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Abstract. A paralle! homotopy algorithm is presented for finding a few sclected eigenvalues
(for example those with the largest real part) of Az = ABz with real, large, sparse, and
nonsymmetric squarc matrix A and real, singular, diagonal matrix B. The essence of the
homotopy method is that from the eigenpairs of Dz = ABz, we usc Euler-Newton
contingation to follow the cigenpairs of A()z = ABz with A =(1-)D + (A. Here D is
some initial matrix and “time" ¢ is incremented from O 1o 1. This method is, to a large degree,
parallcl because cach eigenpath can be computed independently of the others. The algorithm
has been implemented on the Intel hypercube. Experimental results on a 64-node Intel
iPSC/860 hypercube are peeseated. It is shown how the parallcl bomotopy mcthod may be
uscful in applications likc detecting Hopf bifurcations in hydrodynamic stability analysis.

1 Introduction

We consider the gencralized cigenvaluc problem
Az =ABz , ¢y

with real, large, sparse, and nonsymmetric squarc matrix A and real, singular, diagonal
matrix B. By a large sparsc matrix we mean one that is prohibitively expensive to factorise
by eithera QR ora LU decomposition necded for the standard eigenvalue problem or by the
QZ algorithm [1] for the generalized eigenvalue problem. We must therefore rule out all
these traditional algorithms. Such sparse generalized cigenvalue problems are often
encountered in linear hydrodynamic stability analysis, in which the matrix A arises from the
discretization of the Navier-Stokes cquations (by finite difference or finite clement
methods), and B is usually called "mass matrix" which is singular due to the continuity
cquation {and possibly to the boundary conditions). Usually, only certain eigenvalues and
corresponding eigenvectors are required. These are either the ones closest to some complex
number or the ones in some part of the complex plane. Projection methods, like the Lanczos
" and Arnoldi methods, are popularly used because they avoid factorising the matrix [2, 3].
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With advances in parallel processing technology, it is now feasible to achieve high
performance in solving truly complex problems. However, in order to use those general
purpose computers in a specific application, algorithms that are to a large extent parallel in
nature need to be developed. Homotopy algorithm is one of the parallel algorithms for
eigenvalue problems. Remarkable numerical results have been obtained by using the
homotopy algorithm for the tridiagonal symmetric matrix ei genvalue problem {4, 5]. Very
recently, Li, Zeng and Cong [6] developed a homotopy algorithm for real nonsymmetric
cigenvaluc problems. Its performance is very encouraging. However, if the matrix is large
and sparse, this algorithm suffers a serious drawback. In the reduction of the given matrix
to a similar matrix in upper Hessenberg form by the Householder transformation, the matrix
usually loses its sparsity. Hence the algorithm requires the explicit storage of the entire
matrix. This may pose a problem if the matrix is so large that not all its entries can be

accommodated within the main memory of the computcr.

In this paper, we present a homotopy continuation algorithm for finding a few sclected
cigenvalues (for example those with the Jargest real part) and corresponding eigenvectors of
Eq.(1). The essence of the homotopy method is that from the cigenpairs of

Dz = ABz, (2)
we use Euler-Newton continuation to follow the eigenpairs of
A()z =ABz, 3)

where A(D) = (1-OD + tA. Herc D is some real initial matrix and "time" tis incremented
from 0 to 1. At t = 1, we have the eigenpairs of Eq. (1). A great advantage of the homotopy
method is that it is, to a large degree, parallel because cach eigenpath can be computed
indcpendently of the others. With a special choice of initial matrix D, the storage

requirement is proportional to the number of nonzero elements of the given matrix.

In §2, we describe the homotopy algorithm for computing the eigenpaths including the
choice of the initial matrix D, stepsize sclection and the method of solution of the linear
systems which arise in the Newton iteration. This algorithm was developed in [7]. We have
implemented a parallel program on the Intel hypercube, which is a distributed-memory,
message-passing, multiprocessor machine. The results of numerical tests obtained on a 64-
node Intel iPSC/860 hypercube are presented in §4 and our conclusion follows in §5.
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2 Numerical Algorithm
2.1. Following the ecigenpaths

Let H: C*x C x [0, 1] — C"*! be defined by

(Dz-?\,Bz) (Az—le)
HzA)=(1-1 +1
n(z) n(z)

_ A)z-ABz
1 @ 4)

where A(®) = (1-)D + tA, with0<t< L.
Here, D is the initial matrix and n(z) is a normalisation cquation. In our implementation of

the homotopy algorithm, we use

(@z-1)12)
n(z) =( Iz, )—0 &)

where the superscript * denotes the conjugate transposc of a complex vector, Z; is the Jt
component of z and is required to be nonzero (its imaginary part is put to zero). The
normalisation (5) is not analytical as complex cquations but their real forms are infinitely
diffcrentiable. In practice we choose J so that | Re z; 1ZIRezlforali=1,..,n

Let DH = (H,, Hy, H,,), where H,, H,, H; denote the partial derivatives of H with
respect 1o z, A, and t respectively. When DH has full rank at (zg, Ag, ty) € H-1(0), the
local solution set of H(z, A, t) = O consists of a smooth 1-manifold (z(s), A(s), (s))
passing through (zg, Ag, tg). Such a curve (z(s), A(s), t(s)) is called an cigenpath. To
follow an eigenpath I" = (z(s), A(s), 1(s)) through (zq, Ag, o), we apply the usual Euler-

Newton continuation method.
Namely, we first calculate the tangent vector (z, A, 1) at (zg, Ag, tg) on T by solving

Hz+ A+ Hi=0, ©)
with the normalization

iz 2+ (AP +it2=1, M
We have used dot to denote derivative with respect to s.



Using the Euler prediction

(7oh Ao, to1) = (Zgr Aoy to) + d5 G Ay D ®)

with stepsize ds, we apply Newton's method to H = 0 with initial guess (zo', Aol to!)-
Newton iteration will converge quadratically to the solution at a later time ¢; provided ¢; - ty

is small enough.

It should be noted that in the Newton's corrections, we employ the pscudo-arclength
method due to Keller [8]. That is, we augment H = 0 with the equation

Re[ 3% (z-zg) + A {(A-Ag) 1 +1(t-1g) - ds =0, )

which represents the plane perpendicular to the tangent vector (z, A, t) at a distance ds {rom
(Zo» Ag» to)- This method is used to follow success(ully the eigenpath in the case where (zg,

Ao» Lp) may be close to a bifurcation point.

In [6, 7], a mcthod is developed to identi{y the bifurcation point and continuously follow
the bifurcation branches. In practice we have two cases to consider (see Fig. 1):

1. T is a rcal cigenpath (Fig. 1a). On the opposite side of this bifurcation point, a

complex eigenpath and its complex conjugate emerge. Using the tangent vector ¢ = (z, A, 1)
at the bifurcation point, we need only (o follow one of the bifurcation branches with the
initial tangent vector i¢ or -id.

oo ‘
A A VRN
—— r'}
0 ¢
0 t I 0 t 1
@ )

Fig. 1. Transition from (é) real eigenpath to complex eigenpath; (b) complex eigenpath to real eigenpath,
at a bifurcation point. Dotted lines denote complex eigenpath,



2. T is a complex eigenpath (Fig. 1b). On the opposite side of this bifurcation point, two
real cigenpaths emerge. We follow them in real space with the real tangent vectors ¢ and -
respectively. Becausc the problem. is being solved in real space, there is no chance of
converging back to the complex solution. In our parallel implementation, the processor
which became idlc at a bifurcation point (in case 1) can be invoked to carry out the
computation along onc of those directions. This will be described in §3.

2.2 Choice of Initial Matrix D

We first rescale the given n x n matrices A and B so that the largest element of A (in
absolute valuc) equals to one. Using Gerschgorin's theorem, we obtain a number r such
that all the eigenvalues of A lic within a circle of radius rin the complex plane. The initial
matrix D is chosen as a diagonal matrix whose elements arc the diagonal clements of A,

possibly perturbed so that
la; - dy 1> 20072, i#], (10)

where ay; denotes the (i, j) entry of A and dj; denotes the (], j) diagonal entry of D. More
preciscly, we define dyy to be agy, and for i > 1, we take d;; to be a; + O, where 8 is the
smallest number in magnitude which makes d;; satisfy (10) for all j <i. With this choice of

D, the initial tangents (z, A, t) at t = O are casily computed. There is no theoretical
justification for the bound in (10). From numerical experiments on random matrices, the

" spectrum of D scems to be reasonably distributed with this bound.
2.3 Solution of Nonsymmetric Linear Systems

To computce the tangent vector and each Newton iteration, large, sparse, nonsymmetric
linear systems must be solved. Due to mcmory, operation count, and parallelization
considcrations, itcrative mcthods arc used to solve these linear systems. In our
implementation, we cmploy the conjugate gradients squarcd (CGS) algorithm [9] which is
being widely used to solve large sparsc lincar systems. This mcthod is simple to implement
and has low storage requirements. In order to improve the convergerce rate, we usc the
preconditioning techniqucs based on the incomplete Gaussian elimination [10].



2.4 Stepsize Control
1. Initial stepsize

Let (z, A, ©) be the unit tangent with § > 0 at the initial point (zg, Ag, 0)e H-1(0). If i =~ 1,
then the size of (z, i) is relatively small and the cigenpath may be close to a straight line. A
larger stepsize ds therefore can be used. In this case, we choosc ds = t. When << 1, we use

ds = max{0.01, 11 P}.
2. Increasing and culting the stepsize

Lot (zg, Ags &) and (zy, Aq, t;) be two points on the eigenpath with tp<t; < 1, we
choose stepsize ds, for next point (z,, A,, t;) as follows:

dsy = ds; { Re (21%70+ Ahg) + i+ 0.5 1, (11)

where ds; is the stepsize used to obtain (zg, Aq, t() from (zg; Ag, ). The idca is that when
the two previous tangents are parallel, then we increasc the stepsize by 50%. If the tangents
arc perpendicular, we decrease the stepsize by a half. We use the above scheme until the
time t is close to one; then we solve the problem H(z, A, 1) =0.

Whenever the iteration in the Newton correction step fails to converge after, say, 8

itcrations, we cut the stepsize by half and restart the correction step.
3 Parallel Implementation

We have implemented our algorithm on the Intel iPSC/860 which is a MIMD machine
consisting of 64 processors in an hypercube connection. Each such processor, also called a
node, executes its own program on data in its own memory. The nodes are controlled by
another processor, called the host, which loads the programs into the nodes and starts them.
Host and nodes communicate by message passing. Communication between nodes are also
performed by sending and recciving messages, either synchronously, i.e., the processing
stops until a message is sent or received; or asynchronously, where processing and
communication overlap.

It is seen, therefore, that an algorithm is well suited on such a machine if it may be set as
several independent processes, cach working on its own data with a minimum of

interprocess communication.



The homotopy method is, to a large degree, parallel in the sense that each eigenpath can
be computed independcently of the others. If the matrices A and B are stored in each node,
then there is no communication overhead at all other than the trivial broadcast of the location
of bifurcation points.

The problem considered, i.e., equation (1), is a special case of the generalized eigenvalue
problem. When B is a singular diagonal matrix with m zero diagonal elements, the
characteristic polynomial det (A-AB) = 0 is of degree equal to (n-m), where n is the
dimension of A. Thus, there is not a complete set of eigenvalues for the problem. The
missing eigenvalues may be regarded as "infinite". In the present paper, we intend to find
the eigenvalue of (1) with the largest real part.

Computations of several test problems using random matrices A and B have been carried
out. We obscrve that most of the eigenpaths move in a rclatively simple fashion as t
progresses. That is, there are no wild oscillations and the eigenpaths, in general, maintain
their order where they arc ordered according to Re(A). However, we have not been able to
derive a mechanism to guarantec that an cigenpath will end up ( at t = 1) having an
eigenvalue with the largest real part. This is the reason for which several eigenpaths have to
be followed. This increases the likelihood that onc of them will be the relevant.

In practice, to {ind an cigenvalue with the largest real part, we reorder the initial matrix D
so that dy/by; is in descending order for by # 0, where d;; and by; denotes the (i, i) diagonal
entry of D and B respectively. Then we compute k (<<n-m) eigenpairs by following the
eigenpaths (z(s), A(s), t(s)) which start from the eigenpairs of (2) corresponding to the k
largest eigenvalues. Each node (processor) then follows k/p eigenpaths, where p is the
number of nodes to be used (for simplicity, we assume that k/p is an integer). For a sample
of ten random 640 by 640 matrices A and B, and for k = 8, the largest (rcal part)

cigenvalue was found among the first k cigenpaths computed.

Using p nodes, the parallel homotopy algorithm consists of the following steps:

1. Initiating

The non-zero entrics of the matrix A, and the diagonal elements of the matrix B are
stored in two one-dimensional arrays, say RA and b respectively. To locate a special entry

of A, two address arrays IR and IC are needed. IR(i) gives the address in RA of the first
non-zero entry in row number i in A. IC(j) gives the column number (in A) of the entry



RA(). IR has dimension n+l, while RA and IC have dimension nz, where nz is the

number of non-zero clements of A.

Let us identify the nodes to be used by 0, 1,..., p-1, respectively. Node 0 reads input
data from the file in which n, nz, b, RA, IR and IC are stored. Then we send these data to
all other nodes from node 0. After this point, cach node has the necessary data to follow the

cigenpaths.
2. Following the eigenpaths

Divide the number of cigenpaths as equally as possible among the p nodes. Each node
builds the initial matrix D and then follows its own eigenpaths concurrently, with the

procedure described in §2.
3. Broadcasting the bifurcation points

The cigenpaths start off from D and advance using the Euler-Newlon continuation,
solving the problem in real space. When it detects that it is going backwards in time, i.e., t
< 0, then a bifurcation point has been passed. We identify this point first and store the
values of (A, t) at this bifurcation point in an array. We then broadcast these valucs to all
other nodes. When a real eigenpath encounters a bifurcation point (Fig. 1a), it first checks
whether the bifurcation point has been visited before. If 1t has been, then, the node stops
following this path. By this way, only one path of a complex conjugate pair of paths is
computed. This node is then free to compute one of the two real eigenpaths, say I'y" in Fig.
1b.

With the above considerations at the bifurcation peints, computation time (and cost)

would be reduced.
4 Numerical Experiments
In this section we present numerical results of our implementation of the parallel homotopy

algorithm for two cxamples. All computations were done on the 64-node "Gamma® machine
of CCSF at Caltech with double precision.



QOur first example is just a test case, constructed as follows:

C -I 4
A= 1 C I , where C = b

- C b 4

a
4

witha=-1+8,b=-1-8,8=0.5 (asymmetry parameter). We take B to be the unit
matrix. The problem therefore becomes a standard eigenvalue problem Az = Az. The
dimensions of matrices C and A are 32 and 640 respectively. The number of non-zero
clements of A is 3096. We computed the 64 cigenpairs corresponding to the 64 largest
cigenvalucs of the initial matrix D. The performance for this test example is shown in Table
1. The speedup S, on p nodes is defined as

Sp=Ty /T, . (12)
where T, is the execution time using one node, and Ty, is the execution time using p nodes.
The efficiency, Ep, is the ratio of the speedup and p. For this test example, we obtained an

efficiency higher than 86%.

TABLE 1. Performance of the parallel homotopy algorithm, n = 640, nz = 3096.

Number of Nodes| Execution Time Residual Speedup Efficiency

p (scc) max; | Az, -Az I, Sp E,

1 4736 1.2657x10° 1

4 1331 1.4567x10°1! 3.6 0.889

8 671 1.2789x 1011 7.1 0.881
16 338 1.7524x10°11 14.0 0.876
32 170 1.6435x10°1 27.9 0.870
64 86 1.2534x10-11 55.0 0.860

As expected, the largest eigenvalue (A = 7.7036491) was found by following the first

eigenpath, i.c., the eigenpath with the largest cigenvalue of the initial matrix.

Our second example is concerned with the prediction of the transition from steady to
oscillatory surface-tension-driven flows in a liquid bridge [11]. The goveming equations of
the problem for velocity U = (u, v, w), temperature @, and pressure p in the liquid bridge
of volume V={ (r, 8, 2) |0<r<R,0<0<2m, -L <z <L} are the Navier-Stokes and

energy equations:
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U +Re (U-V) - U =-Vp+V?U, (13)
VU =0, (14)
©,+ Re (U-V) © = 1/Pr V20, (15)

with appropriate boundary conditions. Rec and Pr denote the Reynolds-Marangoni and the
Prandtl numbers, respectively. For a given fluid, molten silicon, for example, we have a
Prandtl number of 0.023. The flow behaviour is then characterized by the Reynolds-
Marangoni number. At sufficiently low values of Re, the flow is laminar, steady and
axisymmetric. When Re exceeds a critical value, the flow undergoes a transition to an
oscillatory mode of convection which depends on the boundary conditions. Such transition
in fact corresponds to a Hopf bifurcation where a generalized cigenvalue of the discretized
Jacobian matrix of the linearized perturbation cquations of (13-15) crosses the imaginary
axis. We describe bricfly here the method uscd to solve the stationary cquations and to

compute the eigenvalues of the perturbation cquations.

The spatial finite differcnce discretization of (13-15) yields a system of ordinary

differential cquations of the form
ax
Mﬁ=f(x, AL, : (16)

where x is the solution vector (velocities, pressures and temperatures), A is the bifurcation
parameter (Re in the present casc), and 1 is the vector of the remaining fixed parameters in

the problem. For fixed A, the steady-state solution (which is assumed (o be axisymmetric)

%o of (16) will satisfy thc cquation
f(x0, A, W) =0, a7

The stability of the steady-state Xo (M) can be analyzed by taking small perturbations of the

form (r, z)e® * ™ and lincarizing (16) about X, obtaining
fx{= oM(, (18)
where n is the azimuthal wave number and fx is the Jacobian matrix.

As Re is varied, an axisymmetric steady-state solution may lose stability in one of two
ways. One or more gencralized cigenvalucs of {18) may cross the imaginary axis with zero
imaginary part. This casc corresponds either to a limit point or (o a bifurcation to another
steady solution. Altcrnatively the cigenvalue may cross the imaginary axis at a nonzero

imaginary value. This corresponds to a Hopf bifurcation to a periodic solution.
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At Re = 71739 for n = 0, we solved the axisymmetric sieady equations (17) using the
Newton-Raphson method. The computation, using the above presented parallel homotopy
algorithm, proceeds by following the first 8 eigenpaths on 8 nodes. The resulting
eigenvalues with the largest real part among the 8 compuited are the complex conjugate pair
o = -41.36 + 404 i. To locate a nearby Hopf bifurcation, we solved an extended steady-
state system of equations proposed in {12] using the steady state solution, the imaginary
part of eigenvaluc (o; = 404) and the corresponding eigenvectors at that guessed Reynolds-
Marangoni number. After 6 iterations, the system converged to a Hopf bifurcation point at a
critical Reynolds-Marangoni number of 78000 and an angular frequency Gj= 446.2. This
result is obtained on a variable (r, z) mesh, 21x41. The dimension of the gencralized
cigenvalue problem is 2340x2340 with 18885 non-zero clements of the Jacobian matrix.

5 Conclusrion

We have presented a homotopy mcthod for solving a real, large, sparse generalized
cigenvalue problem. The cssence of the method is that all the cigenpairs can be obtained by
following the cigenpaths starting from an initial known gencralized cigenvalue problem. The
algorithm presented here is well suited for paraliel computer architectures because of the

indcpendence of the cigenpaths to be followed.

By a special choice of the initial matrix and following only several eigenpaths, we
determined sclected cigenvalues, for example those with the largest real part. Such an
approach, which is of intcrest in lincar stability analysis for hydrodynamic problems, has
been applicd to a concrete problem of {inding the Hopf bifurcation point for surface-tension-

driven flows in a liquid bridge.

It would be interesting (o compare the present algorithm with the widely used Armoldi
algorithm described in {13].
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