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Abstract

We consider a general multivariate affine stochastic recursion and the associated Markov

chain on Rd. We assume a natural geometric condition which implies existence of an un-

bounded stationary solution and we show that the large values of the associated stationary

process follow extreme value properties of classical type, with a non trivial extremal index.

The proof is based on a spectral gap property for the action of the corresponding Markov

operator on spaces of regular functions with slow growth, and on the clustering properties

of large values in the recursion.

Keywords : Spectral gap, Extreme value, Affine random recursion, Limit theorem, Point
process, Cluster index.

1 Introduction

Let V = Rd be the d-dimensional Euclidean space and let λ be a probability on the affine
group A of V . Let (An, Bn) be a sequence of A-valued i.i.d. random variables distributed
according to λ and let us consider the affine stochastic recursion on V defined by

Xn = AnXn−1 +Bn

for n ∈ N. We denote by P the corresponding Markov kernel on V and by P the product
measure λ⊗N on AN. Our geometric hypothesis (H) on λ implies that P has a unique
invariant probability ρ on V and the support of ρ is unbounded. In our situation (see [13]),
the quantity ρ{|v| > t} is asymptotic (t→ ∞) to α−1c t−α with α > 0, c > 0. Furthermore,
the measure ρ is multivariate regularly varying, a basic property for the development of
extreme value theory i.e for the study of exceptionally large values of Xk(1 ≤ k ≤ n)
for n large (see [28]). In such a situation of weak dependence, spectral gap properties of
operators associated to P play also an important role via a multiple mixing condition
described in [7] for the case of step functions. We observe that the same idea was used in
the proofs of limit theorems for the largest coefficient in the continued fraction expansion
of a real number uniformly distributed in the interval [0, 1] (see [25], [31]), as well as in

the proofs of limit theorems for
n
Σ
k=1

Xk (see [15]). In the context of geometric ergodicity,

assuming a density condition on the law of Bn, partial results were obtained in [21]. Here
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we go further in this direction replacing geometric ergodicity by condition (H). We observe
that, if λ is singular with respect to Haar measure on A, then the operator P on V is not
v-geometrically ergodic in general, hence the classical framework of [22] for asymptotics of
Markov chains is not convenient in our setting. However condition (H) implies that the
operator P has a spectral gap property in the spaces of Hölder functions with polynomial
growth considered below, a fact which allow us to deduce convergence with exponential
speed on Hölder functions. A typical example of this situation occurs if the support of λ is
finite and generates a dense subsemigroup of the affine group A.
If Z+ is the set of non negative integers, we denote by Pρ the Markov probability on
V Z+ defined by the kernel P and the initial probability ρ. In this paper we establish
spectral gap properties for the action of P on Hölder functions and we deduce fundamental
extreme value statements for the point processes defined by the Pρ-stationary sequence
(Xk)k≥0. Our results are based on the fact that the general conditions of multiple mixing
and anticlustering used in extreme value theory of stationary processes (see [7]) are valid for
affine stochastic recursions, under condition (H). We observe that, in the context of Lipchitz
functions, the above mixing property is a consequence of the spectral gap properties studied
below ; it turns out that the use of advanced point process theory allows us to extend this
mixing property to the classical context of continuous functions. We note that, if d > 1,
the set of probabilities λ on the affine group A, which satisfy condition (H), is open in a
natural weak topology ; hence in this sense, hypothesis (H) is generic. Then, our framework
allow us to develop extreme value theory for a large class of natural examples, including
the so-called GARCH process as a very special case (see [10]).
In order to sketch our results, we recall that Fréchet’s law Φa

α with positive parameters
α, a is the probability on R+ defined by the distribution function Φa

α([0, t]) = exp − at−α.
We denote by µ the projection of λ on the linear group G = GL(V ). Also, we consider
the associated stochastic linear recursion Yn = AnYn−1, we denote by Q the corresponding
Markov kernel on V \ {0} and by Q = µ⊗N the product measure on GN ; we write Sn =
An · · ·A1 for the product of random matrices Ak(1 ≤ k ≤ n). Extending previous work
of H. Kesten (see [19]), a basic result proved in [13] under condition (H) is that for some
α > 0, the probability ρ is α-homogeneous at infinity, hence ρ has an asymptotic tail
measure Λ 6= 0 which is a α-homogeneous Q-invariant Radon measure on V \ {0}. The
multivariate regular variation of ρ is a direct consequence of this fact. Also, it follows that,
if Bt ⊂ V is the ball of radius t > 0 centered at 0 ∈ V and B′

t = V \ Bt, then we have
Λ(B′

t) = α−1ct−α with c > 0. In particular, Λ(B′
t) is finite and the projection of ρ on R+,

given by the norm map v → |v| has the same asymptotic tail as Φc
α. If un = (cn)1/α, it

follows that the mean number of exceedances of un by |Xk| (1 ≤ k ≤ n) converges to one.
It will appear below that un is an estimate of sup{|Xk| ; 1 ≤ k ≤ n}.
Then, one of our main results is the convergence in law of the normalized maximum of
the sequence |X1|, |X2|, . . . , |Xn| towards Fréchet’s law Φθ

α with θ ∈]0, 1[. A closely related
point process result is the weak convergence (see [28]) of the time exceedances process
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N t
n =

n
Σ
k=1

εn−1k1{|Xk|>un}

towards a compound Poisson process with intensity θ and cluster probabilities depending

on the renewal point process πωv =
∞
Σ
i=0

εSi(ω)v and on the Q-invariant measure Λ. The

significance of the relation θ < 1 is that, in our situation, values of the sequence (|Xk|)0≤k≤n

larger than un, appear in localized clusters with asymptotic expected cardinality θ−1 > 1.
This reflects the local dependence of large values in the sequence (Xk)k≥0 and is in contrast
with the well known situation of positive i.i.d. random variables with tail also given by Φc

α,
where the property θ = 1 is satisfied. If Euclidean norm is replaced by another norm,
the value of θ in the new setting is changed but the condition θ ∈]0, 1[ remains valid. For
affine stochastic recursions in dimension one, if An, Bn are positive and condition (H) is
satisfied, convergence to Fréchet’s law and θ ∈]0, 1[ was proved in [17]. We observe that our
result is the natural multivariate extension of this fact. Also, if d ≥ 1, assuming technical
conditions on the random walk Xn and density for the law of Bn with respect to Lebesgue
measure, the two above convergences were shown in [21]. Here our proofs use the tools of
point processes theory and a remarkable formula (see [2]) for the Laplace functional of a
cluster process C = Σ

j>0
εZj

on V \ {0}, depending only on µ,Λ, which describes locally

the large values of (Xn)n≥0. As a consequence of Fréchet’s law and in the spirit of [26], we
obtain a logarithm law for affine random walk.
To go further, we consider the linear random walk Y v

n = Sn(ω)v on V \ {0}, we observe
that condition (H) implies lim

n→∞
Sn(ω)v = 0, Q − a.e and we denote by QΛ the Markov

measure on (V \ {0})Z+ defined by the kernel Q and the Q-invariant initial measure Λ.
We show below the weak convergence to a limit process N of the sequence of space-time
exceedances processes

Nn =
n
Σ
i=1

ε(n−1i,u−1
n Xi)

on [0, 1]× (V \{0}). In restriction to [0, 1]×B′
δ , with δ > 0, N can be expressed in terms of

C and of a Poisson component on [0, 1] with intensity θδ−α ; the expression of C involves
the renewal point process πωv and QΛ. Using the framework and the results of ([2], [3],
[7]), we describe a few consequences of this convergence. In particular we consider also,

as in ([7], [8]), the convergence of the normalized partial sums
n
Σ
i=1

Xi towards stable laws,

if 0 < α < 2, in the framework of extreme value theory. Also, as observed in [7], this
convergence is closely connected to the convergence of the sequence of space exceedances
point processes on V

N s
n =

n
Σ
i=1

εu−1
n Xi

,

towards a certain infinitely divisible point process N s. Here the Laplace functional of N s

can be expressed in terms of Λ and πωv .
In these studies we follow closely the approaches previously developed in ([2], [3], [7]) in
the context of extreme value theory for general stationary processes, in particular we make
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use of the concepts of tail and cluster processes introduced in [2]. This allow us to prove
explicit extreme values properties for affine random walks, under condition (H), and to
recover, in a natural setting, the characteristic functions of the above α-stable laws, as
described in [15] if d = 1 and in ([5], [11]) if d > 1, completing thereby the results of ([1],
[2], [7]). For self containment reasons we have developed anew a few arguments of ([2], [3])
in our situation. We refer to [4] for information on products of random matrices and to
([14], [16]) for short surveys of the above results.

2 The tail process and the cluster process

In this paper, we will always assume that λ satisfies condition (H) explained below.

2.1 Homogeneity at infinity of the stationary measure

We recall condition (H) from [13], for the probability λ on the affine group of V . A
semigroup T of GL(V ) = G is said to satisfy i-p if

a) T has no invariant finite family of subspaces
b) T contains an element with a dominant eigenvalue which is real and unique.

Condition i-p implies that the action of T on the projective space of V is proximal ; heuris-
tically speaking this means that, T contracts asymptotically two arbitrary given directions
to a single one, hence the situation could be compared to a 1-dimensional one. Condition
i-p for T is valid if and only if it is valid for the group which is the Zariski closure of T .
Hence it is valid in particular if T is Zariski dense in G (see [27]) ; also it is valid for T if and
only if it is valid for T−1. Below we will denote by T the closed subsemigroup generated
by supp(µ), the support of µ.
For g ∈ G we write γ(g) = sup(|g|, |g−1|) and we assume

∫
logγ(g)dµ(g) <∞. For s ≥ 0 we

write logk(s) = lim
n→∞

1

n
log

∫
|g|sdµn(g) where µn denotes the nth convolution power of µ

and we write L(µ) for the dominant Lyapunov exponent of the product Sn(ω) = An · · ·A1

of random matrices Ak(1 ≤ k ≤ n) i.e L(µ) = lim
n→∞

1

n

∫
log|g|dµn(g) = k′(0). We denote

by r(g) the spectral radius of g ∈ G. We say that T is non arithmetic if r(T ) contains two
elements with irrational ratio. Condition (H) is the following :

1) supp(λ) has no fixed point in V .
2) There exists α > 0 such that k(α) = lim

n→∞
E(|Sn|

α)1/n = 1.

3) There exists ε > 0 with E(|A|αγε(A) + |B|α+ε) <∞.
4) If d > 1, T satisfies i-p and if d = 1, T is non arithmetic.

The above conditions imply in particular that L(µ) < 0, k(s) is analytic, k(s) < 1 for
s ∈]0, α[ and there exists a unique stationary probability ρ for λ acting by convolution on
V ; the support of ρ is unbounded. Property 1 guarantees that ρ has no atom and says that
the action of supp(λ) is not conjugate to a linear action. Property 2 is responsible for the
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α-homogeneity at infinity of ρ described below ; if k(s) is finite on [0,∞[ and there exists
g ∈ T with r(g) > 1, then Property 2 is satisfied. Also if d > 1, condition i-p is basic for
renewal theory of the random walk Sn(ω)v and it implies that T is non arithmetic.
In the appendix we will show that condition (H) is open in the weak topology of probabi-
lities on the affine group, defined by convergence of moments and of values on continuous
compactly supported functions.
Below, we use the decomposition of V \{0} = Sd−1×R>0 in polar coordinates, where Sd−1

is the unit sphere of V . We consider also the Radon measure ℓα on R>0 (α > 0) given by
ℓα(dt) = t−α−1dt. We recall (see [19]) that, if (An, Bn)n∈N is an i.i.d sequence of A-valued
random variables with law λ and Lµ < 0, then ρ is the law of the P− a.e convergent series

X =
∞
Σ
0
A1 · · ·AkBk+1. We observe that a family ht(t ∈ R∗) of automorphisms of the group

A is given by ht(a, b) = (a, tb). Then it follows that the stationary probability for ht(λ) is
t.ρ, where t.ρ denotes the push forward of ρ under the dilation v → tv.

Theorem 2.1 ( see [13], Theorem C)
Assume that λ satisfies condition (H). Then the operator P has a unique stationary pro-
bability ρ, the support of ρ is unbounded and we have the following vague convergence on
V \ {0} :

lim
t→0+

t−α(t.ρ) = Λ = c(σα ⊗ ℓα)

where c > 0 and σα is a probability on Sd−1. Furthermore Λ is a Q-invariant Radon measure
on V \ {0}.

We observe that, for d > 1, if supp(λ) is compact, generates a Zariski dense subgroup of
A (see [24]), L(µ) < 0, and T is unbounded, then condition (H) is satisfied. For d = 1, if
supp(λ) is compact, the hypothesis of ([17], Theorem 1.1) is equivalent to condition (H).
The existence of Λ stated in the theorem implies multivariate regular variation of ρ. If the
convergence stated in the theorem is valid we say that ρ is homogeneous at infinity ; below
we will make essential use of this property.
Under condition (H), Λ gives zero mass to any submanifold and σα has positive dimension.
We observe that, if the sequence (An, Bn)n∈N is replaced by (An, tBn)n∈N with t ∈ R∗, then
the asymptotic tail measure is replaced by t.Λ, in particular the constant c is replaced by
|t|αc. We observe that, as shown in [13], the Q-invariant Radon measure Λ is extremal or
can be decomposed in two extremal measures. Hence, if the action of T on Sd−1 has a unique
minimal subset, then Λ is symmetric and the shift invariant measure QΛ on (V \ {0})Z+

is ergodic. Otherwise QΛ decomposes into two ergodic measures. Hence Λ depends only of
µ, up to one or two coefficients.
The following is a classical consequence of vague convergence.

Corollary 2.2 Let f be a non negative Λ-integrable Borel function on V \ {0} which has
a Λ-negligible discontinuity set. Then we have lim

t→0+
t−α(t.ρ)(f) = Λ(f).
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2.2 The tail process

We denote Ω = GN, Ω̂ = GZ, and we endow Ω (resp Ω̂) with the product probability
Q = µ⊗N (resp Q̂ = µ⊗Z).
We define the G-valued cocycle Sn(ω) where ω = (Ak)k∈Z ∈ Ω̂, n ∈ Z by :

Sn(ω) = An · · ·A1 for n > 0, Sn(ω) = A−1
n · · ·A−1

−1 for n < 0, S0(ω) = Id
We consider also the random walk Y v

n = Sn(ω)v on V \ {0}, starting from v 6= 0 and
we denote by QΛ (resp Q̂Λ the Markov measure on (V \ {0})Z+ (resp (V \ {0})Z) for the
random walk Y v

n with initial measure Λ. These measures are invariant under the shift τ̃
on (V \ {0})Z+ (resp (V \ {0})Z). If we denote by σ the shift on Ω̂ and by σ̃ the extended
shift on Ω̃× (V \ {0}) defined by σ̃(ω, v) = (σω,A0v), then Q̂⊗Λ is σ̃-invariant and Q̂Λ is
simply the projection of Q̂⊗ Λ on (V \ {0})Z, under the map (ω, v) → (Sk(ω)v)k∈Z.
The normalized restriction of Λ to B′

1 is denoted Λ1, hence Λ1(B
′
t) = t−α if t > 1 and we

write QΛ1
= c−1α(1B′

1
◦ π)QΛ, Q̂Λ1

= c−1α(1B′

1
◦ π)Q̂Λ, where π denotes the projection on

V \ {0}. We note that the probability QΛ1
(resp Q̂Λ1

) extends to V Z+ (resp V Z) and its
extension will be still denoted QΛ1

(resp Q̂Λ1
).

We consider the probability ρ, the shift τ on V Z+ (resp V Z) the shift-invariant Markov
measure Pρ (resp P̂ρ) on V

Z+ (resp V Z), where ρ is the law of X0 and Pρ is the projection

of P̂ρ on V Z+ . Since ρ({0}) = 0, we can replace V by V \ {0} when working under Pρ. For

0 < j ≤ i we write Si
j = Ai · · ·Aj and Si

i+1 = I. Expectation with respect to P or Q, Q̂
will be simply denoted by the symbol E. If expectation is taken with respect to a Markov
measure with initial measure ν we will write Eν . For a family Yj(j ∈ Z) of V -valued random
variables and k, ℓ ∈ Z U{−∞,∞} we denote M ℓ

k(Y ) = sup{|Yj | ; k ≤ j ≤ ℓ}. We observe
that, if t > 0, condition (H) implies ρ{|x| > t} > 0, hence as in [2], we can consider the
new process (Y t

i )i∈Z deduced from t−1(Xi)i∈Z by conditioning on the set {|X0| > t}, for t

large, under P̂ρ. We recall (see [28]) that a sequence of point processes is said to converge
weakly to another point process if there is weak convergence of the corresponding finite
dimensional distributions. The following is the detailed form in our case of the general
result for multivariate jointly regularly varying stationary processes in [2].

Proposition 2.3 a) The family of point process (Y t
i )i∈Z converges weakly (t→ ∞) to the

point process (Yi)i∈Z on V given by Yi = SiY0 where Y0 has law Λ1 and (Yi)i∈Z has law
Q̂Λ1

.
b) We have QΛ1

{M∞
1 (Y ) ≤ 1} = Q̂Λ1

{M−1
−∞(Y ) ≤ 1} and the process Yj satisfies

lim
|j|→∞

|Yj| = 0, Q̂Λ1
− a.e.

In particular we have
lim
n→∞

lim
t→∞

Pρ{ sup
1≤k≤n

|Xk| ≤ t/|X0| > t} = QΛ1
{M∞

1 (Y ) ≤ 1} := θ ∈]0, 1[

Proof : a) We observe that, since for any i ≥ 0Xi = SiX0+
i
Σ
j=1

Si
j+1Bj and lim

t→∞

1

t

p

Σ
j=1

Si
j+1Bj =
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0, Pρ−a.e, the random vectors (t−1Xi)0≤i≤p+q and (t−1SiX0)0≤i≤p+q have the same asymp-

totic behaviour in Pρ-law, conditionally on |X0| > t. Also by stationarity of P̂ρ, for f
continuous and bounded on V p+q+1 we have
Eρ{f(t

−1X−q, · · · , t
−1Xp)/|X0| > t} = Eρ{f(t

−1X0, t
−1X1, · · · , t

−1Xp+q) / |Xq| > t}.
From above, using Corollary 2.2, Λ{|x| = 1} = 0, and the formula Λ{|x| > 1} = α−1c we
see that the right hand side converges to :

αc−1
∫
E{f(x, S1x, · · · , Sp+qx)1{|Sqx|>1}dΛ(x),

Hence, using the definition of Q̂Λ, we get the weak convergence of the process (Y t
i )i∈Z to

(Yi)i∈Z as stated in a). Since for any x ∈ V we have lim
i→∞

Six = 0 Q − a.e, the formula

Yi = SiY0 gives lim
i→∞

Yi = 0, QΛ1
− a.e. If Q̂Λ1

{lim sup
i→−∞

|Yi| > 0} 6= 0 then, for some ε, ε′ > 0

and a sequence i = ik → −∞ we have Q̂Λ1
{|Yi| > ε} > ε′ ; since Q̂Λ is τ̃ -invariant we get

lim
i→−∞

QΛ{|Y−i| > 1, |Y0| > ε} > ε′. Since Λ(Bε) <∞ and lim
n→∞

Snx = 0 Q− a.e, this gives

the required contradiction.
b) In view of a) and Corollary 2.2, since the discontinuity sets of the functions 1]0,1](M

n
1 (Y ))

and 1[1,∞[(Y0) on V
n are QΛ1

-negligible, we have lim
t→∞

Pρ{ sup
1≤k≤n

t−1|Xk| ≤ 1/t−1|X0| > 1} =

QΛ1
{Mn

1 (Y ) ≤ 1}.
Hence θ = lim

n→∞
lim
t→∞

Pρ{ sup
1≤k≤n

|Xk| ≤ t/X0 > t} = QΛ1
{sup
k≥1

|Yk| ≤ 1}.

We write Q̂Λ1
{M−1

−∞(Y ) ≤ 1} = 1− Q̂Λ1
{M−1

−∞(Y ) > 1} and we define the random time T
by T = inf{k ≥ 1 ; |Y−k| > 1} if there exists k ≥ 1 with |Y−k| > 1 ; if such a k do not exist
we take T = ∞. We have by definition of T :

Q̂Λ1
{M−1

−∞(Y ) > 1} =
∞
Σ
k=1

Q̂Λ1
{T = k}

Q̂Λ1
{T = k} = Q̂Λ1

{|Y−1| ≤ 1, |Y−2| ≤ 1, · · · , |Y−k+1| ≤ 1 ; |Y−k| > 1},
Using stationarity of Q̂Λ, the definition of Q̂Λ1

and a) we get
Q̂Λ1

{T = k} = QΛ1
{|Y1| ≤ 1, · · · , |Yk−1| ≤ 1 ; |Yk| > 1}, hence

Q̂Λ1
{M−1

−∞(Y ) > 1} =
∞
Σ
k=1

QΛ1
{|Y1| ≤ 1, · · · , |Yk−1| ≤ 1 ; |Yk| > 1} = QΛ1

{M∞
1 (Y ) > 1}.

The formula Q̂Λ1
{M−1

−∞(Y ) ≤ 1} = QΛ1
{M∞

1 (Y ) ≤ 1} follows.
The formula θ = QΛ1

{M∞
1 (Y ) ≤ 1} and the form of Yi(i ≥ 0) given in a) imply θ =

E(
∫
1
{sup
i≥1

|Six| ≤ 1}dΛ1(x)) ≤ 1. The condition θ = 1 would imply for any i ≥ 1 : |Six| ≤ 1

Q ⊗ Λ1 − a.e, hence supp(SiΛ1) ⊂ {x ∈ V ; |x| ≤ 1}. This would contradict the fact
that suppΛ1 is unbounded, hence we have θ < 1. The inequality θ > 0 is obtained in
Proposition 2.5 below. For a direct proof using standard arguments in ergodic theory see
[6] and appendix. �
We note that the process (Yj)j∈Z is not stationary. However this process can be viewed as a
simplified version of the stationary process (Xj)j∈Z ; for example the property lim

|j|→∞
|Yj| = 0
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Q̂Λ1
− a.e is an analogue of the weak convergence of Xj(|j| → ∞) to the probability ρ.

2.3 Anticlustering property

We are going to show that the set of large values of Xk(1 ≤ k ≤ n) consists of localized
elementary clusters with a few values. An important sufficient condition for localization (see
[7]) is proved in Proposition 2.4 below and will allow us to show the existence of a cluster
process as defined in[2]. It is called anticlustering and is used in section 4 to decompose
the set of values of Xk(1 ≤ k ≤ n) into successive quasi-independent blocks. For k ≤ ℓ in
Z we write

M ℓ
k = sup

k≤i≤ℓ
|Xi| , Rℓ

k =
ℓ
Σ
i=k

P̂ρ{|Xi| > un/|X0| > un} = Eρ{
ℓ
Σ
k
1]un,∞[(|Xi|)/|X0| >

un}, where un = (cn)1/α. For k > 0, we write also Mk =Mk
1 .

We observe thatM ℓ
k ≤

ℓ
Σ
k
|Xi|. Let rn be any sequence of integers with rn = o(n), lim

n→∞
rn =

∞. Then we have Pρ{M
rn
1 > un} ≤ rnPρ{|X0| > un}, hence the homogeneity of ρ at infinity

gives lim
n→∞

Pρ{M
rn
1 > un} = 0. The condition rn = o(n) allows us to localize the influence of

one large value of Xk(1 ≤ k ≤ n). It follows that the event {M rn
1 > un} can be considered

as ”rare”. On the other hand, the last part of Proposition 2.4 below shows that values
of |Xk|(1 ≤ k ≤ rn) conditionally larger than un are taken with finite asymptotic average
multiplicity. The homogeneity at infinity of ρ and the arbitrariness of rn allow us to restrict
the study to the sequence un instead of tun(t > 0).
The following is based on the homogeneity at infinity of ρ, the inequality 0 < k(s) < 1 if
0 < s < α, and it will imply the finiteness of such expectations, in the limit.

Proposition 2.4 Assume rn ≤ [ns] with 0 < s < 1, lim
n→∞

rn = ∞. Then lim
m→∞

lim
n→∞

Rrn
m =

0. In particular lim
m→∞

lim
n→∞

P̂ρ{sup(M
−m
−rn , M

rn
m ) > un/|X0| > un} = 0, hence the random

walk Xn satisfies anticlustering. For θn defined by θ−1
n = Eρ{

rn
Σ
1
1[un,∞[(|Xi|)/Mrn > un} we

have
lim inf
n→∞

θn > 0, and θn ≤ 1.

Proof : We observe that :
P̂ρ{M

rn
m > un/|X0| > un} ≤ Rrn

m , P̂ρ{M
−m
−rn > un/|X0| > un} ≤ R−m

−rn = Rrn
m

where we have used stationarity of Xk in the last equality. Hence it suffices to show

lim
m→∞

lim
n→∞

Rrn
m = 0. For i ≥ 0 we have Xi = SiX0 +

i
Σ
j=1

Si
j+1Bj where Si, X0 are in-

dependent, as well as X0,
i
Σ
j=1

|Si
j+1Bj|. We write Iin = P̂ρ{|Xi| > un/|X0| > un},

J i
n = P̂ρ{|SiX0| > 2−1un/|X0| > un}, K

i
n = P̂ρ{

i
Σ
j=1

|Si
j+1Bj | > 2−1un/|X0| > un},
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hence Rrn
m =

rn
Σ

i=m
Iin ≤

rn
Σ

i=m
J i
n +

rn
Σ

i=m
Ki

n.

We are going to show lim
m→∞

lim
n→∞

rn
Σ

i=m
J i
n = lim

m→∞
lim
n→∞

rn
Σ

i=m
Ki

n = 0.

We apply Chebyshev’s inequality to the χ-moments of Xn with χ ∈]0, α[. We have :
J i
n ≤ (2u−1

n )χEρ(|SiX0|
χ/|X0| > un} ≤ (2u−1

n )χE(|Si|
χ)Eρ(|X0|

χ/|X0| > un),
where independence of Si and X0 have been used in the last formula. Since the law of X0

is α-homogeneous at infinity we have :
lim
x→∞

x−χEρ(|X0|
χ/|X0| > x) = α(α− χ)−1, lim sup

n→∞
J i
n ≤ 2χE(|Si|

χ)α(α − χ)−1.

Also, using independence of X0 and
i
Σ
j=1

|Si
j+1Bj | :

Ki
n = P{

i
Σ
j=1

|Si
j+1Bj| > 2−1un} ≤ (2u−1

n )χE(
i
Σ
j=1

|Si
j+1Bj |)

χ ≤ (2u−1
n )χE(

∞
Σ
j=1

|Sj+1Bj |)
χ.

It follows lim sup
n→∞

(
rn
Σ

i=m
J i
n) ≤ 2χα(α − χ)−1E(

∞
Σ

i=m
|Si|

χ).

From [13] we know that, since 0 < χ < α, we have k(χ) < 1, hence E(|Si|
χ) decreases

exponentially fast to zero ; hence the series E(
∞
Σ
i=1

|Si|
χ) converges and lim

m→∞
E(

∞
Σ

i=m
|Si|

χ) = 0,

lim
m→∞

lim
n→∞

(
rn
Σ

i=m
J i
n) = 0.

From above we know that R0 =
∞
Σ
1
|Sj+1Bj| has finite χ-moment if χ < α. Then by

Chebyshev’s inequality :
rn
Σ

i=m
Ki

n ≤ (2u−1
n )χrnE(R

χ
0 ).

Since 0 < s < 1, we can choose χ ∈]0, α[ such that α−1χ > s, hence lim
n→∞

rnu
−χ
n = 0. Then,

for any fixed m : lim
n→∞

rn
Σ

i=m
Ki

n = 0. Hence lim
m→∞

lim
n→∞

rn
Σ

i=m
Iin = 0 and the first result follows.

For the last assertion we follow below a general argument in [2].
From above we have using stationarity :

lim
m→∞

lim
n→∞

Pρ{M
rn
m+1 > un/|X1| > un} = 0.

By definition of Mrn : Pρ{Mrn > un} ≥
m−1rn−1

Σ
k=0

Pρ{|Xkm+1| > un,M(k+1)m+1 ≤ un},

hence using stationarity :
Pρ{Mrn > un} ≥ m−1rnPρ{|X1| > un,M

rn
m+1 ≤ un}.

By definition of θn this can be rewritten as :
θn ≥ m−1(1− Pρ{M

rn
m+1 > un/|X1| > un}).

Then for n and m large, since from above the right hand side is close to m−1, we have
θn ≥ (2m)−1, hence lim inf

n→∞
θn > 0. By definition of θ−1

n we have θ−1
n ≥ 1, hence θn ≤ 1 �
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2.4 The cluster process

In general, for a stationary V -valued point process the properties of anticlustering and
positivity of the extremal index θ for a sequence rn = o(n) with lim

n→∞
rn = ∞, stated in

Proposition 2.4, imply the existence of the cluster process (see [2]). For self containment
reasons we give in Proposition 2.5 below a proof of this fact, using arguments of [2] ; this
gives us also the convergence of θn defined in Proposition 2.4 to θ. For later use we include
also in the statement the formula of ([2], Theorem 4.3) giving the Laplace functional for the
cluster process restricted to B′

1. We recall that the Laplace functional of a random measure
ν = (νx)x∈E on a locally compact separable metric space E endowed with a probability m
is given by

ψν(f) =
∫
exp− νx(f)dm(x)

where f is continuous and compactly supported. We recall that weak convergence of a
sequence of point processes is equivalent to convergence of their Laplace functionals.
We denote by rn a sequence as above and we consider the sequence of point processes

Cn =
rn
Σ
i=1

εu−1
n Xi

, on V \ {0} under Pρ and conditionally on Mrn = M rn
1 > un. Using the

tail process (Yn)n∈Z defined in Proposition 2.3 above, we show that Cn converges weakly
to the point process C ; C is a basic quantity for the asymptotics of Xn and is called the
cluster process of Xn. As shown in Proposition 2.5 below, the law of C depends only of
µ,Λ.
We denote by πωv the renewal point process of the random walk Sn(ω)v on V \ {0}, given

by πωv =
∞
Σ
0
εSi(ω)v . For v fixed, the mean measure of the point process πωv is the potential

measure
∞
Σ
0
Qi(v, .) of the Markov kernel Q ; if L(µ) < 0 the asymptotics (|v| → ∞) of this

Radon measure are described in [13]. The formula below for the Laplace functional of C
involves the renewal point process πωv of the linear random walk Sn(ω)v.

Proposition 2.5 Under Pρ, the sequence of point processes Cn converges weakly to a point

process C =
∞
Σ
1
εZj

. The law of the point process C is equal to the Q̂Λ1
− law of the point

process Σ
j∈Z

εSjx conditional on sup
i≤−1

|Sjx| ≤ 1. In particular we have

Q̂Λ1
{ lim
i→∞

|Zi| = 0} = 1, Q̂Λ1
{sup
i≥0

|Zi| ≥ 1} = 1.

Furthermore the sequence θn defined in Proposition 2.4 converges to the positive number
θ = QΛ1

{M∞
1 (Y ) ≤ 1} and we have θ−1 = EΛ1

( Σ
j>0

1B′

1
(Zj)) <∞.

If supp(f) ⊂ B′
1 the Laplace functional of C on f is given by

1− θ−1EΛ1
[exp(f(v)− 1)exp − πωv (f)].

Proof : We recall that convergence of Laplace functionals implies weak convergence of
the corresponding point processes. Let f be a non negative and continuous function on
V \ {0} which is compactly supported, hence f(x) = 0 if |x| ≤ δ with δ > 0.
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We write for k ≤ ℓ with k, ℓ ∈ Z ∪ {±∞}, M ℓ
k(Y ) = sup

l≤j≤ℓ
|Yj| with Yj = SjY0. For k, ℓ, f

as above we write Cℓ
k = exp −

ℓ
Σ
k
f(u−1

n Xj), C
ℓ
k(Y ) = exp −

ℓ
Σ
k
f(Yj) and we observe that

Cℓ
k ≤ 1. We fix m > 0 and we take n so large that the sequence rn of the above proposition

satisfies rn > 2m + 1. When convenient we write rn = r, hence Eρ{C
r
1 ;M

r
1 > un} =

r
Σ
1
Eρ{C

r
1 ;M

j−1
1 ≤ un < Xj}. We observe that, for r−m ≥ j > m+1, we have Cr

1 = Cj+m
j−m

except if sup(M j−m−1
1 ,M r

j+m+1) > unδ. We are going to compare Eρ{C
r
1 ;M

r
1 > un} and

(r − 2m)Eρ{C
m
−m;M−1

−m−1 ≤ un < |X0|} using those j′s which satisfy m + 1 < j ≤ r −m
and we denote by ∆n,m their difference.
If we write

∆n,m(j) = Eρ{C
r
1 ;M

j−1
1 ≤ un < |Xj |} − Eρ{C

j+m
j−m ;M j−1

j−m−1 ≤ un < |Xj |}

then we have, since Cℓ
k ≤ 1

|∆n,m| ≤
r−m
Σ

m+1
|∆n,m(j)| + 2mPρ{|X0| > un}.

Using stationarity of Xn and the above observation we have
|∆n,m(j)| ≤ P̂{sup(M−m−1

−r ,M r
m+1) > unδ; |X0| > un},

hence, using stationarity and the formula θn = (rnPρ{|X0| > un})
−1Pρ{|M

r
1 | > un}

|θnEρ(C
r
1/M

r
1 > un)− r−1(r − 2m)Eρ(C

m
−m;M−1

−m−1 ≤ un/|X0| > un)| ≤

P̂ρ{sup(M
−m−1
−r ,M r

m+1) > unδ/|X0| > un}+ 2r−1m.
Using Proposition 2.3, we see that the discontinuity set of the function 1]−∞,−1](M

−1
−m−1(Y ))

is Q̂Λ1
-negligible hence, using again Proposition 2.3,

lim
n→∞

Eρ(C
m
−m;M−1

−m−1 ≤ un/|X0| > un) = EΛ1
(Cm

−m(Y );M−1
−m−1(Y ) ≤ 1).

Also lim
n→∞

r−1
n (rn − 2m) = 1 since lim

n→∞
rn = ∞. We observe that by definition of θn

and Cr
1 ≤ 1 we have θnEρ(C

r
1/M

r
1 > un) ≤ θn ≤ 1, hence we can consider convergent

subsequences θnk
with lim

k→∞
θnk

∈ [0, 1]. The anticlustering property of Xn implies that

the limiting values (n → ∞) of P̂ρ{sup(M
−m−1
−r ,M r

m+1) > un/|X0| > un} are bounded by
εm > 0 with lim

m→∞
εm = 0. Then the above inequality implies with r = rnk

lim
k→∞

|θnk
Eρ(C

r
1/M

r
1 > unk

)− EΛ1
(Cm

−m(Y );M−1
−m−1(Y ) ≤ 1)| ≤ εm.

Since lim
m→∞

EΛ1
{Cm

−m(Y );M−1
−m−1(Y ) ≤ 1} = EΛ1

{exp −
∞
Σ
−∞

f(Yj);M
−1
−∞(Y ) ≤ 1} := I,

we have lim
k→∞

θnk
Eρ{C

r
1/M

r
1 > unk

} = I, hence the limit of θnEρ{C
r
1/M

r
1 > un} exists

and is equal to I. In particular with f = 0 and using Proposition 2.3 we get lim
n→∞

θn =

Q̂Λ1
{M−1

−∞(Y ) ≤ 1} = θ. From above and Proposition 2.4 : θ = lim
n→∞

θn = lim inf
n→∞

θn > 0

Then we get lim
n→∞

Eρ{C
rn
1 /M rn

1 > un} = θ−1I = ÊΛ1
(exp−

∞
Σ
−∞

f(Yj)/M
−1
−∞(Y ) ≤ 1) hence

the first assertion, using Proposition 2.3. The expression of (Zj)j∈N in terms of (Yn)n∈Z
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and the relation lim
|n|→∞

Yn = 0, Q̂Λ1
− a.e stated in Proposition 2.3 gives

Q̂Λ1
{ lim
i→∞

Zi = 0} = 1.

Since the discontinuity set of 1B′

1
is Λ1-negligible, using the weak convergence of Cn to C,

the continuous mapping theorem (see [28]) and the convergence of θ−1
n to θ−1, we get the

formula θ−1 = EΛ1
(
∞
Σ
1
1B′

1
(Zj). The last formula is proved in ([2], Theorem 4.1). �

3 A spectral gap property and multiple mixing

We denote Xx
k (k ∈ N) the affine random walk on V governed by λ, starting from x ∈ V

and we write Pϕ(x) =
∫
ϕ(hx)dλ(h) = E(ϕ(Xx

1 )).
In this section we use a spectral gap property for a family of operators associated to the
process Xk(1 ≤ k ≤ n), in order to show the quasi-independence of its successive blocks of
length rn, where rn is defined in subsection 2.3.

3.1 Spectral gap property

It was proved in ([11], Theorem 1) that, given a probability λ on A which satisfies
condition (H), the corresponding convolution operator P on V satisfies a ”Doeblin-Fortet”
inequality (see [18]) for suitable Banach spaces Cχ and Hχ,ε,κ defined below. In particular,
it will be essential here to use that the operator P on Hχ,ε,κ is the direct sum of a 1-
dimensional projection π and a contraction U where π and U commute, hence we give also
a short proof of this fact below. In order to obtain the relevant multiple mixing property, we
show a global Doeblin-Fortet inequality for a family of operators closely related to P . For
χ, κ ≥ 0, we consider the weights ω, η on V defined by ω(x) = (1+|x|)−χ, η(x) = (1+|x|)−κ.
The space Cχ is the space of continuous function ϕ on V such that ϕ(x)ω(x) is bounded
and we write |ϕ|χ = sup

x∈V
|ϕ(x)|ω(x).

For ε ∈]0, 1] we write :
[ϕ]ε,κ = sup

x 6=y
|x− y|−εη(x)η(y)|ϕ(x) − ϕ(y)|, ‖ϕ‖ = |ϕ|χ + [ϕ]ε,κ,

and we denote by Hχ,ε,κ the space of functions ϕ on V such that ‖ϕ‖ < ∞. We observe
that Cχ and Hχ,ε,κ are Banach spaces with respect to the norms |.|χ and ‖.‖ defined above.
Also Hχ,ε,κ ⊂ Cχ with compact injection if κ + ε < χ. We observe that the operator P
acts continuously on Cχ and Hχ,ε,κ. For a Lipchitz function f on V with non negative
real part we define the Fourier-Laplace operator P f by P fϕ(x) = P (ϕexp(−f)). In [11],
spectral gap properties for Fourier operators were studied for f(v) = i < x, v >, x ∈ V .
Here the calculations are analogous but f will be Lipchitz and bounded. We observe that
for functions fk(1 ≤ k ≤ n) and ϕ as above we have :

P f1P f2 · · ·P fnϕ(x) = E{ϕ(Xx
n)exp−

n
Σ
k=1

fk(X
x
k )}

12



Also we note that, for f bounded, with k(f) = sup
x 6=y

|x− y|−1|f(x)− f(y)|

|x− y|−ε|f(x)− f(y)| ≤ Inf
x 6=y

(2|f |∞|x− y|−ε, k(f)|x− y|1−ε) ≤ 2|f |∞ + k(f) := k1(f),

For u, v with non negative real parts we have |exp(−u)− exp(−v)| ≤ |u− v|. In particular,
for f as above, |exp − f(x)− exp− f(y)| ≤ k1(f)|x− y|ε.
It follows that multiplication by exp(−f) acts continuously on Cχ, Hχ,ε,κ, hence P

f is a
bounded operator on Cχ and Hχ,ε,κ. For m,γ > 0 we denote by O(m,γ) the set of operators
P f such that |f |∞ ≤ m and k(f) ≤ γ, hence k1(f) ≤ 2m + γ. For p ∈ N let Op(m,γ) be
the set of products of p elements in O(m,γ) and Ô(m,γ) = ∪

p>0
Op(m,γ). We will endow

Ô(m,γ) with the natural norm from End(Hχ,ε,κ). Then we have the

Theorem 3.1 With the above notations and 0 ≤ χ < 2κ < 2κ + ε < α, there exists
C(m,γ) ≥ 1 such that for any Q ∈ O(m,γ) the norm ‖Q‖ of Q on Hχ,ε,κ is bounded by
C(m,γ). Furthermore there exists r ∈ [0, 1[, p ∈ N, D > 0 such that for any Q ∈ Op(m,γ),
ϕ ∈ Hχ,ε,κ :

‖Qϕ‖ ≤ r‖ϕ‖+D|ϕ|χ.

In particular Ô(m,γ) is a bounded subset of End(Hχ,ε,κ) and C(m,γ), r,D depend only
of m,γ.

The proof depends on the two lemmas given below, and of calculations analogous to those
of [11] for Fourier operators.

Lemma 3.2 Ô(m,γ) is a bounded subset of End(Cχ).

Proof : Since Re(f) ≥ 0 we have for Q ∈ Oℓ(m,γ) with ℓ ∈ N , ϕ ∈ Cχ : |Qϕ|χ ≤
|P ℓ|ϕ||χ, hence it suffices to show that the set {P ℓ; ℓ ∈ N} is bounded in End(Cχ). We have
for ϕ ≥ 0, with A = P ℓ :

ω(x)Aϕ(x) = ω(x)E(ϕ(Xx
ℓ )) ≤ |ϕ|χE[ω(x)ω

−1(Xx
ℓ )].

If χ ≤ 1, using independence and the expression of Xx
ℓ we get

ω(x)Aϕ(x) ≤ |ϕ|χ(1 + E(|Sℓ|
χ) +

ℓ
Σ
1
E(|Sℓ

k+1|
χ | E(|Bk|

χ)),

hence sup
x∈V

ω(x)Aϕ(x) ≤ |ϕ|χ(1 + sup
ℓ≥1

E(|Sℓ|
χ) + E(|B1|

χ)
∞
Σ
1
E(|Sℓ|

χ).

Since χ < α, we have lim
ℓ→∞

E(|Sℓ|
χ)1/ℓ = k(χ) < 1, hence sup

x∈V
ω(x)|Aϕ(x)| is bounded by

Cχ|ϕ|χ with Cχ <∞.
If χ > 1, we use Minkowski inequality in Lχ and write :

ω(x)|Aϕ(x)| ≤ |ϕ|χ(1 + E(|Sℓ|
χ)1/χ +

ℓ
Σ
1
E{|Sℓ

k+1|
χ)1/χE(|Bk|

χ)1/χ}

As above we get
sup
x∈V

ω(x)|Aϕ(x)| ≤ Cχ|ϕ|χ with Cχ <∞. �
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Lemma 3.3 a) For β ∈ [0, α[ we have sup
n

E(|X0
n|

β) <∞.

b) For β1, β > 0 and β + β1 < α, we have lim
n→∞

(E(|Sn|
β1 |X0

n|
β))1/n < 1.

c) If χ+ ε < α the quantity C̃n = E{
n
Σ
1
|Si|

ε(1 + |Sn|+ |X0
n|)

χ} is bounded. Furthermore, if

2κ+ ε < α, D̃n = E{|Sn|
ε(1 + |Sn|+ |X0

n|)
2κ} satisfies lim

n→∞
(D̃n)

1/n < 1.

Proof : a) We write |X0
n|

β = |
n
Σ
1
Sn
k+1Bk|

β . If β ≤ 1 we get :

E(|X0
n|

β) ≤
n
Σ
1
E(|Sn

k+1|
β)E(|Bk|

β) = E(|B1|
β)

n−1
Σ
0

E(|Sj |
β)

Since lim
j→∞

(E(|Sj |
β))1/j < 1 if β < α we get sup

n≥0
E(|X0

n|
β) ≤ E(|B1|

β)
∞
Σ
0
E(|Sj|

β) <∞.

If β > 1, we use Minkowski’s inequality in Lβ as in the proof of Lemma 1.
b) Using Hölder’s inequality we have

E(|Sn|
β1 |X0

n|
β) ≤ E(|Sn|

β+β1)β1/β+β1E(|X0
n|

β+β1)β/β+β1 ,
hence the result follows from a) and the fact that lim

n→∞
E(|Sn|

β+β1)1/n < 1 since β+β1 < α.

c) The assertions follows from easy estimations as in b) and the conditions χ + ε < α,
2κ+ ε < α. �

Proof of Theorem 3.1 We start with a basic observation. For n > 0 we have

Xx
n = hn · · · h1x = Snx+

n
Σ
1
Sn
k+1Bk, hence |X

x
n −Xy

n| = |Sn(x− y)| ≤ |Sn||x− y|. It follows

for k(f) ≤ γ, x and y in V :

|f(Xx
n)− f(Xy

n)| ≤ γ|Sn||x− y|.

We write A = T1T2 · · ·Tn with Ti = P fi ∈ O(m,γ) 1 ≤ i ≤ n. We have using Markov
property,

Aϕ(x) −Aϕ(y) = In(x, y) + Jn(x, y) with

In(x, y) = E{[exp −
n
Σ
1
fi(X

x
i )− exp −

n
Σ
1
fi(X

y
i )]ϕ(X

x
n)}

Jn(x, y) = E{(exp−
n
Σ
1
fi(X

y
i ))(ϕ(X

x
n)− ϕ(Xy

n))}

Since Re(f) ≥ 0 we have :

|exp −
n
Σ
1
fi(X

x
i )− exp−

n
Σ
1
fi(X

y
i )| ≤

n
Σ
1
|fi(X

x
i )− fi(X

y
i )| ≤ (2m+ γ)

n
Σ
1
|Xx

i −Xy
i |

ε.

The basic observation gives :

In(x, y) ≤ (2m+ γ)|ϕ|χ|x− y|εCn(x) with Cn(x) = E{(
n
Σ
1
|Si|

ε(1 + |Xx
n |)

χ}

Jn(x, y) ≤ E{|ϕ(Xx
n)− ϕ(Xy

n)|} ≤ [ϕ]ε,κ|x− y|εDn(x, y),
with Dn(x, y) = E{|Sn|

ε(1 + |Xx
n |)

κ(1 + |Xy
n|)κ}.

Using symmetry of |Aϕ(x) − Aϕ(y)|, χ ≤ 2κ and |Xx
n | ≤ |Sn||x| + |X0

n|, we get [Aϕ]ε,κ ≤

(2m+ γ)|ϕ|χC̃n + [ϕ]ε,κD̃n where C̃n, D̃n are as in Lemma 3.3.
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Using Lemma 3.3 we can choose p ∈ N such that r = D̃p < 1, hence for A ∈ Op(m,γ),

[Aϕ]ε,κ ≤ k1(f)C̃p|ϕ|χ + r[ϕ]ε,κ.
Using Lemma 3.2 we see that there exists Cχ ≥ 1 such that |Aϕ|χ ≤ Cχ|ϕ|χ for A ∈

Ô(m,γ), ϕ ∈ Cχ. Then for A ∈ Op(m,γ), ϕ ∈ Hχ,ε,κ and p as above :

‖Aϕ‖ ≤ r‖ϕ‖+ (Cχ + 2m+ γ)C̃p|ϕ|χ = r‖ϕ‖+D|ϕ|χ with D > 0.
For the last assertion, assume A ∈ On(m,γ) and write n = pn1 + n0 with n1 ∈ N,
0 ≤ n0 < p. We have A = Q1 · · ·Qn1

R1 · · ·Rn0
with Qi ∈ Op(m,γ) (1 ≤ i ≤ p) and

Rj ∈ O(m,γ) (0 ≤ j ≤ n0), hence ‖Rj‖ ≤ Cχ(m,γ). Finally we get

‖Aϕ‖ ≤ (Cχ(m,γ)
n0

[
rn1‖ϕ‖ +D|ϕ|χ(r

n1−1 + Cχ

n1−2
Σ
0
rk)

]
,

‖A‖ ≤ Cχ(m,γ)
p
[
1 +D(1 +Cχ(1− r)−1)

]
:= C(m,γ), which gives the result. �

For χ ∈]0, α[ we consider the function W χ on V defined by W χ(x) = |x|χ. In Proposition
3.4 below we show that, due to the inequality 0 < k(χ) < 1 for χ ∈]0, α[, P satisfies a
drift condition (see [22]) with respect to W χ. The same inequality implies also a spectral
gap property in the Banach space Hχ,ε,κ considered in Proposition 3.4 below. For reader’s
convenience we recall the Doeblin-Fortet spectral gap theorem (see [18]).
Let (B, |.|) be a Banach space, (L, ‖.‖) another Banach space with a continuous injection
L → B. Let P be a bounded operator on B, which preserves L and satisfies the following
conditions

1) The sequence of operator norms |Pn| in is bounded.
2) The injection L→ B is compact.
3) There exists an integer k and r ∈ [0, 1[, D > 0 such that for any v in L :

‖P kv‖ ≤ r‖v‖+D|v|
4) If vn ∈ L is a sequence and v ∈ B are such that ‖vn‖ ≤ 1 and lim

n→∞
|v − vn| = 0,

there v ∈ L and ‖v‖ ≤ 1
Then in restriction to L, P is the commuting direct sum of a finite dimensional operator π
with unimodular spectral values and a bounded operator U with spectral radius r(U) < 1.
We observe that, frequently the norm ‖.‖ on L is given as a sum of a semi-norm [.] and the
norm |.| ; then the inequality in condition 3 can be replaced by

[P kv] ≤ r[v] +D|v|
such an inequality is called Doeblin-Fortet’s inequality.
Our substitute for the strong mixing property (see [29]) uses regularity of functions and is
the following.

Proposition 3.4 For any β ∈]0, 1] there exists ℓ ∈ N and b ≥ 0 such that P ℓW χ ≤
βW χ + b for n ≥ ℓ. In particular the sequence of norms |Pn|χ is bounded. Furthermore, if
0 < κ+ ε < χ < 2κ < 2κ+ ε < α, the injection of Hχ,ε,κ into Cχ is compact and on Hχ,ǫ,κ,
the Markov operator P satisfies the direct sum decomposition

P = ρ⊗ 1 + U
where r(U) < 1 and U(ρ⊗ 1) = (ρ⊗ 1)U = 0
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If α = 1 and 0 < ε < χ < 1, κ = 0, the same result is valid.

Proof : We verify successively the four above conditions. First we observe that for any
x ∈ V ,

|Xn −X0
n| ≤ |Sn||x|, |X

x
n | ≤ |X0

n|+ |Sn||x|.
If χ ≤ 1, it follows

E(|Xx
n |

χ) ≤ E(|X0
n|

χ) + E(|Sn|
χ)|x|χ.

Using the expression of X0
n and independence we get E(|X0

n|
χ) ≤ E(|B1|

χ)
∞
Σ
0
E|Sk|

χ). Since

χ < α, we have E(|X0
n|

χ) ≤ b <∞. On the other hand we have lim
n→∞

(E(|Sn|
χ))1/n = k(χ) <

1, hence for some ε > 0 k(χ) + ε < 1, and for n ≥ ℓ, |Sn|
χ ≤ β′ ≤ (k(χ) + ε)n. It follows,

for n ≥ ℓ :
PnW χ(x) = E(|Xx

n |
χ) ≤ β′W χ(x) + b

If χ > 1we use Minkowski inequality, hence :
E(|Xx

n |
χ) ≤ 2χ(E(|X0

n|
χ) + E(|Sn|

χ|x|χ)
As above, using k(χ) + ε < 1 and n ≥ ℓ we get

E(|Xx
n |

χ) ≤ 2χb+ 2χ(k(χ) + ε)n|x|χ, PnW χ ≤ β′′W χ + b′ with β′′ < 1, b′ <∞.
We take β = β′ or β′′ depending on χ ≤ 1 or χ > 1. This allow us now to show that |Pn|χ is
bounded. We observe that |ϕ(x)| ≤ (1+W (x))χ|ϕ|χ, hence the positivity of P and P1 = 1
implies for n ∈ N,

|Pnϕ|(x) ≤ |ϕ|χP
n(2χ + 2χW χ(x)) = |ϕ|χ(2

χ + 2χPnW χ(x)).

From above we get
|Pnϕ|(x) ≤ |ϕ|χ[2

χ + 2χ(b+ βW χ(x))].

Then the definition of |Pn|χ gives |Pn|χ ≤ 2χ(1 + b+ β), hence the boundedness of |Pn|χ.

In order to show that if κ + ε < χ, the injection of B0 = Hκ,ε,χ in B = Cχ is compact, we
use Ascoli argument and consider a large ball Bt with t > 0. We consider ϕn ∈ Hκ,ε,χ with
‖ϕn|| < 1. The definition on ‖ϕn‖ implies for any x, y ∈ Bt

|ϕn(x)| ≤ (1 + t)χ, |ϕn(x)− ϕn(y)| ≤ (1 + t)2κ|x− y|ε

Hence, the restrictions of ϕn to Bt are equicontinuous and we can find a convergent sub-
sequence ϕnk

. Using the diagonal procedure and a sequence ti with lim
i→∞

|ti| = ∞, we get a

convergent subsequence ϕnj
∈ Hκ,ε,χ with limit a continuous function ϕ on V . From above

we have |ϕnj
(x)− ϕnj

(0)| ≤ (1 + |x|)κ|x|ε. hence for some A,B > 0, since κ+ ε < χ

|ϕnj
(x)− ϕnj

(0)| ≤ (1 + |x|)κ+ε, |ϕ(x)| ≤ A+B(1 + |x|)χ.

It follows that ϕ ∈ Cχ. The above inequalities for ϕnj
imply

|(ϕnj
(x)− ϕnj

(0)| − (ϕ(x) − ϕ(0))| ≤ 2(1 + |x||κ+ε.

Then the convergence of ϕnj
to ϕ, implies with εnj

= |ϕnj
(0)− ϕ(0)|,
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|ϕnj
(x)− ϕ(x)| ≤ εnj

+ 2(1 + |x|)κ+ε, (1 + |x|)−χ|ϕnj
(x)− ϕ(x)| ≤ εnj

+ 2(1 + |x|)κ+ε−χ

with lim
j→∞

εnj
= 0. Also for t sufficiently large, and |x| ≥ t, since κ + ε < χ we have

(1 + |x|)κ+ε−χ ≤ εnj
. Furthermore, the uniform convergence of ϕnj

to, ϕ on Bt implies
lim
j→∞

(sup{|ϕnj
(x)− ϕ(x)| ; |x| ≤ t}) = 0. The convergence of |ϕnj

− ϕ|χ to zero follows.

The convergence of ϕnj
(x) to ϕ(x) for any x ∈ V and the defintion of ‖ϕnj

‖, implies
‖ϕ‖ ≤ lim

j→∞
‖ϕnj

‖ ≤ 1, hece ϕ ∈ L, hence condition 4 is satisfied.

With f = 0 in Theorem 3.1 we have P f = P . In particular there exists k > 0 such
that ‖P kϕ‖ ≤ r‖ϕ‖ + D|ϕ|χ if ϕ ∈ Hχ,ε,κ. Hence from [18], we know that the above
conditions imply that P is the direct sum of a finite rank operator and a bounded operator
U which satisfies r(U) < 1. Now it suffices to show that the equation Pϕ = zϕ with
|z| = 1, ϕ ∈ Hχ,ε,κ implies that ϕ is constant and z = 1. From the convergence in law
of Xx

n to ρ we know that for any x ∈ V , the sequence of measures Pn(x, .) converges

weakly to ρ. Also we have |ϕ| ∈ Hχ,ε,κ and the sequence n−1
n
Σ
1
P k|ϕ| converges to ρ(|ϕ|).

Since |ϕ(x)| = |znϕ(x)| ≤ Pn(x, |ϕ|) we get |ϕ(x)| ≤ ρ(|ϕ|), hence |ϕ| is bounded. Since
znϕ(x) = E(ϕ(Xx

n)) and X
x
n converges in law to ρ, we get lim

n→∞
znϕ(x) = ρ(ϕ). This implies

z = 1 and ϕ(x) = ρ(ϕ) for any x ∈ V .
For the last assertion, in view of the above, we have only to verify the contraction condition.
We write [ϕ]ε = sup

x 6=y
|x− y|−ε|ϕ(x) − ϕ(y)|. Then we have

E(|ϕ(Xx
n)− ϕ(Xy

n)|) ≤ [ϕ]ε|X
x
n −Xy

n|
ε ≤ [ϕ]ε|x− y|εE(|Sn|

ε).

Since ε < α, we have 0 < k(ε) < r < 1 for some r, hence [Pnϕ]ε ≤ r[ϕ]ε for n large. �

3.2 A mixing property with speed for the system (V Z+ , τ,Pρ).

In general, if the law of Bn has no density with respect to Lebesgue measure, the
operator P on L2(ρ) don’t satisfy spectral gap properties hence the stationary process is
not strongly mixing in the sense of [29], but Proposition 3.4 above shows that it is still
ergodic. Then, using Theorem 3.1 and Proposition 3.4, it is shown below that the system
(V Z+ , τ,Pρ) satisfies a multiple mixing condition with respect to Lipchitz functions. For a
very general framework covering mixing conditions with respect to regular functions, see [9].
For a study of extreme value properties for random walks on some classes of homogeneous
spaces, using L2-spectral gap methods, we refer to [20]. Since, using Proposition 2.4, the
stationary process (Xn)n∈N satisfies also anticlustering, we see below that extreme value
theory can be developed for (Xn)n∈N following the arguments of ([2] , [3]) which were
developed under conditions A(un), A

′(un), using continuous functions.
However it turns out that the mixing property A(un) of [2] for continuous functions can be
proved, as a consequence of the corresponding convergences involving Lipchitz functions
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and point process theory.
Let f be a bounded continuous function with non negative real part on [0, 1] × (V \ {0}).
Let rn be an integer valued sequence with lim

n→∞
rn = ∞, rn = o(n) and kn = [r−1

n n]. For

0 ≤ i ≤ n, 0 ≤ j ≤ n, x ∈ V \ {0}, ω ∈ V Z+ we write :

f
j
n(x) = f(n−1j, u−1

n x), fi,n(ω) = f
i
n(Xi), f

j
i,n(ω) = f

j
n(Xi).

In view of heavy notations, in some formulae we will write rn = r, kn = k, ℓn = ℓ. For f
Lipchitz we denote by k(f) the Lipchitz constant of f , and assume supp(f) ⊂ [0, 1] × B′

δ

with δ > 0. We consider below the quantity Eρ(exp−
n
Σ
i=1

fi,n) which is the Laplace functional

of the point process
n
Σ
i=1

εu−1
n Xi

. For its analysis we use the classical Bernstein method of

gaps, i.e we decompose the interval [1, n] into large subintervals separated by smaller but
still large ones.

Proposition 3.5 Let f be a compactly supported Lipchitz function on [0, 1] × (V \ {0})
with Ref ≥ 0. Assume that the sequence rn ∈ N satisfies rn = o(n), lim

n→∞
(logn)−1rn = ∞

and write |f |∞ = m,k(f) = γ, supp(f) ⊂ [0, 1]×B′
δ, δ > 0. Then, with the above notations

there exists C(δ,m, γ) <∞ such that,

In(f) := |Eρ{exp(−
n
Σ
1
fi,n)}−

kn
Π
j=1

Eρ{exp(−
jrn
Σ

(j−1)rn+1
f jrni,n )}| ≤ C(δ,m, γ)sup(r−1

n , n−1rn).

In particular with rn = [n1/2] we get sup(n−1rn, r
−1
n ) ≤ 2n−1/2

Proof : We write [0, n] = [0, knrn]∪]knrn, n], we decompose the interval [0, knrn] into
kn intervals Jj = [jrn, (j + 1)rn[ and we distinguish in Jj the subinterval of length ℓn
J ′
j = [(j + 1)rn − ℓn, (j + 1)rn[ ; the large integer ℓn will be specified below.

We write for f fixed, I(n) = |Eρ(exp−
n
Σ
1
fi,n)−

k
Π
j=1

Eρ(exp −
jr

Σ
i=(j−1)r+1

f jri,n|.

Then the triangular inequality gives I(n) ≤ I1(n) + I2(n) + I3(n) + I4(n) with

I1(n) = |Eρ(exp −
n
Σ
1
fi,n)− Eρ(exp −

kr
Σ
1
fi,n)|

I2(n) = |Eρ(exp −
kr
Σ
1
fi,n)− Eρ(exp−

k
Σ
j=1

jr−ℓ

Σ
i=(j−1)r+1

fi,n)|

I3(n) = |Eρ(exp −
k
Σ
j=1

jr−ℓ

Σ
i=(j−1)r+1

fi,n)−
k
Π
j=1

Eρ(exp−
r−ℓ
Σ
i=1

f jri,n)|

I4(n) = |
k
Π
j=1

Eρ(exp −
r−ℓ
Σ
i=1

f jri,n)−
k
Π
j=1

Eρ(exp −
r
Σ
i=1

f jri,n)|

where stationarity of Pρ has been used in the expressions of I3(n), I4(n). The quantities
I1, I2, I4 are boundary terms ; their estimation below is based only on the fact that rn
(resp ℓn) is small with respect to n (resp rn), the form of un, and f has non negative real
part. On the other hand estimation of I3 depends on Theorem 3.1 and Proposition 3.4.
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Using the inequality |exp(−x)− exp(−y)| ≤ |x− y| for x, y with non negative real parts we

get I1(n) ≤
n
Σ

kr+1
Eρ(fi,n). Let δ > 0 be as above such that f(t, x) = 0 for t ∈ [0, 1], |x| < δ,

and observe that n− kr < r. Then the above bound for I1(n) gives :
I1(n) ≤ rn|f |∞Pρ{u

−1
n |X1| ≥ δ}.

Since lim
n→∞

n−1rn = 0, the definition of un and Theorem 2.1 gives lim
n→∞

I1(n) = 0. Also

I1(n) is bounded by n−1rn, up to a coefficient depending only on m, δ. For I2(n), a similar
argument involving each interval Jj and the subinterval J ′

j gives :

I2(n) ≤ knℓn|f |∞Pρ{u
−1
n |X1| ≥ δ}.

Using knrn ≤ n we get lim
n→∞

n−1knℓn ≤ lim
n→∞

r−1
n ℓn i.e lim

n→∞
I2(n) = 0 if lim

n→∞
r−1
n ℓn = 0.

Also we can bound I2(n) by r
−1
n ℓn, up to a coefficient depending only on m, δ.

For I4(n), we use the inequality |
n
Π
1
zj −

n
Π
1
wj | ≤

n
Σ
1
|zj −wj| if |zj | and |wj | are less than 1.

Hence :

I4(n) ≤
k
Σ
j=1

|Eρ(exp−
r−ℓ
Σ
1
f jri,n)− Eρ(exp −

r
Σ
1
f jri,n)| ≤ |f |∞knℓnPρ{|X1| > δun}

As above we get lim
n→∞

I4(n) = 0 if lim
n→∞

r−1
n ℓn = 0, and a bound for I4(n) of the same form

as for I2(n).
The estimation of I3(n) is more delicate and depends on Lemma 3.6 below. We begin with
the inequality : I3(n) ≤ D(n) + I5(n) + I3(n− rn) where

D(n) = |Eρ(exp−
k
Σ
j=1

jr−ℓ

Σ
(j−1)r+1

fi,n)− Eρ(exp −
r−ℓ
Σ
i=1

fi,n)Eρ(exp−
k
Σ
j=2

jr−ℓ

Σ
(j−1)r+1

fi,n)|,

I5(n) = |(Eρ(exp −
r−ℓ
Σ
1
fi,n)Eρ(exp −

k
Σ
j=2

jr−ℓ

Σ
(j−1)r+1

fi,n) − Eρ(exp −
r−ℓ
Σ
1
f ri,n)Eρ(exp −

k
Σ
j=2

jr−ℓ

Σ
(j−1)r+1

fi,n)|,

I3(n− r) = |Eρ(exp−
k
Σ
j=2

jr−ℓ

Σ
(j−r)r+1

fi,n)−
k
Π
j=2

Eρ(exp−
r−ℓ
Σ
1
f jri,n)|.

Using as above the inequality |exp(−x)− exp(−y)| ≤ |x− y|, and Re(f) ≥ 0 we get :

I5(n) ≤ |Eρ(
r−ℓ
Σ
1
fi,n| − Eρ(

r−ℓ
Σ
1
f ri,n)|.

Since f is Lipchitz we have, for t′, t′′ in [0, 1], x ∈ V \{0} : |f(t′, x)−f(t′′, x)| ≤ k(f)|t′−t′′|.
Since |n−1i− n−1rn| ≤ n−1rn we have

I5(n) ≤ (rn − ℓn)n
−1rnk(f)Pρ{u

−1
n |X1| ≥ δ} ≤ r2nn

−1k(f)Pρ{|X1| ≥ δun}.
Using Theorem 2.1 we get I5(n) ≤ Cn−2r2n with a constant C depending on k(f) and δ.

In order to estimate D(n) we consider the family of operators Pi,n on the space Hχ,ε,κ

with χ, ε, κ as in Proposition 3.4, defined by Pi,nϕ(x) = E((exp − fi,n(ω))ϕ(X
x
i )) and the

function ψn(ω) defined by ψn(ω) = E

(
exp−

k
Σ
j=2

jr−ℓ

Σ
i=(j−1)r+1

f i+r
i,n /X

x
r

)
. Since, un ≥ 1, for

n large with m = |f |∞, γ = k(f), the functions fi,n satisfy |fi,n|∞ ≤ m, k(fi,n) ≤ γ, hence
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the operators Pi,n belong to O(m,γ) ⊂ EndHχ,ε,κ. With the above notations, the products

of operators Pi,n belong to Ô(m,γ). Also, using Proposition 3.4 we know that on Hχ,ε,κ

we can write P = ρ⊗ 1+U where U has spectral radius r(U) less then 1 and U commutes
with the projection ρ⊗ 1. We note also that for f as above and ψ ∈ Hχ,ε,κ we have :

|ρ(P fψ)| ≤ ρ(P |ψ|) = ρ(|ψ|) ≤ ‖ψ‖
Then Lemma 3.6 below implies the convergence of D(n) to zero with speed.

Now, in order to prove the proposition, we are left to show lim
n→∞

I3(n) = 0. We iterate kn

times the inequality : I3(n) ≤ D(n) + I5(n) + I3(n− rn). We get, using Lemma 3.6 :
I3(n) ≤ I3(n− rn) + C ′(f)(n−2r2n + rℓn1 (U)) ≤ C ′(f)(knr

ℓn
1 (U) + n−1rn),

with C ′(f) ≥ 1, depending on m,γ. Since rn = o(n), it remains to choose ℓn such that
ℓn = o(rn) with lim

n→∞
knr

ℓn
1 (U) = 0. These conditions can be written as

lim
n→∞

r−1
n ℓn = 0, lim

n→∞
r−1
n nrℓn1 (U) = 0.

The choice of ℓn with the above properties is possible since :
r1(U) < 1, lim

n→∞
n−1rn = 0 and lim

n→∞
(logn)−1rn = ∞.

One can take ℓn < rn with (logn)−1ℓn = ∞. The above estimations of I1, I2, I3, I4, I5 give
bounds by sup(n−1rn, r

−1
n ), up to a coefficient depending on δ,m, γ only. �

Lemma 3.6 There exists positive numbers C1(U), r1(U) ∈]r(U), 1[ and C(f) depending
only of m,γ such that, for n ∈ N and ℓn < rn, D(n), as above :

D(n) = |ρ(P1,n · · ·Prn−ℓn,nU
ℓnψn)| ≤ C1(U)C(f)(r1(U))ℓn .

Proof : We observe that Markov’s property implies E(e−f(Xx
1 )g(ω)) = P f (E(g(ω)))

where f is as above, g(ω) is a function depending only of ω throught the random variables
Xx

k (k ≥ 2) and E(g(ω)) is a function of x. We apply this property to Hχ,ε,κ with f = fi,n
(1 ≤ i ≤ r − ℓ) or f = 0, g = ψn as above, hence writing P ℓ = ρ⊗ 1 + U ℓ and

D(n) = |ρ(P1,n · · ·Pr−ℓ,nP
ℓψn| − ρ(P1,n · · ·Pr−ℓ,n1)ρ(ψn)| = |ρ(P1,n · · ·Pr−ℓ,nU

ℓψn)|,
Proposition 3.4 implies the existence of C1(U) <∞, r1(U) ∈]r(U), 1[ with

‖U ℓψn‖ ≤ C1(U)rℓ1(U)‖ψn‖.

On the other hand, since ψn is of the form ψn = A1 with A ∈ Ô(m,γ), we have, using Theo-
rem 3.1, ‖ψn‖ ≤ C(f) with C(f) depending onm,γ. It followsD(n) ≤ C1(U)C(f)(r1(U))ℓn .
�

4 Asymptotics of exceedances processes

4.1 Statements of results

Let E be a complete separable metric space which is locally compact, M+(E) the space
of positive Radon measures on E, Mp(E) its subspace of point measures, Cc

+(E) (resp
Lc
+(E)) the space of non negative and compactly supported continuous (resp Lipchitz)

functions. Then it is well known that the vague topology on M+(E) is given by a metric
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and then M+(E) becomes a complete separable metric space. Furthermore this metric is
constructed (see [28] Lemma 3.11, Proposition 3.17) using a countable family (hi)i∈I of
functions in Lc

+(E) and Mp(E) is a closed subset of M+(E). It follows that, in various
situations with respect to weak convergence of random measures, Cc

+(E) can be replaced
by Lc

+(E).
Below, assuming condition (H), we describe the asymptotics of the space-time exceedances

process Nn =
n
Σ
1
ε(n−1i,u−1

n Xi)
under the probability Pρ and we state a few corollaries. The

results are formally analogous to results for stationary processes proved in ([2], [3]) under
general conditions. Here however, corresponding conditions have been proved in sections
2, 3 for the affine random walk Xn ; hence the results described below are new for affine
random walks.
It is convenient to express the Laplace formula below in terms of the renewal point process

πωv =
∞
Σ
0
εSn(ω)v of the linear random walk Sn(ω)v.

We denote by Σ
i≥0

εT δ
i
the homogeneous point Poisson process on [0, 1] with intensity p(δ) =

θδ−α and by Σ
j>0

εZij
(i ≥ 0) an i.i.d collection of copies of the cluster process C = Σ

j>0
εZj

described in Proposition 2.5, independent of Σ
i≥0

εT δ
i
. Since we have |Xx

n −X
y
n| ≤ |Sn||x− y|

and lim
n→∞

|Sn| = 0, P− a.e it is possible to replace Pρ by P and Xn by Xx
n with x fixed, in

the statements. We give the corresponding proof for the logarithm law only.

Theorem 4.1 The sequence of normalized space-time point processes Nn =
n
Σ
i=1

ε(n−1i,u−1
n Xi)

on the space [0, 1] × (V \ {0}) converges weakly to a point process N . For any δ > 0, the
law of the restriction of N to [0, 1] × B′

δ is the same as the law of the point process on
[0, 1] ×B′

δ given by :

Σ
i≥0

Σ
j>0

ε(T δ
i ,δZij)

1{|Zij |>1}.

If η denotes the law of N and f ∈ Cc
+([0, 1] ×B′

δ), then logψη(f) is equal to

θδ−α

∫ 1

0
EΛ1

(1− exp− Σ
j>0

f(t, δZj))dt = c−1

∫ 1

0
EΛ[(exp ft(v) − 1)exp − πωv (ft)]dt

where ft(x) = f(t, x)

Assuming the mixing and anticlustering conditions for continuous functions, this statement
was proved in [3]. Here we will use Propositions 2.5, 3.4 and point process theory.
Now as a consequence of Theorem 4.1, the mixing property stated in Proposition 3.5 for
Lipchitz functions can be extended to compactly supported continuous functions. Then,
in particular, the mixing condition A(un) of [2] is valid here and the basic conditions of
extreme value theory (see [8]) are satisfied in our context.
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Corollary 4.2 With the notation of Proposition 3.5, assume f is a continuous compactly
supported function on [0, 1] × (V \ {0}). Then we have the convergence lim

n→∞
In(f) = 0.

Since the space exceedances process N s
n =

n
Σ
i=1

εu−1
n Xi

is the projection of Nn on V \ {0} we

have the

Corollary 4.3 The normalized space exceedance process N s
n converges weakly to a point

process N s. The law of the restriction of N s to B′
δ is the same as the law of the point

process

Q
δ
=

T δ

Σ
i=0

∞
Σ
j=1

εδZij
1{|Zij|>1}

where T δ is a Poisson random variable with mean p(δ) = θδ−α.
The Laplace functional of N s is given by

exp c−1EΛ[(exp f(v)− 1)exp − πωv (f)].

Assuming the mixing and anticlustering conditions for continuous functions, this statement
was proved in [2], using the formula for Laplace functionals in Proposition 2.5.

We consider the N-valued random variable ζ = πωv (B
′
1) and we write θk = QΛ1

{ζ = k} for
k ≥ 1 ; in particular we have θ1 = θ, θk ≥ θk+1.

Corollary 4.4 The sequence of normalized time exceedances process N t
n =

n
Σ
i=1

εn−1i1{|Xi|>un}

converges weakly (n→ ∞) to the homogeneous compound Poisson process N t on [0, 1] with
intensity θ, and cluster probabilities νk(k ≥ 1) where νk = θ−1(θk − θk+1).

Under special hypotheses, including density of the law of Bn with respect to Lebesgue
measure, this statement was proved in [21].

Fréchet’s law for Mx
n = sup{|Xx

k |; 1 ≤ k ≤ n} is a simple consequence of Corollary 4.4 as
follows.

Corollary 4.5 For any x ∈ V and t > 0 we have the convergence in law of u−1
n Mx

n to
Fréchet’s law Φθ

α,
lim
n→∞

P{u−1
n Mx

n < t} = exp− θt−α = Φθ
α([0, t])

with θ = QΛ1
{sup
n≥1

|Sn(ω)v| ≤ 1}. Furthermore the normalized law of the entrance time τxt

of |Xx
n | in [t,∞[ converges to the exponential law with parameter cθ, i.e

lim
t→∞

P{t−ατxt > k} = exp− cθk.
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It was observed in [26] that Sullivan’s logarithm law for excursions of geodesics around the
cusps of hyperbolic manifolds (see [30]), in the case of the modular surface, is a consequence
of Fréchet’s law for the continuous fraction expansion of a real number uniformly distributed
in [0, 1](see[25]). For more detailed extreme value properties in the context of pointwise
convergence, we refer to ([10], p 168-179). Here, in this vein, we have the following logarithm
law.

Corollary 4.6 For any x ∈ V , we have the P− a.e convergence

lim sup
n→∞

log|Xx
n |

logn
= lim

n→∞

logMx
n

logn
=

1

α
.

We observe that a logarithm law and a modified Fréchet law have been obtained in [20] for
random walks on some homogeneous spaces of arithmetic character, using L2-spectral gap
methods.

4.2 Proofs of point process convergences

The proof of Theorem 4.1 will follow of three lemmas.
We denote by (Xk,j)k∈N an i.i.d sequence of copies of the process (Xj)j∈N and we write

Ñk,n =
rn
Σ
j=1

δ(n−1krn,u
−1
n Xk,j)

, Ñn =
kn
Σ
k=1

Ñk,n,

where rn, kn are as in section 2. For kn > 0 we denote by E
(kn)
ρ the expectation correspon-

ding to the product probability of kn copies of Pρ.
If f is a non negative and compactly supported Lipchitz function on [0, 1] × V \ {0}, we
have, using independence :

E
(kn)
ρ (exp − Ñn(f)) =

kn
Π
k=1

Eρ(exp−
rn
Σ
j=1

f(n−1k, u−1
n Xk,j)).

This relation and the multiple mixing property in Proposition 3.5 show that, on functions
f as above, the asymptotic behaviour of the Laplace functionals of Nn under Eρ, and Ñn

under E
(kn)
ρ , are the same. We begin by considering the convergence of E

(kn)
ρ (exp− Ñn(f)).

Lemma 4.7 below is a general statement giving the weak convergence of a sequence of
random measures, using only the convergence of the values of the Laplace functionals on
Lipchitz functions.
Lemmas 4.8, 4.9 are reformulations of part of the proof of Theorem 2.3 in [3], which was
considered in a general setting.

Lemma 4.7 Let E be a separable metric space endowed with a probability m and assume
E to be locally compact. Let νn be a sequence of random measures on E and, for f non
negative Lipchitz and compactly supported, assume that the sequence of Laplace functionals
ψνn(f) converges to ψ(f) and ψ(sf) is continuous at s = 0, then the sequence νn converges
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weakly. A random measure ν = (νx)x∈E on (E,m) is well defined by the values of its
Laplace functionals ψν(f) =

∫
exp− νx(f)dm(x) with f as above.

Proof : We begin by the last assertion and we use the family of Lipchitz functions (hi)i∈I
considered in the above subsection. If the random measures ν, ν ′ satisfy ψν(f) = ψν′(f) for

any f ∈ Lc
+(E) and λ1, λ2, · · · , λp are non negative numbers then we have ψν(

i=p

Σ
i=1

λihi) =

ψν′(
i=p

Σ
i=1

λihi). It follows that the random vectors (ν(h1), · · · , ν(hp)) and (ν ′(h1), · · · , ν
′(hp))

have the same Laplace transforms, hence the same laws. Furthermore, for rational numbers
rj < r′j the finite intersections of sets of the form {µ ∈ M+(E), µ(hi) ∈]rj , r

′
j[)} form a

countable basic B of open subsets in M+(E) stable under finite intersection, hence a π-
system (see [28]). Then from above, ν, ν ′ are equal on B ; since the σ-field generated by B
coincide with the Borel field, one has ν = ν ′.
We observe that, if a sequence of random measures νn is such that for any f ∈ L+(E) the
sequence of real random variables νn(f) is tight, then the sequence νn itself is tight. This
follows for a corresponding result in [28] for f ∈ Cc

+(E) since any such f is dominated by
an element of Lc

+(E).
Assuming the convergence of ψνn(f) to ψν(f) for any f ∈ Lc

+(E) and the continuity
at s = 0 of ψν(sf), we get that ψν(sf) is the Laplace transform of the real random
variable ν(f), and the convergence of the sequence νn(f) to ν(f) for any f ∈ Lc

+(E).
From above and the continuity hypothesis of ψ(sf) at s = 0, we get that the sequence
νn is tight. If νni

is a subsequence converging weakly to the random measure ν we have
lim
n→∞

ψνn(f) = lim
j→∞

ψνnj
(f) for any f ∈ Lc

+(E). Since such a limit is independent of the

subsequence, we get from above that two possible weak limits of random measures are
equal. Hence the sequence νn converges weakly to ν. �

Lemma 4.8 Let f be a non negative and compactly supported continuous function on
[0, 1]×B′

δ and let Σ
j>0

εZj
be the cluster process for the affine random walk (Xk)k∈N. Then :

a) lim
n→∞

[logE(kn)
ρ (exp − Ñn(f)) +

kn
Σ
1
(1− Eρ(exp − Ñk,n(f)))] = 0.

b) lim
n→∞

kn
Σ
1
(1− Eρ(exp− Ñk,n(f))) = θδ−α

∫ 1

0
EΛ1

(1− exp− Σ
j>0

f(t, δZj))dt.

Lemma 4.9 Let Σ
i≥0

εT δ
i
be a homogeneous Poisson process of intensity p(δ) > 0 on [0, 1],

which is independent of the sequence of cluster processes
∞
Σ
j>0

εZij
.

Then for any non negative and compactly supported continuous function f on [0, 1] × B′
δ,

the Laplace functional of the point process Qδ = Σ
i≥0

Σ
j>0

ε(T δ
i ,δZij)

1{|Zij |>1} restricted to

[0, 1] ×B′
δ is equal to :

24



ψδ(f) = exp− p(δ)
∫ 1
0 EΛ1

(1− exp−
∞
Σ
1
f(t, δZj))dt

Proof of Theorem 4.1 Let f be a compactly supported Lipchitz function on [0, 1]×
B′

δ.
Using Proposition 3.5, lemmas 4.8 implies that, on non-negative compactly supported
Lipchitz functions on [0, 1] × B′

δ, the Laplace functionals of Nn and Ñn have the same
limit, namely

ψδ(f) = exp− p(δ)
∫ 1
0 EΛ1

(1− exp−
∞
Σ
1
f(t, δZj))dt.

We observe that, for fixed f as above, the function s→ ψδ(sf) is continuous at s = 0. Since
the function s→ ψn(sf) = Eρ(exp− sNn(f)) is the Laplace transform of the non negative
random variable Nn(f), the continuity theorem for Laplace transforms implies that the
sequence Nn(f) converges in law to some random variable. Since this is valid for any f
as above, Lemma 4.7 implies that the sequence of point processes Nn itself is tight. Since
moreover the sequence of Laplace functionals ψn(f) converges to ψ

δ(f), Lemma 4.7 implies
that there exists a unique point process N on [0, 1]× (V \ {0}) such that the sequence Nn

converges weakly to N . As stated in Lemmas 4.8, 4.9 the restriction of N to [0, 1] ×B′
δ is

given by the point process formula in the theorem. Lemma 4.9 implies that the Laplace
functional of N on the function f ∈ Cc

+([0, 1] ×B′
δ is equal to

ψδ(f) = exp− θδ−α
∫ 1
0 EΛ1

[1− exp− Σ
j>0

f(t, δZj)]dt.

The first part of the formula giving the Laplace functional of N on f follows. The second
part is a consequence of the last formula in Proposition 2.5 applied to the function v →
f(t, δv) and of the α-homogeneity of Λ. �

Proof of Theorem 4.2 The first term Eρ(exp −
n
Σ
1
fi,n) in In(f) is the value of

the Laplace functional of Nn on the continuous function f . Hence Theorem 4.1 implies
its convergence to the Laplace functional of N on f . The same remark is valid for the
second term in In(f), if Nn is replaced by Ñn ; the limit of Ñn is also N , using Lemma
4.7 and Proposition 3.5. Then for any f in Cc

+([0, 1] × (V \ {0}) we have lim
n→∞

In(f) =

lim
n→∞

|Eρ[exp −Nn(f)− E(kn)
ρ (exp− Ñn(f)]| = 0 �

Proof of Corollary 4.3 The point process N s
n is the projection of Nn on V \ {0}.

Since [0, 1] is compact and the projection is continuous, the continuous mapping theorem
implies the required convergence, using the first part of Theorem 4.1. The formula for the
Laplace functional of N s is a direct consequence of the second part in Theorem 4.1 applied
to a function independent of t. �

Proof of Corollary 4.4 For ϕ ∈ C+
c ([0, 1]) we have N t

n(ϕ) = Nn(ϕ1B′

1
). Since the

discontinuity set of 1B′

1
is Λ-negligible, Theorem 4.1 gives the convergence of N t

n(ϕ) to

N t(ϕ). With f = ϕ ⊗ 1B′

1
, the formula for the Laplace functional ψη(f) of N gives the
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Laplace functional ψηt(ϕ) of N
t in the logarithmic form

log ψηt(ϕ) = −θ
∫ 1
0 EΛ1

[1− ϕ(t)γ]dt.
The expression of the generating function of the random variable γ = Σ

j≥1
1B′

1
(Zj) follows

from the last formula in Proposition 2.5 :
∞
Σ
1
e−skνk = 1− (es − 1)θ−1EΛ1

[exp− s πωv (B
′
1)].

Hence νk = θ−1(θk − θk+1)
In view of Theorem 4.1, the point process N t can be written as N t = Σ

k≥0
γkεT 1

k
, where

the random variables γk are i.i.d with the same law as γ, hence N t coincides with the
compound Poisson process described in the statement. �

Proof of Corollary 4.5 Replacing un by δun (δ > 0) in Corollary 4.4, we see that the

point process on [0, 1] given by N t
n,δ =

n
Σ
k=1

εn−1k1{|Xk|>δun} converges to N t
δ = Σ

k≥0
γkεT δ

k

where Σ
k≥0

εT δ
k
is the Poisson process on [0, 1] with intensity θ δ−α and the γk are i.i.d

random variables as in the proof of Corollary 4.4. It follows that for any δ > 0,
lim
n→∞

Pρ{N
t
n,δ(1) = 0} = exp− θ δ−α.

Since Pρ{N
t
n,δ(1) = 0} = Pρ{Mn ≤ unδ}, the convergence of u−1

n Mn to Fréchet’s law
follows.
If Mn is replaced by Mx

n (x ∈ V ), the same proof as the one given below for the logarithm
law remains valid. The last assertion in the corollary is a direct consequence of Fréchet’s
law. �

4.3 Proofs of logarithm’s law

The proof of the logarithm’s law is based on Fréchet’s law and depends on two lemmas
as follows.

Lemma 4.10 We have Pρ − a.e :

lim sup
n→∞

log|Xn|

logn
≤ lim sup

n→∞

logMn

logn
≤

1

α
.

Proof : Let ε > 0, An(ε) = {|Xn| ≥ n1/α+ε} ⊂ V Z+ , A′
n(ε) = V Z+ \An(ε). Stationarity

of Xn implies Pρ(An(ε)) = Pρ{|X0| > n1/α+ε}. Since lim
n→∞

n1+αεℓα(n1/α+ε,∞) = 1, we

have
∞
Σ
1
Pρ{An(ε)} <∞. Then Borel-Cantelli’s lemma implies that Pρ{

∞
∪
1

∩
j≥n

A′
j(ε)} = 1 i.e

Pρ − a.e there exists n0(ω) such that for n ≥ n0(ω), |Xn(ω)| ≤ n1/α+ε.

Then we deduce that Pρ − a.e : lim sup
n→∞

logMn

logn
≤

1

α
+ ε. Since ε is arbitrary we get :

lim sup
n→∞

logMn

logn
≤

1

α
. �
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Lemma 4.11 We have Pρ − a.e : lim sup
n→∞

log|Xn|

logn
≥

1

α
.

Proof : Let ε ∈]0, 1/α[, B(ε) =

{
lim sup
n→∞

log|Xn|

logn
≤

1

α
− ε

}
, Bn(ε) =

{
sup
j≥n

log|Xj |

logj
≤

1

α
−
ε

2

}
.

The sequenceBn(ε) is increasing andB(ε) ⊂
∞
∪
2
Bn(ε). We are going to show Pρ{Bn(ε)} = 0.

For p ≥ n ≥ 2, p ∈ N, we define Bn,p(ε) = { sup
n≤j≤p

|Xj | ≤ p1/α−ε/2}, hence Bn(ε) ⊂

Bn,p(ε). Using stationarity we get Pρ{Bn,p(ε)} = Pρ{p
−1/α−ε/2Mp−n+1 ≤ p−ε/2}. Also,

using Corollary 4.3, we have lim sup
n→∞t≥0

|Pρ{n
−1/αMn ≤ t} − e−cθt−α

| = 0 which implies

lim
p→∞

Pρ{Bn,p(ε)} = 0.

Since the function p→ Bn,p(ε) is decreasing and Bn(ε) = ∩
p≥2

Bn,p(ε) we have for n ≥ 2 :

Pρ{Bn(ε)} = lim
p→∞

Pρ{Bn,p(ε)} = 0, i.e Pρ{B(ε)} = 0.

We see that Pρ − a.e, lim sup
n→∞

log|Xn|

logn
≥

1

α
− ε, and, since ε is arbitrary we conclude :

lim sup
n→∞

log|Xn|

logn
≥

1

α
. �

Proof of Corollary 4.6 From Lemmas 4.10, 4.11 we have Pρ − a.e,

lim sup
n→∞

logMn

logn
= lim sup

n→∞

log|Xn|

logn
=

1

α
.

Hence the definition of Mn implies lim
n→∞

logMn

logn
=

1

α
.

Hence, for a set of ρ⊗ P- probability 1 in V ×AN we have

1
α = lim sup

n→∞

log|Xn|(ω)

logn
= lim

n→∞

logMn

logn
,

hence for a subsequence nk(ω),
1
α = lim

k→∞

log|Xnk
(ω)|

lognk
.

On the other hand we have for any x ∈ V : |Xn − Xx
n | ≤ |Sn||X0 − x| and P − a.e :

lim
n→∞

|Sn| = 0.

Also |log|Xn|− log|X
x
n || ≤ |Sn||X0−x|sup(|Xn|

−1, |Xx
n |

−1), hence for any x ∈ V , Pρ−a.e :
lim
n→∞

|log|Xn| − log|Xx
n || = 0.

It follows lim
k→∞

log|Xnk
|

lognk
=

1

α
, and P− a.e, lim sup

n→∞

log|Xx
n |

logn
≥

1

α
.

A similar argument shows that P− a.e, lim sup
n→∞

log|Xx
n |

logn
≤

1

α
.

Furthermore, for any n ≥ 1, x ∈ V :
|Mx

n −Mn| ≤ sup
<

{|Sk|; 1 ≤ k ≤ n}|x−X0|
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where the sequence on the right is P − a.e bounded. Then, an argument as above shows

that, P− a.e : lim
n→∞

logMn

logn
=

1

α
. �

5 Convergence to stable laws

The convergence to stable laws of the normalized sums
n
Σ
i=1

Xi under hypothesis (H) was

shown in ([11], [15]) where explicit formulae for the corresponding characteristic functions
were given. It was observed there that these formulae involved the asymptotic tail Λ of

ρ, as well as the renewal point process πωv =
∞
Σ
0
εSi(ω)v . A similar situation ocurred in the

dynamical context of [12], where the limiting law was expressed in terms of an induced

transformation. We observe that the connection between stable laws for
n
Σ
i=1

Xi, where

(Xi)i∈N is a stationary process, and point process theory had been already developed in
[7] in the context of sample autocorrelation functions. For a recent analysis of the involved
properties in this setting see [23]. Here we give new proofs of the results given in ([11],
[15]), following the point process approach. In particular we get also a direct proof of the

convergence for the related space point process N s =
n
Σ
i=1

εu−1
n Xi

, via the analysis of Laplace

functionals.

5.1 On the space exceedances process

We give here a direct proof of the convergence of N s
n and we deduce the convergence of the

characteristic function for the random variable N s
n(f), for f compactly supported.

Theorem 5.1 Let f be a complex valued compactly supported Lipchitz function on V \{0}
which satisfies Re(f) ≥ 0. Then we have

lim
n→∞

Eρ(exp −N s
n(f)) = exp c−1EΛ[(exp f(v)− 1)exp − πωv (f)].

The proof depends on two lemmas where notations explained above are used. For i ≤ j we

write Cn(i, j) = exp−
j

Σ
k=i

f(u−1
n Xk)− 1, and we note the equality

Cn(1, rn) =
rn
Σ
i=1

[Cn(i, rn)− Cn(i+ 1, rn)]

where Cn(rn + 1, rn) = 0 and rn is a sequence as in Proposition 2.5. We note also that
|Cn(i, j)| ≤ 2, |Cn(i, j) − Cn(i+ 1, j)| ≤ 2.

We are going to compare Cn(1, rn) to Cn,k(1, rn) where

Cn,k(1, rn) =
rn
Σ
i=1

[Cn(i, i + k)− Cn(i+ 1, i + k)],

we write ∆n,k for their difference, εn = rnPρ{|X| > un} and supp(f) ⊂ B′
δ with δ > 0.
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Then we have the

Lemma 5.2 lim
k→∞

lim sup
n→∞

ε−1
n Eρ(|∆n,k|) = 0.

Proof : We can assume that rn > k. We observe that
1 + Cn(i, rn) = (1 + Cn(i+ 1, rn))exp − f(u−1

n Xi).

Also Cn(i+ 1, rn)− Cn(i+ 1, i+ k) = (exp−
i+k
Σ

j=i+1
f(Xj))(exp −

rn
Σ

j=i+k+1
f(Xj)− 1).

Hence we have

∆n,k =
rn
Σ
i=1

(exp − f(u−1
n Xi)− 1)[Cn(i+ 1, rn)− Cn(i+ 1, i+ k)] = ∆′

n,k +∆′′
n,k

with ∆′
n,k (resp ∆′′

n,k) is the above sum with index i restricted to [1, rn−k] (resp ]rn−k, rn]).
As observed above the expression under Σ is bounded by 4 and vanishes unless |Xi| > δun
for some i ∈ [1, rn − k] and M rn

k+i+1 > δun. Then we get using stationary,
Eρ(|∆

′
n,k|) ≤ 4rnPρ{|X0| > δun,M

rn
k+1 > δun}.

Since the process (Xk)k∈Z+
satisfies anticlustering, it follows lim

k→∞
lim sup
n→∞

ε−1
n Eρ(|∆

′
n,k|) =

0. Also, stationarity implies

Eρ(|∆
′′
n,k|) ≤ 4

rn
Σ

i=rn−k+1
Pρ{|Xi| > δun} = 4kPρ{|X| > δun}.

Since ρ is homogeneous at infinity and lim
n→∞

r−1
n k = 0, we get lim

k→∞
lim sup
n→∞

ε−1
n Eρ(|∆

′′
n,k|) =

0, hence the required assertion. �

Lemma 5.3 We have the following convergences.

1) For any k ≥ 1 lim
n→∞

knEρ[Cn,k(1, rn)] = c−1EΛ[(expf(v)− 1)exp −
k
Σ
i=0

f(Siv)]

2) lim
k→∞

lim sup
n→∞

knEρ(|∆n,k|) = 0

Proof : 1) Using stationarity we have
knEρ[Cn,k(1, rn)] = knrnEρ[Cn(1, k + 1)− Cn(2, k + 1)] =

knrnEρ[exp −
k
Σ
j=0

f(u−1
n Xj)− exp−

k
Σ
j=1

f(u−1
n Xj)].

The function f (k) on (V \ {0})k+1 given by

f (k)(x0, x1 · · · , xk) = exp−
k
Σ
j=0

f(xj)− exp−
k
Σ
j=1

f(xj) = (exp f(x0)− 1)exp −
k
Σ
j=0

f(xj)

is bounded, uniformly continuous on (B′
δ)

k+1 and lim
n→∞

n−1knrn = 1. Hence, the homoge-

neity at infinity of ρ, the conditional convergence of u−1
n Xj to SjX0 and the definition of

Λ imply

lim
n→∞

knEρ[Cn,k(1, rn)] = c−1EΛ[(exp f(v)− 1)exp −
k
Σ
j=0

f(Sjv)].
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2) We have the equality, knEρ(|∆n,k|) = knrnPρ{|X| > un}ε
−1
n Eρ(|∆n,k|).

Then, using Lemma 5.2, the relation lim
n→∞

n−1knrn = 1 and the homogeneity at infinity of

ρ, assertion 2 follows. �

Proof of Theorem 5.1 With rn as in Proposition 5.3 above, the multiple mixing
property gives

lim
n→∞

[Eρ(exp −N s
n(f))− (Eρ(1 + Cn(1, rn)))

kn ] = 0,

hence it suffices to study the sequence (1+Eρ(Cn(1, rn)))
kn . Since Ref ≥ 0 and supp(f) ⊂

B′
δ we have

Eρ(|Cn(1, rn)|) ≤ Eρ(|1−exp−
rn
Σ
i=1

f(u−1
n Xi)|) ≤ Eρ(

rn
Σ
i=1

|f(u−1
n Xi)|) ≤ rn|f |∞Pρ{|X0| > δun}.

The last inequality implies the L1-convergence to zero of
rn
Σ
i=1

f(u−1
n Xi). Then the first in

equality gives lim
n→∞

Eρ(|Cn(1, rn)|) = 0.

It follows that the behaviour of the sequence [1+Eρ(Cn(1, rn))]
kn for n large is determined

by the behaviour of knEρ(Cn(1, rn)). We have for k ≥ 1,

knEρ(Cn(1, rn)) = knEρ(Cn,k(1, rn)) + knEρ(∆n,k).

Since supp(f) ⊂ B′
δ and lim

j→∞
|Sjv| = 0 Q − a.e, the series

∞
Σ
j=1

f(Sjv) converges Q − a.e.

Since Ref ≥ 0, it follows lim
k→∞

E(exp−
k
Σ
j=1

f(Sjv)) = exp− πωv (f).

Then dominated convergence and Lemma 5.3 imply

lim
k→∞

lim
n→∞

knEρ(Cn,k(1, rn)) = EΛ[(exp f(v)− 1)exp − πωv (f)].

This equality and the second assertion in Lemma 5.3 give the result. �

Corollary 5.4 Let m > 0, δ > 0, γ ≥ 0, and let f be a Rm-valued continuous function on
V \ {0} which satisfies the conditions

1) f is locally Lipchitz
2) f(v) = 0 for |v| < δ
3) sup

v∈V
|v|−γ |f(v)| = cγ <∞

Then we have , for any u ∈ Rm,
lim
n→∞

Eρ(exp − i < u,N s
n(f) >) = exp c−1EΛ[(exp i < u, f(v) > −1)exp− i < u, πωv (f) >]

Proof : We consider the random variable Yn = N s
n(f). For a ≥ 1, let θa be the function

from V \ {0} to [0, 1] defined by

θa(v) = 1 for |v| ≤ a, θa(v) = a+ 1− |v| for |v| ∈ [a, a+ 1], θa(v) = 0 for |v| ≥ a+ 1.
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Then θa is Lipchitz, hence fθa is Lipchitz and compactly supported. Then the theorem
gives,
lim
n→∞

Eρ(exp i < u,N s
n(fθa) >) = exp c−1EΛ[(exp − i < u, fθa(v) > −1)exp πωv (i <

u, fθa(v) >)] = Φa(u)
Since Λ(B′

δ) <∞, the function u→ Φa(u) is continuous on Rm. It follows that the sequence
of random variables Y a

n = N s
n(fθa) converges in law to the random variable Y a

∞ which has
characteristic function Φa. On the other hand we have lim

a→∞
θa = 1, hence by dominated

convergence we get,

lim
a→∞

Φa(u) = exp c−1EΛ[(exp− i < u, f(v) > −1)exp i < u, πωv (f) >] = Φ(u).

We recall that, for v fixed, the series
∞
Σ
j=0

f(Sjv) converges Q − a.e to a finite sum, hence

the function u→ Φ(u) is continuous. In other words, Y a
∞ converges in law (a→ ∞) to the

random variable Y with characteristic function Φ.
Also for, z, z′ ∈ C with Rez ≤ 0, Rez′ ≤ 0 we have |exp z − exp z′| ≤ |z − z′|. If we choose
β ∈]0, 1[, γ > 0 such that βγ ∈]0, α[, then we have for any ε > 0,

Pρ{|Y
a
n − Yn| > ε} ≤ ε−βEρ[(

n
Σ
j=1

(f(u−1
n Xj)1{|Xj |>aun})

β],

Pρ{|Y
a
n − Yn| > ε} ≤ ε−βcβγnEρ[|u

−1
n X|βγ1{|X|>aun})].

Using Corollary 2.2, withW (x) = |x| it follows lim sup
n→∞

Pρ{|Y
a
n −Yn| > ε} ≤ ε−βcβγΛ(W

βγ1{|W |>a}).

Since 0 < βγ < α, we get lim
a→∞

lim sup
n→∞

Pρ{|Y
a
n − Yn| > ε} = 0

Since ε > 0 is arbitrary, the convergence in law of Yn to the random variable Y follows,
hence the corollary. �

In order to prepare the study of limits for the sums Tn =
n
Σ
j=1

Xj if 0 < α < 2, we write for

a > 0 : ψa(v) = v(1− ϕa(v) where
ϕa(v) = 1 if |v| ≤ a, ϕa(v) = 2− a−1|v| if a ≤ |v| ≤ 2ε, ϕa(v) = 0 if |v| > 2a.

Hence 0 ≤ ϕa| ≤ 1[0,2a] and k(ϕa) ≤ a−1. Then a consequence of Corollary 5.4 with m = d,
γ = 1 is the following

Corollary 5.5 The sequence of V -valued random variables N s
n(ψa) converges in law to the

random variable with characteristic function
exp c−1EΛ[(exp − i < u, ψa(v) > −1)exp i < u, πωv (ψa) >].

5.2 Convergence to stable laws for Tn =
n

Σ
i=1

Xi

In this subsection we write ψ(v) = v and we study the convergence of N s
n(ψ) = u−1

n Tn
towards a stable law, extending the weak convergence ofNn studied in the above subsection.
We need here the last part of the spectral gap result in Proposition 3.4 for the operator P .
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We have the

Theorem 5.6 Let 0 < α < 2. Then there exists a sequence dn in V such that the sequence
of random variables n−1/α(Tn − dn) converges in law to a non degenerate stable law.
If 0 < α < 1, we have dn = 0.
If 1 < α < 2, we have dn = nEρ(X)
If α = 1, we have dn = n Eρ[Xϕ1(X)].

Explicit expressions for the characteristic functions of the limits are given in the proofs.
Non degeneracy of the limit laws are proved in [11] and [15]. For the proofs, we follow
the approach of [7] and we need two lemmas corresponding to the cases 0 < α < 1 and
1 ≤ α < 2.
In the proofs below we use the normalization un = (cn)1/α instead of n1/α as in the theorem.

Lemma 5.7 Assume 0 < α < 1. Then for any u ∈ V and with the notation of Corollary
5.5, T a = N s(ψa) converges in law (a→ 0) to T with characteristic function given by

exp c−1EΛ[(exp − i < u, v > −1)exp i < u,
∞
Σ
j=0

Sjv >] = Φ(u).

Also, for any δ > 0 we have

lim
a→0

lim sup
n→∞

Pρ

{
|

n
Σ
j=1

u−1
n Xjϕa(u

−1
n Xj)| > δ

}
= 0.

Proof : Using dominated convergence, the first part follows from Corollary 5.5.
On the other hand, Markov inequality gives

Pρ

{
|

n
Σ
j=1

u−1
n Xjϕa(u

−1Xj)| > δ

}
≤ δ−1u−1

n Eρ(|X|1{|X|<2aun})

The homogeneity at infinity of ρ and Karamata’s lemma (see [28] p.26) gives that the right
hand side is equivalent to

δ−1n1−α−1

α(1 − α)−1(2aun)Pρ{|X| > 2aun},
i.e to δ−1 a1−α up to a coefficient independent of n. Hence the result since 1− α > 0. �

Lemma 5.8 Assume 1 ≤ α < 2 and write ψa(v) = vϕa(v). Then we have the convergence
lim
a→0

lim sup
n→∞

Eρ(|N
s
n(ψa)− Eρ(N

s
n(ψa)|

2) = 0.

Proof : It suffices to show that for any u ∈ Sd−1 :

lim
a→0

lim sup
n→∞

Eρ(| < u,N s
n(ψa) > −Eρ(< u,N s

n(ψa) > |2) = 0.

We write fa,n(v) = ψa(u
−1
n v), ψa,n = fa,n − ρ(fa,n).

Hence |fa,n(v)| ≤ u−1
n |v|1{|v|≤2un}, [fa,n] ≤ 3u−1

n . We have the equality

Eρ(| < u,Nn(ψa) > −Eρ(< u,Nn(ψa) >)|
2) = An,a + 2Bn,a

32



with
An,a = nEρ(| < u,ψa,n(X0) >)|

2), Bn,a =
n
Σ
j=1

(n− j)Eρ(< u,ψa,n(X0) >< u,ψa,n(Xj)).

Now the proof splits into two parts a) and b) corresponding to the studies of An,a, Bn,a.
a) We have, using the above estimation of fa,n,

nEρ(| < u,ψa,n(X0) > |2) ≤ nEρ(|fa,n(X0)|
2) ≤ nEρ(u

−2
n |X0|

21{|X0|<2aun}).

Then Karamata’s lemma implies that, for n large, the right hand side is equivalent to
n1−2α−1

(2aun)
2((2a)αn)−1, i.e to a2−α. Hence, since α ∈]0, 2[, we get lim

a→0
lim sup
n→∞

An,a = 0

uniformly in u ∈ Sd−1.

b) Markov property for the process (Xi)i≥0 implies for i ≥ 1,
Eρ(< u,ψa,n(X0) >< u,ψa,n(Xi) >) = Eρ(< u,ψa,n(X0) >< u,P iψa,n(X0) >).

First we consider the case α ∈]1, 2[ and we apply Proposition 3.4 to P acting on the Banach
space H = Hχ,ε,κ with χ ∈]1, α[, ε = 1 and κ choosen according to Proposition 3.4. We
observe that for h ∈ H we have |h(v)| ≤ ‖h‖(1 + |v|). Since ψa,n ∈ H, we have

Eρ(< u,ψa,n(X0) >< u,P iψa,n(X0) >) = Eρ(< u, fa,n(X0) >< u,U ifa,n(X0) >),
where we have used the decomposition P i = ρ⊗1+U i. Schwarz inequality allow us to bound
the right hand side by the square root of Eρ(|fa,n(X0)|

2)Eρ(|U
ifa,n(X0)|

21{|X0|<2an}).
Since |U ifa,n(v)| ≤ (1+|v|)‖U i‖ ‖fa,n‖, the quantity Eρ(< u, fa,n(X0) >< u,U ifa,n(X0) >)
is bounded by ‖U i‖ ‖fa,n‖[u

−2
n Eρ(|X0|

21{|X0|<2aun})]
1/2 [Eρ(1 + |X0|)

21{|X0|<2aun})]
1/2.

Then Karamata’s lemma implies that, up to a coefficient independent of n, the above
expression is bounded by ‖U i‖ ‖fa,n‖[n

−1/2a1−α/2] [1 + nα
−1−1/2a1−α/2].

Since ‖fa,n‖ ≤ nu−1
n , it follows that Bn,a, uniformly in u ∈ Sd−1 and up to a coefficient, is

bounded by

n(
∞
Σ
i=0

‖U i‖)n−1[n1/2−α−1

a1−α/2 + a2−α] =
∞
Σ
i=0

‖U i‖ [a2−α + a1−α/2n1/2−α−1

].

Since r(U) < 1 we have
∞
Σ
i=0

‖U i‖ < ∞, hence lim sup
n→∞

Bn,a is bounded by a2−α, up to

a coefficient independent of n. Since 1 < α < 2, the lemma follows of the two above
convergences.
If α = 1, we need to use the Banach space H′ = Hχ,ε,κ with 0 < ε < χ < 1, κ = 0,
considered in Proposition 3.4. We use also the inequality ‖f‖a,n ≤ c1a

1−χn−ε with c1 > 0,
shown below. We note that for h ∈ H′, we have |h(v)| ≤ ‖h‖(1 + |v|ε) in particular and up
to a constant independent of n, a we have

|U ifa,n(v)| ≤ ‖U i‖ ‖fa,n‖(1 + |v|ε) ≤ ‖U i‖(a1−χn−ε)(1 + |v|ε).

Hence we can bound Eρ(< u, fa,n(X0) >< u,U ifa,n(X0) >) by
2c1‖U

i‖(a1−χn−ε)[n−2Eρ(|X0|
2)1{|X0|<2na}]

1/2[Eρ(1 + |X0|
2ε)1{|X0|<2na}]

1/2,
which, if ε > 1/2, can be estimated using Karamata’s lemma by

2c1‖U
i‖(a1−χn−ε)(an−1)1/2(na)ε−1/2 = c2a

1−χ+εn−1.
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It follows that Bn,a can be estimated by 2c2(
∞
Σ
i=0

‖U i‖)a1−χ+ε. Since, using Proposition 3.4

we have r1(U) < 1, it follows if 1/2 < ε < χ < 1, lim
a→0

lim sup
n→∞

Bn,a = 0. �

Proof of Theorem 5.6 For α ∈]0, 1[ the proof follows of Lemma 5.7. We observe
that dominated convergence implies the continuity of Φ at zero, hence Φ is a characteristic
function. From Lemma 5.7 we know that if Yn = N s

n(1), Y
a
n = N s

n(1− ϕa),
1) For any a > 0, Y a

n converges in law (n→ ∞) to T a

2) T a converges in law (a→ 0) to T
3) For any ε > 0, we have lim

a→0
lim sup
n→∞

P{|Yn − Y a
n ) > ε} = 0.

It follows that the sequence Yn =
n
Σ
i=1

u−1
n Xi converges in law (n → ∞) to the random

variable T with characteristic function Φ.
For 1 < α < 2, we write

Yn = N s
n(ψ) − Eρ(N

s
n(ψ)) = (u−1

n

n
Σ
j=1

Xj)− Eρ(X), Y a
n = N s

n(ψa)− Eρ(N
s
n(ψa)),

so that Y a
n − Yn = N s

n(ψa,n)− Eρ(N
s
n(ψa,n)). Then for any ε > 0 Lemma 5.8 gives,

lim
a→0

lim sup
n→∞

Pρ{|Y
a
n − Yn| > ε} = 0

Furthermore, the sequence N s
n(ψa) converges in law (n → ∞) to T a and Eρ(N

s
n(ψa)) =

nEρ[u
−1
n X(1−ϕa)(u

−1
n X)] converges to the value b(a) of Λ on the function v → v(1−ϕa(v)),

as follows from α > 1 and the homogeneity at infinity of ρ. Hence the sequence Y a
n converges

in law (n → ∞) to T a − b(a) = Y a. Finally Y a converges in law (a → 0) to the random
variable T with characteristic function Φ defined by,

Φ(u) = exp c−1EΛ[(exp − i < u, v > −1 + i < u, v >)exp i < u,
∞
Σ
j=0

Sjv >]

+iEΛ[< u, v > (exp i < u,
∞
Σ
j=0

Sjv > −1)].

This follows of Theorem 5.1, of dominated convergence (a → 0) and of the following
inequalities

|exp − i < u, ψa(v) > −1 + i < u, ψa(v) > | ≤ Inf(2 + |u| |v|, 4|v|2|u|2),

| < u,ψa(v) > E(exp i < u,
∞
Σ
j=1

ψa(Sjv) > −1)| ≤ Inf(|u| |v|, 2|u|2|v|2
∞
Σ
j=1

E(|Sj)),

where α > 1 gives
∞
Σ
j=1

E(|Sj |) < ∞. Continuity of Φ at zero follows also from the above

inequalities.
As in [7], we deduce the convergence in law of the sequence Yn to T .

If α = 1, we write Yn =
n
Σ
j=1

n−1Xj − Eρ(ϕ1(n
−1X)) and

Y a
n =

n
Σ
j=1

n−1Xi(1− ϕa(n
−1Xj))− bn(a) = N s

n(ψa)− bn(a)
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where bn(a) = Eρ[X(ϕ1 −ϕa)(n
−1X))]. With the new notations the above inequalities are

still valid. The homogeneity at infinity of ρ gives now
lim
n→∞

bn(a) = c−1EΛ(v(ϕ1 − ϕa)) = b(a).

It follows that the sequence Y a
n converges in law (n→ ∞) to the random variable T a

1 with
characteristic function,

exp c−1EΛ[(exp − i < u, ψa(v) > −1)exp i(< u, πωv (ψa) > −i < u, b(a) >)]

We insert the expression i < u, v > (ϕ1 − ϕa(v)) with the adequate sign in each of the
above factors inside the expectation EΛ. Then dominated convergence (a→ 0) shows that
T a
1 − b(a) converges in law to the random variable T with characteristic function

Φ(u) = exp c−1EΛ[A(u, v) +B(u, v)]

with A(u, v) = (exp − i < u, v > −1 + i < u, v >)ϕ1(v),

B(u, v) = i < u, v > ϕ1(v)(exp i < u,
∞
Σ
j=1

Sjv > −1).

As in ([11], [15]), the stability of the limiting laws follow from the formula for Φ(u). If
0 < α < 2, α 6= 1 the formula for Φ(u) shows that for any n ∈ N we have Φn(u) = Φ(n1/αu),
hence T has a stable law of index α.
If α = 1, we have with γn = c EΛ[v(ϕ1(n

−1v)−ϕ1(v)], Φ
n(u) = Φ(n u) exp− in < u, γn > .

This implies that T follows a stable law with index 1. �

6 Appendix

6.1 On positivity of the extremal index

We give a direct proof of the positivity of QΛ1
{sup
n>0

|Sn(ω)v| < 1} following [6].

Proposition 6.1 Let (Y, τ,m) be a dynamical system where m is a τ -invariant probability

and let f be a measurable function on Y . If lim
n→∞

n−1
Σ
0
f(τky) = −∞ m − a.e, then there

exists c < 0 and a subset Y1 ⊂ Y of positive measure such that for every y ∈ Y1, n ≥ 1,

Tn(y) =
n−1
Σ
0
f(τky) ≤ c

Proof : Let Mn(y) = sup
0≤k≤n

Tk(y), hence

Mn+1(y) = sup[f(y), f(y) +Mn(τy)] = f(y) +M+
n (τy).

Since lim
n→∞

Tn(y) = −∞ m−a.e, the function M∞(y) = lim
n→∞

Mn(y) is finite m−a.e, hence

f(y) =M+
∞(y)−M−

∞(y)−M+
∞(τy).

If M−
∞ = 0 m − a.e, then f(y) = M+

∞(y) − M+
∞(τy) is a coboundary. By considering

the return times to a set on which M+
∞ is bounded from below, we get a contradiction
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with the above coboundary equation. Hence we have, for some c < 0, M∞(y) ≤ c on
a set Y1 of positive measure, i.e M∞(y) ≤ c < 0 on Y1 ⊂ X with m(Y1) > 0. Hence
Tn(y) ≤Mn(y) ≤M∞(y) ≤ c on Y1 for any n ≥ 1. �

Using the notations of section 2 we consider the action of T on the unit sphere (g, x) →
gx
|gx| = g.x, we assume that T is strongly irreducible and we denote by ν a µ-stationary

probability on Sd−1. We denote by U(supp(ν)) the set of non void open subsets of supp(ν),
hence for any U ∈ U(suppν)) we have ν(U) > 0.

Corollary 6.2 With the above notations, we assume that the semigroup T is strongly
irreducible and Lµ =

∫
log|gx|dµ(g)dν(x) < 0. Then, there exists ε > 0, Ω1 ⊂ Ω with

Q(Ω1) > 0 and a map ω → Uε(ω) from Ω1 to U(supp(ν)) such that
sup{|Sn(ω)x| < 1 ; n > 0} < 1− ε

for any x ∈ Uε(ω), ω ∈ Ω1.
In particular, we have QΛ1

{sup |Sn(ω)v| < 1 ; n > 0} > 0

Proof : We denote Y = Ω × supp(ν) and we write y = (ω, x) ∈ Y . We consider the
dynamical system (Y, τ,m) defined by τ(ω, x) = (σω, A1(ω).x). The hypothesis implies
with f(y) = log|A1(ω)x|, m(f) < 0 Tn(y) = log|Sn(ω)x| : lim

n→∞
Tn(y) = −∞, m− a.e.

Then Proposition 6.1 implies the existence of a set Y1 ⊂ Ω × supp(ν) of positive Q ⊗ ν
measure and ε′ > 0 such that for n > 0, |Sn(ω)v| < 1 − ε′. Hence there exists Ω1 ⊂ Ω
with Q(Ω1) > 0 such that, for ω ∈ Ω1, there exists Sω ⊂ Sd−1 with ν(Sω) > 0 and
sup{|Sn(ω)v| ; n > 0} < 1− ε′ for v ∈ Sω. Since T is strongly irreducible, ν gives measure
zero to any proper subspace (see [13]), hence Sω contains vω1 , · · · , v

ω
d which are linearly

independent, for any ω ∈ Ω1. Then, for any v =
d
Σ
i=1

λiv
ω
i with

d
Σ
i=1

|λi| < (1 − ε′/2)−1 we

have

|Sn(ω)v| ≤
d
Σ
i=1

|λi| |Si(ω)v
ω
i | ≤ (1− ε′/2)−1(1− ε′) < 1− ε′/2,

for n > 0. But the set

Uω = supp(ν) ∩ {v,
d
Σ
i=1

|λi| < (1− ε′/2)−1}

is an open non void subset of supp(ν) since (1− ε′/2)−1 > 1 and vωi ∈ Uω, for i = 1, · · · , d.
Hence, for ω ∈ Ω1 and x ∈ Uω, ε = ε′/2, we have sup{|Sn(ω)x| ; n > 0} < 1 − ε. From
[13], we know that the set supp(σα) is also the support of a µ-stationary measure ν and
Λ = σα ⊗ ℓα with c > 0. Since for any U ∈ U(supp(ν)) the set {v = tx ; 1 < t <
(1− ε)−1, x ∈ U} has positive Λ1-measure, we get by definition of QΛ1

QΛ1
{sup |Sn(ω)v| < 1 ; n > 0} > 0

�
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6.2 Condition (H) is open if d > 1

We denote by Tµ the closed subsemigroup of G generated by supp(µ), where µ is a
probability on G. We consider weak topologies for probability measures on G and on A.
We denote by M1(G) (resp M1(A)) the set of probabilities on G(resp A). We denote by
W(A) the weak topology on M1(A) defined by the convergence on continuous compactly
supported functions as well as of the moments

∫
(γk(g) + |b|k(h))dλ(h) for any k ∈ N.

Theorem 6.3 If d > 1, condition (H) is open in the weak topology W(A) on M1(A).

We will need the Proposition

Proposition 6.4 Condition i-p is open for the weak topology on M1(G).

Proof : Assume µ ∈ M1(G), satisfies i-p and let µn ∈ M1(G) be a sequence which
converges weakly to µ. Then supp(µn) and Tµn are closed subsets of G which converges to
supp(µ) and Tµ respectively. If γ is a proximal element of Tµ, then by perturbation theory
there exists a neighbourhood of γ in G which consists of proximal elements. Hence there
exists γn ∈ Tµn which is also proximal.
On the other hand Tµn is irreducible for large n. Otherwise there exists a proper subspace
W n ⊂ V with Tµn(W

n) = W n. Let W ⊂ V be the limit of a subsequence of W n. Then,
clearly Tµ(W ) =W , which contradicts the irreducibility of Tµ.
In order to show the strong irreducibility of Tµn for n large, we show the irreducibility of
Zc0(Tµn), the connected component of the Zariski closure Zc(Tµn) of Tµn (see [24]). Since
Tµn is irreducible, the Lie group Zc0(Tµn) is reductive and has finite index in Zc(Tµn).

We decompose V as the direct sum of its isotypic components V
(n)
i (1 ≤ i ≤ pn) under

the action of Zc0(Tµn) : V =
pn
⊕
i=1

V
(n)
i . Since Zc0(Tµn) has finite index in Zc(Tµn) we can

assume, by taking a suitable power, that γn ∈ Zc0(Tµn). The uniqueness of the above

decomposition of V and the relation γnv = λnv, v =
pn
Σ
i=1

vi, vi ∈ V
(n)
i , with λn a simple

dominant eigenvalue of γn implies γnvi = λnvi ; hence the proximality of γn implies that

v belongs to a unique V
(n)
i , to V

(n)
1 say. Also the irreducibility of Tµn implies that Tµn

permutes the subspaces V
(n)
i (1 ≤ i ≤ pn). Since V

(n)
1 is isotypic and γn is proximal, the

subspace V
(n)
1 is Tµn-irreducible. The same is valid for any V

(n)
i = g(V

(n)
1 ) since gγng

−1 is
also proximal, for g ∈ Tµn . Assume Zc0(Tµn) is not irreducible for n large ; then it follows

that pn ∈]1, d] and rn = dim V
(n)
1 ∈ [1, d[. It follows that we can assume pn = p and rn = r

for n large. Hence, taking convergent subsequences of V
(n)
i (1 ≤ i ≤ p) we obtain proper

subspaces Vi(1 ≤ i ≤ p) which are permuted by Tµ ; the irreducibility of Tµ implies that

their sum is V , hence we have V =
p
⊕
1
Vi, which contradicts the strong irreducibility of Tµ.

Hence Tµn satisfies condition i− p for n large. �
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Proof of Theorem 6.3

Let λn ∈M1(A) be a sequence which converges to λ ∈M1(A) in the weak topology W(A)
and let us denote by µn the projection of λn on G. We verify the stability of conditions
1, 2 in (H), since condition 3 follows of the definition of W(A) and condition 4 is a direct
consequence of Proposition 6.4.

1) Assume that supp(λn) has a fixed point xn ∈ V for n large. Since the closed subset
supp(λn) converges to supp(λ), we can find a convergent subsequence of xn to a point x in
(V )U(Sd−1), endowed with the visual topology, such that x is supp(λ)-invariant. If x ∈ V
we have a contradiction since supp(λ) has no fixed point in V . If x ∈ Sd−1, we have also a
contradiction since the projective action of supp(µ) has no fixed point.

2) Using Lemma 6.4, since finiteness of moments for µn is valid, we get that for µn and
for any s ≥ 0, the corresponding operator P s has a spectral gap on the relevant Hölder
space on Sd−1 (see [13]). The moment condition implies that perturbation theory is valid
for the operators P s. Hence the spectral radius k(s) varies continuously. In particular, since
we have k(s) > 1 for µ and s > α, and L(µ) < 0 the same is valid for µn with n large.
Hence there exists αn > 0 close to α such that k(αn) = 1. �
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[15] Y. Guivarc’h and É. Le Page. On spectral properties of a family of transfer
operators and convergence to stable laws for affine random walks. Ergod. Th.
Dynam. Syst. 28 : 423-446, 2008.

[16] Y. Guivarc’h. Spectral properties and limit theorems for some random walks
and dynamical systems. Hyperbolic dynamics, fluctuations and large devia-
tions, 279-310, Proc. Sympos. Pure Math. 89, Amer. Math. Soc. Providence
R.I, 2014.

[17] L. De Haan, S. I. Resnick, H. Rootzen, C. G. De Vries. Extremal behaviour
of solutions to a stochastic difference equation with applications to ARCH
processes, Stoch. Process, Appl. 32 : 213-224, 1989.

[18] C. T. Ionescu-Tulcea and G. Marinescu. Théorie ergodique pour des classes
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