, 1], |x| < δ,

and observe that n− kr < r. Then the above bound for I1(n) gives :
I1(n) ≤ rn|f |∞Pρ{u

−1
n |X1| ≥ δ}.

Since lim
n→∞

n−1rn = 0, the definition of un and Theorem 2.1 give lim
n→∞

I1(n) = 0. Also

I1(n) is bounded by n−1rn, up to a coefficient depending only on m, δ. For I2(n), a similar
argument involving each interval Jj and the subinterval J ′

j gives :

I2(n) ≤ knℓn|f |∞Pρ{u
−1
n |X1| ≥ δ}.

Using knrn ≤ n we get lim
n→∞

n−1knℓn ≤ lim
n→∞

r−1
n ℓn, i.e. lim

n→∞
I2(n) = 0 if lim

n→∞
r−1
n ℓn = 0.

Also we can bound I2(n) by r
−1
n ℓn, up to a coefficient depending only on m, δ.

For I4(n), we use the inequality |
n
Π
1
zj −

n
Π
1
wj | ≤

n
Σ
1
|zj −wj| if |zj | and |wj | are less than 1.

Hence :

I4(n) ≤
k
Σ
j=1

|Eρ(exp(−
r−ℓ
Σ
1
f jri,n))− Eρ(exp(−

r
Σ
1
f jri,n))| ≤ |f |∞knℓnPρ{|X1| > δun}

As above we get lim
n→∞

I4(n) = 0 if lim
n→∞

r−1
n ℓn = 0, and a bound for I4(n) of the same form

as for I2(n).
The estimation of I3(n) is more delicate and depends on Lemma 3.6 below. We begin with
the inequality : I3(n) ≤ D(n) + I5(n) + I3(n− rn) where

D(n) = |Eρ(exp(−
k
Σ
j=1

jr−ℓ

Σ
(j−1)r+1

fi,n))−Eρ(exp(−
r−ℓ
Σ
i=1

fi,n))Eρ(exp(−
k
Σ
j=2

jr−ℓ

Σ
(j−1)r+1

fi,n))|,

I5(n) = |Eρ(exp(−
r−ℓ
Σ
1
fi,n)Eρ(exp(−

k
Σ
j=2

jr−ℓ

Σ
(j−1)r+1

fi,n))− Eρ(exp(−
r−ℓ
Σ
1
f ri,n))

Eρ(exp(−
k
Σ
j=2

jr−ℓ

Σ
(j−1)r+1

fi,n))|,

I3(n− r) = |Eρ(exp(−
k
Σ
j=2

jr−ℓ

Σ
(j−r)r+1

fi,n))−
k
Π
j=2

Eρ(exp(−
r−ℓ
Σ
1
f jri,n))|.

Using as above the inequality |exp(−x)− exp(−y)| ≤ |x− y|, and Re(f) ≥ 0 we get :

I5(n) ≤ |Eρ(
r−ℓ
Σ
1
fi,n)− Eρ(

r−ℓ
Σ
1
f ri,n)|.

Since f is Lipschitz we have, for t′, t′′ in [0, 1], x ∈ V \{0} : |f(t′, x)−f(t′′, x)| ≤ k(f)|t′−t′′|.
Since |n−1i− n−1rn| ≤ n−1rn we have

I5(n) ≤ (rn − ℓn)n
−1rnk(f)Pρ{u

−1
n |X1| ≥ δ} ≤ r2nn

−1k(f)Pρ{|X1| ≥ δun}.
Using Theorem 2.1 we get I5(n) ≤ Cn−2r2n with a constant C depending on k(f) and δ.

In order to estimate D(n) we consider the family of operators Pi,n on the space Hχ,ε,κ

with χ, ε, κ as in Proposition 3.4, defined by Pi,nϕ(x) = E((exp(−fi,n(ω)))ϕ(X
x
i )) and the

function ψn defined by ψn(y) = E{exp(−
k
Σ
j=2

jr−ℓ

Σ
i=(j−1)r+1

f i+r
i,n )/Xx

r = y}. Since, un ≥ 1, for

n large with m = |f |∞, γ = k(f), the functions fi,n satisfy |fi,n|∞ ≤ m, k(fi,n) ≤ γ, hence
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the operators Pi,n belong to O(m,γ) ⊂ EndHχ,ε,κ. With the above notations, the products

of operators Pi,n belong to Ô(m,γ). Also, using Proposition 3.4 we know that on Hχ,ε,κ

we can write P = ρ⊗ 1+U where U has spectral radius r(U) less then 1 and U commutes
with the projection ρ⊗ 1. We note also that for f as above and ψ ∈ Hχ,ε,κ we have :

|ρ(P fψ)| ≤ ρ(P |ψ|) = ρ(|ψ|) ≤ ‖ψ‖
Then Lemma 3.6 below implies the convergence of D(n) to zero with speed.

Now, in order to prove the proposition, we are left to show lim
n→∞

I3(n) = 0. We iterate kn

times the inequality : I3(n) ≤ D(n) + I5(n) + I3(n− rn). We get, using Lemma 3.6 :
I3(n) ≤ I3(n− rn) + C ′(f)(n−2r2n + rℓn1 (U)) ≤ C ′(f)(knr

ℓn
1 (U) + n−1rn),

with C ′(f) ≥ 1, depending on m,γ. Since rn = o(n), it remains to choose ℓn such that
ℓn = o(rn) with lim

n→∞
knr

ℓn
1 (U) = 0. These conditions can be written as

lim
n→∞

r−1
n ℓn = 0, lim

n→∞
r−1
n nrℓn1 (U) = 0.

The choice of ℓn with the above properties is possible since :
r1(U) < 1, lim

n→∞
n−1rn = 0 and lim

n→∞
(logn)−1rn = ∞.

One can take ℓn < rn with (logn)−1ℓn = ∞. The above estimations of I1, I2, I3, I4, I5 give
bounds by sup(n−1rn, r

−1
n ), up to a coefficient depending on δ,m, γ only. �

Lemma 3.6 There exist positive numbers C1(U), r1(U) ∈]r(U), 1[ and C(f) depending
only of m,γ such that, for n ∈ N and ℓn < rn, D(n), as above :

D(n) = |ρ(P1,n · · ·Prn−ℓn,nU
ℓnψn)| ≤ C1(U)C(f)(r1(U))ℓn .

Proof We observe that Markov’s property implies E(e−f(Xx
1
)g(ω)) = P f (E(g(ω)))

where f is as above, g(ω) is a function depending on ω throught the random variables
Xx

k (k ≥ 1) and E(g(ω)) is a function of x. We apply this property to Hχ,ε,κ with f = fi,n
(1 ≤ i ≤ r − ℓ) or f = 0, g = ψn as above, hence writing P ℓ = ρ⊗ 1 + U ℓ and

D(n) = |ρ(P1,n · · ·Pr−ℓ,nP
ℓψn)− ρ(P1,n · · ·Pr−ℓ,n1)ρ(ψn)| = |ρ(P1,n · · ·Pr−ℓ,nU

ℓψn)|,
Proposition 3.4 implies the existence of C1(U) <∞, r1(U) ∈]r(U), 1[ with

‖U ℓψn‖ ≤ C1(U)rℓ1(U)‖ψn‖.

On the other hand, since ψn is of the form ψn =M1 withM ∈ Ô(m,γ) we have, using Theo-
rem 3.1, ‖ψn‖ ≤ C(f) with C(f) depending onm,γ. It followsD(n) ≤ C1(U)C(f)(r1(U))ℓn .
�

4 Asymptotics of exceedances processes

4.1 Statements of results

Let E be a complete separable metric space which is locally compact, M+(E) the space
of positive Radon measures on E, Mp(E) its subspace of point measures, Cc

+(E) (resp
Lc
+(E)) the space of non negative and compactly supported continuous (resp Lipschitz)
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functions. Then it is well known that the vague topology on M+(E) is given by a metric
and with respect to this metric, M+(E) is a complete separable metric space. Furthermore
this metric is constructed (see [30] Lemma 3.11, Proposition 3.17) using a countable family
(hi)i∈I of functions in Lc

+(E) and Mp(E) is a closed subset of M+(E). It follows that, in
various situations with respect to weak convergence of random measures, Cc

+(E) can be
replaced by Lc

+(E).
Below, assuming condition (c-e), we describe the asymptotics of the space-time exceedances

process Nn =
n
Σ
i=1

ε(n−1i,u−1
n Xi)

under the probability Pρ and we state a few corollaries. The

results are formally analogous to results for stationary processes proved in ([2], [3]) under
general conditions. Here however, corresponding conditions have been proved in sections 2,
3 for the affine random walk hence the results described below are new for affine random
walks but the scheme of the proofs is given in [2], [3].
It is convenient to express the Laplace formulae below in terms of the occupation measure

πωv =
∞
Σ
0
εSn(ω)v of the linear random walk Sn(ω)v on V \{0}. We observe that these formulae

depend only of the linear part of the affine random walk ; this is a consequence of the choice
of the normalization by un.
We denote by Σ

i≥0
εT δ

i
the homogeneous point Poisson process on [0, 1] with intensity p(δ) =

θδ−α and by Σ
j∈Z

εZij
(i ≥ 0) an i.i.d. collection of copies of the cluster process C = Σ

j∈Z
εZj

described in Proposition 2.6, independant of Σ
i≥0

εT δ
i
. Since we have |Xx

n −X
y
n| ≤ |Sn||x− y|

and lim
n→∞

|Sn| = 0, P−a.e. it is possible to replace Pρ by P and Xn by Xx
n with x fixed, in

the statements. We give the corresponding proof for the logarithm law only.

Theorem 4.1 The sequence of normalized space-time point processes Nn =
n
Σ
i=1

ε(n−1i,u−1
n Xi)

on the space [0, 1]× (V \{0}) converges weakly to a point process N . For any δ > 0, the law
of the restriction of N to [0, 1]×U ′

δ is the same as the law of the point process on [0, 1]×U ′
δ

given by :

Σ
i≥0

Σ
j∈Z

ε(T δ
i ,δZij)

1{|Zij |>1}.

If η denotes the law of N , f ∈ Cc
+([0, 1] × U ′

δ) and ψη is the Laplace functional of η, then
−logψη(f) is equal to

θδ−α

∫ 1

0
ÊΛ1

(1− exp(− Σ
j∈Z

f(t, δZj)))dt =

∫ 1

0
EΛ0

(exp ft(v)− 1)exp(−πωv (ft))dt

where ft(x) = f(t, x)

Assuming the mixing and anticlustering conditions for compactly supported continuous
functions, this statement was proved in [3]. Here we will use Propositions 2.6, 3.4 and point
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process theory. We observe that, due to the normalization by un the law of N depends only
of µ,Λ0.
Now as a consequence of Theorem 4.1, the mixing property stated in Proposition 3.5 for
Lipschitz functions can be extended to compactly supported continuous functions. Then,
in particular, the mixing conditions A(un) and A′(un) of ([2], [3]) are valid here and the
basic conditions of extreme value theory (see [8]) are satisfied in our context.

Corollary 4.2 With the notation of Proposition 3.5, assume f is a continuous compactly
supported function on [0, 1] × (V \ {0}). Then we have the convergence lim

n→∞
In(f) = 0.

Since the space exceedances process N s
n =

n
Σ
i=1

εu−1
n Xi

is the projection of Nn on V \ {0} we

have the

Corollary 4.3 The normalized space exceedances process N s
n converges weakly to a point

process N s. The law of the restriction of N s to U ′
δ is the same as the law of the point

process

Q
δ
=

T δ

Σ
i=0

Σ
j∈Z

εδZij
1{|Zij |>1}

where T δ is a Poisson random variable with mean p(δ) = θδ−α, independant of Zij for
i ≥ 0, j ∈ Z.
The Laplace functional of N s is given in logarithmic form by

−EΛ0
[(expf(v)− 1)exp(−πωv (f))].

Assuming the mixing and anticlustering conditions for continuous functions, this statement
was proved in [2], using the formula for Laplace functionals in Proposition 2.6.

We consider the N-valued random variable ζ = πωv (U
′
1) and we write ζk = QΛ1

{ζ = k} for
k ≥ 1 ; in particular we have ζ1 = θ, ζk ≥ ζk+1.

Corollary 4.4 The sequence of normalized time exceedances process N t
n =

n
Σ
i=1

εn−1i1{|Xi|>un}

converges weakly (n→ ∞) to the homogeneous compound Poisson process N t on [0, 1] with
intensity θ, and cluster probabilities νk(k ≥ 1) where νk = θ−1(ζk − ζk+1).

Under special hypotheses, including density of the law of Bn with respect to Lebesgue
measure, this statement was proved in [22].

Fréchet’s law for Mx
n = sup{|Xx

k |; 1 ≤ k ≤ n} is a simple consequence of Corollary 4.4 as
follows.
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Corollary 4.5 For any x ∈ V and t > 0 we have the convergence in law of u−1
n Mx

n to
Fréchet’s law Φθ

α,
lim
n→∞

P{u−1
n Mx

n < t} = exp(−θt−α) = Φθ
α([0, t])

with θ = QΛ1
{sup
n≥1

|Sn(ω)v| ≤ 1}. Furthermore the law of the normalized hitting time t−ατxt

of U ′
t by the process |Xx

n | converges to the exponential law with parameter cθ, i.e.
lim
t→∞

P{t−ατxt > u} = exp(−cθu).

For d = 1, another proofs of Laplace formulae in 4.3, 4.5 were given in [5] (see 3.1.1, 3.2.1)

It was observed in [28] that Sullivan’s logarithm law for excursions of geodesics around the
cusps of hyperbolic manifolds (see [36]), in the case of the modular surface, is a consequence
of Fréchet’s law for the continuous fraction expansion of a real number uniformly distributed
in [0, 1] (see [27]). Here, in this vein, we have the following logarithm law.

e

Corollary 4.6 For any x ∈ V , we have the P−a.e. convergence

lim sup
n→∞

log|Xx
n |

logn
=

1

α
= lim sup

n→∞

log Mx
n

log n
.

If x is random, we observe that a logarithm law and a modified Fréchet law have been
obtained in [21] for random walks on some homogeneous spaces of arithmetic character,
using L2-spectral gap methods.
Given a Borel subset A of U ′

1 and a real number t > 1, we can also consider the hitting
time τxtA of the dilated set tA under by the process Xx

n (see [35] p. 290). In the context of
collective risk theory this hitting time can be interpreted as a ruin time associated to the
entrance of Xx

n in the set tA (see [6]). We observe that, in contrast to the associated linear
random walk, the event of ruin (in infinite time) occurs here with probability 1, due to
the finiteness of the stationary measure ρ. However, in law, the ruin scenario is the same :
excursion at infinity of the associated linear random walk.
Then the convergence to the point process N s stated in Corollary 4.3 gives the

Corollary 4.7 Let A be a Borel subset of V such that A ⊂ U ′
1, Λ(A) > 0 Λ(∂A) = 0.

Then for any x ∈ V , the normalized hitting time t−ατxtA of the set tA converges in law to
the exponential law with parameter cθ(A) with

θ(A) = (Λ0(A))
−1QΛ0

{
∞
Σ
1
1A(Siy) = 0, y ∈ A} ∈]0, θ].

We observe that, in the notation of [35], the quantity Q{
∞
Σ
1
1A(Siy) = 0} is, for y ∈ A, the

escape probability from A for the linear random walk Siy on V \ {0}. Hence the number

γ(A) = QΛ0
{
∞
Σ
1
1A(Siy) = 0, y ∈ A} ∈]0,Λ0(A)] is the corresponding capacity with respect
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to the Q-invariant measure Λ0. The positivity of θ(A) is a simple consequence of the
formula for θ(A) and of the dynamical argument used in the proof of Proposition 2.4 for
the inequality θ > 0.
The inequality τxtA ≥ τxt implies θ(A) ≤ θ < 1. We observe that, in the context of statistics
of hitting times for hyperbolic dynamical systems, convergence to an exponential law is
also valid, but since almost every point is repulsive, the corresponding condition θ = 1 is
then generically satisfied (see for example [26], [32]). Here the property θ(A) ∈]0, 1[ is a
consequence of the contraction-expansion property, which follows from the unboundness of
the semigroup generated by supp(µ). Heuristically speaking, the sphere at infinity of V is
weakly attractive for the affine random walk.

4.2 Proofs of point process convergences

The proof of Theorem 4.1 will follow of three lemmas.
We denote by (Xk,j)k∈N an i.i.d. sequence of copies of the process (Xj)j∈N and we write

Ñk,n =
krn
Σ

j=1+(k−1)rn
ε(n−1krn,u

−1
n Xk,j)

, Ñn =
kn
Σ
k=1

Ñk,n,

where rn, kn are as in section 2.

For kn > 0 we denote by E
(kn)
ρ the expectation corresponding to the product probability

of kn copies of Pρ.
If f is a non negative and compactly supported Lipschitz function on [0, 1] × V \ {0}, we
have, using independance :

E
(kn)
ρ (exp(−Ñn(f))) =

kn
Π
k=1

Eρ(exp(−
krn
Σ

j=1+(k−1)rn
f(n−1krn, u

−1
n Xk,j))).

This relation and the multiple mixing property in Proposition 3.5 show that, on functions
f as above, the asymptotic behaviour of the Laplace functionals of Nn under Eρ, and Ñn

under E
(kn)
ρ , are the same. We begin by considering the convergence of E

(kn)
ρ (exp(−Ñn(f))).

Lemma 4.8 below is a general statement giving the weak convergence of a sequence of
random measures, using only the convergence of the values of the Laplace functionals on
Lipschitz functions. Lemmas 4.9, 4.10 are reformulations of parts of the proof of Theorem
2.3 in [3], which was considered in a general setting.

Lemma 4.8 Let E be a locally compact separable metric space. Let ηn be a sequence of
random measures on E and, for f non negative Lipschitz and compactly supported, assume
that the sequence of Laplace functionals ψηn(f) converges to ψ(f) and ψ(sf) is continuous
at s = 0 ; then the sequence ηn converges weakly. A random measure η on E, is well defined
by the values of its Laplace functional on Lipschitz functions.

Proof We begin by the last assertion and we use the family of Lipschitz functions (hi)i∈I
considered in the above subsection. If the random measures η, η′ satisfy ψη(f) = ψη′(f) for

any f ∈ Lc
+(E) and λ1, λ2, · · · , λp are non negative numbers then we have ψη(

i=p

Σ
i=1

λihi) =
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ψη′(
i=p

Σ
i=1

λihi). It follows that the random vectors (η(h1), · · · , η(hp)) and (η′(h1), · · · , η
′(hp))

have the same Laplace transforms, hence the same laws. Furthermore, for rational numbers
rj < r′j the finite intersections of sets of the form {µ ∈ M+(E), µ(hi) ∈]rj , r

′
j [)} define a

countable basic U of open subsets in M+(E) stable under finite intersection, hence a π-
system (see [30]). Then from above, η, η′ are equal on U ; since the sigma-field generated
by U coincides with the Borel sigma-field, one has η = η′.
We observe that, if a sequence of random measures ηn is such that for any f ∈ L+(E) the
sequence of real random variables ηn(f) is tight, then the sequence ηn itself is tight. This
follows for a corresponding result in [30] for f ∈ Cc

+(E) since any such f is dominated by
an element of Lc

+(E).
Assuming the convergence of ψηn(f) to ψη(f) for any f ∈ Lc

+(E) and the continuity at
s = 0 of ψη(sf), we get that ψη(sf) is the Laplace transform of the real random variable
η(f), hence the convergence of the sequence ηn(f) to η(f) for any f ∈ Lc

+(E). From above
and the continuity hypothesis of ψ(sf) at s = 0, we get that the sequence ηn is tight. If ηni

is a subsequence converging weakly to the random measure η we have the convergence of
the corresponding Laplace functionals for any f ∈ Lc

+(E). Since such a limit is independant
of the subsequence, we get from above that two possible weak limits of random measures
are equal. Hence the sequence ηn converges weakly to η. �

Lemma 4.9 Let f be a non negative and compactly supported continuous function on
[0, 1]×U ′

δ and let Σ
j∈Z

εZj
be the cluster process for the affine random walk (Xk)k∈N. Then :

a) lim
n→∞

[logE(kn)
ρ (exp(−Ñn(f))) +

kn
Σ
k=1

(1− Eρ(exp(−Ñk,n(f))))] = 0.

b) lim
n→∞

kn
Σ
k=1

(1− Eρ(exp(−Ñk,n(f)))) = θδ−α

∫ 1

0
ÊΛ1

(1− exp(− Σ
j∈Z

f(t, δZj)))dt.

Lemma 4.10 Let Σ
i≥0

εT δ
i
be a homogeneous Poisson process of intensity p(δ) > 0 on [0, 1],

which is independant of the sequence of cluster processes Σ
j∈Z

εZij
.

Then for any non negative and compactly supported continuous function f on [0, 1]×U ′
δ, the

Laplace functional of the point process Qδ = Σ
i≥0

Σ
j∈Z

ε(T δ
i ,δZij)

1{|Zij |>1} restricted to [0, 1]×U ′
δ

satisfies :
logψδ(f) = −p(δ)

∫ 1
0 ÊΛ1

(1− exp(− Σ
j∈Z

f(t, δZj)))dt

Proof of Theorem 4.1 Let f be a non negative and compactly supported Lipschitz
function on [0, 1] × U ′

δ. Using Proposition 3.5, Lemma 4.9 implies that, on such functions

the Laplace functionals of Nn and Ñn have the same limit, namely
ψδ(f) = exp[−p(δ)

∫ 1
0 EΛ1

(1− exp− Σ
j∈Z

f(t, δZj))dt].
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We observe that, for fixed f as above, the function s → ψδ(sf) is continuous at s = 0.
Since the function s → ψn(sf) = Eρ(exp(−sNn(f))) is the Laplace transform of the non
negative random variable Nn(f), the continuity theorem for Laplace transforms implies
that the sequence Nn(f) converges in law to some random variable. Since the sequence
of Laplace functionals ψn(f) converges to ψδ(f), Lemma 4.8 implies that there exists a
unique point process N on [0, 1] × (V \ {0}) such that the sequence Nn converges weakly
to N . As stated in Lemma 4.10, for f as above the restriction of N to [0, 1] × U ′

δ is given
by the point process formula in the theorem. A density argument shows that the Laplace
functional of N on the function f ∈ Cc

+([0, 1] × U ′
δ is equal to

ψδ(f) = exp[−p(δ)
∫ 1
0 ÊΛ1

[1− exp(− Σ
j∈Z

f(t, δZj))dt].

The point process formula for N follows, as well as the first part of the formula giving the
Laplace functional of N . The second part is a consequence of the last formula in Proposition
2.6 applied to the function v → f(t, δv) and of the α-homogeneity of Λ0. �

Proof of Corollary 4.2 The first term Eρ(exp(−
n
Σ
1
fi,n)) in In(f) is the value of

the Laplace functional of Nn on the continuous function f . Hence the weak convergence in
Theorem 4.1 implies its convergence to the Laplace functional of N on f . The same remark
is valid for the second term in In(f), if Nn is replaced by Ñn : the limit of Ñn is also N ,
using Lemma 4.8 and Proposition 3.5. Then for any f in Cc

+([0, 1] × (V \ {0}) we have :

lim
n→∞

In(f) = lim
n→∞

|Eρ(exp(−Nn(f)))− E(kn)
ρ (exp(−Ñn(f)))| = 0 �

Proof of Corollary 4.3 The point process N s
n is the projection of Nn on V \ {0}.

Since [0, 1] is compact and the projection is continuous, the continuous mapping theorem
implies the required convergence, using the first part of Theorem 4.1. The formula for the
Laplace functional of N s is a direct consequence of the second part in Theorem 4.1 applied
to a function independent of t. �

Proof of Corollary 4.4 For ϕ ∈ Cc
+([0, 1]) we have N t

n(ϕ) = Nn(ϕ ⊗ 1U ′

1
). Since

the discontinuity set of 1U ′

1
is Λ-negligible, Theorem 4.1 gives the convergence of N t

n(ϕ)

to N t(ϕ). With f = ϕ ⊗ 1U ′

1
, the formula for the Laplace functional ψη(f) of N gives the

Laplace functional ψηt(ϕ) of N
t in the logarithmic form

log ψηt(ϕ) = −θ
∫ 1
0 ÊΛ1

[1− exp− ϕ(x)γ]dt.
The expression of the generating function of the random variable γ = Σ

j∈Z
1U ′

1
(Zj) follows

from the last formula in Proposition 2.6 :
∞
Σ
1
e−skνk = 1− (es − 1)θ−1EΛ1

[exp(−s πωv (U
′
1))].

Hence νk = θ−1(ζk − ζk+1)
In view of Theorem 4.1, the point process N t can be written as N t = Σ

k≥0
γkεT 1

k
, where

the random variables γk are i.i.d. with the same law as γ, hence N t coincides with the
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compound Poisson process described in the statement. �

Proof of Corollary 4.5 Replacing un by δun (δ > 0) in Corollary 4.4, we see that the

point process on [0, 1] given by N t
n,δ =

n
Σ
k=1

εn−1k1{|Xk|>δun} converges to N t
δ = Σ

k≥0
γkεT δ

k

where Σ
k≥0

εT δ
k
is the Poisson process on [0, 1] with intensity θ δ−α and the γk are i.i.d.

random variables as in the proof of Corollary 4.4. It follows that for any δ > 0,
lim
n→∞

Pρ{N
t
n,δ(1) = 0} = exp(−θ δ−α).

Since Pρ{N
t
n,δ(1) = 0} = Pρ{Mn ≤ unδ}, the convergence of u−1

n Mn to Fréchet’s law
follows.
If Mn is replaced by Mx

n with x ∈ V , the same proof as the one given below for the
logarithm law remains valid. The last assertion in the corollary is a direct consequence of
Fréchet’s law. �

4.3 Proof of logarithm’s law

The proof of logarithm’s law is based on Fréchet’s law and depends on two lemmas as
follows.

Lemma 4.11 We have Pρ−a.e. :

lim sup
n→∞

log|Xn|

logn
≤ lim sup

n→∞

logMn

logn
≤

1

α
. Furthermore, for any ε > 0, and for n large we

have |Xn| ≤ n1/α+ε.

Proof Let ε > 0, αn(ε) = {|Xn| ≥ n1/α+ε} ⊂ V Z+ , α′
n(ε) = V Z+ \ αn(ε). Stationarity

of Xn implies Pρ{αn(ε)} = Pρ{|X0| ≥ n1/α+ε}. Since lim
n→∞

n1+αεℓα(n1/α+ε,∞) = 1, with

ℓα(dt) = t−α−1dt, Corollary 2.2 gives
∞
Σ
1
Pρ{αn(ε)} < ∞. Then Borel-Cantelli’s lemma

implies that Pρ{
∞
∪
1

∩
j≥n

α′
j(ε)} = 1, hence Pρ−a.e. there exists n0(ω) such that for n ≥ n0(ω),

|Xn(ω)| ≤ n1/α+ε.

Then we deduce that Pρ−a.e. : lim sup
n→∞

logMn

logn
≤

1

α
+ ε. Since ε is arbitrary we get :

lim sup
n→∞

logMn

logn
≤

1

α
. �

Lemma 4.12 We have Pρ−a.e. : lim sup
n→∞

log|Xn|

logn
≥

1

α
.

Proof Let ε ∈]0, 1/α[, β(ε) =

{
lim sup
n→∞

log|Xn|

logn
≤

1

α
− ε

}
, βn(ε) =

{
sup
j≥n

log|Xj |

logj
≤

1

α
−
ε

2

}
.

The sequence βn(ε) is increasing and β(ε) ⊂
∞
∪
2
βn(ε). We are going to show Pρ{βn(ε)} = 0.
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For p ≥ n ≥ 2, p ∈ N, we define βn,p(ε) = { sup
n≤j≤p

|Xj | ≤ p1/α−ε/2}, hence βn(ε) ⊂ βn,p(ε).

Using stationarity we get Pρ{βn,p(ε)} ≤ Pρ{p
−1/αMp−n+1 ≤ p−ε/2}. Also, using Corollary

4.5, we have lim
n→∞

(sup
t>0

|Pρ{n
−1/αMn ≤ t}− e−cθt−α

|) = 0 which gives lim
p→∞

Pρ{βn,p(ε)} = 0.

Since βn(ε) = ∩
p≥n

βn,p(ε) we have for n ≥ 2 :

Pρ{βn(ε)} ≤ lim
p→∞

Pρ{βn,p(ε)} = 0, i.e. Pρ{β(ε)} = 0.

We see that Pρ−a.e., lim sup
n→∞

log|Xn|

logn
≥

1

α
− ε, and, since ε is arbitrary we conclude

lim sup
n→∞

log|Xn|

logn
≥

1

α
. �

Proof of Corollary 4.6 From Lemmas 4.11, 4.12 we have Pρ−a.e.,

lim sup
n→∞

logMn

logn
≥ lim sup

n→∞

log|Xn|

logn
=

1

α
.

On the other hand, for n large and ε > 0, Lemma 4.11 gives
logMn

logn
≤

1

α
+ 2ε, hence

lim sup
n→∞

logMn

logn
=

1

α
.

Then, for a set of ρ⊗ P- probability 1 in V ×HN we have

1
α = lim sup

n→∞

log|Xn|(ω)

logn
= lim sup

n→∞

logMn

logn
,

hence for a subsequence nk(ω),
1
α = lim

k→∞

log|Xnk
(ω)|

lognk
.

On the other hand we have for any x ∈ V : |Xn −Xx
n | ≤ |Sn||X0 − x| and lim

n→∞
|Sn| = 0,

P−a.e.
Also |log|Xn|− log|Xx

n || ≤ |Sn||X0−x| sup(|Xn|
−1, |Xx

n |
−1), hence for any x ∈ V , Pρ−a.e. :

lim
n→∞

|log|Xn| − log|Xx
n || = 0.

It follows lim
k→∞

log|Xx
nk
|

lognk
=

1

α
, and P−a.e., lim sup

n→∞

log|Xx
n |

logn
≥

1

α
.

A similar argument shows that P−a.e., lim sup
n→∞

log|Xx
n |

logn
≤

1

α
.

Furthermore, for any n ≥ 1, x ∈ V :
|Mx

n −Mn| ≤ sup{|Sk|; 1 ≤ k ≤ n}|x−X0|
where the sequence on the right is P−a.e. bounded. Then, it follows that, P−a.e. :

lim sup
n→∞

logMx
n

logn
=

1

α
. �

4.4 Proof of the normalized hitting time convergence

The proof depends on the following lemma.
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Lemma 4.13 For any λ ≥ 0, we have

logE(exp(−λN s(A))) = −
∫
(1− exp(−λ1A(y)))E(exp(−λ

∞
Σ
1
1A(Siy)))dΛ1(y).

In particular we have

QΛ1
{N s(A) = 0} = exp(−QΛ1

{
∞
Σ
1
1A(Siy) = 0, y ∈ A)} and QΛ1

{N s(∂A) = 0} = 1.

Proof Corollary 4.3 says that the above logarithmic formula is valid if 1A is replaced
by an arbitrary function f in Cc

+(U
′
1). We observe that if A ⊂ U ′

1 is compact, then 1A is the
decreasing limit of a sequence in Cc

+(U
′
1), hence dominated convergence implies the validity

of the formula in this case. Also, if A is bounded, ∂A is compact, hence the formula is valid
for ∂A. Taking the limit in the formula at λ = ∞ we get,

logPΛ0
{N s(∂A) = 0} = −QΛ1

{
∞
Σ
1
1∂A(Siy) = 0, y ∈ ∂A}.

Since Λ0(∂A) = 0 we have QΛ1
−a.e.,

∞
Σ
1
1A(Siy) =

∞
Σ
1
1A(Siy), hence for A bounded,

logE(exp(−λN s(A))) = −
∫
(1− exp(−λ1A(y)))E(exp(−λ

∞
Σ
1
1A(Siy)))dΛ1(y).

For A unbounded we proceed by exhaustion in U ′
1 with the sets Ut ∩ U

′
1. Using again the

formula for general A as above, we get

QΛ0
{N s(∂A) = 0} = exp(−QΛ1

{
∞
Σ
1
1∂A(Siy), y ∈ ∂A}).

Since Λ1(∂A) = 0, we have QΛ{N
s(∂A) = 0} = 1. �

Proof of Corollary 4.7 We have by definition, with n(t) = [ztα] :
Pρ{t

−ατxtA > z} = Pρ{N
s
n(t)(tA) = 0}

and we know the weak convergence of N s
n to N s. We observe that, for a sequence an > 0

converging to a > 0, and for any function ϕ on U ′
1 with N s-negligible discontinuities, the

convergence of N ′
n(ϕ) =

∫
ϕ(anv)dN

s(v) to
∫
ϕ(av)dN s(v) is valid.

Since Λ0(∂A) = 0 and lim
t→∞

tn(t)−1/α = z−1/α :

lim
t→∞

Pρ{N
s
n(t)(tA) = 0} = QΛ1

{N s(z−1/αA) = 0}.

Using Lemma 4.13 and the expression of the Laplace transform of N s(A), we get
lim
t→∞

Pρ{t
−ατxtA > z} = exp(−czθ(A)).

In this formula, we can replace Pρ by P, since for any x ∈ V , the point process N s
n converges

also weakly to N s under P. This follows from the use of ε-Hölder functions for ε < inf(1, α),
Lemma 4.8 and the inequality

|ϕ(Snx)− ϕ(Sny)| ≤ [ϕ]ε|Sn|
ε|x− y|ε,

since
∞
Σ
1
|Sn|

ε <∞, Q−a.e. and
∫
|y|εdρ(y) <∞.

The proof of positivity for θ(A) is the same as in Proposition 2.4 with A instead of supp(Λ1)
and θ(A) instead of θ. �
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5 Convergence to stable laws

The convergence to stable laws of the normalized sums
n
Σ
i=1

Xi under (c-e) was shown in

([10], [15]) where explicit formulae for the corresponding characteristic functions were given
and non degeneracy of the limiting laws was proved. It was observed that these formulae

involved the asymptotic tail Λ of ρ, as well as the occupation measure πωv =
∞
Σ
0
εSi(ω)v .

A similar situation occured in the dynamical context of [11], where the limiting law was
expressed in terms of an induced transformation. We observe that the connection with

convergence to stable laws for
n
Σ
i=1

Xi, where (Xi)i∈N is a stationary process, and point

process theory had been already developed in [8]. For an analysis of the involved properties
in this setting see [24]. For another approach, not using spectral gap properties, see chapter
4 of the recent book [5]. Here we give new proofs of the results given in ([10], [15]), following
and completing the point process approach of [7] in the case of affine stochastic recursions.
In particular we get also a direct proof of the convergence for the related space point

process N s =
n
Σ
i=1

εu−1
n Xi

, via a detailed analysis of Laplace functionals and without use of

the cluster process.

5.1 On the space exceedances process

We give here a direct proof of the convergence of N s
n, already shown in Corollary 4.3 above

and we deduce the convergence of the characteristic function for the random variable
N s

n(f), for f compactly supported. We make use of the mixing property in Proposition 3.5
for Lipschitz functions depending only on v ∈ V .

Theorem 5.1 Let f be a complex valued compactly supported Lipchitz function on V \{0}
which satisfies Re(f) ≥ 0. Then we have

−log lim
n→∞

Eρexp(−N
s
n(f)) = EΛ0

[(expf(v)− 1)exp(−πωv (f))].

The proof depends on two lemmas where notations for rn, kn explained above are used.

For i ≤ j we write Cn(i, j) = exp(−
j

Σ
k=i

f(u−1
n Xk))− 1, and we note the equality

Cn(1, rn) =
rn
Σ
i=1

[Cn(i, rn)− Cn(i+ 1, rn)]

where Cn(rn + 1, rn) = 0 and rn is a sequence as in Proposition 2.6. We note also that
|Cn(i, j)| ≤ 2, |Cn(i, j) − Cn(i+ 1, j)| ≤ 2.

We are going to compare Cn(1, rn) to Cn,k(1, rn) for k large, where

Cn,k(1, rn) =
rn
Σ
i=1

[Cn(i, i + k)− Cn(i+ 1, i + k)],
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we write ∆n,k for their difference, εn = rnPρ{|X| > un} and we assume that supp(f) ⊂ U ′
δ

with δ > 0.
Using anticlustering we will obtain the approximation of the small quantity Cn(1, rn) by
Cn,k(1, rn) up to εn. Then taking kn = [nr−1

n ] large and using the definition of Λ, we will get
the limiting form of knEρ[Cn,k(1, rn)], hence of knEρ[Cn(1, rn)]. We need the two following
lemmas.

Lemma 5.2 lim
k→∞

lim sup
n→∞

ε−1
n Eρ(|∆n,k|) = 0.

Proof We observe that
1 + Cn(i, rn) = (1 + Cn(i+ 1, rn))exp(−f(u

−1
n Xi)).

Also Cn(i+ 1, rn)− Cn(i+ 1, i+ k) = (exp(−
i+k
Σ

j=i+1
f(Xj)))(exp(−

rn
Σ

j=i+k+1
f(Xj))− 1).

Hence we have

∆n,k =
rn
Σ
i=1

(exp(−f(u−1
n Xi))− 1)[Cn(i+ 1, rn)− Cn(i+ 1, i + k)] = ∆′

n,k +∆′′
n,k

where ∆′
n,k (resp. ∆′′

n,k) is the above sum with index i restricted to [1, rn − k] (resp.
]rn−k, rn]). As observed above, the expression under Σ is bounded by 4 and vanishes unless
|Xi| > δun for some i ∈ [1, rn − k] and M rn

k+i+1 > δun. Then we get using stationarity,
Eρ(|∆

′
n,k|) ≤ 4rnPρ{|X0| > δun,M

rn
k+1 > δun}.

Since the process (Xk)k∈Z+
satisfies anticlustering, it follows lim

k→∞
lim sup
n→∞

ε−1
n Eρ(|∆

′
n,k|) =

0. Also, stationarity implies

Eρ(|∆
′′
n,k|) ≤ 4

rn
Σ

i=rn−k+1
Pρ{|Xi| > δun} = 4kPρ{|X| > δun}.

Since ρ is homogeneous at infinity and lim
n→∞

r−1
n k = 0, we get lim

k→∞
lim sup
n→∞

ε−1
n Eρ(|∆

′′
n,k|) =

0, hence the required assertion. �

Lemma 5.3 We have the following convergences.

1) For any k ≥ 1 lim
n→∞

knEρ[Cn,k(1, rn)] = EΛ0
[(expf(v)− 1)exp(−

k
Σ
i=0

f(Siv))]

2) lim
k→∞

lim sup
n→∞

knEρ(|∆n,k|) = 0

Proof 1) Using stationarity we have
knEρ[Cn,k(1, rn)] = knrnEρ[Cn(1, k + 1)− Cn(2, k + 1)] =

knrnEρ[exp(−
k
Σ
j=0

f(u−1
n Xj))− exp(−

k
Σ
j=1

f(u−1
n Xj))].

The function f (k) on (V \ {0})k+1 given by

f (k)(x0, x1 · · · , xk) = exp(−
k
Σ
j=0

f(xj))− exp(−
k
Σ
j=1

f(xj)) = −(exp( f(x0))− 1)exp(−
k
Σ
j=0

f(xj))
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is bounded, uniformly continuous on (U ′
δ)

k+1 and lim
n→∞

n−1knrn = 1. Hence, Proposition

2.4 implies

lim
n→∞

knEρ[Cn,k(1, rn)] = −EΛ0
[(expf(v)− 1)exp(−

k
Σ
j=0

f(Sjv))].

2) We have the equality, knEρ(|∆n,k|) = knrnPρ{|X| > un}ε
−1
n Eρ(|∆n,k|).

Then, using Lemma 5.2, the relation lim
n→∞

n−1knrn = 1 and the homogeneity at infinity of

ρ, assertion 2 follows. �

Proof of Theorem 5.1 With rn as in Proposition 4.2 above, the multiple mixing
property in Proposition 3.5 for functions depending only of v ∈ V gives

lim
n→∞

[Eρ(exp(−N
s
n(f)))− (Eρ(1 + Cn(1, rn)))

kn ] = 0,

hence it suffices to study the sequence (1+Eρ(Cn(1, rn)))
kn . Since Ref ≥ 0 and supp(f) ⊂

U ′
δ we have :

Eρ(|Cn(1, rn)|) ≤ Eρ(|1−exp(−
rn
Σ
i=1

f(u−1
n Xi))|) ≤ Eρ(

rn
Σ
i=1

|f(u−1
n Xi)|) ≤ rn|f |∞Pρ{|X0| > δun}.

The last inequality implies the L1-convergence to zero of
rn
Σ
i=1

f(u−1
n Xi). Then the first one

gives lim
n→∞

Eρ(|Cn(1, rn)|) = 0.

It follows that the behaviour of the sequence [1+Eρ(Cn(1, rn))]
kn for n large is determined

by the behaviour of knEρ(Cn(1, rn)). We have for k ≥ 1,

knEρ(Cn(1, rn)) = knEρ(Cn,k(1, rn)) + knEρ(∆n,k).

Since supp(f) ⊂ U ′
δ and lim

j→∞
|Sjv| = 0 Q−a.e., the series

∞
Σ
j=1

f(Sjv) converges Q−a.e.

Since Ref ≥ 0, it follows lim
k→∞

E(exp(−
k
Σ
j=1

f(Sjv))) = exp(−πωv (f)).

Then dominated convergence and Lemma 5.3 imply

lim
k→∞

lim
n→∞

knEρ(Cn,k(1, rn)) = −EΛ0
[(expf(v)− 1)exp(−πωv (f))].

This equality and the second assertion in Lemma 5.3 give the result. �

Corollary 5.4 Let m > 0, δ > 0, γ ≥ 0, and let f be a Rm-valued continuous function on
V \ {0} which satisfies the conditions

1) f is locally Lipschitz
2) f(v) = 0 for |v| < δ
3) sup

v∈V
|v|−γ |f(v)| = cγ <∞

Then we have , for any u ∈ Rm,
log lim

n→∞
Eρ(exp(−i < u,N s

n(f) >) = −EΛ0
[(exp( i < u, f(v) >)− 1)exp(−i < u, πωv (f) >)]
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Proof We consider the Rm-valued random variable Yn = N s
n(f). For a ≥ 1, let θa(v)

be the function from V \ {0} to [0, 1] defined by

θa(v) = 1 for |v| ≤ a, θa(v) = a+ 1− |v| for |v| ∈ [a, a+ 1], θa(v) = 0 for |v| ≥ a+ 1.

Then θa is Lipschitz, hence fθa is Lipschitz and compactly supported. Then Theorem 5.1
gives, in logarithmic form
lim
n→∞

Eρ(exp i < u,N s
n(fθa) >) = −EΛ0

[(exp(−i < u, fθa(v) >)−1)exp(πωv (i < u, fθa(v) >

))] = Φa(u)
Since Λ(U ′

δ) <∞, the function u→ Φa(u) is continuous on Rm. It follows that the sequence
of random variables Y a

n = N s
n(fθa) converges in law to the random variable Y a

∞ which has
characteristic function Φa. On the other hand we have lim

a→∞
θa = 1, hence by dominated

convergence we get in logarithmic form,

lim
a→∞

Φa(u) = −EΛ0
[(exp(−i < u, f(v) >)− 1)exp(i < u, πωv (f) >)] = Φ(u).

We recall that, for v fixed, the series
∞
Σ
j=0

f(Sjv) converges Q−a.e. to a finite sum, hence

the function u→ Φ(u) is continuous. In other words, Y a
∞ converges in law (a→ ∞) to the

random variable Y with characteristic function Φ.
If we choose β ∈]0, 1[, γ > 0 such that βγ ∈]0, α[, then for any ε > 0, Markov’s inequality
gives

Pρ{|Y
a
n − Yn| > ε} ≤ ε−βEρ[

n
Σ
j=1

(f(u−1
n Xj)1{|Xj |>aun})

β],

Pρ{|Y
a
n − Yn| > ε} ≤ ε−βcβγnEρ[|u

−1
n X|βγ1{|X|>aun})].

Using Corollary 2.2, it follows lim sup
n→∞

Pρ{|Y
a
n − Yn| > ε} ≤ ε−βcβγΛ(W

βγ1{W>a})), where

W (x) = |x|.
Since 0 < βγ < α, we get lim

a→∞
lim sup
n→∞

Pρ{|Y
a
n − Yn| > ε} = 0

Since ε > 0 is arbitrary, the convergence in law of Yn to the random variable Y follows,
hence the corollary. �

In order to prepare the study of limits for the sums Tn =
n
Σ
j=1

Xj if 0 < α < 2, we write for

a > 0 ψa(v) = v(1− ϕa(v)), where
ϕa(v) = 1 if |v| ≤ a, ϕa(v) = 2− a−1|v| if a ≤ |v| ≤ 2a, ϕa(v) = 0 if |v| > 2a.

Hence 0 ≤ ϕa ≤ 1[0,2a] and k(ϕa) ≤ a−1. In particular we will use below the function ϕ1

corresponding to a = 1. Then a consequence of Corollary 5.4, if γ = 1 is the following

Corollary 5.5 The sequence of V -valued random variables N s
n(ψa) converges in law to the

random variable with characteristic function which logarithm is
EΛ0

[(exp(−i < u, ψa(v) >)− 1)exp(i < u, πωv (ψa) >)].
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5.2 Convergence to stable laws for Tn =
n

Σ
i=1

Xi

In this subsection we write ψ(v) = v and we study the convergence of N s
n(ψ) = u−1

n

Tn towards a stable law, relying on the weak convergence of N s
n studied in the above

subsection. We need here the last part of the spectral gap result in Proposition 3.4 for the
operator P .
We have the

Theorem 5.6 Let 0 < α < 2. Then there exists a sequence dn in V such that the sequence
of random variables n−1/α(Tn − dn) converges in law to a non degenerate stable law.
If 0 < α < 1, we have dn = 0.
If 1 < α < 2, we have dn = nEρ(X)
If α = 1, we have dn = n Eρ[Xϕ1(X)].

Explicit expressions for the characteristic functions of the limits are given in the proofs.
Non degeneracy of the limit laws are proved in [10] and [15]. For the proofs, we follow
the approach of [7] and we need two lemmas corresponding to the cases 0 < α < 1 and
1 ≤ α < 2.
In the proofs below we use the normalization un = (α−1cn)1/α instead of n1/α as in the
theorem.

Lemma 5.7 Assume 0 < α < 1. Then for any u ∈ V and with the notation of Corollary
5.5, T a = N s(ψa) converges in law (a → 0) to T with characteristic function Φ(u) given
by

−logΦ(u) = c−1EΛ0
[(exp(−i < u, v >)− 1)exp(i < u,

∞
Σ
j=0

Sjv >)].

Also, for any δ > 0 we have

lim
a→0

lim sup
n→∞

Pρ

{
|

n
Σ
j=1

u−1
n Xjϕa(u

−1
n Xj)| > δ

}
= 0.

Proof Using dominated convergence, the first part follows from Corollary 5.5.
On the other hand, Markov’s inequality gives

Pρ

{
|

n
Σ
j=1

u−1
n Xjϕa(u

−1Xj)| > δ

}
≤ nδ−1u−1

n Eρ(|X|1{|X|<2aun})

The homogeneity at infinity of ρ and Karamata’s lemma (see [30] p.26) gives that the right
hand side is equivalent to

δ−1n1−α−1

α(1 − α)−1(2aun)Pρ{|X| > 2aun},
i.e. to δ−1 a1−α, up to a coefficient independant of n. Since 1−α > 0 the result follows. �

Lemma 5.8 Assume 1 ≤ α < 2 and write ψa(v) = vϕa(v) where ϕa is defined in the proof
of Corollary 5.4. Then we have the convergence

lim
a→0

lim sup
n→∞

Eρ(|N
s
n(ψa)− Eρ(N

s
n(ψa)|

2) = 0.
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Proof It suffices to show that for any u ∈ Sd−1 :

lim
a→0

lim sup
n→∞

Eρ(| < u,N s
n(ψa) > −Eρ(< u,N s

n(ψa) > |2) = 0.

We write fa,n(v) = ψa(u
−1
n v), ψa,n = fa,n − ρ(fa,n).

Hence |fa,n(v)| ≤ u−1
n |v|1{|v|≤2aun}, k(fa,n) ≤ 3u−1

n . We have the equality

Eρ(| < u,Nn(ψa) > −Eρ(< u,Nn(ψa) >)|
2) = An,a + 2Bn,a

with
An,a = nEρ(| < u,ψa,n(X0) > |2), Bn,a =

n
Σ
j=1

(n− j)Eρ(< u,ψa,n(X0) >< u,ψa,n(Xj)).

Now the proof splits into two parts a) and b) corresponding to the studies of An,a, Bn,a.
a) We have, using the above estimation of fa,n,

nEρ(| < u,ψa,n(X0) > |2) ≤ nEρ(|fa,n(X0)|
2) ≤ nEρ(u

−2
n |X0|

21{|X0|<2aun}).

Then Karamata’s lemma implies that, for n large, the right hand side is equivalent to
n1−2α−1

(2aun)
2((2a)αn)−1, i.e. to a2−α. Hence, since α ∈]0, 2[, we get lim

a→0
lim sup
n→∞

An,a = 0

uniformly in u ∈ Sd−1.

b) Markov property for the process (Xi)i≥0 implies for i ≥ 1,
Eρ(< u,ψa,n(X0) >< u,ψa,n(Xi) >) = Eρ(< u,ψa,n(X0) >< u,P iψa,n(X0) >).

First we consider the case α ∈]1, 2[ and we apply Proposition 3.4 to P acting on the Banach
space H = Hχ,ε,κ with χ ∈]1, α[, ε = 1 and κ choosen according to Proposition 3.4. We
observe that for h ∈ H we have |h(v)| ≤ ‖h‖(1 + |v|). Since ψa,n ∈ H, we have

Eρ(< u,ψa,n(X0) >< u,P iψa,n(X0) >) = Eρ(< u, fa,n(X0) >< u,U ifa,n(X0) >),
where we have used the decomposition P i = ρ⊗1+U i. The Schwarz inequality allows us to
bound the right hand side by the square root of Eρ(|fa,n(X0)|

2)Eρ(|U
ifa,n(X0)|

21{|X0|<2an}).
Since |U ifa,n(v)| ≤ (1+|v|)‖U i‖ ‖fa,n‖, the quantity Eρ(< u, fa,n(X0) >< u,U ifa,n(X0) >)
is bounded by ‖U i‖ ‖fa,n‖[u

−2
n Eρ(|X0|

21{|X0|<2aun})]
1/2 [Eρ(1 + |X0|)

21{|X0|<2aun})]
1/2.

Then Karamata’s lemma implies that, up to a coefficient independant of n, the above
expression is bounded by ‖U i‖ ‖fa,n‖[n

−1/2a1−α/2] [1 + nα
−1−1/2a1−α/2].

Since ‖fa,n‖ ≤ nu−1
n , it follows that Bn,a, uniformly in u ∈ Sd−1 and up to a coefficient, is

bounded by

n(
∞
Σ
i=0

‖U i‖)n−1[n1/2−α−1

a1−α/2 + a2−α] =
∞
Σ
i=0

‖U i‖ [a2−α + a1−α/2n1/2−α−1

].

Since r(U) < 1 we have
∞
Σ
i=0

‖U i‖ < ∞, hence lim sup
n→∞

Bn,a is bounded by a2−α, up to a

coefficient independant of n. Since 1 < α < 2, and in view of the two above convergences
the lemma follows.
If α = 1, we need to use the Banach space H′ = Hχ,ε,κ with 0 < ε < χ < 1, κ = 0,
considered in Proposition 3.4. We use also the inequality ‖f‖a,n ≤ c1a

1−χn−ε with c1 > 0,
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shown below. We note that for h ∈ H′, we have |h(v)| ≤ ‖h‖(1 + |v|ε) in particular and up
to a constant independant of n and a, we have

|U ifa,n(v)| ≤ ‖U i‖ ‖fa,n‖(1 + |v|ε) ≤ ‖U i‖(a1−χn−ε)(1 + |v|ε).

Hence we can bound Eρ(< u, fa,n(X0) >< u,U ifa,n(X0) >) by
2c1‖U

i‖(a1−χn−ε)[n−2Eρ(|X0|
2)1{|X0|<2na})]

1/2[Eρ(1 + |X0|
2ε)1{|X0|<2na}]

1/2,
which can be estimated using Karamata’s lemma, for ε > 1/2, by

2c2‖U
i‖(a1−χn−ε)(an−1)1/2(na)ε−1/2 = c2a

1−χ+εn−1.

It follows that Bn,a can be estimated by 2c2
∞
Σ
i=0

‖U i‖a1−χ+ε. Since using Proposition 3.4

we have r(U) < 1, if 1/2 < ε < χ < 1, it follows lim
a→0

lim sup
n→∞

Bn,a = 0. �

Proof of Theorem 5.6 For α ∈]0, 1[ the proof follows from Lemma 5.7. We observe
that dominated convergence implies the continuity of Φ at zero, hence Φ is a characteristic
function. From Lemma 5.7 we know that if Yn = N s

n(1), Y
a
n = N s

n(1− ϕa),
1) For any a > 0, Y a

n converges in law (n→ ∞) to T a

2) T a converges in law (a→ 0) to T
3) For any ε > 0, we have lim

a→0
lim sup
n→∞

P{|Yn − Y a
n | > ε} = 0.

It follows that the sequence Yn =
n
Σ
i=1

u−1
n Xi converges in law (n → ∞) to the random

variable T with characteristic function Φ.
For 1 < α < 2, we write

Yn = N s
n(ψ) − Eρ(N

s
n(ψ)) = u−1

n

n
Σ
j=1

Xj − Eρ(X), Y a
n = N s

n(ψa)− Eρ(N
s
n(ψa)),

so that Y a
n − Yn = N s

n(ψa,n)− Eρ(N
s
n(ψa,n)). Then, for any ε > 0, Lemma 5.8 gives,

lim
a→0

lim sup
n→∞

Pρ{|Y
a
n − Yn| > ε} = 0

Furthermore, the sequence N s
n(ψa) converges in law (n → ∞) to T a and Eρ(N

s
n(ψa)) =

nEρ[u
−1
n X(1−ϕa)(u

−1
n X)] converges to the value b(a) of Λ on the function v → v(1−ϕa(v)),

as follows from α > 1 and the homogeneity at infinity of ρ. Hence the sequence Y a
n converges

in law (n → ∞) to T a − b(a) = Y a. Finally Y a converges in law (a → 0) to the random
variable T with characteristic function Φ defined in logarithmic form by

−Φ(u) = EΛ0
[(exp(−i < u, v >)− 1 + i < u, v >)exp(i < u,

∞
Σ
j=0

Sjv >)]

+iEΛ0
[< u, v > (exp(i < u,

∞
Σ
j=0

Sjv >)− 1)].

This follows of Theorem 5.1, of dominated convergence (a → 0) and of the following
inequalities

|exp(−i < u, ψa(v) >)− 1 + i < u, ψa(v) > | ≤ inf(2 + |u| |v|, 4|v|2|u|2),

| < u,ψa(v) > E(exp(i < u,
∞
Σ
j=1

ψa(Sjv) >)− 1)| ≤ inf(|u| |v|, 2|u|2|v|2
∞
Σ
j=1

E|Sj),
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where α > 1 gives
∞
Σ
j=1

E|Sj| < ∞. Continuity of Φ at zero follows also from the above

inequalities.
Then, as in [7], we deduce the convergence in law of the sequence Yn to T .

If α = 1, we write Yn =
n
Σ
j=1

n−1Xj − Eρ(ϕ1(n
−1X)) and

Y a
n =

n
Σ
j=1

n−1Xi(1− ϕa(n
−1Xj))− bn(a) = N s

n(ψa)− bn(a)

where bn(a) = Eρ[X(ϕ1 − ϕa)(n
−1X)]. With the new notations, the above inequalities are

still valid. The homogeneity at infinity of ρ gives now
lim
n→∞

bn(a) = c−1EΛ0
(v(ϕ1 − ϕa)) = b(a).

It follows that the sequence Y a
n converges in law (n→ ∞) to the random variable T a

1 with
characteristic function given in logarithmic form by

−EΛ0
[(exp(−i < u, ψa(v) >)− 1)(exp(i(< u, πωv (ψa) >)− i < u, b(a) >)]

We insert the expression i < u, v > (ϕ1 − ϕa(v)) with the adequate sign in each of the
above factors inside the expectation EΛ0

. Then dominated convergence (a→ 0) shows that
T a
1 − b(a) converges in law to the random variable T with characteristic function given in

logarithmic form by
Φ(u) = −EΛ0

[A(u, v) +B(u, v)]

with A(u, v) = (exp(−i < u, v >)− 1 + i < u, v >)ϕ1(v),

B(u, v) = i < u, v > ϕ1(v)(exp(i < u,
∞
Σ
j=1

Sjv >)− 1).

As in ([10], [15]), the stability of the limiting laws follow from the formula for Φ(u). If
0 < α < 2, α 6= 1 the formula for Φ(u) shows that for any n ∈ N we have Φn(u) = Φ(n1/αu),
hence T has a stable law of index α.
If α = 1, we have with γn = c EΛ0

[v(ϕ1(n
−1v)−ϕ1(v))], Φ

n(u) = Φ(n u)exp(−in < u, γn >
).
This implies that T follows a stable law with index 1. �

Remark 1 The idea used above in the proof of the limiting form of N s
n can be used in

other similar situations, using only anticlustering and the definition of Λ. This is the case
for the Laplace functional of the cluster process C stated in Proposition 2.6.
There we write, as in the proof of Theorem 5.1

C ′
n(k, ℓ) = exp(−

ℓ
Σ
k
f(u−1

n Xi))1{Mk,ℓ>un})

C ′
n(1, rn = exp(−

rn
Σ
1
f(u−1

n Xi))1{Mrn>un})

C ′
n,k(1, rn) = exp(−

rn
Σ
1
[C ′

n(i, i+ k)− C ′
n(i+ 1, i + k)])

Then the approximation of C ′(1, rn) by C
′
n,k(1, rn) up to εn is still valid. Furthermore, the

definition of Λ0 shows that for kn large knEρ[C
′
n(1, rn)] is close to
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I = −EΛ0
([exp(−πωv (f)(exp(f(v))(1{sup

i>0
|Siv| > 1})− 1

{sup
i≥0

|Siv| > 1})]

To conclude we write using the notation of 2.4
Eρ[exp(−Cn] = Eρ{C

′
n(1, rn)/Mrn > un} = ( n

rn
Eρ[C

′
n(1, rn)])(

rn
nPρ{Mrn>un}

).

From above the first factor converges to I. The second factor is asymptotic to
(θnPρ{|X0| > un})

−1 since θ−1
n = rnPρ{|X0| > un/Mrn > un} converges to θ−1.

If supp(f) ⊂ U ′
1, θ

−1I is the sum of

−θ−1EΛ1
[exp(−

∞
Σ
1
f(Siv))(1{sup

i≥1
|Siv| ≤ 1})] = 1 and of the last expression in Proposi-

tion 2.6.

6 Appendix : Condition (c-e) is open if d > 1

We denote by Tµ the closed subsemigroup of G generated by supp(µ), where µ is a
probability on G. We consider weak topologies for probability measures on G and on H.
We denote by M1(G) (resp.M1(H)) the set of probabilities on G(resp. H). We denote by
W(H) the weak topology on M1(H) defined by the convergence on continuous compactly
supported functions as well as of the moments

∫
(γk(g) + |b|k(h))dλ(h) for any k ∈ N. An

element γ ∈ G is said to be proximal if it has a unique simple dominant real eigenvalue.

Theorem 6.1 If d > 1, condition (c-e) is open in the weak topology W(H) on M1(H).

We will need the Proposition

Proposition 6.2 Condition i-p is open for the weak topology on M1(G).

Proof Assume µ ∈ M1(G), satisfies i-p and let µn ∈ M1(G) be a sequence which
converges weakly to µ. Then supp(µn) and Tµn are closed subsets of G which converges to
supp(µ) and Tµ respectively. If γ is a proximal element of Tµ, then by perturbation theory
there exists a neighbourhood of γ in G which consists of proximal elements. Hence there
exists γn ∈ Tµn which is also proximal.
On the other hand Tµn is irreducible for large n. Otherwise there exists a proper subspace
W n ⊂ V with Tµn(W

n) = W n. Let W ⊂ V be the limit of a subsequence of W n. Then,
clearly Tµ(W ) =W , which contradicts the irreducibility of Tµ.
In order to show the strong irreducibility of Tµn for n large, we show the irreducibility of
Zc0(Tµn), the connected component of the Zariski closure Zc(Tµn) of Tµn (see [25]). Since
Tµn is irreducible, the Lie group Zc0(Tµn) is reductive and has finite index in Zc(Tµn).

We decompose V as the direct sum of its isotypic components V
(n)
i (1 ≤ i ≤ pn) under

the action of Zc0(Tµn) : V =
pn
⊕
i=1

V
(n)
i . Since Zc0(Tµn) has finite index in Zc(Tµn) we can

assume, by taking a suitable power, that γn ∈ Zc0(Tµn). The uniqueness of the above
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decomposition of V and the relation γnv = λnv, v =
pn
Σ
i=1

vi, vi ∈ V
(n)
i , with λn a simple

dominant eigenvalue of γn implies γnvi = λnvi ; hence the proximality of γn implies that

v belongs to a unique V
(n)
i , to V

(n)
1 say. Also the irreducibility of Tµn implies that Tµn

permutes the subspaces V
(n)
i (1 ≤ i ≤ pn). Since V

(n)
1 is isotypic and γn is proximal, the

subspace V
(n)
1 is Tµn-irreducible. The same is valid for any V

(n)
i = g(V

(n)
1 ) since gγng

−1 is
also proximal, for g ∈ Tµn . Assume Zc0(Tµn) is not irreducible for n large ; then it follows

that pn ∈]1, d] and rn = dim V
(n)
1 ∈ [1, d[. It follows that we can assume pn = p and rn = r

for n large with p > 1, r < d. Hence, taking convergent subsequences of V
(n)
i (1 ≤ i ≤ p)

we obtain proper subspaces Vi(1 ≤ i ≤ p) which are permuted by Tµ ; the irreducibility

of Tµ implies that their sum is V , hence we have V =
p
⊕
1
Vi, which contradicts the strong

irreducibility of Tµ. Hence Tµn satisfies condition i-p for n large. �

Proof of Theorem 6.1

Let λn ∈M1(H) be a sequence which converges to λ ∈M1(H) in the weak topology W(H)
and let us denote by µn the projection of λn on G. We verify the stability of conditions
1, 2 in (c-e) if d > 1, since condition 3 follows of the definition of W(H) and condition
4 is a direct consequence of Proposition 6.2. We denote by Sd−1

∞ the sphere at infinity of
V and we observe that the group H acts continuously on the compactification (V ) ∪ Sd−1

∞

endowed with the visual topology.
1) Assume that supp(λn) has a fixed point xn ∈ V for n large. Since the closed subset

supp(λn) converges to supp(λ), we can find a convergent subsequence of xn to a point x
in (V ) ∪ (Sd−1

∞ ), such that x is supp(λ)-invariant. If x ∈ V we have a contradiction since
supp(λ) has no fixed point in V . If x ∈ Sd−1

∞ , we have also a contradiction since condition
i-p implies that the projective action of supp(µ) has no fixed point, if d > 1.

2) Using Lemma 6.4, since finiteness of moments for µn is valid, we get that for µn and
for any s ≥ 0, the corresponding operator P s has a spectral gap on the relevant Hölder
space on Sd−1

∞ (see [13]). The moment condition implies that perturbation theory is valid
for the operators P s. Hence the spectral radius k(s) varies continuously. In particular, since
we have k(s) > 1 for µ and s > α, and L(µ) < 0, the same is valid for µn with n large.
Hence there exists αn > 0 close to α such that k(αn) = 1 and L(µn) < 0. �
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aléatoires affines. C.R.A.S. 351 n◦1,2 : 69-72, 2013.
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