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Abstract

We consider a general multivariate affine stochastic recursion and the associated Markov
chain on R?. We assume a natural geometric condition which implies existence of an un-
bounded stationary solution and we show that the large values of the associated stationary
process follow extreme value properties of classical type, with a non trivial extremal index.
The proof is based on a spectral gap property for the action of the corresponding Markov
operator on spaces of regular functions with slow growth, and on the clustering properties
of large values in the recursion.

Keywords : Spectral gap, Extreme value, Affine random recursion, Limit theorem, Point
process, Cluster index.

1 Introduction

Let V = R% be the d-dimensional Euclidean space and let X be a probability on the affine
group A of V. Let (A,, B,) be a sequence of A-valued i.i.d. random variables distributed
according to A and let us consider the affine stochastic recursion on V' defined by

Xy = Aan—l + B,
for n € N. We denote by P the corresponding Markov kernel on V and by P the product
measure A% on AN. Our geometric hypothesis (H) on A implies that P has a unique
invariant probability p on V and the support of p is unbounded. In our situation (see [13]),
the quantity p{|v| > t} is asymptotic (t — 00) to a~te ¢~ with a > 0, ¢ > 0. Furthermore,
the measure p is multivariate regularly varying, a basic property for the development of
extreme value theory i.e for the study of exceptionally large values of Xj(1 < k < n)
for n large (see [28]). In such a situation of weak dependence, spectral gap properties of
operators associated to P play also an important role via a multiple mixing condition
described in [7] for the case of step functions. We observe that the same idea was used in
the proofs of limit theorems for the largest coefficient in the continued fraction expansion
of a real number uniformly distributed in the interval [0, 1] (see [25], [31]), as well as in

the proofs of limit theorems for 5 X (see [15]). In the context of geometric ergodicity,
k=1

assuming a density condition on the law of B,,, partial results were obtained in [21]. Here



we go further in this direction replacing geometric ergodicity by condition (H). We observe
that, if A is singular with respect to Haar measure on A, then the operator P on V is not
v-geometrically ergodic in general, hence the classical framework of [22] for asymptotics of
Markov chains is not convenient in our setting. However condition (H) implies that the
operator P has a spectral gap property in the spaces of Holder functions with polynomial
growth considered below, a fact which allow us to deduce convergence with exponential
speed on Holder functions. A typical example of this situation occurs if the support of A is
finite and generates a dense subsemigroup of the affine group A.

If Z, is the set of non negative integers, we denote by P, the Markov probability on
VZ+ defined by the kernel P and the initial probability p. In this paper we establish
spectral gap properties for the action of P on Hélder functions and we deduce fundamental
extreme value statements for the point processes defined by the P,-stationary sequence
(Xk)k>0. Our results are based on the fact that the general conditions of multiple mixing
and anticlustering used in extreme value theory of stationary processes (see [7]) are valid for
affine stochastic recursions, under condition (H). We observe that, in the context of Lipchitz
functions, the above mixing property is a consequence of the spectral gap properties studied
below ; it turns out that the use of advanced point process theory allows us to extend this
mixing property to the classical context of continuous functions. We note that, if d > 1,
the set of probabilities A on the affine group A, which satisfy condition (H), is open in a
natural weak topology ; hence in this sense, hypothesis (H) is generic. Then, our framework
allow us to develop extreme value theory for a large class of natural examples, including
the so-called GARCH process as a very special case (see [10]).

In order to sketch our results, we recall that Fréchet’s law ®¢ with positive parameters
a, a is the probability on Ry defined by the distribution function ®%([0,t]) = exp — at™®.
We denote by p the projection of A on the linear group G = GL(V). Also, we consider
the associated stochastic linear recursion Y, = A,,Y,,_1, we denote by @ the corresponding
Markov kernel on V \ {0} and by Q = pu®" the product measure on GV ; we write S, =
Ay, -+ Ay for the product of random matrices Ax(l < k < n). Extending previous work
of H. Kesten (see [19]), a basic result proved in [13] under condition (H) is that for some
«a > 0, the probability p is a-homogeneous at infinity, hence p has an asymptotic tail
measure A # 0 which is a a-homogeneous Q-invariant Radon measure on V' \ {0}. The
multivariate regular variation of p is a direct consequence of this fact. Also, it follows that,
if B; C V is the ball of radius ¢ > 0 centered at 0 € V and B} = V' \ By, then we have
A(B}) = a~tet= with ¢ > 0. In particular, A(Bj}) is finite and the projection of p on R,
given by the norm map v — |v| has the same asymptotic tail as ®¢. If u, = (cn)'/®, it
follows that the mean number of exceedances of u, by |X| (1 <k < n) converges to one.
It will appear below that w,, is an estimate of sup{|Xs|; 1 <k < n}.

Then, one of our main results is the convergence in law of the normalized maximum of
the sequence |X1|,| Xz, ..., |X,| towards Fréchet’s law ® with 6 €]0,1[. A closely related
point process result is the weak convergence (see [28]) of the time exceedances process



n
N} = ]Elfimlkl{\xkpun}
towards a compound Poisson process with intensity 6 and cluster probabilities depending

o
on the renewal point process m; = 3 £g,(w)y and on the @Q-invariant measure A. The
i=0

significance of the relation § < 1 is that, in our situation, values of the sequence (| Xx|)o<r<n
larger than u,,, appear in localized clusters with asymptotic expected cardinality =% > 1.
This reflects the local dependence of large values in the sequence (X} )x>0 and is in contrast
with the well known situation of positive i.i.d. random variables with tail also given by ®¢ ,
where the property 6§ = 1 is satisfied. If Euclidean norm is replaced by another norm,
the value of € in the new setting is changed but the condition # €]0, 1[ remains valid. For
affine stochastic recursions in dimension one, if A,, B, are positive and condition (H) is
satisfied, convergence to Fréchet’s law and 6 €]0, 1] was proved in [17]. We observe that our
result is the natural multivariate extension of this fact. Also, if d > 1, assuming technical
conditions on the random walk X,, and density for the law of B,, with respect to Lebesgue
measure, the two above convergences were shown in [21]. Here our proofs use the tools of
point processes theory and a remarkable formula (see [2]) for the Laplace functional of a
cluster process C' = '§0 ez; on V '\ {0}, depending only on u, A, which describes locally
J

the large values of (X,,)n>0. As a consequence of Fréchet’s law and in the spirit of [26], we
obtain a logarithm law for affine random walk.

To go further, we consider the linear random walk Y,? = S, (w)v on V' \ {0}, we observe
that condition (H) implies nh_}ngo Sp(w)v = 0, Q — a.e and we denote by Q the Markov

measure on (V \ {0})%+ defined by the kernel Q and the Q-invariant initial measure A.
We show below the weak convergence to a limit process N of the sequence of space-time
exceedances processes

n
NTL = Z§1 6(77/,17;7“;1){2_)
on [0, 1] x (V' \{0}). In restriction to [0,1] x Bj, with § > 0, N can be expressed in terms of
C' and of a Poisson component on [0, 1] with intensity 06~%; the expression of C' involves

the renewal point process 7% and Q. Using the framework and the results of ([2], [3],
[7]), we describe a few consequences of this convergence. In particular we consider also,

n
as in ([7], [8]), the convergence of the normalized partial sums ¥ X, towards stable laws,
i=1
if 0 < a < 2, in the framework of extreme value theory. Also, as observed in [7], this
convergence is closely connected to the convergence of the sequence of space exceedances

point processes on V

n
s _
Nn = igl Eurlx,

towards a certain infinitely divisible point process N®. Here the Laplace functional of N*
can be expressed in terms of A and 7¥/.

In these studies we follow closely the approaches previously developed in ([2], [3], [7]) in
the context of extreme value theory for general stationary processes, in particular we make



use of the concepts of tail and cluster processes introduced in [2]. This allow us to prove
explicit extreme values properties for affine random walks, under condition (H), and to
recover, in a natural setting, the characteristic functions of the above a-stable laws, as
described in [15] if d = 1 and in ([5], [11]) if d > 1, completing thereby the results of ([1],
[2], [7]). For self containment reasons we have developed anew a few arguments of ([2], [3])
in our situation. We refer to [4] for information on products of random matrices and to
([14], [16]) for short surveys of the above results.

2  The tail process and the cluster process

In this paper, we will always assume that A satisfies condition (H) explained below.

2.1  Homogeneity at infinity of the stationary measure

We recall condition (H) from [13], for the probability A on the affine group of V. A
semigroup T of GL(V') = G is said to satisfy i-p if

a) T has no invariant finite family of subspaces

b) T contains an element with a dominant eigenvalue which is real and unique.
Condition i-p implies that the action of 1" on the projective space of V' is proximal ; heuris-
tically speaking this means that, T' contracts asymptotically two arbitrary given directions
to a single one, hence the situation could be compared to a 1-dimensional one. Condition
i-p for T is valid if and only if it is valid for the group which is the Zariski closure of T'.
Hence it is valid in particular if 7" is Zariski dense in G (see [27]) ; also it is valid for T if and
only if it is valid for 7~!. Below we will denote by 7T the closed subsemigroup generated
by supp(u), the support of p.
For g € G we write y(g) = sup(|g|, |g~'|) and we assume [ logy(g)du(g) < co. For s > 0 we

1
write logk(s) = lim —log/ lg|*du™(g) where u" denotes the n' convolution power of u
n—oo N

and we write L(u) for the dominant Lyapunov exponent of the product S, (w) = 4, -+ A;

n
by 7(g) the spectral radius of g € G. We say that T is non arithmetic if r(T") contains two

elements with irrational ratio. Condition (H) is the following :

1) supp(A) has no fixed point in V.

2) There exists « > 0 such that k(a) = nh_)n(f)lo E(|S, )™ = 1.

3) There exists € > 0 with E(|A|*v*(4) + |B|*™¢) < oo.

4) If d > 1, T satisfies i-p and if d = 1, T' is non arithmetic.
The above conditions imply in particular that L(p) < 0, k(s) is analytic, k(s) < 1 for
s €]0, a] and there exists a unique stationary probability p for A acting by convolution on
V'; the support of p is unbounded. Property 1 guarantees that p has no atom and says that
the action of supp(A) is not conjugate to a linear action. Property 2 is responsible for the

1
of random matrices Ai(1 < k < n) i.e L(p) = li_)m — /log[g\du"(g) = k'(0). We denote



a-homogeneity at infinity of p described below ; if k(s) is finite on [0, co[ and there exists
g € T with r(g) > 1, then Property 2 is satisfied. Also if d > 1, condition i-p is basic for
renewal theory of the random walk S, (w)v and it implies that 7" is non arithmetic.

In the appendix we will show that condition (H) is open in the weak topology of probabi-
lities on the affine group, defined by convergence of moments and of values on continuous
compactly supported functions.

Below, we use the decomposition of V' \ {0} = S¢~! x R.¢ in polar coordinates, where S~
is the unit sphere of V. We consider also the Radon measure ¢* on R<y (a > 0) given by
09(dt) =t~ tdt. We recall (see [19]) that, if (A, Bp)nen is an i.i.d sequence of A-valued
random variables with law A and L, < 0, then p is the law of the P — a.e convergent series

X = OXCJ) Aq -+ Ak Bjiy1. We observe that a family h:(t € R*) of automorphisms of the group
0

A is given by hi(a,b) = (a,tb). Then it follows that the stationary probability for h:(\) is
t.p, where t.p denotes the push forward of p under the dilation v — tv.

Theorem 2.1 ( see [13], Theorem C)
Assume that \ satisfies condition (H). Then the operator P has a unique stationary pro-
bability p, the support of p is unbounded and we have the following vague convergence on
V\{0} :

lim t~%(t.p) = A = ¢(c® ® (%)

t—04

where ¢ > 0 and 0@ is a probability on S%~1. Furthermore A is a Q-invariant Radon measure

on V\ {0}.

We observe that, for d > 1, if supp(\) is compact, generates a Zariski dense subgroup of
A (see [24]), L(u) < 0, and T is unbounded, then condition (H) is satisfied. For d = 1, if
supp(A) is compact, the hypothesis of ([17], Theorem 1.1) is equivalent to condition (H).

The existence of A stated in the theorem implies multivariate regular variation of p. If the
convergence stated in the theorem is valid we say that p is homogeneous at infinity ; below
we will make essential use of this property.

Under condition (H), A gives zero mass to any submanifold and o® has positive dimension.
We observe that, if the sequence (A,,, By )nen is replaced by (A, tBy)nen with t € R*, then
the asymptotic tail measure is replaced by t.A, in particular the constant ¢ is replaced by
|t|*c. We observe that, as shown in [13], the Q-invariant Radon measure A is extremal or
can be decomposed in two extremal measures. Hence, if the action of 7 on S?~! has a unique
minimal subset, then A is symmetric and the shift invariant measure Q, on (V' \ {0})%+
is ergodic. Otherwise Qx decomposes into two ergodic measures. Hence A depends only of
1, up to one or two coefficients.

The following is a classical consequence of vague convergence.

Corollary 2.2 Let f be a non negative A-integrable Borel function on V' \ {0} which has
a A-negligible discontinuity set. Then we have tliI(I)l t™(t.p)(f) = A(f).
—U+



2.2 The tail process

We denote ) = GN, Q= G”, and we endow € (resp fAZ) with the product probability
Q = N (resp Q = pu®%).
We define the G-valued cocycle S,,(w) where w = (A)rez € Q, n € Z by :

Sp(w) = A, A forn>0, Spy(w) = A,'--- A~} for n <0, Sp(w) = Id
We consider also the random walk Y, = S, (w)v on V' \ {0}, starting from v # 0 and
we denote by Q4 (resp Qx the Markov measure on (V \ {0})%+ (resp (V \ {0})%) for the
random walk Y, with initial measure A. These measures are invariant under the shift 7
on (V \ {0})%+ (resp (V\ {0})%). If we denote by o the shift on Q and by & the extended
shift on 2 x (V'\ {0}) defined by o(w,v) = (aw, Agv), then Q® A is G-invariant and Q, is
simply the projection of Q ® A on (V \ {0})%, under the map (w,v) — (Sp(w)v)rez.
The normalized restriction of A to B] is denoted A1, hence A(Bj) =t~ if ¢t > 1 and we
write Qp, = C_lOé(lBi om)Qa, @Al = c_loz(lBi o m)Qya, where 7 denotes the projection on
V'\ {0}. We note that the probability Qa, (resp @m) extends to VZ+ (resp V%) and its
extension will be still denoted Qp, (resp @A1)-
We consider the probability p, the shift 7 on V%+ (resp V%) the shift-invariant Markov
measure P, (resp @p) on VZ+ (resp VZ), where p is the law of X and P, is the projection
of @p on VZ+. Since p({0}) = 0, we can replace V by V \ {0} when working under P,. For
0 < j < i we write S; =A;---Aj and S+1 = I. Expectation with respect to P or Q, Q
will be simply denoted by the symbol E. If expectation is taken with respect to a Markov
measure with initial measure v we will write E, . For a family Y;(j € Z) of V-valued random
variables and k, ¢ € Z U{—o00, 00} we denote M/ (Y) = sup{|Y;| ; k < j < ¢}. We observe
that, if ¢ > 0, condition (H) implies p{|z| > t} > 0, hence as in [2], we can consider the
new process (Y}!);ez deduced from ¢1(X;);ez by conditioning on the set {|Xo| > t}, for ¢
large, under @p. We recall (see [28]) that a sequence of point processes is said to converge
weakly to another point process if there is weak convergence of the corresponding finite
dimensional distributions. The following is the detailed form in our case of the general
result for multivariate jointly regularly varying stationary processes in [2].

Proposition 2.3 a) The family of point process (Y}!)iez converges weakly (t — o) to the
point process (Yi)iez on V' given by Y; = S;Yy where Yy has law Ay and (Y;)iez has law
Qa, -

b) We have QAl{Mfo( ) < 1} = Qa {MZL(Y) < 1} and the process Y; satisfies
lim |Y;| =0, @A1 —a.e.

|j]—o0
In particular we have

lim lim IP’p{ sup \Xk\ <t/|Xo| >t} = Qa, {M(Y) <1} :=0€]0,1]

n—oo t—o00

i 1
Proof : a) We observe that, since for any i > 0 X; = S; Xo+ ¥ 5}, B; and tli)m Z E St i1Bj =



0, P,—a.e, the random vectors (t_lXi)ogingrq and (t_lSiXo)ogingrq have the same asymp-
totic behaviour in P,-law, conditionally on |Xo| > ¢. Also by stationarity of @p, for f
continuous and bounded on VPt we have
E {F(E1X gy £1X,)/| X0l > 8} = By {f (1Ko, 1K1, £ X00) / [X,| > 1),
From above, using Corollary 2.2, A{|z| = 1} = 0, and the formula A{|z| > 1} = a~lc we
see that the right hand side converges to :

ac™t [E{f(z, S, - s SptqT) 1{|Sya|>1 FAA(T),
Hence, using the definition of @A, we get the weak convergence of the process (Y!);ez to

(2

(Y;)icz as stated in a). Since for any = € V we have lim S;z = 0 Q — a.e, the formula
1—00

Y = S;Yy gives lim Y; =0, Qp, —a.e. If @Al{lim sup |Y;| > 0} # 0 then, for some €, > 0
71— 00 5

1——00
and a sequence i = i, — —oo we have Qq, {|Y;| > €} > ¢'; since Q4 is F-invariant we get
dim Qa{]Y—i| > 1,|Yo| > €} > €. Since A(B.) < oo and lim S,z =0 Q — a.e, this gives
1—r—00 n—o0
the required contradiction.
b) In view of a) and Corollary 2.2, since the discontinuity sets of the functions 1y (M7 (Y"))

and 11 o[(Yo) on V" are Qa,-negligible, we have lim P,{ sup X <1/t Xo| > 1) =

’ t=oo T <k<n

Qu, {M7'(Y) <1}
Hence § = lim lim P,{ sup |Xj| <t/Xo >t} = Qa,{sup|Yi| <1}
1<k<n k>1

n—o0 t—o00

We write @m{M:;o(Y) <1l}=1- @Al{M__OIO(Y) > 1} and we define the random time T’
by T =inf{k > 1; |[Y_g| > 1} if there exists k > 1 with |[Y_g| > 1; if such a k do not exist
we take T' = co. We have by definition of 7" :

QAMLY) > 1) = 8 Qu{T =)

QAT =k} = Qu{IY 1| <1, Yoo S L, [Yopua| <15 [Yop| > 13,
Using stationarity of Qa, the definition of Q4, and a) we get
QAT =k} =Qa{IY1| <1, -, |Yi—1] <1 |Yik| > 1}, hence

QuAML(Y) > 1} = Z Qi <L Ve <15 ¥l > 13 = Qa, {MP(Y) > 1.

The formula Q, {M-L (V) <1} = Qa, {M>(Y) < 1} follows.

The formula 6 = Qu, {M7°(Y) < 1} and the form of Y;(i > 0) given in a) imply 0 =
E([ Lisup 1Siz| < 1}dA1(x)) < 1. The condition § = 1 would imply for any ¢ > 1: |S;z| <1

i>1

Q ® A1 — a.e, hence supp(S;A1) C {z € V ;|z| < 1}. This would contradict the fact
that suppA; is unbounded, hence we have § < 1. The inequality 8 > 0 is obtained in
Proposition 2.5 below. For a direct proof using standard arguments in ergodic theory see
[6] and appendix. O

We note that the process (Y});ez is not stationary. However this process can be viewed as a
simplified version of the stationary process (X;);ez ; for example the property lim [Y;| =0

Jl—=o0



Qa, — a.e is an analogue of the weak convergence of X ;(]j] = o00) to the probability p.

2.3 Anticlustering property

We are going to show that the set of large values of X (1 < k < n) consists of localized
elementary clusters with a few values. An important sufficient condition for localization (see
[7]) is proved in Proposition 2.4 below and will allow us to show the existence of a cluster
process as defined in[2]. It is called anticlustering and is used in section 4 to decompose
the set of values of X (1 < k < n) into successive quasi-independent blocks. For k < ¢ in
Z, we write , ,

My = sup |Xi| , Rp= X Pp{|Xi| > un/IXo| > un} = Ep{S Ly, oof(IXil)/|Xo| >

k<i<t i—k A
U, }, where u, = (cn)'/®. For k > 0, we write also My = MF.

¢
We observe that M} < 32 |X;|. Let r,, be any sequence of integers with 7, = o(n), li_)rn Ty =
k n—r00

0o. Then we have P,{M]" > u,} < rp,P,{|Xo| > uy}, hence the homogeneity of p at infinity
gives li_)rn P,{M{™ > u,} = 0. The condition r, = o(n) allows us to localize the influence of
n—oo

one large value of X (1 < k < mn). It follows that the event {M]" > u,} can be considered
as ”rare”. On the other hand, the last part of Proposition 2.4 below shows that values
of | Xk|(1 <k <ry,) conditionally larger than u, are taken with finite asymptotic average
multiplicity. The homogeneity at infinity of p and the arbitrariness of r,, allow us to restrict
the study to the sequence w,, instead of tu,(t > 0).

The following is based on the homogeneity at infinity of p, the inequality 0 < k(s) < 1 if
0 < s < a, and it will imply the finiteness of such expectations, in the limit.

Proposition 2.4 Assume r,, < [n°] with 0 < s < 1, hm rp =00. Then lim lim R» =

m—00 N—00

0. In particular lim lim ]P’p{sup(M noMT) > un/]Xo\ > up} = 0, hence the random

M—00 N—00 —Tn?

walk X, satisfies anticlustering. For 0,, defined by 0, = p{Z‘, L oo (1 X)) /My, > un} we

have
linl)infen >0, and 0, < 1.

Proof : We observe that :
P, {M® > u,/|Xo| > un} < Ry7, p{M > u, /| Xo| > un} < R = R»
where we have used stationarity of Xj in the last equahty Hence 1t sufﬁces to show

lim lim R» = 0. For i > 0 we have X; = ;X + Z‘, St +1B where S;, Xy are in-

m—00 N—00

dependent, as well as X, E |S JrlB |. We write I} = IP’p{|X | > uy, /| Xo| > unt,

JrZL = Pp{|SiX0| > 27 un/|X0| > Un}, K;:L = p{ E 1S +1B | > 27 un/|X0| > Un },



hence R}» = % Il < % Jb+ % K.
i=m i=m i=m
Tn . Tn .
We are going to show lim lim ¥ J, = lim lim ¥ K, =0.
mM—00 N—00 j—=m M—00 N—00 j—m

We apply Chebyshev’s inequality to the x-moments of X,, with x €]0, a[. We have :

Ty < (2un XE(18: X0 X /| Xo| > un} < (2u, " )XE(|Si[¥)E, (| Xo X/ Xo| > ua),
where independence of S; and Xy have been used in the last formula. Since the law of X
is a-homogeneous at infinity we have : '

lim o7 XE,(| Xo|X/|Xo| > z) = a(a — )7L, limsup J. < 2XE(]S;[X)a(a — x) 7L

T—r00

n—o0

Also, using independence of X and é |S; 1Byl -
j=1
K =P{ % 195181 > 27y} < (2u;1)xE(j§1 15541 B5)¥ < (ZUZl)XE(EI |Sj41B;])X.

It follows lim Sup('%Z ) < 2%a(a — X)_IE(,OEO 1SiX).
n—o0 =m =m

From [13] we know that, since 0 < x < «, we have k(x) < 1, hence E(|S;|X) decreases

exponentially fast to zero ; hence the series E( ) |Si]X) converges and lim E( 5 |Si|X) =0,
i—1 m—o00 m

lim lim (¥ J9)=0.

m—00 N—00 j=m,

From above we know that Ry = o§|5j+1Bj| has finite y-moment if ¥ < «. Then by
1
Chebyshev’s inequality : Tﬁ K < (2u, ' )YXr,E(RY).
=m

Since 0 < s < 1, we can choose x €]0, a such that a~!y > s, hence li_}rn rpu, X = 0. Then,
n o

for any fixed m : li_)m TEH K! = 0. Hence 11_1)11 li_)m TEn I = 0 and the first result follows.

For the last assertion we follow below a general argument in [2].
From above we have using stationarity :
lim lim P,{M" ; > u,/|X1| > u,} =0.

m—00 N—00
m~tr,—1

By definition of M, : P,{M,, > u,} > kEO Po{| Xemr1l > tn, Mgs1yme1 < un}s
hence using stationarity : -

P, {M,, > up} > m_lrn]P’p{|X1| > U, My < g}
By definition of 6,, this can be rewritten as :

O >m (1 =P {M" | > un/|X1| > un}).
Then for n and m large, since from above the right hand side is close to m™", we have
0, > (2m)~!, hence lirginf 6, > 0. By definition of 6, we have ;1 > 1, hence 6,, <1 O

n [e.e]

1



2.4  The cluster process

In general, for a stationary V-valued point process the properties of anticlustering and
positivity of the extremal index # for a sequence r,, = o(n) with li_)m r, = 00, stated in
n o0

Proposition 2.4, imply the existence of the cluster process (see [2]). For self containment
reasons we give in Proposition 2.5 below a proof of this fact, using arguments of [2]; this
gives us also the convergence of 6,, defined in Proposition 2.4 to §. For later use we include
also in the statement the formula of ([2], Theorem 4.3) giving the Laplace functional for the
cluster process restricted to Bf. We recall that the Laplace functional of a random measure
v = (Vz)zep on a locally compact separable metric space F endowed with a probability m
is given by
Yo (f) = f exp — vy (f)dm(z)

where f is continuous and compactly supported. We recall that weak convergence of a
sequence of point processes is equivalent to convergence of their Laplace functionals.

We denote by r, a sequence as above and we consider the sequence of point processes

C, = 51 €u-1x,» on V' \ {0} under P, and conditionally on M,, = M{" > u,. Using the
tail process (Y;,)nez defined in Proposition 2.3 above, we show that C,, converges weakly
to the point process C'; C' is a basic quantity for the asymptotics of X,, and is called the
cluster process of X,,. As shown in Proposition 2.5 below, the law of C' depends only of
, A

We denote by 7% the renewal point process of the random walk S, (w)v on V' \ {0}, given

oo
by 5 = Y €g,(w)e- For v fixed, the mean measure of the point process m; is the potential
0

[e.e] .
measure ¥ Q*(v,.) of the Markov kernel @ ; if L(x) < 0 the asymptotics (Jv| — 00) of this
0
Radon measure are described in [13]. The formula below for the Laplace functional of C
involves the renewal point process 7% of the linear random walk S, (w)v.
Proposition 2.5 Under P,, the sequence of point processes Cy, converges weakly to a point
process C = OZOEZJ.. The law of the point process C' is equal to the @A1_ law of the point
1

process Y £g;, conditional on sup |Sjz| < 1. In particular we have
JEL i<—1

Qui{Jim |2 = 0} = 1, Qu, fsup |2 = 1} = 1.
Furthermore the sequence 0,, defined in Proposition 2./ converges to the positive number
0 = Qp, {M®(Y) < 1} and we have ! = EAl('Eo 11 (z;)) < oc.
3>
If supp(f) C Bj the Laplace functional of C on f is given by
1= 07"En, [exp(f(v) — Dexp — 7 (f)]-

Proof : We recall that convergence of Laplace functionals implies weak convergence of
the corresponding point processes. Let f be a non negative and continuous function on
V'\ {0} which is compactly supported, hence f(x) =0 if |z| < § with § > 0.

10



We write for k < ¢ with k,¢ € Z U {£oo}, M{(Y) = sup |Y;| with Y; = S;Yp. For k, ¢, f
1<j<t

¢ ¢
as above we write Cf = exp — X f(u,'X;), CL(Y) = exp — ¥ f(Y¥;) and we observe that
k k
C’,ﬁ < 1. We fix m > 0 and we take n so large that the sequence r, of the above proposition
satisfies r,, > 2m + 1. When convenient we write r, = r, hence E,{C7; M{ > u,} =
QEP{CT; Mf_l < u, < X;}. We observe that, for r —m > j > m+1, we have C] = C]]fgz
1
except if sup(Mf_m_l,M]’ermH) > upd. We are going to compare E,{CT; M{ > u,} and
(r —2m)E,{C™ ;s M~} | < w, < |Xo|} using those j's which satisfy m +1 < j <r—m

—m? —m—1
and we denote by A, ,, their difference.
If we write
: - . -
Anm(5) = E{C7; M{ ™ <y < | X5} —E {CITT M7 < un < X[}

then we have, since Cﬁ <1
r—m
[Anm| < % [Anm(G)] +2mP{| Xo| > un}.
m

Using stationarity of X,, and the above observation we have
|Anm(5)] < P{SUP(M—_:”_%M&-H) > und; [ Xol > un},
hence, using stationarity and the formula 6, = (r,P,{|Xo| > un}) 'P,{|M7| > u,}
|00E,(CT /M > uy) — 77 (r = 2m)E,(CT,s M—,,, < un /| Xo| > un)| <
P, {sup(M-""", M 1) > upd/| Xo| > up} + 2r~tm.
Using Proposition 2.3, we see that the discontinuity set of the function 1)_, _;)(M. oY)
is @Al—negligible hence, using again Proposition 2.3,
lim E,(C,; M2,y < un/|Xo| > up) = En, (O, (Y); M2, 1 (Y) < 1).

n—00 -m—1 =
Also lim 7, '(r, — 2m) = 1 since lim 7, = oo. We observe that by definition of 6,
n—oo n—oo

and C] < 1 we have 6,E,(C7/M{ > uy,) < 6, < 1, hence we can consider convergent
subsequences 0, with klim 0n, € [0,1]. The anticlustering property of X, implies that
—00

m—1

the limiting values (n — o) of ]@p{sup(M__r M 1) > un/|Xo| > un} are bounded by

€m > 0 with lim &, = 0. Then the above inequality implies with r = r,,
m—0o0

Jim [0, B (CT/M] > tny) = Ea, (CZ, (V) M2, (V) < 1)] < e
—00

Since lim By, {C™, (V); M2}, (Y) < 1} = En,{eap — S ) MTLY) <1} =1,

we have klim 0n, E,{C] /M| > up,} = I, hence the limit of 6,E,{C]/M{ > u,} exists
—00

and is equal to I. In particular with f = 0 and using Proposition 2.3 we get li_)m 0, =

@AI{M__;O(Y) <1} = 6. From above and Proposition 2.4 : § = lim 6,, = liminf#,, >0
n—o0 n—oo

Then we get li_)m E {CT" /M{" > up,} =071 = En, (exp — 5 F(Y;)/M=L(Y) < 1) hence

the first assertion, using Proposition 2.3. The expression of (Z;);en in terms of (Y;,)nez

11



and the relation lim Y, =0, @A1 — a.e stated in Proposition 2.3 gives

[n|—o00
Qa,{lim Z; = 0} = 1.
1—00
Since the discontinuity set of 1 B Is Aj-negligible, using the weak convergence of C,, to C,
the continuous mapping theorem (see [28]) and the convergence of 6! to !, we get the

formula 6~ = EAl(OZ;]) 1p;(Zj). The last formula is proved in ([2], Theorem 4.1). O

3 A spectral gap property and multiple mixing

We denote X}(k € N) the affine random walk on V' governed by A, starting from z € V
and we write Pp(z) = [ (hz)dA(h) = E(p(XT)).
In this section we use a spectral gap property for a family of operators associated to the
process Xi(1 < k < n), in order to show the quasi-independence of its successive blocks of
length r,,, where 7, is defined in subsection 2.3.

3.1 Spectral gap property

It was proved in ([11], Theorem 1) that, given a probability A on A which satisfies
condition (H), the corresponding convolution operator P on V satisfies a ”Doeblin-Fortet”
inequality (see [18]) for suitable Banach spaces C, and H, ., defined below. In particular,
it will be essential here to use that the operator P on H, ., is the direct sum of a 1-
dimensional projection 7 and a contraction U where m and U commute, hence we give also
a short proof of this fact below. In order to obtain the relevant multiple mixing property, we
show a global Doeblin-Fortet inequality for a family of operators closely related to P. For
X, k > 0, we consider the weights w,n on V defined by w(z) = (1+|z|) X, n(x) = (1+|x|)~".
The space C, is the space of continuous function ¢ on V such that ¢(z)w(x) is bounded
and we write |p|, = sup |o(z)|w(x).

eV

For € €]0, 1] we write :

[Ples = sup |z —y[ T n(@)ny)le(@) — @), el = lely + [Ples
a#y
and we denote by H, . . the space of functions ¢ on V such that ||¢| < co. We observe

that C, and #, ., are Banach spaces with respect to the norms |.|, and ||.|| defined above.
Also Hy e C Cy with compact injection if K +¢ < x. We observe that the operator P
acts continuously on C, and H, ... For a Lipchitz function f on V with non negative
real part we define the Fourier-Laplace operator P by Pfy(z) = P(pexp(—f)). In [11],
spectral gap properties for Fourier operators were studied for f(v) =i < z,v >,z € V.
Here the calculations are analogous but f will be Lipchitz and bounded. We observe that
for functions fr(1 < k < n) and ¢ as above we have :

Phplz... plnp(z) = BE{p(X?)exp — kgl fiu(XE)}

12



Also we note that, for f bounded, with k(f) = sup |z — y| 7| f(z) — f(y)|
z#y
[z —y[F[f(2) = fy)] < IZf(z‘f‘oo‘m — Y75 k() —y['7%) < 2floo + K(f) = Ra(f),
a#y

For u,v with non negative real parts we have |exp(—u) — exp(—v)| < |u — v|. In particular,
for f as above, |exp — f(x) — exp — f(y)| < k1 (f)]z — yl*.

It follows that multiplication by exp(—f) acts continuously on Cy, Hyc ., hence Plis a
bounded operator on Cy, and H, . ... For m,~y > 0 we denote by O(m,~) the set of operators
P/ such that |f|oo < m and k(f) < 7, hence k1(f) < 2m +~. For p € N let OP(m,~) be
the set of products of p elements in O(m,~) and O(m,~) = pL>JO OP(m, ). We will endow

~

O(m,~) with the natural norm from End(#,.c ). Then we have the

Theorem 3.1 With the above notations and 0 < x < 2k < 2k + € < «, there exists
C(m,v) > 1 such that for any Q@ € O(m,~) the norm ||Q| of Q on Hy . is bounded by
C(m,~). Furthermore there exists r € [0,1[, p € N, D > 0 such that for any Q € OP(m, ),
©E€Hyenr :

[Qell < rllell + Dlgly.

In particular 6(m, 7v) is a bounded subset of End(Hy ¢ ) and C(m,v),r, D depend only
of m, .

The proof depends on the two lemmas given below, and of calculations analogous to those
of [11] for Fourier operators.

Lemma 3.2 6(m,’y) is a bounded subset of End(Cy).

Proof : Since Re(f) > 0 we have for Q € O%(m,v) with £ € N, ¢ € C,, : |Q¢p|, <
|P¢|¢o]|y, hence it suffices to show that the set {P*; ¢ € N} is bounded in End(C, ). We have
for ¢ > 0, with A = P* :

w(2)Ap(e) = w(@)E(p(XF)) < loh Elw(z)o! (XF)].

If x <1, using independence and the expression of X we get

(@) Ap(w) < P (1+ E(IS) + SE(SE ¥ | E(By)),

hence sup w(z)Ap(z) < ||y (1 + supE(|Se|X) + E(|B1]X) %OE(]SAX).
eV >1
Since x < «a, we have Zlim E(|Se¥) = k(x) < 1, hence sup w(z)|Ap(z)| is bounded by
oo zeV

Cylely with Cy < oco.
If x > 1, we use Minkowski inequality in ILX and write :
‘
w(@)|Ap(x)| < [l (1 +E(|Se)X + 211E{ISﬁHIx)l/XE(IBkIX)l/X}

As above we get

sup w(z)|Ap(x)| < Cylply with C) < oo. O
eV
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Lemma 3.3 a) For 3 € [0, a] we have supE(|X?]°) < co.

b) For 1,5 >0 and f+ /1 < a, we havz T}EEO(E(|S"|BI|X2|B))1/H < 1.

¢) If x+¢ < a the quantity Cp, = E{% 1Si15(1 +1S,| + | X)X} is bounded. Furthermore, if
% +¢e < a, Dy = E{|S,|5(1 4 |Sn| + | X02)2%) satisfies nli_)ngo(ﬁn)l/" <1.

Proof : a) We write |X0|% = \%S,?_HB;C]B. If B <1 we get :
1
018) < S E(|ST, |8 By — ENGSE 8

E(1Xal”) < RE(Sgn[P)E(Bl”) = E(1B17) X E(15]%)

Since lim (E(]S;|?)/7 < 1if 8 < a we get sup E(|X2|%) < E(|Bl|ﬁ)°%?1@(|sj|ﬁ) < 0.
J—o0 n>0

If B> 1, we use Minkowski’s inequality in L? as in the proof of Lemma 1.
b) Using Hoélder’s inequality we have

E(|Sn|P1|X0|P) < E(|S,|PHP1)A1/B+B1R (| X0|B+P1)B/B+51
hence the result follows from a) and the fact that li_)m E(]S, 2P < 1 since B+ 1 < .

c¢) The assertions follows from easy estimations as in b) and the conditions y + ¢ < a,
2k+e<a.

Proof of Theoremn 3.1 We start with a basic observation. For n > 0 we have
X =hy---hx = Spx+ % Sy By, hence | XZ — XJ| = |Sp(z—y)| < |Snllz —yl. It follows
1

n

for k(f) <~,zand y in V :
[F(X5) = FXD] < AISnllz —yl.

We write A = TyTy--- T, with T; = P/t € O(m,~) 1 < i < n. We have using Markov

property,
Ap(z) — Ap(y) = In(x,y) + Jn(z,y) with

Io(e,y) = Bleap — 3 [i(X7) - eap = S f(X!))o(X7))

In(z,y) = E{(ezp — %fi(Xf’))(so(Xﬁ) —e(X7))}
Since Re(f) > 0 we have :

eap = 8 Fi(XF) — eam — S A,(XY) <
The basic observation gives :

In(z,y) < 2m +)lellr — yI*Cn(z) with Cu(2) = E{(X[S:]°(1 + [X5[)¥}

In(2,y) < E{|lp(X7) — @(Xi)|} < [@lewlz — yI* Dalz,y),

with Dy (2,y) = E{]S|*(1 + [X3)"(1 + [Xa])"}-
Using symmetry of |[Ap(z) — Ap(y)|, x < 2k and |XZ| < |S,l|z] + | X0, we get [Age, <
(2m +)|¢lyCn + [¢le,x Dr, where Cy,, Dy, are as in Lemma 3.3.

—~M3

H(XE) = XD < @mt ) B IXF - XPF.

14



Using Lemma 3.3 we can choose p € N such that r = l~)p < 1, hence for A € OP(m,~),

(Al s < k1 ()Cplily + 7)o
Using Lemma 3.2 we see that there exists C) > 1 such that |Ag|, < Cylely for A €

O(m,7), ¢ € Cy. Then for A € OP(m,7), ¢ € Hycx and p as above :

[Apll < rllell + (Cy 4 2m + ) Cpleoly = rlloll + Dleply with D > 0.
For the last assertion, assume A € O"(m,v) and write n = pn; + ng with n; € N,
0 <mng < p Wehave A = Q1---Qn,R1--- Ry, with Q; € OP(m,v) (1 < i < p) and
R; € O(m,7) (0 < j < mng), hence ||R;]| < Cy(m,~). Finally we get

ny—2
461 < (€ [l + Dlgly o+ €5 ),
|A[| < Cy(m,y)P [14+ D1+ Cy (1 —7)"1)] := C(m,), which gives the result. O

For x €]0, a[ we consider the function WX on V defined by WX(x) = |z|X. In Proposition
3.4 below we show that, due to the inequality 0 < k(x) < 1 for x €]0,a], P satisfies a
drift condition (see [22]) with respect to WX. The same inequality implies also a spectral
gap property in the Banach space H, . , considered in Proposition 3.4 below. For reader’s
convenience we recall the Doeblin-Fortet spectral gap theorem (see [18]).
Let (B,|.|) be a Banach space, (L, ||.||) another Banach space with a continuous injection
L — B. Let P be a bounded operator on B, which preserves L and satisfies the following
conditions

1) The sequence of operator norms |P"| in is bounded.

2) The injection L — B is compact.

3) There exists an integer k and r € [0, 1], D > 0 such that for any v in L :

|P5o]l < rllu] + Dl

4) If v, € L is a sequence and v € B are such that ||v,|| < 1 and nh_)n;O\v —vp| =0,
there v € L and |jv|| <1
Then in restriction to L, P is the commuting direct sum of a finite dimensional operator 7
with unimodular spectral values and a bounded operator U with spectral radius r(U) < 1.
We observe that, frequently the norm |.|| on L is given as a sum of a semi-norm [.] and the
norm |.|; then the inequality in condition 3 can be replaced by

[P*v] < r[v] + Dy

such an inequality is called Doeblin-Fortet’s inequality.
Our substitute for the strong mixing property (see [29]) uses regularity of functions and is
the following.

Proposition 3.4 For any 8 €]0,1] there exists £ € N and b > 0 such that P‘WX <
BWX +b forn > L. In particular the sequence of norms |P"|y is bounded. Furthermore, if
0<Kk+e<x<2k<26+¢ < a, the injection of Hy ¢, into Cy is compact and on Hy e,
the Markov operator P satisfies the direct sum decomposition

P=p®14+U
where r(U) <1 and U(p® 1) = (p@ 1)U =0
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Ifa=1and 0<e < x <1, k=0, the same result is valid.

Proof : We verify successively the four above conditions. First we observe that for any
x eV,
X0 — X3| < |Sullz], |X5] < [X7] + Sl |z]-
If x <1, it follows
E(|X5¥) < E(IX31) + E(Su ) |]x.
Using the expression of X{) and independence we get E(|X2[X) < E(| B [X) %CJ‘)E]S;C]X). Since

X < a, we have E(]X?|X) < b < co. On the other hand we have li_)m (E(S, PNV = k(x) <

1, hence for some ¢ > 0 k(x) +¢& < 1, and for n > ¢, |S,|X < ' < (k(x) + &)™ It follows,
forn>10:
PrWX(z) = E(JX7Y) < B/WX(x) + b
If ¥ > 1we use Minkowski inequality, hence :
E(|X7X) < 29E(XR1X) + E(|Sn X[z ]X)
As above, using k(x) + & < 1 and n > £ we get
E(|XZX) < 2% + 2X(k(x) + €)"|z[X, PPWX < B"WX + ¥ with 8" < 1, I/ < co.
We take 8 = /' or 5" depending on x < 1 or x > 1. This allow us now to show that |P"|, is
bounded. We observe that [¢(z)| < (14 W (x))X|p|y, hence the positivity of P and P1 =1
implies for n € N,

[P pl(x) < [l P"(2¥ + 2XWX(2)) = [ (2X + 2XP"WX(2)).
From above we get
[P pl(x) < |l [2X + 2X(b + BWX(x))].
Then the definition of |P"|, gives |P"|, < 2X(1 4 b+ (), hence the boundedness of |P"|,.

In order to show that if kK 4+ € < x, the injection of By = Hx . in B = C, is compact, we
use Ascoli argument and consider a large ball B; with ¢ > 0. We consider ¢,, € H ., with
llon|| < 1. The definition on ||¢, || implies for any x,y € By

on(@)] < (L + X, lon(@) = ealy)] < (1 +8)* |z -y
Hence, the restrictions of ¢, to B; are equicontinuous and we can find a convergent sub-
sequence ¢y, . Using the diagonal procedure and a sequence t; with lim |¢;| = oo, we get a
1—00

convergent subsequence p; € Hy y with limit a continuous function ¢ on V. From above
we have [@n; (7) — ¢n; (0)| < (14 [z])"|z|°. hence for some A, B > 0, since k +¢ < x

|0n; () = n; (0)] < (L +[2])"™*5, [o(2)] < A+ B(1+ [2)X.
It follows that ¢ € Cy. The above inequalities for ¢,; imply
|(pn; () = on, (0)] = (p(x) = 9(0))] < 21 + [a]|*7*.

Then the convergence of ¢,; to ¢, implies with e,,; = [©n;(0) — ¢(0)],
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|on; () = p(@)] < en; +2(1+ [2)™FF, (14 [x])X[eon, (2) — @(2)] < en; +2(1 + |z])~F7x

with lim &,, = 0. Also for ¢ sufficiently large, and |z| > ¢, since x + ¢ < x we have
j—00

(1 4 |z[)*+*7X < ¢,,. Furthermore, the uniform convergence of ¢,; to, ¢ on B; implies

lim (sup{|en,; (z) — p(z)| ; |z] <t}) = 0. The convergence of |¢,; — ¢[y to zero follows.

j—o0

The convergence of ¢y, (7) to ¢(x) for any z € V and the defintion of |l@,, ||, implies
lloll < lim [l@n, || <1, hece ¢ € L, hence condition 4 is satisfied.
J—00

With f = 0 in Theorem 3.1 we have P/ = P. In particular there exists k& > 0 such
that ||[P*o|| < rlloll + Dlgly if ¢ € Hyen Hence from [18], we know that the above
conditions imply that P is the direct sum of a finite rank operator and a bounded operator
U which satisfies 7(U) < 1. Now it suffices to show that the equation Py = z¢ with
|z| =1, ¢ € My implies that ¢ is constant and z = 1. From the convergence in law
of X¥ to p we know that for any « € V, the sequence of measures P"(x,.) converges

weakly to p. Also we have |p| € H, ., and the sequence n ! %Pk|<,0| converges to p(|g|).
1

Since |p(z)| = [2"¢(z)| < P™(x,|p|) we get [o(x)] < p(|¢]), hence || is bounded. Since
2"p(z) = E(e(XE)) and X¥ converges in law to p, we get li_>m 2"p(x) = p(p). This implies
n o
z=1and ¢(x) = p(p) for any z € V.
For the last assertion, in view of the above, we have only to verify the contraction condition.
We write [p]. = sup |z —y| %|¢(z) — ¢(y)|. Then we have
TFY

E(|p(X5) = (X)) < [wlel X5 — X3I° < [¢le|lz — y[FE(|Sn[).

Since € < «, we have 0 < k(e) < r < 1 for some r, hence [P"yl. < r[p]. for n large. O

3.2 A mixing property with speed for the system (V% 1,P,).

In general, if the law of B, has no density with respect to Lebesgue measure, the
operator P on LL2(p) don’t satisfy spectral gap properties hence the stationary process is
not strongly mixing in the sense of [29], but Proposition 3.4 above shows that it is still
ergodic. Then, using Theorem 3.1 and Proposition 3.4, it is shown below that the system
(VZ+,7,P,) satisfies a multiple mixing condition with respect to Lipchitz functions. For a
very general framework covering mixing conditions with respect to regular functions, see [9].
For a study of extreme value properties for random walks on some classes of homogeneous
spaces, using L2-spectral gap methods, we refer to [20]. Since, using Proposition 2.4, the
stationary process (X, )nen satisfies also anticlustering, we see below that extreme value
theory can be developed for (X,)nen following the arguments of ([2] , [3]) which were
developed under conditions A(uy,), A’(u,), using continuous functions.

However it turns out that the mixing property A(u,) of [2] for continuous functions can be
proved, as a consequence of the corresponding convergences involving Lipchitz functions
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and point process theory.
Let f be a bounded continuous function with non negative real part on [0,1] x (V '\ {0}).

Let r, be an integer valued sequence with lim r, = co, 7, = o(n) and k, = [r; 'n]. For
n—oo

0<i<mn, 0§jSn,:neV\{O},WG'VZ+ we write :

Fo(@) = F(n=Y,upt), fin(w) = Fo(X0), fL,(w) = Fr(X0).
In view of heavy notations, in some formulae we will write r, = r, k, = k, £, = {. For f
Lipchitz we denote by k(f) the Lipchitz constant of f, and assume supp(f) C [0,1] x Bj

with 6 > 0. We consider below the quantity E,(exp— % fi.n) which is the Laplace functional
i=1

n
of the point process ¥ ¢ -1y . For its analysis we use the classical Bernstein method of
7/:1 n 7

gaps, i.e we decompose the interval [1,n] into large subintervals separated by smaller but
still large ones.

Proposition 3.5 Let f be a compactly supported Lipchitz function on [0,1] x (V' \ {0})
with Ref > 0. Assume that the sequence r, € N satisfies rn, = o(n), li_)m (logn)~tr, = oo
and write | f|oo = m, k(f) =7, supp(f) C [0,1] x B§,0 > 0. Then, with the above notations
there exists C(0,m,~) < oo such that,
n kn, Jrn iTn, — —
() i= Eern(=$ b 1 Bfean(= | o) < C@mo s )
- i=)rn
In particular with r, = [n*/?] we get sup(n="'r,,r; ') < 2n~1/2

Proof : We write [0,n] = [0, kyrp]U]kynrn, n], we decompose the interval [0, k7] into
ky intervals J; = [jrp, (j + 1)rp| and we distinguish in J; the subinterval of length ¢,
Ji = (G + D)rn — o, (j + D)7 [; the large integer £, will be specified below.

We write for f fixed, I(n) = |E,(exp — g)fm) - 1@[ E,(exp — 5 .
1 Jj=1 i=G-Dr+1 7
Then the triangular inequality gives I(n) < I1(n) + Iz(n) + I3(n) + I4(n) with

n kr
h(n) = Eplean — 5 fin) — Eplean — 3 fin)

kr k Jr—~£
I(n) = |Ey(exp = X fin) —Eplezp— X % fin)]
1 J=1 i=@G-1)r+1
k jr—~4 k r—{ jr
Is(n) = Ep(fezp— X "% fin) = I Ej(ezp— X f]1)]
Jj=1 i=(j-1)r+1 j=1 i=1

k r—{ jr k T
Li(n) = | 1L Ey(exp — ¥ ;) — I Ep(ezp — ¥ f)]
j=1 i=1"" j=1 i=1""
where stationarity of PP, has been used in the expressions of I3(n),I4(n). The quantities
1y, Is, I, are boundary terms; their estimation below is based only on the fact that 7,

(resp £,,) is small with respect to n (resp r,,), the form of u,, and f has non negative real
part. On the other hand estimation of I35 depends on Theorem 3.1 and Proposition 3.4.
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Using the inequality |exp(—x) — exp(—y)| < |x —y| for x,y with non negative real parts we
get I1(n) < 5 E,(fin). Let 6 > 0 be as above such that f(¢,z) =0 for ¢t € [0,1], |z| <4,
kr+1

and observe that n — kr < r. Then the above bound for I;(n) gives :

Li(n) < rol flooPp{uy [ X1| > 6}

Since lim n~'r, = 0, the definition of u, and Theorem 2.1 gives lim I (n) = 0. Also
n—o0 n—o0

I1(n) is bounded by n~!'r,, up to a coefficient depending only on m,§. For I5(n), a similar
argument involving each interval J; and the subinterval JJ/» gives :

Ir(n) < knlnlflocPp{uy 1 X1 > 6}
Using ky,rp, < n we get lim n~'k,l, < lim r;lﬁn ie lim Ir(n) =0if lim rglfn =0.

n—oo n—oo n—oo n—oo
Also we can bound Iy(n) by r;'4,, up to a coefficient depending only on m, 6.
For I4(n), we use the inequality |ﬁzj - ﬁwj| < 5 |zj — wj] if || and |w;| are less than 1.
1 1 1
Hence :
k r—{ ir T
I4(”) < P> |Ep(€33p - % fz7n) - Ep(e$p - %fz7n)| < |f|ook7n€npp{|X1| > 5un}

As above we get lim I4(n) =0 if lim r,'¢, =0, and a bound for I;(n) of the same form

as for Ir(n).
The estimation of I3(n) is more delicate and depends on Lemma 3.6 below. We begin with
the inequality : I3(n) < D(n) + Is(n) + I3(n — ;) where

k Jr—~£ r—{¢ Jr—~£
D(Tl) = ‘Ep(exp - 2 by fz n) - (exp - 2 fz,n) (el’p - 2 pM fi,n)‘y
Jj=1 (j-1)r+1 i=1 J=2 (] 1)r+1
r—/¢ k jr—~£
Is(n) = [(Ey(ezp — © fin)Eplezp — X % fin) — Ep(exp — b Jin)Ep(exp —
1 J=2  (j-Dr+1 1
k jr—¢
Jj=2 (j—-1)r+1

k r—{
Ii(n—r) = |E,(exp — E Y fin) = I Eyexp— % f)I.
J=2 (j-r)r+l j 1"
Using as above the inequality |exp(—x) — exp(—y)| < |x — y|, and Re(f) > 0 we get :

r—~¢ r—{
Is(n) < [E,( = fim| — Ep( z finl
Since f is Lipchitz we have, for t/,¢” in [0,1], x € V\{0} : | f(t',z)— f (", )| < k(f)|t' —t"].
Since [n~Yi —n~lr,| < n"lr, we have
Is(n) < (rn — Co)n " trnk(F)Pp{uy | Xa| = 6} < r2n ' k(f)P{| X1 | = dun}
Using Theorem 2.1 we get I5(n) < Cn~2r2 with a constant C' depending on k(f) and 4.

In order to estimate D(n) we consider the family of operators P;, on the space Hy.
with x, e, k as in Proposition 3.4, defined by P, ,¢(z) = E((exp — fin(w))p(X}T)) and the
k jr—~
function v, (w) defined by 1, (w) =E [ exp — 2 JZ ’+T/X”” . Since, u,, > 1, for
J=2 i=(j-1)r+1
n large with m = | f|, v = k(f), the functions f;,, satisty |finlec < m, k(fin) < v, hence
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the operators P, ,, belong to O(m,~) C EndH, . . With the above notations, the products

of operators F;,, belong to 6(m,’y). Also, using Proposition 3.4 we know that on H, .«

we can write P = p® 1+ U where U has spectral radius r(U) less then 1 and U commutes

with the projection p ® 1. We note also that for f as above and ¥ € H, ., we have :
lo(PT)| < p(PlY]) = p(lv]) < |19

Then Lemma 3.6 below implies the convergence of D(n) to zero with speed.

Now, in order to prove the proposition, we are left to show lim I3(n) = 0. We iterate k,
n—oo
times the inequality : I3(n) < D(n) + Is(n) + Is(n — ). We get, using Lemma 3.6 :
Is(n) < I3(n —ryp) + C'(f)(n2r2 + r{"(U)) < C'(f) (knr{"(U) + n71ry),
with C'(f) > 1, depending on m,~. Since r, = o(n), it remains to choose ¢, such that
4y, = o(ry) with lim k Tf"(U ) = 0. These conditions can be written as
hngor e, = O hm it (U) = 0.
The choice of /,, Wlth the above properties is possible since :
r(U) <1, lim n~'r, =0 and lim (logn)~'r, = cc.
n—o0 n—oo

One can take £, < r, with (logn)~'¢, = co. The above estimations of I, I, I3, I4, I5 give
bounds by sup(n~lr,,r; 1), up to a coefficient depending on &, m,~ only. OJ

Lemma 3.6 There exists positive numbers C1(U), ri(U) €|r(U), 1] and C(f) depending
only of m,~ such that, forn € N and ¢, < r,, D(n), as above :
D(n) = [p(Pin -+ Prytn slU05)| < CLU)C(f)(r1(U))

Proof : We observe that Markov’s property implies E(e= /1) g(w)) = P/(E(g(w)))
where f is as above, g(w) is a function depending only of w throught the random variables
X (k > 2) and E(g(w)) is a function of x. We apply this property to H, ., with f = fi ,
(1<i<r—{)or f=0,g=1, as above, hence writing P’ = p® 1 + U’ and

D(TL) = |/0(P1,n e Pr—é,npé¢n| - p(Pl,n ce Pr—é,nl)p(wn” = |/0(P1,n ce Pr—Z,nU€¢n)|a
Proposition 3.4 implies the existence of C1(U) < oo, (U) €]r(U), 1] with

[U nll < CLU)H @)1l
On the other hand, since v, is of the form v,, = A1 with A € O(m, ), we have, using Theo-
rem 3.1, |4, || < C(f) with C(f) depending on m, . It follows D(n) < C1(U)C(f)(r1(U))*.
O

4 Asymptotics of exceedances processes

4.1 Statements of results

Let E be a complete separable metric space which is locally compact, M, (F) the space
of positive Radon measures on I, M,(E) its subspace of point measures, C{(E) (resp
LS (E)) the space of non negative and compactly supported continuous (resp Lipchitz)
functions. Then it is well known that the vague topology on M (FE) is given by a metric
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and then M, (F) becomes a complete separable metric space. Furthermore this metric is
constructed (see [28] Lemma 3.11, Proposition 3.17) using a countable family (h;);er of
functions in £ (F) and M,(E) is a closed subset of M, (FE). It follows that, in various
situations with respect to weak convergence of random measures, C$ (E) can be replaced
by LS (E).

Below, assuming condition (H), we describe the asymptotics of the space-time exceedances

n
process N, = % EmTiur'X,) under the probability PP, and we state a few corollaries. The
1 yYn 1

results are formally analogous to results for stationary processes proved in ([2], [3]) under
general conditions. Here however, corresponding conditions have been proved in sections
2, 3 for the affine random walk X, ; hence the results described below are new for affine
random walks.

It is convenient to express the Laplace formula below in terms of the renewal point process

T = %}os S, (wyv Of the linear random walk Sy, (w)v.

We denote by ¥ eps the homogeneous point Poisson process on [0, 1] with intensity p(d) =

i>0 i
06~ and by ¥ ez, (i > 0) an i.i.d collection of copies of the cluster process C' = % ez,
j>0 j>0
described in Proposition 2.5, independent of ¥ es. Since we have | X — X}| < |S, ||z —y

i>0 i
and li_)rn |Sn| = 0, P — a.e it is possible to replace P, by P and X,, by X, with x fixed, in
n o

the statements. We give the corresponding proof for the logarithm law only.

n
Theorem 4.1 The sequence of normalized space-time point processes N, = % Entiur'X,)
Z:1 yn 1

on the space [0,1] x (V '\ {0}) converges weakly to a point process N. For any § > 0, the
law of the restriction of N to [0,1] x Bj is the same as the law of the point process on
[0,1] x B§ given by :

Y Xe o ‘
i>0 j>0 (T9,6Z5) “{|Zi1>1}

If n denotes the law of N and f € CS([0,1] x Bj), then logyy(f) is equal to

1 1

g5 / Ex,(1— cap— 3 f(t,62;))dt = ¢ / Ex(exp fu(v) — Vexp — 74(f)]dt
0 J>0 0

where fi(x) = f(t,2)

Assuming the mixing and anticlustering conditions for continuous functions, this statement
was proved in [3]. Here we will use Propositions 2.5, 3.4 and point process theory.

Now as a consequence of Theorem 4.1, the mixing property stated in Proposition 3.5 for
Lipchitz functions can be extended to compactly supported continuous functions. Then,
in particular, the mixing condition A(u,) of [2] is valid here and the basic conditions of
extreme value theory (see [8]) are satisfied in our context.
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Corollary 4.2 With the notation of Proposition 3.5, assume f is a continuous compactly
supported function on [0,1] x (V '\ {0}). Then we have the convergence li_)rn I,(f)=0.
n o

n
Since the space exceedances process N,; = ¥ £ -1, is the projection of N,, on V'\ {0} we
1 n 1

1=
have the

Corollary 4.3 The normalized space exceedance process N, converges weakly to a point
process N°. The law of the restriction of N°® to B§ is the same as the law of the point
process

- 7% oo
Q =% % ez, 1{zij>1)
1=0j=1
where T is a Poisson random variable with mean p(d) = 057,
The Laplace functional of N is given by

exp ¢ 'Ea[(exp f(v) — Deap — m3(f)].

Assuming the mixing and anticlustering conditions for continuous functions, this statement
was proved in [2], using the formula for Laplace functionals in Proposition 2.5.

We consider the N-valued random variable ¢ = 7%(B}) and we write 6, = Qa,{( = k} for
k > 1; in particular we have 61 = 0, 0, > 0x11.

n
Corollary 4.4 The sequence of normalized time exceedances process N = 3 En—1i1{1X;|>un}
i=1

converges weakly (n — o0) to the homogeneous compound Poisson process N* on [0, 1] with
intensity 0, and cluster probabilities vi(k > 1) where vy = 071 (0}, — Op41).

Under special hypotheses, including density of the law of B, with respect to Lebesgue
measure, this statement was proved in [21].

Fréchet’s law for M7 = sup{|X{|;1 < k < n} is a simple consequence of Corollary 4.4 as
follows.

Corollary 4.5 For any x € V and t > 0 we have the convergence in law of u, ' MF to
Fréchet’s law ®9,
lim P{u,*M?® <t} = exp — 0t = 0% ([0, t])

n—o0
with 6 = Qn, {sup |Sp(w)v| < 1}. Furthermore the normalized law of the entrance time T}*
n>1

of | X in [t,00[ converges to the exponential law with parameter cf, i.e
tlim P{t™*1" > k} = exp — cOk.
— 00
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It was observed in [26] that Sullivan’s logarithm law for excursions of geodesics around the
cusps of hyperbolic manifolds (see [30]), in the case of the modular surface, is a consequence
of Fréchet’s law for the continuous fraction expansion of a real number uniformly distributed
in [0, 1](see[25]). For more detailed extreme value properties in the context of pointwise
convergence, we refer to ([10], p 168-179). Here, in this vein, we have the following logarithm
law.

Corollary 4.6 For any x € V, we have the P — a.e convergence

. log| X7 | . logM?* 1
limsup —— = lim —— = —.
n—00 ogn n—oo  logn «a

We observe that a logarithm law and a modified Fréchet law have been obtained in [20] for
random walks on some homogeneous spaces of arithmetic character, using L?-spectral gap
methods.

4.2  Proofs of point process convergences

The proof of Theorem 4.1 will follow of three lemmas.
We denote by (X} j)ren an i.i.d sequence of copies of the process (X;) en and we write

N Tn 6 N En N
k,n_j§1 (n=Ykrnup ' Xk ) "_,El ki

)

where r,, k, are as in section 2. For k,, > 0 we denote by Egk”
ding to the product probability of k, copies of P,,.

If f is a non negative and compactly supported Lipchitz function on [0,1] x V' \ {0}, we
have, using independence :

~ kn Tn
B (eop = No(h) = I Bpfeap — X £k X)),

This relation and the multiple mixing property in Proposition 3.5 show that, on functions
f as above, the asymptotic behaviour of the Laplace functionals of N,, under E,, and N,,

the expectation correspon-

under Egk"), are the same. We begin by considering the convergence of Egﬂ") (exp— Nn( ).
Lemma 4.7 below is a general statement giving the weak convergence of a sequence of
random measures, using only the convergence of the values of the Laplace functionals on
Lipchitz functions.

Lemmas 4.8, 4.9 are reformulations of part of the proof of Theorem 2.3 in [3], which was
considered in a general setting.

Lemma 4.7 Let E be a separable metric space endowed with a probability m and assume
E to be locally compact. Let v, be a sequence of random measures on E and, for f non
negative Lipchitz and compactly supported, assume that the sequence of Laplace functionals
Py, (f) converges to Y(f) and (sf) is continuous at s = 0, then the sequence vy, converges
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weakly. A random measure v = (Vy)zep on (E,m) is well defined by the values of its
Laplace functionals ¥, (f) = [ exp — vy(f)dm(z) with f as above.

Proof : We begin by the last assertion and we use the family of Lipchitz functions (h;);er
considered in the above subsection. If the random measures v, v satisfy ¥, (f) = 1,/ (f) for

any f € LS (F) and A1, A, -+, \, are non negative numbers then we have Q/JV(ZEP Aihi) =

1=1
Py (ZEP Aihi). It follows that the random vectors (v(hy),---,v(hy)) and (V'(h1),---, V' (hy))
i=1

have the same Laplace transforms, hence the same laws. Furthermore, for rational numbers
rj < 1 the finite intersections of sets of the form {u € M (E),u(h;) €]rj,ri[)} form a
countable basic B of open subsets in M (E) stable under finite intersection, hence a -
system (see [28]). Then from above, v, V' are equal on B ; since the o-field generated by B
coincide with the Borel field, one has v = /.

We observe that, if a sequence of random measures v, is such that for any f € £, (F) the
sequence of real random variables v, (f) is tight, then the sequence v, itself is tight. This
follows for a corresponding result in [28] for f € C(F) since any such f is dominated by
an element of LS (E).

Assuming the convergence of 1, (f) to 1, (f) for any f € L (F) and the continuity
at s = 0 of ¥,(sf), we get that ¢,(sf) is the Laplace transform of the real random
variable v(f), and the convergence of the sequence v,(f) to v(f) for any f € L (E).
From above and the continuity hypothesis of 1(sf) at s = 0, we get that the sequence
vy, is tight. If v, is a subsequence converging weakly to the random measure v we have
lim ,, (f) = lim v, (f) for any f € LS (E). Since such a limit is independent of the
n—00 Jj—o0 J

subsequence, we get from above that two possible weak limits of random measures are
equal. Hence the sequence v,, converges weakly to v. [

Lemma 4.8 Let f be a non negative and compactly supported continuous function on
[0,1] x By and let 3. ez, be the cluster process for the affine random walk (X )ren. Then :
j>0
~ En ~
a) lim [logE{f") (exp — Nu(f)) + S (1 = Ey(exp — Nia(f)))] = 0.
n—oo 1

_ 1
b) lim 3501~ Byeop — Nin(£)) = 057 | Ba, (1 cap— 3 f2,62,)dr
0 Jj>0

n—00 1

Lemma 4.9 Let ¥ eps be a homogeneous Poisson process of intensity p(§) > 0 on [0, 1],
i>0 i
o0
which is independent of the sequence of cluster processes ¥ €z,..
7>0

Then for any non negative and compactly supported continuous function f on [0,1] x Bj,

the Laplace functional of the point process Q° = ¥ % (7o 6Z-j)1{\Z'j|>1} restricted to
i>04>0 Vi ‘
[0,1] x Bj is equal to :
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WO(f) = exp—p(6) fy Eay (1 — exp — 35 F(t,02;))dt

Proof of Theorem 4.1 Let f be a compactly supported Lipchitz function on [0, 1] x
Bj.
Using Proposition 3.5, lemmas 4.8 implies that, on non-negative compactly supported
Lipchitz functions on [0, 1] x Bj, the Laplace functionals of N,, and N,, have the same
limit, namely

W) = eap — p(6) Jy Ba, (1 — eap — S J(1,57;))dt.

We observe that, for fixed f as above, the function s — w5(s f) is continuous at s = 0. Since
the function s — ¢, (sf) = E,(exp — sN,(f)) is the Laplace transform of the non negative
random variable N, (f), the continuity theorem for Laplace transforms implies that the
sequence N, (f) converges in law to some random variable. Since this is valid for any f
as above, Lemma 4.7 implies that the sequence of point processes NN, itself is tight. Since
moreover the sequence of Laplace functionals 1, (f) converges to ¥°(f), Lemma 4.7 implies
that there exists a unique point process N on [0, 1] x (V'\ {0}) such that the sequence N,
converges weakly to N. As stated in Lemmas 4.8, 4.9 the restriction of N to [0,1] x Bj is
given by the point process formula in the theorem. Lemma 4.9 implies that the Laplace
functional of N on the function f € C5([0,1] x Bj is equal to

1/15(f) =exp— 007 fol Ep,[1 —exp — jgof(t, 0Z;)]dt.

The first part of the formula giving the Laplace functional of V on f follows. The second
part is a consequence of the last formula in Proposition 2.5 applied to the function v —
f(t,0v) and of the a-homogeneity of A. [

Proof of Theorem 4.2 The first term E,(exp — %fm) in I,(f) is the value of

the Laplace functional of INV,, on the continuous function f. Hence Theorem 4.1 implies
its convergence to the Laplace functional of N on f. The same remark is valid for the
second term in I,(f), if N, is replaced by N, ; the limit of N, is also N, using Lemma
4.7 and Proposition 3.5. Then for any f in C{([0,1] x (V' \ {0}) we have nh_)n;o L.(f) =

nll_{lolo ‘Ep[exp - Nn(f) - Ef)k”)(emp - Nn(f)” =00

Proof of Corollary 4.3 The point process N; is the projection of N, on V \ {0}.
Since [0, 1] is compact and the projection is continuous, the continuous mapping theorem
implies the required convergence, using the first part of Theorem 4.1. The formula for the
Laplace functional of N® is a direct consequence of the second part in Theorem 4.1 applied
to a function independent of ¢. [J

Proof of Corollary 4.4 For ¢ € Cf([0,1]) we have N, () = Ny(plp). Since the
discontinuity set of 1 B, is A-negligible, Theorem 4.1 gives the convergence of N!(p) to
Ni(p). With f = p® 1 B;, the formula for the Laplace functional YPy(f) of N gives the
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Laplace functional 9,:(¢) of N ¢ in the logarithmic form
log () = 6 [y Ea, [1 — p(t)7]dt.
The expression of the generating function of the random variable v = ¥ 1 B, (Z;) follows
from the last formula in Proposition 2.5 : =
Oée_Skl/k =1—(e* — 1) Ry, [exp — s 79 (BY})].
Hence v, = 071 (0 — O141)

In view of Theorem 4.1, the point process N can be written as N! = X VRET) where
k>0

the random variables 7 are i.i.d with the same law as 7, hence N? coincides with the
compound Poisson process described in the statement. [

Proof of Corollary 4.5 Replacing u,, by du, (6 > 0) in Corollary 4.4, we see that the
point process on [0, 1] given by Nf“; = % En-1k1{| X, |>6u,} converges to Ng = X VkETS
' k=1 k>0

where ¥ exs is the Poisson process on [0,1] with intensity # 6~% and the 7 are i.i.d
k>0 Tk

random variables as in the proof of Corollary 4.4. It follows that for any & > 0,
li_}rn Pp{me(l) =0} =exp—046“*
Since Pp{N; 5(1) = 0} = P,{M, < u,d}, the convergence of u; ' M, to Fréchet’s law
follows.
If M, is replaced by MZ(x € V'), the same proof as the one given below for the logarithm

law remains valid. The last assertion in the corollary is a direct consequence of Fréchet’s
law. [J

4.3 Proofs of logarithm’s law

The proof of the logarithm’s law is based on Fréchet’s law and depends on two lemmas
as follows.

Lemma 4.10 We have P, —a.e :

log| Xn| < lim sup logMy, <1

lim sup
n—00 ogn n—00 ogn o

Proof : Let € > 0, A,(e) = {|X,,| > n/2te} c VZ+, Al () = VZ+\ A, (e). Stationarity
of X,, implies P,(A,(¢)) = P,{|Xo| > n'/**¢}. Since li_)m nltesrd(nt/ote o0) = 1, we

have O?]P’p{An(&?)} < 00. Then Borel-Cantelli’s lemma implies that ]P’p{(EJlO 0 Al(e)} =1ie
1=zn

P, — a.e there exists ng(w) such that for n > ng(w), | X, (w)| < n'/oFe.

logM,
Then we deduce that P, — a.e : limsup 097 n < — + ¢. Since ¢ is arbitrary we get :
logh,, 1 poee g @
lim sup 09V n < -—-.0
n—oo  logn o
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log| X,
Lemma 4.11 We have P, — a.e : limsup M

1
P
nooo  logn Qo

| ™

nooo  logn T « logj —

log| X, 1 log| X ;
Proof : Let & €]0,1/a, B(e) — {hmsupM <l } Bu(e) = {sup loglX;| }
ji>n

The sequence B, (¢) is increasing and B(e) C OL;J)Bn(»s). We are going to show P,{B(¢)} =

For p > n > 2, p € N, we define B, p(c) = { sup |X;| < p/7¢/2} hence B, (e)
n<j<p

1
o
C

By, p(€). Using stationarity we get P,{B,,(e)} = P, {p~"/*"*/2M,_,4+1 < p~</2}. Also,

~<97% = 0 which implies

using Corollary 4.3, we have limsup \]P’p{n_l/o‘Mn <t} —e
n—o00t>0
Jim Pyp{Bnp(€)} = 0.
Since the function p — By, ,(¢) is decreasing and B,,(¢) = 92 By, p(¢) we have for n > 2 :
p>
P,{B,(e)} = li_>m P,{Bnp(e)} =0, ieP,{B(e)} =0.
p—r00

log|Xn| _ 1

We see that P, — a.e, limsup > — — ¢, and, since ¢ is arbitrary we conclude :
n—oo  logn «Q
log| X 1
lim sup 91 X0 >—. U
nooo  logn «

Proof of Corollary 4.6 From Lemmas 4.10, 4.11 we have P, — a.e,
) logM,, .. log| X, 1
lim sup =limsup ——— = —.
n—o0 ogn n—o00 logn o
logMy, 1

Hence the definition of M, implies lim
n—oo logn «

Hence, for a set of p @ P- probability 1 in V x AN we have
1 log| X |(w) . logM,

2 =limsup ——= = lim

Y nooco logn n—oo logn

)

log|X.
hence for a subsequence ng(w), é = klim M.
—00 ogny,

On the other hand we have for any € V : |X,, — XZ| < |Sy||X0o — z| and P — a.e :
lim |S,|=0.

n—oo

Also [log| X,,| — log| XZ|| < |Snl|Xo — z|sup(|Xs| 7L, | XZ|71), hence for any z € V, P, —a.e :
lim [log| Xy, | — log| Xp[| = 0.
n o

log| X, 1 log| X* 1
It follows lim M = —, and P — a.e, limsup M > —.
k—oo  logny « nooo  logn a
- . log| Xl _ 1
A similar argument shows that P — a.e, lim sup ——— < —.
n—oo  logn o

Furthermore, for any n > 1,z € V :
|My; — My | < sup{[Sk|; 1 <k < n}lz — Xo
<
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where the sequence on the right is P — a.e bounded. Then, an argument as above shows

logM, 1
that, P —a.e : lim 097 _ 2
n—oo logn @

5 Convergence to stable laws

The convergence to stable laws of the normalized sums % X; under hypothesis (H) was
i=1
shown in ([11], [15]) where explicit formulae for the corresponding characteristic functions

were given. It was observed there that these formulae involved the asymptotic tail A of

[e.e]
p, as well as the renewal point process 7 = ¥ €g,(,),- A similar situation ocurred in the
0
dynamical context of [12], where the limiting law was expressed in terms of an induced
n
transformation. We observe that the connection between stable laws for ¥ X;, where
i=1
(X;)ien is a stationary process, and point process theory had been already developed in
[7] in the context of sample autocorrelation functions. For a recent analysis of the involved
properties in this setting see [23]. Here we give new proofs of the results given in ([11],

[15]), following the point process approach. In particular we get also a direct proof of the
n

convergence for the related space point process N* = ¥ ¢ -1 , via the analysis of Laplace
Z:1 n 1

functionals.

5.1 On the space exceedances process

We give here a direct proof of the convergence of N and we deduce the convergence of the
characteristic function for the random variable N2(f), for f compactly supported.

Theorem 5.1 Let f be a complex valued compactly supported Lipchitz function on V' \ {0}
which satisfies Re(f) > 0. Then we have

lim E,(cap — N3(f)) = cap ¢ 'Eal(exp f(v) - Leap — 72(f).

n—o0

The proof depends on two lemmas where notations explained above are used. For ¢ < j we

j
write Cy,(i,7) = exp — ¥ f(u, X)) — 1, and we note the equality
k=i

C(1,70) = f_g”l[cn(z,rn) — Co(i+1,70)]

where C),(r, + 1,7,) = 0 and r, is a sequence as in Proposition 2.5. We note also that
We are going to compare Cy(1,7,) to Cy, k(1,7,) where

Cri(1,70) = iﬁl[Cn(i,z’ k)= Coi+ 1,0+ k)],
we write A, j, for their difference, €, = r,P,{|X| > u,} and supp(f) C Bj with § > 0.
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Then we have the

Lemma 5.2 hm limsupe, 'E,(|Anx]) =0
k=00 n—oo

Proof : We can assume that r,, > k. We observe that
1+ Co(i, ) = (14 Cp(i + 1,m))exp — f(u, ' X;).

i+k Tn
Also Cn(i+1,rp,) = Cp(i+1,i + k) = (exp— ¥ f(Xj)(exzp— ¥ f(X;)—1).
j=it1 j=ithtl

Hence we have

A= 1(655]7 - f(u;lX,) = D[Cr(i+1,rn) = Cp(i+1,i+ k)] = A/ kT A

with AJ ;. (resp A7 ;) is the above sum with index i restricted to [1, 7, —k] (resp |, —k, r,]).
As observed above the expression under ¥ is bounded by 4 and vanishes unless | X;| > du,
for some i € [1,7, — k] and M;", | > 6u,. Then we get using stationary,

(‘A;Lk‘) < ArpPp{[Xo| > dun, My} 11> un}.

Since the process (Xj)rez, satisfies anticlustering, it follows hm limsupe, ‘E,(|A], ]) =
k=00 n—oo ’

0. Also, stationarity implies

Tn
(|A” ) < by Pp{|Xi| > Oup} = 4ka{|X| > 0 }-
z—rn—k—l—l
Since p is homogeneous at infinity and hm ro k=0, we get hm limsupe,, (\A wl) =

k—oo n—oo
0, hence the required assertion. [J

Lemma 5.3 We have the following convergences.

1) For any k > 1 nh_l}lgo nEy[Cr i (1,7)] = ¢ "En[(expf(v) — 1)exp — éof(Siv)]

2) kli)rr;o ligl_)S;l)p knEo(|An k) =0

Proof : 1) Using stationarity we have

EnEp[Cri(1,mn)] = knrnEp[Cn(1,k +1) — Cr(2,k+ 1)) =
burByleap = (' X;) = exp— % ("X,
The function f*) on (V \ {0})**+! given by
FO 0,1 a) = eop— B fla;) = eop— B f(a) = (eap flao) — Veap— % f(z)

is bounded, uniformly continjlzous on (B(’;)’“Jrl ;;d nh_)ngo nYk,r, = 1. Hence, th;_homoge-

neity at infinity of p, the conditional convergence of u,'X ; to SjXo and the definition of
A imply

n—oo

lim k,E,[Cyx(1,7)] = ¢ 'Epl(exp f(v) — exp —jzilof(Sjv)].

29



2) We have the equality, k,E,(|Ank|) = knrnPp{|X| > unten 'Ey(JA k).

Then, using Lemma 5.2, the relation lim n~'k,r, = 1 and the homogeneity at infinity of
n—o0

p, assertion 2 follows. [

Proof of Theorem 5.1 With r,, as in Proposition 5.3 above, the multiple mixing
property gives
lim [E,(exp — N (f)) — Ep(L+ Ca(1,74)))"] =0,

n—oo

hence it suffices to study the sequence (1+E,(Cy(1,7,,)))*. Since Ref > 0 and supp(f) C
Bj we have

Ey(|Ca(Lra)]) < Ep([1=eap— % flu; X)I) < Bp( 3 1 (a5 X0)1) < rulflocPp{1 Xo| > bun.

Tn
The last inequality implies the L'-convergence to zero of 3 f(u,'X;). Then the first in
=1

1=

equality gives li_>m E,(|Cn(1,7,)]) = 0.

It follows that the behaviour of the sequence [1+E,(Cy,(1,7,))]*" for n large is determined
by the behaviour of k,E,(Cy(1,75,)). We have for k£ > 1,

k‘nEP(Cn(l, T‘n)) = k‘nEp(ka(l, T‘n)) + knEp(An,k)

Since supp(f) C B§ and lim [Sjv| = 0 Q — a.e, the series 5 f(S;v) converges Q — a.e.
j—r00 j=1

k
Since Ref > 0, it follows klim E(exp — Elf(Sjv)) =exp — my (f).
—00 j=
Then dominated convergence and Lemma 5.3 imply

lim lim knEp(On,k(ly rn)) = EA[(€$p f(U) - 1)63)}) - Wg(f)]

k—o00 n—oo

This equality and the second assertion in Lemma 5.3 give the result. [

Corollary 5.4 Letm >0, >0,y >0, and let f be a R™-valued continuous function on
V' \ {0} which satisfies the conditions

1) f is locally Lipchitz

2) f(v) =0 for |v| <o

3) suplo I (v)] = ¢, < o0
veV
Then we have , for any uw € R™,

li_)rn E,(exp —i < u, N3(f) >) = exp ¢ "Epl(exp i < u, f(v) > —1)exp —i < u,7(f) >]

Proof : We consider the random variable Y,, = N;j(f). For a > 1, let 6, be the function
from V' \ {0} to [0, 1] defined by

0. (v) =1 for |v| < a, O,(v) =a+1—|v| for |v| € [a,a + 1], O,(v) =0 for |v] > a+ 1.
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Then 6, is Lipchitz, hence f#, is Lipchitz and compactly supported. Then the theorem
gives,

TLli_)noloEp(ea;p i < u,N2(f0,) >) = exp ¢ 'EBpllexp —i < u, f0,(v) > —1exp 7¥(i <
U, f@a(?}) >)] = (I)a(u)

Since A(Bj) < oo, the function u — ®4(u) is continuous on R™. It follows that the sequence
of random variables Y,* = N3 (f6,) converges in law to the random variable Y2 which has
characteristic function ®,. On the other hand we have ah—glo 0, = 1, hence by dominated

convergence we get,

ali_)nolo ®o(u) = exp ¢ 'EBpl(exp —i < u, f(v) > —1exp i < u, 7% (f) >] = ®(u).

o
We recall that, for v fixed, the series ¥ f(Sjv) converges Q — a.e to a finite sum, hence
i=0

the function © — ®(u) is continuous. In other words, Y¢ converges in law (a — o) to the
random variable Y with characteristic function ®.

Also for, 2,2 € C with Rez < 0, Rez’ <0 we have |exp z — exp 2’| < |z — 2/|. If we choose
B €]0,1[, v > 0 such that v €]0, o[, then we have for any € > 0,

Pp{|Y,¢ — Yol > e} < e PE,[( 3 (f(uy " X5)11x; 5aun})’];

J

Tt

Pp{‘Yr? — Y, >¢e} < 5_605711%UuﬁlX\BVl{\Xpaun})]'
Using Corollary 2.2, with W () = |z] it follows lim sup P,{|Y,) —Y,| > €} < e_BC,BYA(Wml{‘Wba}).
n—oo
Since 0 < By < «, we get lim limsupP,{|Y, —Y,| >¢€} =0
=30 p—oo

Since € > 0 is arbitrary, the convergence in law of Y,, to the random variable Y follows,

hence the corollary. [J
n

In order to prepare the study of limits for the sums 7,, = ¥ X; if 0 < a < 2, we write for
j=1

a>0:1Y,(v) =v(1 — p4(v) where

va(v) = 1if Jv| < a, pa(v) =2 —a || if a < |v| < 2¢, wa(v) =0 if [v] > 2a.
Hence 0 < p,| < Ljo,2q] and k(pq) < a~!. Then a consequence of Corollary 5.4 with m = d,
v =1 is the following

Corollary 5.5 The sequence of V -valued random variables N;(1,) converges in law to the
random variable with characteristic function
exp ¢ Epl(exp — i < u, e (v) > —1)exp i < u, 7 (1g) >].

n
5.2 Convergence to stable laws for T,, = ¥ X;
i=1
In this subsection we write ¥ (v) = v and we study the convergence of N3(v) = u,! T,

towards a stable law, extending the weak convergence of IV,, studied in the above subsection.
We need here the last part of the spectral gap result in Proposition 3.4 for the operator P.
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We have the

Theorem 5.6 Let 0 < a < 2. Then there exists a sequence d,, in V' such that the sequence
of random variables n_l/a(Tn —dy,) converges in law to a non degenerate stable law.

If 0 < a <1, we have d,, = 0.

If1 <a <2, we have d, = nE,(X)

If a =1, we have d, = n E,[ X1 (X)].

Explicit expressions for the characteristic functions of the limits are given in the proofs.
Non degeneracy of the limit laws are proved in [11] and [15]. For the proofs, we follow
the approach of [7] and we need two lemmas corresponding to the cases 0 < a < 1 and
1<a<?2.

In the proofs below we use the normalization u,, = (cn)Y/®

1/a

instead of n'/¢ as in the theorem.

Lemma 5.7 Assume 0 < o < 1. Then for any u € V' and with the notation of Corollary
5.5, T = N*5(1p,) converges in law (a — 0) to T with characteristic function given by

exp ¢ Epl(exp —i < u,v > —1)exp i < u, 5 Sijv >] = O (u).
5=0
Also, for any 6 > 0 we have
lim limsupP, {| 5 up X jpa(up L X5)| > 5} =0.
j=1

a—=0  noco

Proof : Using dominated convergence, the first part follows from Corollary 5.5.
On the other hand, Markov inequality gives

P, {!jgl up ' Xjoa(u™' X5)| > 5} < 0w "B (| X |1 x| <20un})

The homogeneity at infinity of p and Karamata’s lemma (see [28] p.26) gives that the right
hand side is equivalent to

§Inl=o " o1 — )71 (2au,)P{|X]| > 2au,},
i.e to 871 a'~ up to a coefficient independent of n. Hence the result since 1 — o > 0. O

Lemma 5.8 Assume 1 < o <2 and write P, (v) = v, (v). Then we have the convergence
lim Tim sup (N (0,) — By (N3 (5,)%) = 0.
a n—00

Proof : It suffices to show that for any u € S*1 :

lim lim sup B (| < u, Np(th,) > —E,(< u, N;(¥,) > ) = 0.

n—oo

We write fllm(v) = ¢a(ur_Ll’U)v Ea,n = fa,n - p(fa,n)-
Hence | fon(v)] < upo[lgjpj<2unts [fan] < 3u,t. We have the equality

E,(| < u, Np(hg) > —Ep(< u, No(¥g) >)?) = Apa + 2B,
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with
Apo =nE, (] < u,an(Xo) >)1?), Bna = jgl(n—j)EP(< U,Ea,n(Xo) >< u,@a,n(Xj)).

Now the proof splits into two parts a) and b) corresponding to the studies of Ay, 4, By q-
a) We have, using the above estimation of f, ,,

nEP(‘ < U7Ea,n(X0) > ‘2) < nEP(‘fa,n(XO)P) < nEP(ur_Lz‘X0‘21{\X0|<2aun})’

Then Karamata’s lemma implies that, for n large, the right hand side is equivalent to

n'=207" (2au,, )2 ((2a)*n) L, i.e to a®°. Hence, since a €0, 2], we get hr% limsup A, , =0
n—oo
uniformly in u € S,

b) Markov property for the process (X;);>o implies for ¢ > 1,

E (< u ¢a n(XO) ><u Tzz)a n( ) >) =K (< u Tz[)a n(XO) ><u Pz?z[)a n(XO) )
First we consider the case a €]1, 2] and we apply Proposmon 3.4 to P acting on the Banach
space H = Hy e, With x G]l,a[, € = 1 and k choosen according to Proposition 3.4. We
observe that for h € H we have |h(v)| < ||A]|/(1 + [v]). Since ¥, ,, € H, we have

(< Ua% n(XO) ><u lea n(XO) ) E (< U, fa n(XO) >< U, Ulfa n(XO) )

where we have used the decomposmon P = p®1+U". Schwarz inequality allow us to bound
the right hand side by the square root of E(| fan(Xo)[*)Eo(|U" fan(Xo)*1{x0|<2an})-
Since U fo.n(v)] < (L) |U || fa,nll, the quantity E, (< u, fon(Xo) >< u, U fon(Xo) >)
is bounded by [U*[| || fa,nl [un?Ep(1X0 214 x0 < 2au, )] Ep(1 + [X0])?1{1x0 <20, )] /-
Then Karamata’s lemma implies that, up to a coefficient independent of n, the above
expression is bounded by [|U|| || fanll[n~/2a'~2/2) [1 4 no " ~1/2g1-2/2),
Since || fanl < nuy?l, it follows that B, 4, uniformly in v € S¥~! and up to a coefficient, is
bounded by

n('ozooHUz'H)n—l[n1/2—a*1a1—a/2 _|_a2—a] _ OXCJ) HUZH [a2—a +a1—o¢/2n1/2—a*1]‘
1=

Since r(U) < 1 we have Z‘, |U*|| < oo, hence hmsupB n.a is bounded by a*~% up to

a coefficient independent of n. Since 1 < a < 2 the lemma follows of the two above
convergences.

If « = 1, we need to use the Banach space H' = Hy ., with 0 < e < x < 1, kK = 0,
considered in Proposition 3.4. We use also the inequality ||f||a.n < c1a'™Xn=¢ with ¢; > 0,
shown below. We note that for h € H', we have |h(v)| < ||h]|(1 + |v|®) in particular and up
to a constant independent of n,a we have

U fan(@)] < U] | famll (X + 07) < U°[l(a" X0 75) (1 + Juf).

Hence we can bound E,(< u, fon(Xo) >< u, U f4,,(X0) >) by

261 [|U°[|(a' X1 =%) [n By (| Xo[*) L xo <2nay] 2 Ep (1 + [Xol*) 11 xo <2na}] /2,
which, if € > 1/2, can be estimated using Karamata’s lemma by

2¢1|U"||(a*™Xn~=) (an ™) /2 (na)*=/% = cyal ~XFTen !

33



It follows that B, , can be estimated by 2¢s( > |U?||)a* =X *<. Since, using Proposition 3.4
i=0

we have r(U) < 1, it follows if 1/2 < e < x < 1, lim limsup B, , = 0. O
a—0 pnooco

Proof of Theorem 5.6 For a €]0,1[ the proof follows of Lemma 5.7. We observe
that dominated convergence implies the continuity of ® at zero, hence ® is a characteristic
function. From Lemma 5.7 we know that if ¥, = Nj3(1), V% = N3 (1 — ¢a),

1) For any a > 0, Y,? converges in law (n — oo) to 7T

2) T® converges in law (a — 0) to T

3) For any € > 0, we have Clbgr% limsupP{|Y,, = Y,) > e} = 0.

n—oo
n

It follows that the sequence Y, = ¥ u,'X; converges in law (n — oco) to the random
i=1

variable T with characteristic function ®.

For 1 < a < 2, we write

Yo = Ni() — Ep(N; (1)) = (uy,* 2 K5) —Ep(X), V' = Ni(Wa) = By (Na (),
so that Y, — Yy, = N5 (¥y,,) — Eo(N3(¥,,,))- Then for any € > 0 Lemma 5.8 gives,

lim limsupP,{|Y, —Y,|>¢e} =0
a—0  nooo

Furthermore, the sequence N;i(1),) converges in law (n — oo) to 7% and E,(N;(v.)) =
nE,[uy ' X (1=, ) (u, ' X)] converges to the value b(a) of A on the function v — v(1—¢q,(v)),
as follows from o« > 1 and the homogeneity at infinity of p. Hence the sequence Y,? converges
in law (n — o0) to T® — b(a) = Y. Finally Y converges in law (a — 0) to the random
variable T with characteristic function ® defined by,
o0
®(u) = exp ¢ Epl(exp —i < u,v > —1+i <u,v >)expi <u, ¥ Sjv >]
j=0
+iEA[< u,v > (exp i < u, 5 Sijv > —1)].
5=0
This follows of Theorem 5.1, of dominated convergence (a — 0) and of the following
inequalities
lexp —i < u,pa(v) > =141 < u,Pa(v) > | < Inf(2+ [u] |v],4]v[*|ul?),
o o0
< g(e) > Berp i < u, 5 gu(S0) > ~1)| < Inf(lul [ol 2Pl 5 E(S)))
j= j=

where a > 1 gives 5 E(|S;]) < oco. Continuity of ® at zero follows also from the above
j=1

inequalities.
As in [7], we deduce the convergence in law of the sequence Y;, to T
If =1, we write Y, = 5 n 1t X; —E,(p1(n1X)) and
j=1
Y= 3 n_lXi(l - @a(n_lXj)) —bn(a) = Ny (¢a) — bp(a)
=1

J
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where by,(a) = E,[X (¢1 — ¢,)(n"1X))]. With the new notations the above inequalities are
still valid. The homogeneity at infinity of p gives now

lim by (a) = ¢ "Ex(v(e1 — ¢a)) = ba).
It follows that the sequence Y,* converges in law (n — o0) to the random variable T} with
characteristic function,

exp ¢ 'Ep(exp — i < u, o (v) > —1)exp i(< u, 7 (1ha) > —i < u,bla) >)]

We insert the expression i < u,v > (p1 — ¢q(v)) with the adequate sign in each of the
above factors inside the expectation Ej. Then dominated convergence (a — 0) shows that
T} — b(a) converges in law to the random variable T" with characteristic function

®(u) = exp ¢ "B [A(u,v) + B(u,v)]
with A(u,v) = (exp —i < u,v > =141 < u,v >)p1(v),
B(u,v) =i < u,v > p1(v)(exp i < u, 'OZC))I Sjv > —1).
‘7:

As in ([11], [15]), the stability of the limiting laws follow from the formula for ®(u). If
0 < a < 2, a # 1 the formula for ®(u) shows that for any n € N we have ®"(u) = ®(n'/*u),
hence T has a stable law of index a.

If o = 1, we have with 7, = ¢ Ex[v(p1(n" ) — 1 (v)], ®*(u) = ®(n u) exp—in < u, vy, > .
This implies that T follows a stable law with index 1. [

6 Appendix

6.1 On positivity of the extremal index

We give a direct proof of the positivity of Qa, {sup |Sn(w)v| < 1} following [6].
n>0

Proposition 6.1 Let (Y, 7,m) be a dynamical system where m is a T-invariant probability
-1
and let f be a measurable function on Y. If lim nZ‘, f(Tky) = —00 m — a.e, then there
n—oo (

exists ¢ < 0 and a subset Y1 CY of positive measure such that for everyy € Y1, n > 1,
n—1
Tuly) = 'S f(r'y) <c

Proof : Let M, (y) = sup T(y), hence

0<k<n
My (y) = sup[f (), f(y) + Mn(Ty)] = f(y) + M, (7y).
Since li_>m T, (y) = —o0 m—a.e, the function M (y) = li_)m M, (y) is finite m — a.e, hence

fly) =ML (y) — ML (y) — M (Ty).
If M, = 0 m — a.e, then f(y) = MZE(y) — MI(ry) is a coboundary. By considering
the return times to a set on which M} is bounded from below, we get a contradiction

35



with the above coboundary equation. Hence we have, for some ¢ < 0, My (y) < ¢ on
a set Y7 of positive measure, i.e My(y) < ¢ < 0 on Yy C X with m(Y1) > 0. Hence
Tn(y) < My (y) < Moo(y) < conYj for any n > 1. O

Using the notations of section 2 we consider the action of 7" on the unit sphere (g,z) —
% = g.r, we assume that T is strongly irreducible and we denote by v a u-stationary
probability on S¥~!. We denote by U (supp(v)) the set of non void open subsets of supp(v),

hence for any U € U(suppr)) we have v(U) > 0.

Corollary 6.2 With the above motations, we assume that the semigroup T is strongly
irreducible and L, = [log|gz|du(g)dv(z) < 0. Then, there exists € > 0, Q1 C Q with
Q(21) > 0 and a map w — U:(w) from Oy to U(supp(v)) such that

sup{|Sp(w)z| <1; n>0}<1—¢
for any x € Uz(w), w € Q.
In particular, we have Qp, {sup |Sp(w)v| <1; n >0} >0

Proof : We denote Y = Q X supp(v) and we write y = (w,x) € Y. We consider the
dynamical system (Y, 7,m) defined by 7(w,z) = (ow, Aj(w).x). The hypothesis implies
with f(y) = log’Al(w)x’7 m(f) <0 Tn(y) = log’Sn(w)x’ : nll_{goTn(y) = —00, m— a.e.
Then Proposition 6.1 implies the existence of a set Y1 C Q X supp(v) of positive Q ® v
measure and ¢’ > 0 such that for n > 0, |S,(w)v| < 1 — €’. Hence there exists Q1 C Q
with Q(91) > 0 such that, for w € Q, there exists S, C S ! with v(S,) > 0 and
sup{|Sp(w)v| ; n >0} <1—¢ for v € S,. Since T is strongly irreducible, v gives measure
zero to any proper subspace (see [13]), hence S, contains v{,---,v4 which are linearly

d d
independent, for any w € Q. Then, for any v = % M\o¥ with ¥ |N| < (1 —€'/2)7 we
i=1 i=1
have 4
[Sn(w)o < BN [Si(w)vf| < (1 -€'/2)7 1 —€) <1-¢€/2,
i=1
for n > 0. But the set
d
Uw = SUpp(V) N {Uv 'El |)\Z| < (1 - 6,/2)_1}
1=
is an open non void subset of supp(v) since (1 —¢&'/2)"t > 1 and v¥ € U, fori=1,---,d.
Hence, for w € Oy and = € Uy, € = €'/2, we have sup{|S,(w)z| ; n > 0} < 1 —e. From
[13], we know that the set supp(c®) is also the support of a u-stationary measure v and
A = 0% ®(* with ¢ > 0. Since for any U € U(supp(v)) the set {v =tz ; 1 <t <
(1 —¢)~!, 2 € U} has positive Aj-measure, we get by definition of Qjx,

Qo {sup |Sp(w)v] <1; n>0} >0
U
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6.2 Condition (H) is open if d > 1

We denote by T}, the closed subsemigroup of G generated by supp(u), where p is a
probability on GG. We consider weak topologies for probability measures on G and on A.
We denote by M1(G) (resp M'(A)) the set of probabilities on G(resp A). We denote by
W(A) the weak topology on M'(A) defined by the convergence on continuous compactly
supported functions as well as of the moments [(v*(g) + [b/¥(R))d\(h) for any k € N.

Theorem 6.3 If d > 1, condition (H) is open in the weak topology W(A) on M'(A).

We will need the Proposition
Proposition 6.4 Condition i-p is open for the weak topology on M*(G).

Proof : Assume u € M'(G), satisfies i-p and let p, € M'(G) be a sequence which
converges weakly to p. Then supp(u,) and T),, are closed subsets of G which converges to
supp(p) and T), respectively. If 7 is a proximal element of 7},, then by perturbation theory
there exists a neighbourhood of v in G which consists of proximal elements. Hence there
exists v, € 1}, which is also proximal.

On the other hand T}, is irreducible for large n. Otherwise there exists a proper subspace
W™ C V with T, (W"™) = W". Let W C V be the limit of a subsequence of W". Then,
clearly T, (W) = W, which contradicts the irreducibility of T},.

In order to show the strong irreducibility of T}, for n large, we show the irreducibility of
Zco(T), ), the connected component of the Zariski closure Z¢(T),,) of T),, (see [24]). Since
T,, is irreducible, the Lie group Zcy(7T),,) is reductive and has finite index in Zc(7),,).

We decompose V' as the direct sum of its isotypic components Vi(n)(l < i < p,) under

the action of Zc¢o(Ty,) : V = @ Vi(n). Since Zc¢o(T,,) has finite index in Z¢(T),,) we can
i=1

assume, by taking a suitable power, that v, € Zcg(Ty, ). The uniqueness of the above

(n)

Pn
decomposition of V' and the relation v,v = Av, v = ¥ v;, v; € V', with A, a simple

dominant eigenvalue of ~, implies v,v; = A\,v;; hence Zt:hle proximality of 7, implies that
v belongs to a unique Vi("), to Vl(") say. Also the irreducibility of 7}, implies that T),,
permutes the subspaces Vi(n)(l < i < py). Since Vl(n) is isotypic and -, is proximal, the
subspace Vl(n) is T}, -irreducible. The same is valid for any Vi(") = g(Vl(")) since gy, g1 is
also proximal, for g € T),,. Assume Zc¢y(7},,) is not irreducible for n large; then it follows
that p, €]1,d] and r,, = dim V} ") ¢ [1,d[. It follows that we can assume p, = p and r,, =7
for n large. Hence, taking convergent subsequences of Vi(n)(l < i < p) we obtain proper
subspaces V;(1 < i < p) which are permuted by T, ; the irreducibility of 7}, implies that
their sum is V', hence we have V = %Vi, which contradicts the strong irreducibility of 7),.

Hence T),, satisfies condition i — p for n large. []
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Proof of Theorem 6.3
Let A\, € M'(A) be a sequence which converges to A € M'(A) in the weak topology W(A)
and let us denote by u, the projection of A\, on G. We verify the stability of conditions
1, 2 in (H), since condition 3 follows of the definition of W(A) and condition 4 is a direct
consequence of Proposition 6.4.

1) Assume that supp(A,) has a fixed point z,, € V for n large. Since the closed subset
supp(\,) converges to supp(\), we can find a convergent subsequence of x,, to a point z in
(V)U(S* 1), endowed with the visual topology, such that z is supp(\)-invariant. If z € V
we have a contradiction since supp(\) has no fixed point in V. If 2 € S¥~!, we have also a
contradiction since the projective action of supp(u) has no fixed point.

2) Using Lemma 6.4, since finiteness of moments for p,, is valid, we get that for pu, and
for any s > 0, the corresponding operator P°® has a spectral gap on the relevant Holder
space on S?1 (see [13]). The moment condition implies that perturbation theory is valid
for the operators P®. Hence the spectral radius k(s) varies continuously. In particular, since
we have k(s) > 1 for p and s > «, and L(u) < 0 the same is valid for p, with n large.
Hence there exists oy, > 0 close to a such that k(a,) = 1. O
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