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Abstract. Parallel robots presents singular configurations that divide the operational workspace
into several aspects. It was proven that such singularities can be crossed under the constraint of a
dynamic criterion. However, the development of a controller able to track such trajectories is up
to now limited by a restrictive criterion, which decreases the total number of possible trajectories
for crossing a singularity. In this paper, by finding a solution to the inverse dynamic model at the
singularity locus, we were able to implement a controller in Cartesian space and track a trajectory
that crosses a Type 2 singularity.
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1 Introduction

Parallel robots present many advantages over serial robots, such as higher accel-
eration capacities, better stiffness and higher payload-to-weight ratios. However,
their use in an industrial context remains limited partly due to the division of their
workspace by singularities into several aspects [8]. Numerous singularities are prone
to appear on a parallel mechanism. For a global overview the reader is referred to
[13, 4]. This paper will focus on a specific singularity, called Type 2 singularities
[5], where the inverse dynamic model (IDM) of the mechanism does not admit a
finite solution without respecting a dynamic criterion [3].

Previous studies [6, 3] proposed a solution to increase the workspace of parallel
robots by planning assembly mode changing trajectories directly through the sin-
gularity. This solution seems promising because a direct path between two points
crossing a Type 2 singularity can be generated on any robot structure as long as
the dynamic criterion is respected by the trajectory. However, the tracking of a tra-
jectory, and so respecting the dynamic criterion is not always perfectly ensured in
reality. Then, the design of a stable controller to cross the singularity becomes prob-
lematic. This issue was partially solved in [10] by the design of a multi-model com-
puted torque control. However, the solution proposed requires a more restrictive
criterion on the designed trajectory than the dynamic criterion computed in previ-
ous studies [6, 3], decreasing the total number of possible trajectories for crossing
the singularity.
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This paper aims to extend the solution proposed in [10] by the design of a generic
controller in Cartesian space able to carry out the crossing of a Type 2 singularity as
long as the trajectory design respects the crossing dynamic criterion. The validation
of the designed controller is discussed through experiments in Section 4.

2 Dynamic model at singularity locus

In this section, we will briefly recall the dynamic equations of a parallel manipulator
and discuss its degeneracy on a Type 2 singularity. For a more detailed analysis of
the dynamic modeling of a parallel manipulator, the reader is referred to [2, 7]. We
will then propose a general solution to the dynamic model that does not degenerate
at singularity locus.

2.1 Dynamic modelling of parallel mechanisms, Type 2 singularity
degeneracy condition and criteria for singularity crossing

The studied manipulator is composed of a fixed base, linked by several kinematic
chains (the legs) to a mobile platform actuated along ndo f independent coordinates.
Actuation is provided by ndo f active joints. The configuration and velocity of the
manipulator can be described using:

• qa and q̇a two ndo f -dimensional vectors of active joint variables and active joint
velocities, respectively.

• x and ẋ two ndo f -dimensional vectors of the independent platform coordinates
and their time derivatives, respectively.

Relations between these coordinates are found by writing the closed-loop equations.
Using Lagrangian formalism, the IDM of the mechanism can be written as [1]

τ= wb−BT
λ and wd = AT

r λ (1)

Where,

• τ is the ndo f -dimensional vector of the input efforts,
• λ is a ndo f -dimensional vector of Lagrange multipliers,
• Ar and B are two (ndo f ×ndo f ) matrices characterizing the first-order input/output

kinematic constraints
Arẋ+Bq̇a = 0 (2)

• wb and wd are respectively ndo f -dimensional vectors related to the Lagrangian L
of the system (which can be explicitly expressed as a function of qa,x, q̇a, and ẋ)
by [1]

wb =
d
dt

(
∂L
∂ q̇a

)T

−
(

∂L
∂qa

)T

and wd =
d
dt

(
∂L
∂ ẋ

)T

−
(

∂L
∂x

)T

(3)
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Fig. 1: Example of a five-bar mechanism in a Type 2 singularity configuration. The
vector ts represents the uncontrolled motion.

From equations (1), considering the matrix Ar to be full rank, the dynamic model of
a parallel manipulator is obtained

τ= wb−BT A−T
r wd (4)

This model remains valid as long as the matrix Ar is invertible. The degeneracy of
the matrix Ar corresponds to a kinematic singularity, named Type 2 singularity [5].
In such a singularity, one (or more) of the degrees of freedom of the platform be-
comes uncontrollable (see Fig. 1). For clarity on this article, we will limit the study
to one uncontrollable degree of freedom1. Approaching a singularity, the determi-
nant of the matrix AT

r tends toward zero. The computed input efforts (Eq. (4)) are
related to the inverse of this determinant and may tend towards infinite values in
the neighborhood of a singularity. A previous study [3], showed this issue can be
avoided by respecting a dynamical criterion at the singularity locus. As the matrix
Ar is degenerated, a non-null vector ts exists in its kernel. Multiplying the equation
(1) by tT

s gives us
tT
s AT

r λ= 0⇒ tT
s wd = 0 (5)

This equation is a necessary condition for the inverse dynamic equations (1) to re-
main consistent in a Type 2 singularity. wd represents the sum of the wrenches
applied on the platform by the legs, inertia/gravitational effects, and the external
environment and ts represents the direction of the uncontrollable motion of the plat-
form inside the singularity in Cartesian space (see Fig. 1). Equation (5) implies that
these two vectors must be reciprocal when crossing a Type 2 singularity so that the
input torque remains finite.

2.2 Solution to the inverse dynamic model at singularity locus

Equation (4) gives a solution to the dynamic model away from singularities. We
show below that it is possible to find solutions to the IDM at a singularity if and
only if the criterion (5) is respected. From basic knowledge in linear algebra, the
rank degeneracy of the matrix Ar implies that the equation (1) admits at least one
exact solution λ if and only if wd is included in the image of the matrix AT

r . The
image of AT

r is spanned by all the total wrenches wd that can be applied by the legs
through actuation and external forces on the platform. From linear algebra, we know
also that the image of the matrix AT

r is the orthogonal complement of the kernel of
the matrix Ar

1 Even if the case rarely appears on existing parallel robots, the results can be extended to a higher
order degeneracy.
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ker(Ar)
⊥ = Im(AT

r ) (6)

This equation can be interpreted as “Any total wrench that can be generated on
the platform by the legs and the external forces is reciprocal to the uncontrolled
motion”. It is equivalent to the criterion already expressed to avoid the degeneracy
of the IDM on a Type 2 singularity (5). If the criterion is respected the inverse
dynamic equations admits at least an exact solution. In order to find it, let us consider
the dynamic equations under an other form. Multiplying (1) by AT

r B−T gives2

AT
r B−T

τ= AT
r B−T wb−AT

r λ (7)

Then, AT
r λ can be replaced in equation (7) from equation (1).

JT
invτ= JT

invwb +wd (8)

with Jinv = −B−1Ar. Knowing that the IDM (1) admits at least an exact solution,
if the criterion (5) is respected, the solution minimizing the input torques can be
expressed using the Moore-Penrose pseudo-inverse of JT

inv:

τ= JT
inv

+(JT
invwb +wd) (9)

3 Design of a computed torque control law in Cartesian space

The computed torque control (CTC) [9] is a natural controller to enforce a dynam-
ical criterion such as the criterion computed for singularity crossing (5). To imple-
ment it, the IDM (9) of the robot must be expressed as a function of the acceleration
of the controlled coordinates. From [2], wb and wd can be expressed as function of
the robot active joint and platform accelerations

wb = Maq̈a + ca and wd = Mxẍ+ cx (10)

where

• Ma and Mx are (ndo f ×ndo f ) matrices depending on the robot configuration co-
ordinates qa and x.

• ca and cx are ndo f -dimensional vectors depending on the robot configuration co-
ordinates qa, x and their time derivative q̇a, ẋ.

Moreover, the time derivative of the loop-closure equations (2) gives

Arẍ+Bq̈a +b = 0 (11)

with b = Ȧrẋ+ Ḃq̇a. Eq. (11) links the acceleration of the active joints to the plat-
form acceleration.

2 We consider that B is full rank. This hypothesis is taken as the case of the coincidence of two
singularities is extremely rare and generally avoided in the design of a parallel robot. Note that the
computation of B−T is not necessary in the inverse dynamic model away from a type 2 singularity.
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Robot controllers are usually established in joint space. However, in a Type 2 sin-
gularity, the matrix Ar is not invertible anymore, and then wd cannot be expressed
as a function of the joint accelerations q̈a. In order to avoid this issue, a previous
study [10] chose to impose a criterion wd = 0 to cross the singularity , allowing the
computation of the IDM as function of the joints accelerations only. However, this
criterion is more restrictive than tT

s wd = 0 (5), thus limiting the number of achiev-
able trajectories. In order allow all trajectories respecting the criterion tT

s wd = 0, in
this paper, we will express the IDM as function of the platform acceleration and,
consequently, design a CTC controller in Cartesian space. Even at singularity lo-
cus, from (11) the joint accelerations can be expressed as a function of the platform
acceleration

q̈a =−B−1Arẍ−B−1b (12)

Introducing (10) into the IDM (9) gives

τ= JT
inv

+JT
invMaq̈a +JT

inv
+Mxẍ+JT

inv
+(JT

invca + cx) (13)

Then combining (13) and (12) gives the expression of the IDM as a function of the
platform acceleration

τ= Mẍ+h (14)

where M= JT
inv

+(−JT
invMaB−1Ar+Mx) and h= JT

inv
+(JT

inv(ca−B−1b)+cx). Away
from a singularity JT

inv is full rank, so JT
inv

+ = J−T
inv . In the close neighborhood of a

singularity locus, the computation of the torques from the IDM given in (14) re-
mains bounded only if the dynamic criterion established (5) is exactly respected.
Unfortunately, tracking errors make the exact respect of the criterion impossible in
a real experiment. In our CTC application, the IDM is computed from an auxiliary
control signal u corresponding to a desired platform acceleration. The enforcement
of the criterion is carried out by projecting wu = Mxu+ cx in the image of the ma-
trix AT

r . This projection ensures that the IDM admits a unique solution and that the
desired input efforts remain bounded.

From the expression (14) of the dynamic model, a classical CTC controller in
Cartesian space, as described in Fig. 2, is established for the tracking of a trajectory
with a parallel mechanism. The proof of convergence and stability of such con-
trollers in Cartesian space is discussed in [11]. An exact linearization is performed
by the inner loop of the controller and a double integrator is obtained between the
auxiliary control signal u and the joints coordinates q̈a. Then, a PD-control loop is
sufficient to ensure the convergence. An integral term may be added to compensate
residual modeling errors. It should be noted that the controlled system output is the
platform coordinates vector. This output may be directly measured with an external
sensor or estimated via computation, this point is discussed in section 4.2.



6 D. Six, S. Briot, A.Chriette and P. Martinet

xt

ẍt
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Fig. 2: Computed Torque controller in Cartesian space.
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Fig. 3: Prototype of the five-bar mechanism and parametrization scheme

(a) (b)

Fig. 4: (a) Trajectory tracked crossing a Type 2 singularity (to scale).
(b) Input torques and estimated tracking errors along the trajectory. Vertical lines
represent the planned singularity crossing.

4 Case study

4.1 Experiment

The proposed approach was validated on the crossing of Type 2 singularities with a
planar five-bar mechanism designed by Mecademics (see Fig. 3). This mechanism
is able to generate a motion of the end-effector located at A13 (x = (x,y)T ) through
the actuation of the joints q11 and q21. To test the controller a trajectory that cross a
Type 2 singularity twice has been generated for the five-bar mechanism. This trajec-
tory is a return trip between point A and point B (see Fig. 4), optimized in order to
respect the dynamic criterion to be enforced when crossing a Type 2 singularity (5)
for this mechanism. A controller was implemented as defined in section 3. However,
only active joint coordinates were available on our experimental platform. Hence, an
estimation of the platform coordinates, using the computation of the direct geomet-
ric model (DGM) of the robot, has been introduced in the feedback loop [12]. The
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controller implemented enabled the crossing of a Type 2 singularity in experimental
condition. The input torque and tracking error on the end-effector pose estimation
are given in Fig. 4.

4.2 Discussion about the practical estimation of the platform
coordinates for the controller

For our implementation, we used the DGM as an estimator of the platform coordi-
nates in the implementation of our controller. This implementation generates several
issues:

• The estimator uncertainties, issued from calibration errors and DGM modeling
errors, are not corrected by the controller, leading to a steady state error of the
end-effector position in Cartesian space.

• Around a Type 2 singularity, any error in joint position is amplified in Cartesian
space along the direction of the uncontrollable motion. Specific precautions have
been taken in the estimation of the end-effector pose around the singularity at the
cost of estimation uncertainty around the singularity locus. Those uncertainties
in the estimator causes an increase of the tracking error just after the singularity
is crossed by the robot (see Fig. 4).

A better implementation of this controller should be based on an external measure
of the end-effector position. However, the ability of our controller to cross the sin-
gularity even with those uncertainties demonstrated the robustness of our imple-
mentation. The repeatability of the process was tested on a trajectory crossing the
Type 2 singularities several times on a five-bar mechanism at different points with
a successful crossing at every point. A video of the DexTAR robot following this
trajectory is available online at http://www.irccyn.ec-nantes.fr/∼six/videos.

5 Conclusions

In a Type 2 singular configuration, the IDM of a parallel robot cannot be computed
in its general form due to the degeneracy in its equation system. In this paper we
showed that, under the constraint of a dynamic criterion, the IDM equations can be
solved even at singular configurations. This expression allowed us to design a con-
troller able to track a trajectory respecting the dynamic criterion defined while cross-
ing a Type 2 singularity. The theoretical results were confirmed through experimen-
tation. The ability to cross Type 2 singularities is promising to increase the reach-
able workspace of any parallel robot that has such singularities in its workspace.
However, the designed controller can only be implemented in Cartesian space. The
implementation of a joint space CTC controller is currently under investigation.
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