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Abstract

This paper deals with meniscus deformation and flow in an isothermal liquid bridge maintained between
two circular rods, when one rod is subject to axial monochromatic vibrations. It concerns a fundamental
aspect of the problem of crystal growth from melt by the floating-zone technique which is often considered
in weightlessness conditions. In the absence of vibrations the bridge is cylindrical; but due to vibration the
mean shape of the meniscus is no more cylindrical and the meniscus oscillates around this mean shape. Two
models are developed. First, we take into account the pulsating deformations of the meniscus (free surface),
but we assume that the mean shape of meniscus remains cylindrical (i.e., we neglect the influence of vibration
on this mean shape). For this simple case, a solution of the problem for the pulsating meniscus

deformations and the pulsating velocity field is found in explicit form. For the mean flow, the problem is
solved numerically by a finite-difference method. The calculations demonstrate the contribution of two
basic mechanisms of mean flow generation due to vibrations, related to the generation of mean vorticity in
the viscous boundary layer near the rigid boundaries and surface-wave propagation at a free surface. The
intensity of the mean flow induced by surface waves is found to be sharply increasing when the vibration
frequency approaches the resonance values that are determined from the explicit form of the solution of
pulsation problem. In the second model, we take into account both pulsating and mean deformations of the
meniscus. The governing equations for the potential of pulsating velocity and mean velocity, and for the
pressure, are solved by using a finite-difference method and a boundary-fitted curvilinear coordinate system
fitting the free surface.

Keywords: Isothermal liquid bridge; Microgravity; High-frequency vibrations; Numerical
simulation
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1. Introduction

A comparatively new technique to introduce defined flow structures or to control time-
dependent convective regimes in crystal growth from the melt is the vibration of the solid—liquid
interface. Especially for growth arrangements with free melt surfaces like floating-zone growth, the
vibrating boundary generates surface flows away from the interface and therefore can be used to
counterbalance the flow due to the thermocapillary forces [1,2]. But the modeling of such a
floating-zone growth is very complex, and it is important to firstly consider a more fundamental
study of the vibration-driven flow inside an isothermal liquid bridge subject to vibrations. Non-
linear response of liquid bridges subjected to axial low-frequency vibrations is studied in Refs.
[3,4]. One-dimensional non-linear viscous model is developed in Ref. [5] to study streaming
generated in a long liquid bridge due to vibrations of an endwall. The present paper deals with the
effects of high-frequency vibrations which are considered in Refs. [1,2] as most promising for a
Sfloating-zone growth of semi-conductor materials.

It is known that externally applied high-frequency vibrations exert significant influences on fluid
systems with a free surface or interface (see, for example, Refs. [6,7]). To study the dynamics of
systems subject to high-frequency vibrations it is convenient to decompose the flow field into mean
and pulsating components and to obtain a closed set of equations for the mean flow. This
approach has been used by Schlichting [8] for the flow near an oscillating cylinder, and by
Longuet-Higgins [9] for the mean flow under surface waves in water. In both cases, the pulsating
vorticity was found to have a large magnitude in a boundary layer. Non-linear interaction leads to
the generation of a mean vorticity, which diffuses from the boundary layer to the bulk, due to
viscosity. This effect has been extensively studied in the last years, however most of the works deal with
the case of fluid system of infinite extent. The general approach for the description of vi- bration
Sflows in a fluid with a deformable free surface of finite extent, subjected to high-frequency vibrations,
has been developed in Refs. [10—12]. In Ref. [13] pulsating and mean flows in a liquid bridge were
considered for the case when the two rigid rods supporting the bridge oscillate synchronously
in axial direction; the pulsating deformation of the free surface was taken into account but not
the mean deformation. In the present paper, we study the response of an iso- thermal liquid
bridge to axial high-frequency vibrations of one supporting rod, accounting for both pulsating
and mean deformations of the free surface.

2. Problem formulation
2.1. Governing equations

Consider an isothermal liquid bridge under zero gravity conditions. The liquid is maintained
between two rigid rods of equal radius R, located at the distance L from each other (Fig. 1). One
of the rods performs monochromatic oscillations in the axial direction with the angular frequency x
and the amplitude a. The volume of liquid is such that in absence of vibration the bridge is a



Fig. 1. Geometry of the problem.

circular cylinder of radius R (at g = 0). Due to vibrations, the mean shape of the liquid bridge can
depart from cylindrical and the meniscus oscillates around its mean shape.
The Navier Stokes equations for an incompressible fluid are:

o3 SN 1 ”
= v Vo= ;Vp+vﬁ\.v, (2.1)
vV-3=0, (2.2)

where ¥ is the velocity, v is the kinematic viscosity and p is the pressure.
In order to obtain an amenable set of equations, we make the following assumptions. First, we
assume that the vibration period is much smaller than the viscous time scale, namely

™ & Ry, (2.3)

which also means that the thickness of the Stokes boundary layer & = (v/w)"? is much less than a
characteristic dimension of the liquid zone:

5 < R. (2.4)

Secondly, vibrations are not in an acoustic range, namely the sound wavelength at the vibration
frequency is much greater than the characteristic dimension of the zone.
Thirdly and finally, the vibration amplitude is assumed to be small:

a % R. (2.5)

These assumptions permit to decompose the hydrodynamical fields into the sums of a slowly
varying (i.e., mean} and rapidly oscillating (i.e., pulsating) components:

3= + g, 5 =0, # =73, (2.6)
p=p+PF, (2.7)

where overbar denotes the average over the vibration period.



Substituting Eqgs. (2.6} and (2.7} into Eqs. (2.1} and (2.2} and retaining only the leading order
terms in the equations for pulsations, we obtain the following equations

V An =0, V- =0 (2.8)
for the pulsating fields, and the equations

% @+8) A (VAR = %Vﬁ+vﬁﬁ1 (2.9)
V-#=0 (2.10)

for the mean components where § = f - V1, is the Stokes transport velocity, f is the vector de-
termined by the formulae &, = (87 /o¢) and f =0, the sum (# + 5) represents the Lagrangian
velocity # (for details, see Refl [12]).

As one can see, equations for the mean fields (2.9} and (2.10} differ from the conventional
Navier Stokes equations by the additional term S A (V A ). This term is responsible for the
mean transport of vorticity due to the pulsating components of the flow. For monochromatic
vibrations we have

i = aw RE;{I7'E:Jq:u[io.nt)}1

where ¥ is the dimensionless complex -valued amplitude of the pulsating velocity, scaled with acw.
In this case the Stokes transport velocity is

3 =1FeIm{(V - V)P*).
2.2. Boundary conditions for the mean velocity on the rigid boundaries

As shown by Schlichting [§], the tangential components of the mean velocity can reach a finite
value at the edge of the dynamical skin layers near the rigid surfaces where the generation of
a mean vorticity occurs. For monochromatic vibrations with velocity pulsation having an in-
homogeneous phase, the Schlichting boundary condition has the form [12,15]:

2= Z¢ Re{l(ﬁ-V)ﬁ*+(1+§i)ﬁ(v-ﬁ*)}. (2.11)
2 2 2
Here derivatives are taken tangent to the boundary surface, * denotes the complex conjugate, #,
and ¥, are the tangential components of vectors # and 7 on the rigid boundary.

Taking into account that the full mass transport through the boundaries should be equal to
zero we obtain the following conditions for normal component of mean velocity on the rigid
boundaries:

u, + 8, = 0. (2.12)
2.3. Boundary conditions for the mean velocity on the free swrface

A vortex boundary layer adjacent to the free surface can be generated by the propagation of
surface waves caused by the imposed vibration. An analysis of the boundary layer structure near



the free surface shows that the mean shear rate near the free surface differs from zero [9]. For
arbitrary surface wave field, this leads to the following formula for the mean vorticity at the free
surface [12,16]:

VAl =d?wRe{VL(V P+ V(- VIF} AR, (2.13)

where { is the dimensionless complex valued amplitude of the deviation of a free surface from its
mean position (scaled with o) in the direction normal to this surface.

It follows from the condition of zero full mass transport through the boundaries that the mean
velocity normal to the free surface , differs from zero and is given by [12,16]:

u, = P wRe{V - ((P*)}. (2.14)

Asshown in Ref. [17], the influence of mean flows on the mean shape of free surface is small in
comparison with the mean effects of the pulsation action. That is why, in the mean normal stress
balance condition we can neglect the viscous stress term and write down this condition in the
following form:

pazwz (IVI |KI2)+0\7’~E=C (2.15)

(7 is the unit vector of external normal to the free surface, C is a constant). This condition,
together with the condition on the contact lines define the mean shape of free surface.
Additionally we impose the condition of the liquid volume conservation

2.4. Boundary conditions for pulsations

To implement the boundatry conditions (2.13) and (2.14} we need to know the structure of the
wave fleld { and the tangential components of the pulsating velocity near the free surface. Also,
dissipative processes must be accounted for in order to avoid unphysical infinite growth of wave
amplitude. If dissipative processes are considered, the flow will be non-potential. This makes
the caqulatlon of the pulsating fields more complicated. If, however, the penetration depth
é=(v/ cu) of the vortex component is small compared to that of the inviscid (or potential)
component A/2x (1 is the wavelength of the surface waves), it is possible to use a quasi-potential
approximation that considerably simplifies the analysis. Introducing complex amplitude of the
potential components of the pulsating velocity V= V& we obtain respectively the kinematic
condition and normal stress balance condition [16,18]:

0P od
2 _ 2
w 1@5—2 V= 5 (2.16)
iw® =%vfc + 29V, (2.17)
where V, is the tangential part of the operator V.
Additionally, we impose the stuck-edge conditions at the contact line:
fg =8y =0 (2.18)



The impermeability condition for the pulsating velocity are

od

oo _ ad
on

=Ll -0 (2.19)

2=L

for the vitrating and quiescent rods respectively.

No conditions for the tangential components of the pulsating velocity are imposed because the
representation (2.6} and (2.7) and subsequent averaging reduces the order of the equations gov-
erning the pulsating part of the flow.

Note that surface-streaming effect occurs effectively only if the waves are propagating (i.e., not
standing}. In a float-zone configuration, propagating waves exist when there is a viscous damping.
If the viscosity is not too low, the free-surface oscillation is not a system of standing waves but has
a significant component corresponding to waves propagating from the oscillating rod. This
promotes the effect of the fluid transport by the waves. At high viscosity, due to the strong wave
damping, most of the free surface will be at rest and the surface-streaming effect will be weak. One
would expect that the optimal condition for mean-flow generation by surface waves is such that
the length of wave damping, /4, is of the same order of magnitude as the size of the liquid bridge.
It is known that for small dissipation, /4 is equal to the ratio of the wave group velocity to the
decrement of wave damping [14]. For short enough waves, the cross-section curvature of the free
surface should not be important; thus, for a crude estimate, we can use the dispersion relation for
capillary waves on a flat surface; ie., Iy = 30/ (4pvw).

2.5. Dimensionless equations and boundary conditions

Let us restrict ourselves to axisymmetric solutions and introduce cylindrical coordinate system
with the origin located at the lower rod. By introducing the quantities R, R? /v, v/R, pv*/R? as the
scales for the length, time, velocity and pressure we come to the following problem for the de-
termination of the pulsating velocity field and pulsating deformations of the free surface, in di-
mensionless form:

Fo 180 Fo

with the impermeability conditions for the pulsating velocity at the rigid rods
okl _ 1, okl _ 0, (2.21)
Oz 2= Oz 2={

the symmetry condition at the liquid bridge axis:
a_cp =0 (2.22)
or r=0

and the following conditions at the free surface, at ¥ = f(z):

i = We ' Vi +2Q7'V2 9, (2.23)



., 0P , 0P

it = B AQVI— ! (2.24)

g =8y =0 (2.25)

Dimensionless equations for the mean components read:

on -

> (FE+S)YA (VAR = Vp+ Ad, (2.26)

V-#=0, (2.27)
where

S =1Re, Im{(V® - V)VE*}. (2.28)
The boundary conditions for the mean components at the rigid rods, at z = 0, { are:

3 o0 o | 1|08

Uy = Rep Z Re{[ 1) o 6}2 } +2_y 5 ]1 [229)

8 =0 (2.30)
at the free surface, at v = f(z):

O, Ou, oL o* @+

a E = 2R€ Re a 61:2 1 (2.31)

U+ 8 = 0, (2.32)

B 00" |02f" +V-i= C (2.33)

an B - ‘

fo=1 flH=1 (2.34)

at the symmetry axis, at » = 0:
_ Ot

4,=0, ===0 (2.35)

and the condition of the conservation of the liquid volume:
!
/ Ploydz =1 (2.36)
0

Here B = pa®w’R/(40), I = L{R, 1is the imaginary unit, Re, = &®w?/v is the pulsating Reynolds
number, We = pw’R*/o and Q = wR?/v are, respectively, the Weber number and the dimen-
sionless vibration frequency. The Ohnesorge number Ok = v[p/(Ra)]"? is related to We and Q
through the relation Ok = We'/2/Q. Parameter B is not an independent dimensionless parameter:
it represents the combination B = Re, We/(40Q).



3. Pulsating and mean flows in a liguid zone with non-deformable mean shape
3.1. Solution for pulsations

The problem for the pulsating deformation of free surface and the pulsating velocity field is
decoupled from the mean-flow determination and can be solved independently. Let us assume that
in the absence of vibration the liquid bridge is cylindrical, and neglect the vibration influence on
the mean shape. For this simple case, it is possible to obtain the solution of the problem for the
pulsations in explicit form. To this end, we represent the potential @ in the following form:

1 1 =
=/ Pzt ”Z;a,,fo(ky,f'} cosknz + 9, (3.1)

which satisfies the boundary conditions on the rigid rods. Here &, = ax/! and I, is the modified
Bessel function of zeroth-order.

Substituting Eq. (3.1} into the normal stress balance condition (2.23) we obtain a differential
equation for the pulsating deviation of the free surface from its equilibrium position {. The
solution of this equation is:

. 5 i
C=1We{ —zz+z+ +o: + E a,, Io(fc Ycos kpz F% gcosz}.
(3.2)

The formuas (3.1}, (3.2} for & and { contain the constants a,, F, ¢ and & that can be found
from the kinematic condition (2.24) and stuck-edge conditions (2.25).

_ 21 2 1 [ 1)'cos! sinf (1)
_%(7k_§+F[sinl I 2 9T 1 R
2i 1 212/0 -
x ((l+§ki)13(k,,)k,,+Wewro(fc,,)) , (3.3)
_De D _Z 5
F=—r g=—0 =g 57 A Eb glds 1) (3.4)
with
1 cosi sin {
D= m+Az (43 Ads 1+cosi) (42 Ads+1) T+A3 1y,
{ 1 { sin {
DF = (§+m Al) (A3 A5 l+COSI) (E +A4 Al) (T +A3 l)‘
1 { H { 1
Dq = (T{i}ls-{-ﬁ.z) (E+A4 Al) [.Az AS+ l)(§+m Al)l



2 2 2, . 2
A = ?Sh Az =m [S}, Sy COSE), A =?S4S:lnf1 Ay = ?‘921
2 2 . <0 1 co 1"
A= m(&t Sycosi),  Ag =ESBSml' 8 = ;%, 8 = ; (k,fG),, 1
R sy . 1 +202/Q . L(k,)
Sh= —_—, S = — . Gy=1+We 1l £ ——I .
? 2 G(1 &) ™ ; G.(1 &)’ T &) 2082 /0 Ty (i)

Thus, we obtain the solution of the problem (2.20} (2.25) for the pulsating velocity field and free
surface pulsations, in explicit form. 25 lowest resonance values of the Weber number are given in
Table 1 for two aspect ratio values: / =1 and /=2.

3.2. Solution for the mean flow

Applying the operator (VA), to the mean flow equations and introducing the streamfunction

and vorticity

Table 1
Resonanes values of Weber number for I —1and 7 —2

n e, I —1 We, I —2

1 0.12155E + 03 0.10660E +02
2 0.52225E +03 0.56600E +02
3 0.14357E + 04 0.16378E + 03
4 0.29949E + 04 0.3526(E +03
5 0.54388E + 04 0.64859E + 03
6 0.85008E + 04 0.10728E + 04
T 0.13619E + 05 0.16507E + 04
8 0.19728E + 05 024033E + 04
9 0.27466E 405 03356(E 404
10 0.36966E + 05 0.4530{E + 04
11 0.48466E + 05 0.59507E + 04
12 0.62101E + 05 0.76391E 4+ 04
13 0.78109E + 05 096207E + 04
14 0.96623E + 05 0.11917E + 05
15 0.11788E + 06 0.14552E 4+ 05
16 0.14202E + 06 0.17549E + 05
17 0.16927E + 06 Q20931E 4+ 05
18 0.19978E + 06 024721E + 05
19 0.23377E + 06 028943E + 05
20 0.27139E + 06 0.33620E + 05
21 0.31287E + 06 0.38775E + 05
22 0.35834E + 06 044431E 405
23 0.40805E + 06 0.50613E + 05
24 0.46212E + 06 1.57341E + 05
25

0.52080E + 06

0.64642E +05
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we obtain:

0 1 (amqb oy, 06 ”’%) Fo 106 F¢ 1
¥

o\ or o & o7 on Hatm 2% (3.5)

where ¥y = i + ¢, . is the streamfunction of the vector field § defined as:

1 od 0"
lI!S = EReP In'l{f’g E }

The conditions for mean velocity on the rigid rods, at z = 0, {, becomes:

o 3 oo Fo* 1 |8g|?
Wy =0, E_Repr ZR&{( 1)a aﬂ}-'—z_r_

O

] (3.6)

and on the free surface, at r = 1:

o; o }

=0, ¢= mepRe{gv (3.7)

The problem (3.5) (3.7} is solved by a finite-difference method using ADI scheme.

3.3 Numerical resulis

To study the effect of vibration frequency, the calculations were carried out with the three non-
dimensional parameters (Rey,, We and Q) varying in such a way that the ratios Re, /Q — (a/ R) and
We'i? {Q — Oh remain constant. We selected the values a,fR —0.003 and Ok = 2.934 x 107*, which
correspond to a liquid metal with n = 0.88 x 107> gem™' 87! and ¢ = 720 dynem ™, with R =0.5
cm and L =1 cm (i.e., { =2). The vibration amplitude is so small that both the vibration am-
plitude itself and the surface-wave amplitude are small in compatison with the characteristic size
R. The maximum value of the Lagrangian streamfunction iy is chosen as characteristic of the
flow intensity. The calculations show that max,, | | sharply increases near the resonance values
(Fig. 2). The flow intensity in areas between resonances gradually increases with the increase of
We, which is related to the decrease of the damping length, i.e. with the growth of the propagating
component of the waves.

The only dimensionless parameter characterizing the vibration amplitude in isothermal prob-
lems is the pulsating Reynolds number (which is proportional to &?). The caleulations show that
the mean flow intensity at a fixed value of We and fixed frequency (out of the resonance zones),
increases almost linearly with @? (see Fig. 3). This demonstrates the possibility to get a strong
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Fig. 2. Dependencee of minimal value of streamfunction on We, for I — 1 and 2/R — 0.003.
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Fig. 3. Vibration amplitude dependmee of minimal value of streamfunction, for  — 1 and #e — 23000,

enough vibration-induced flow, with dominating near-surface vortex, circulating along the free
surface from the vibrating rod.

4. Mean deformation and flow in a lignid bridge with a deformable free surface

In this section, we consider pulsating and mean flows in the liquid bridge accounting for mean
deformation of the free surface. In this case, the pulsation problem (2.20} (2.25) does not admit
analytical solution and must be solved numerically. Also, the problem is now coupled; so, we must
consider the full problem (2.20) (2.36).

11



4. 1. Numerical method

4.1.1. Grid generation
Let us consider an irregular domain in the physical plane (x,y) and use a boundary-fitted
curvilinear coordinate system. Following Thompson et al. [19], the Poisson equations

b + &y = P, (4.1)

Nee Ty = O (4.2)

give a curvilinear coordinates (&£,%) such that the irregular domain transforms into a rectangular
one in the computational plane, ie., &uin € €L Eruxy Arun = N S Ny After interchanging the de-
pendent and independent variables, one obtains

oXpr Z,Bxg,, T+ Py = J-z[f:k,g + QX,,}H (43}

ayee 2Byt = J ? (Bye + Ow), (44)
where

a=x,+y5 B=xeutyom Y=xit+yi J=xon n. (4.5)

The non-homogeneous terms P and O are the control functions. Following Thompson et al.,
the values of P and O inside the computational domain are computed by formulae [19]:

XK
Plem)= > asien(é Z)exp( cplt &)
=1

S bsign(t E)exp( dpllE P+ )T, (4.6)

=1

X5
Q&) = D asign(n n)exp( cyln n)

D bysignln mpexp( Gl &+ )T (4.7)

Here K; and K, stand for the line numbers & = & and n = #;, near which the grid contraction
is desired, L is the number of such points (£, 7). In our case &pn =0, énax =1, Hun =0,
M = (VY 1)/(NX 1), Kp=1,K,=2,L=0,¢& =1, 9 =0 5 =29, NXis the number
of mesh points in r-direction, and NY in y-direction.
The associated boundary conditions are determined from the equations: on the lower and
upper boundary
XgE = X’ép[ét 0)1 x[O} =0, x(l) =R, Y(é) =0 [48)

or

xgg = XP(E ) X(0) =0, x(1)=R, y(&) =4 (4.9)

12



on the symmetry axis

= %00n), y(0) =0, Yy =1 x(n)=0 (4.10)
on the liquid gas interface
Yoy = y,?Q[L?I')n _)’(0):01 y[nmax)=l1 x=f(y)‘ (411)

The function f(y) is supposed to be known. Since it is determined only in the grid nodes used
in the previous iteration (or as initial approximation}, a cubic spline interpolation is employed.

The non-linear Egs. (4.8} (4.11) are discretized by a second-order centered finite-difference
approximation and solved by Newton’s method; the resulting three-diagonal linear system is
solved by the DGTSV routine of LAPACK library. The Poisson-like Eqs. (4.3} and (4.4} are
discretized in the same manner and solved by the successive over-relaxation (SOR) method.

In Eqs. (4.1} (4.11), the coordinate x corresponds to r of the Section 2.3, and y to z. The
expressions for the first derivatives of a field ¢ are:

@ = Dmwr  yewg) IV, (4.12)

@, = [xew,  Xy0p)/. (4.13)
The Laplace operator in the cylindrical coordinate system takes the form:

@, oy 2By, +ye ¥ e
ooty I (0 K)o 10 Ko, w2

The derivatives on the free surface take the form:

O 1
- J/a (e Bay),

(4.15)

a(p _ <Dy?

= va (4.16)
The “flat’ Laplacian is approximated by

tp =22+ O, (4.17)

The expressions for the second and third derivatives can be obtained by using the general rules of
variable change, but they are not given here for simplicity.

4.1.2. Numerical algorithm

All the derivatives are approximated by second-order central differences in the interior domain,
and by second-order forward or backward differences on the boundaries. The velocity com-
ponents, the potential of pulsating flow, the functions f and { are defined on the grid points, and
the pressure in the mesh center.

The computation of mean flow field is decoupled from the problem of determination of pul-
sating flow and liquid gas interface shape. So, after discretization we obtain a linear system
of equations for @ and {, a non-linear system for f (and for a constant €} which, in its turn,

13



depends on the shape of the computational domain and the used grid, and a non-linear system
for w,, w, p.

To solve non-linear systems, Newton’s method is applied. For a non-linear algebraic system
written in vector form: f(X) = 0, where X is the unknown vector, we have:

£, (X")dX" = £(X"), (4.18)

XM = X"+ dX°, (4.19)

where f, = Of /0X is the Jacobian matrix. The iterations continue until some convergence criterion
ig attained.

The associated Jacobian matrices are banded (except for the case of mean shape, in which the
constant C is present in equations for any interior point). The band LU factorization and
the resolution of triangular systems are performed by using the CGBFA/CGBSL sequences in the
LINPACK library.

The system for [/, C) it formed in the natural way: line j of matrix corresponds to the point 7,
but with supplemental equation number &Y + 1. The solution is obtained by the use of routines
DGEFA/DGESL of LINPACK library.

The values of «,, w,, p for each node are arranged sequentially in the unknown vector X. The
resulting system ig solved by the DGBF/DGRBS routines of LINPACK library. The solution
procedure is summarized as follows:

provide an initial guess of the solution;

transform the physical domain into a rectangular computational domain;
solve equations for @ and {;

solve equations for «,, u,, p;

determine a new free surface shape.

SR W

The steps 2 5 are repeated until the prescribed convergence criteria are satisfied. Then the ap-
propriate Poisson equation for the streamfunction # is solved by using the computed velocity
field, and the transition to the Lagrangian streamfunction is made.

4.2. Numerical results

The computations were performed on the grid (MY =41) x (WY = 151), for the following
values of the dimensional parameters: rod radius R = 0.5 ¢m, zone length L = 1.0 cm, density
p =253 g em?, dynamic viscosity 5 = 8.855 x 107? g em~'s7!, surface tension coefficient ¢ =
720 dynem™!, vibration amplitude @ = 1.5 x 107 ¢m, vibration frequency was varied in the range
102 1.23 x 10* g1,

Fig. 4a and b show typical views of the pulsating velocity potential and of the pulsating de-
formation of the free surface. It can be seen that the real part of the pulsating deformation is small
and decreases with the increase of distance from the vibrating rod, showing the establishment of
the standing wave regime, in which the wave propagating from the vibrating rod has nearly the
same amplitude as the wave reflected from the quiescent rod. As a result, the mean flow gener-
ation near the free surface leads to the formation of a large number of small vortices whose di-
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Fig. 4. Isolines of real (solid Iine) and imaginary (dashed ling) parts of potantial of pulsating velocity (a), and real (solid
linc) and imagnary (dashed line) parts of ¢ (b), for e — 15800 (w — 6000 & 7).

mensions are determined by the wavelength of the surface pulsations. The presence of a propa-
gating component, i.e., non-coincidence of the amplitude of the direct and reflected waves, is,
however, of fundamental importance: it leads to the formation of a global mean flow. The in-
tensity of this mean flow is so large that the small vortices are insignificant on its background and
become apparent just through a weak additional deformation of the mean free surface.

At frequencies far from the resonant values, the amplitudes of the direct and reflected waves are
close to the vibration amplitude, as shown in Figs. 4b and 5 where the amplitude of the standing
wave is close to 2. However, when the frequency increases, the wavelength decreases. As a result,
the pulsating velocity gradient and thus the mean-flow intensity increases. When the vitration
frequency approaches one of the fundamental frequencies of the system, the amplitude of surface
waves resonantly grows.

4.0

Im (%) 0.0

Fig. 5. Imaginary part of dimmsionless amplitude of deviation of free surface from its mean shape for 2/R — 0.003:
dash dot Iinc e — 439, dashed linc e — 15800, solid inc We —64840 (e, w—1000s !, w—6000¢ ! and
w— 12150 & !, respeetively).
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Fig. 6.Mcan deformation of the free surface: (a2 — 7.5 % 10 * em, w — 6000 & 1 (B = 0.00880); ) a — 7.5 x 10 * em,
w— 121508 1 (B =00365% ()a—15x 10 % am, w— 6000 ¢ ? (B =0.0355% () a—15x 10 % em, w — 12150 s !
(B =10.146).

Fig. 6a d illustrate the influence of vibrations on the mean shape of free surface. By analyzing
these figures we can conclude that:

« under the influence of the lower rod vibrations the liquid bridge takes an amphora shape: the
free surface is convex near vibrating rod and concave near the rod at rest. Thig is in agreement
with the results [20] concerning the case of stuck-edge conditions on the contact line, where
mean shape of a liquid bridge (between two vibrating rods} was calculated by means of varia-
tional technique with one trial function,

« mean deformation of free surface is nearly proportional to (aw)’, i.e. proportional to the vibra-
tion parameter B. This also well corresponds to the results [20]. The parameter range consid-
ered in the present paper (small vibration amplitude and large surface tension coefficient
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typical for liquid metals), corresponds to low values of parameter B, for which mean deforma-
tions of free surface are small;

« the free surface exhibits also the small fluctuations (ripple), which reflect the presence of small
vortices near the free surface. The spatial period of this ripple is related to the wavelength of the
free surface pulsations (see Figs. 5 and 6 for the comparison); it decreases with the increase of
the vibration frequency.

The number of nodes in z-direction in most of the calculations was taken to be 151 (with an
irregular mesh size). This value was chosen on the basis of accuracy test with different node
numbers to achieve good convergence at the highest frequency, i.e., 2 kHz. In this case, it cor-
responds to more than 10 nodes per wavelength of the free surface pulsation.

We used a boundary-fitted curvilinear coordinate system, with a mesh refinement near the free
surface. The vortex size near the free surface is relatively large in comparison with the mesh size.
The characteristic vortex size is defined by the wavelength of free surface pulsation; for the fre-
quency of 1 kHz it is ~0.05 (see Figs. 4 and 5). The irregular grid in #direction is such that the
dimensionless step size varies from 0.0396 (near the symmetry axis} to 0.0055 (near the free
surface).

Aceuracy tests have been performed for @ = 6 x 10° s7! by using different grids (from 31 x 121
to 47 x 151} and different values of grid-transformation parameters. The flow structure and the
free-surface shape remain qualitatively the same. For the extremal streamfunction values, with the
same grid-transformation parameters (the ones used in most of the calewlations), the difference
between the results for the meshes 31 x 121 and 47 x 151 is of 2.5%. The mean shapes of the free
surface obtained in these two caleulations are very close and exhibit the same number of ripples
(Fig. 7). Some calculations were also carried out with a fixed number of nodes, varying the grid-
transformation parameters. The difference in the extremal streamfunction values obtained with

—+— 31x121
1.6 — ——— 47x151

0 ™ T 1 T T T ]
0.9992  0.9996 1.0 1.0004 1.0008 1.0012
r

Fig. 7. Mean deformation of the fres surface, for 2 — 15 x 10 * em and o — 6000 & '; computed on two different grids.
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the grid-transformation parameters which generate a virtually uniform grid and those used in
most of the calculations is of 3.5%, for the mesh 47 x 151.

Furthermore, to test the feedback influence of the surface deformation on the mean flow, we
performed additional calculations neglecting the mean deformation. The difference in the mini-
mum values of the Lagrangian streamfunction, accounting for, or neglecting, the mean defor-
mation of the free surface, is very small. So, the mean deformation of the free surface has only a
small feedback effect on the mean flow.

Typical views of the Lagrangian streamfunction are presented in Fig. 8a and b. They exhibit a
dominating vortex, which occupies most part of the liquid zone. This main vortex is induced by
surface waves propagating from the lower, vibrating, rod. The direction of this vortex is such that
the liquid moves along the free surface from the vibrating rod. The small vortex near the vibrating
rod (Fig. 8a} is of Schlichting origin. In this vortex the fluid moves along the rigid surface in the
direction opposite to that of the gradient of the pulsating energy, i.e. the flow is clockwise. The
Schlichting mechanism is significant only for low values of Weber numbers.

The dependence of the minimal value of the streamfunction (i.e., the maximal value of flow
intensity} over the computational domain on the frequency is presented in Fig. 9, in terms of the
square root of the Weber number. It shows that the flow intensity increases with the frequency but
in a non-monotonous way. The values of the vibration frequency at which a sharp growth of the
mean flow intensity occurs well correspond to the resonant frequencies, calenlated in Section 3.1.

18



57.1 —

el U\,U

il

0.0

[ ' [
167.7 251.5

Jwe

Fig. 9. Dependenes of minimal value of streamfunetion on #We number for a/R — 0.003.

5. Conclusions

With the future goal of demonstrating the feagibility of vibration-driven control of floating-
zone growth in Space environment, we have considered a preliminary, more fundamental, study
of the vibration-driven flow inside an isothermal liquid bridge limited by two rigid rods with one
of the rods subject to high-frequency vibrations in axial direction, under zero gravity conditions,
assuming that in the absence of vibrations the liquid bridge has a cylindrical shape. Pulsating and
mean flows in an isothermal liquid bridge have been studied, accounting for: (i} meniscus de-
formation, (i} generation of mean vorticity in the boundary layers near the rigid and free
boundaries, (iil} viscous damping of the surface waves and (iv) spatial inhomogeneity of pulsation
phase. Two models have been considered.

In a first model, we assume that the vibrating liquid bridge has a cylindrical shape (ie.,
mean deformations of the free surface due to vibrations are ignored). A closed-form solution for
the pulsating deformation of the free surface and the pulsating velocity field has been found.
The resonant frequencies of the free surface oscillations have been calculated. The solution
of the problem for the mean components has been obtained numerically by a finite-difference
method.

The second model accounts for the mean deformations of the free surface due to vibrations.
The governing equations for the potential of pulsating velocity and mean velocity and for
pressure are approximated by using a finite-difference method on a semi-staggered grid. The
unknown free surface is determined by using a boundary-fitted curvilinear coordinate system.
The resulting non-linear system of algebraic equations is solved by using Newton’s method. The
vibration influence on the mean shape of the liquid bridge has been analyzed. The mean-flow
structure and intensity have been obtained for a wide range of vibration frequency (0 2 kHz).
The mean flow intensity has been found to be a non-monotonous function of vibration frequency.
The frequency values where a sharp growth of the mean-flow intensity occurs are in a good
agreement with the exact solution of the pulsation problem for a ““purely cylindrical” Hquid
bridge.
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