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Abstract A continuation method is applied to investigate the linear stability of the

steady, axisymmetric thermocapillary flows in liquid bridges. The method is based

upon an appropriate extended system of perturbation equations depending on the

nature of transition of the basic flow. The dependence of the critical Reynolds number

and corresponding azimuthal wavenumber on serval parameters is presented for both

cylindrical and non-cylindrical liquid bridges.
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Microgravity

1 Introduction

Thermocapillary flows refer to motion driven by surface-tension gradients along the

free surface. Liquid bridge held between two solid, planar endwalls across which a

temperature difference is applied provides a paradigm for the study of such flows owing

to its relevance to the float-zone crystal-growth technique. Considerable attention has

been paid to determine the stability boundaries of thermocapillary convection in both

cylindrical and non-cylindrical liquid bridges (Wanschura et al. 1995, Nienhüser and

Kuhlmann 2002, Shevtsova 2005).
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In this paper, instead of conducting time-dependent simulation and directly com-

puting the eigenvalues that characterize a regular (stationary) or a Hopf (oscillatory)

bifurcation, we used a continuation method combined with finite-difference method

to predict the stability boundaries of the axisymmetric basic state in liquid bridges

for a wide range of parameters. The essence of continuation method is to extend the

system of equations under investigation by adding an additional parameter and an

additional equation so that the combined system is non-singular at limit points where

the equations alone are singular (see for example, Henry and Bergeon 2000).

The present paper is an extension of the previous work by Chen et al. (1997) to

the case of non-cylindrical liquid bridges where the free-surface shape is determined

by the volume of liquid and static pressure difference. For cylindrical liquid bridges

we report an updated stability diagram including large-Prandtl-number liquid bridges.

For non-cylindrical liquid bridges, a special effort is devoted to show the effect of the

relative volume of liquid on the stability of thermocapillary flows.

2 Problem Formulation

We consider the flow of an incompressible Newtonian fluid confined to a liquid bridge

of length L held by surface tension forces between two parallel, coaxial solid rods of

equal radii R (> L/2π). A temperature difference is imposed over the liquid bridge by

prescribing Tu and Tl at the upper and lower disks respectively (see Fig. 1). The liquid

is a Newtonian fluid with constant values of the viscosity µ, the reference density ρ0,

the specific heat cp, the thermal conductivity κ, and the volume expansion coefficient

β; α = κ/ρ0cp is the thermal diffusivity, and ν = µ/ρ0 is the kinematic viscosity.

The surface tension on the free surface is considered to be a linearly depend on the

temperature

σ = σ0 − γ(T − T0), (1)

where σ0 is the mean surface tension at the reference temperature T0 = 1
2 (Tl + Tu).

For common liquids, we have γ = − dσdT > 0, so that there is surface flow from the

hot end toward the cold end. Since the bulk fluids are viscous, they are dragged along;

bulk-fluid motion results from free surface temperature gradients. The liquid volume

(= V ) is bounded by a lateral-free surface r = h(z), where z is the vertical coordinate.

In the limit of large mean surface tension, this free-surface shape is independent of the

flow and temperature fields (see Nienhüser and Kuhlmann 2002).

We consider the fully three-dimensional system in the usual cylindrical coordi-

nate (r, φ, z) with origin in the center of the bottom end face. Gravity acts downward

along the z-axis. The length (r, z), velocity vector u = uer + veφ + wez , pressure p,

temperature difference T − T0, and time t are referred to scales R, γ∆T/µ, γ∆T/R,

∆T = Tu−Tl and R2/ν, respectively. As a result, there arise the following dimension-

less groups:

Re =
γ∆TR

µν
, Pr =

ν

α
,Gr =

gβ∆TR3

ν2

Γ =
L

R
,Bi =

h̄R

κ
,Bo =

ρ0gL
2

σ0
,

Here Re is the surface-tension Reynolds number, Pr the Prandtl number, Gr the

Grashof number, Γ the aspect ratio, Bi the surface Biot number in which h̄ is the

heat transfer coefficient and Bo the static Bond number. The Marangoni number is
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Fig. 1 Schematic of the model system.

Ma = RePr. The relative volume of liquid is V = V/πR2L. Positive values of Re and

Gr represent the system which is heated from above, while negative ones correspond

to the system heated from below.

The governing equations for the flow and temperature fileds in the liquid bridge are

the Navier-Stokes, the continuity and the energy equations, subject to the Boussinesq

approximation:
∂u

∂t
+Reu · ∇u = −∇p+∇2u +

Gr

Re
θez , (2)

∇ · u = 0, (3)

Pr (
∂θ

∂t
+Reu · ∇θ) = ∇2θ. (4)

The boundary conditions at the rigid walls of constant temperature are

u = 0, θ = ∓1

2
, at z = 0, Γ (5)

At the free surface, r = h(z), the kinematic boundary, tangential-stress and heat

transfer between liquid zone and surrounding gas are:

n · u = 0, (6)
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tz · (S · n) = −tz · ∇θ, (7)

tφ · (S · n) = −tφ · ∇θ, (8)

n · ∇θ = −Bi(θ − θa(z)). (9)

where S = ∇u + (∇u)T is the viscous stress tensor in non-dimensional form. θa(z)

is the dimensionless ambient temperature. The vector n denotes the outward-directed

normal vector of the free surface h(z), and the vectors tz and tφ denote the unite vectors

tangent to the free surface in the (r, z)- and (r, φ)-plane, respectively (see Nienhüser

and Kuhlmann 2002).

In the limit of large mean surface tension σ0, the free-surface shape is independent

of the flow and temperature fields. Thence at prescribed static Bond number Bo, liquid

bridge aspect ration Γ and liquid volume V (or equivalently a contact angle), the static

free-surface shape h(z) can be obtained from the Young-Laplace equation:

h′′

(1 + h′2)3/2
− 1

h(1 + h′2)1/2
+ Ps −Bo z = 0, (10)

where h′ = dh/dz. This second-order ordinary equation for h(z) and the constant Ps
which is the dimensionless static pressure jump is solved with following three boundary

conditions:

h(z = 0) = h(z = Γ ) = 1, (11)

V =
1

Γ

∫ Γ

0

h2(z)dz, (12)

or, equivalently,

h′(z = Γ ) = − tan(αh − π/2). (13)

Here αh is the hot-wall contact angle measured from the rigid disk to the free surface

3 Basic flow

For small Reynolds number the flow in the liquid bridge is steady and axisymmetric

(∂t = ∂φ = v = 0) which can be characterized as a single toroidal vortex in the (r,z)-

plane. The system of equations for the basic state, denoted by X(r, z) = (U, 0,W, P,Θ),

is obtained from equations (2-9). For the sake of brevity, the details of this system of

equations are not given here, it suffices to note that we used finite-difference method

in the body-fitted coordinates (ξ,η)

ξ =
r

h
, η = z (14)

which transform the original (curved) physical domain (r,z) onto a rectangular do-

main (ξ,η). Readers are refereed to Shevtsova (2005) for the details of the transformed

equations in the curvilinear coordinates (ξ,η).

The transformed system of equations and boundary conditions are discretized by

second-order finite differences on a non-uniform mesh consisting of Nr × Nz points.

The resulting nonlinear difference equations can be written, in the vector form,

f(X;λ,µ) = 0, (15)
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in which λ is a specific parameter (Re in the present case) and µ is the vector of the

remaining parameters of the problem (Pr,Gr,Bi, Γ,Bo and V or αh). These param-

eters are introduced for simplifying the notation in the analysis below. The nonlinear

equations (15) are solved by successive Newton-Raphson iteration:

fX(Xn;λ,µ)dXn = −f(Xn;λ,µ), (16)

Xn+1 = Xn + dXn. (17)

where fX = ∂f/∂X is the Jacobian matrix. These iterations continue until the largest

variation (relative) of any U , W , P and Θ is less than some convergence tolerance which

we set to 10−6. Depending on the parameters of the problem, 4 to 8 iterations can be

required provided that initial guess is close enough to the solution. For an appropriate

ordering of the grid points and unknowns, the Jacobian matrix fX has banded struc-

ture with band width, say Nb, being approximatively equal to min(8Nr, 8Nz). The

required band LU factorization and triangular solvers at each Newton-Raphson itera-

tion in (16) are performed by using the DGBFA/DGBSL sequence in the LINPACK

subroutine library.

4 Linear stability analysis

The linear stability of the basic state X is examined by considering small three-

dimensional perturbations, denoted by x′ = {u′(r, φ, z, t), p′(r, φ, z), θ′(r, φ, z)}, which

satisfies the linearized perturbation equations (see Chen et al. 1997, Nienhüser and

Kuhlmann 2002). Since the basic state is axisymmetric, we can expand the perturbed

velocity, pressure and temperature fields in the formu′

p′

θ′

 =

+∞∑
m=−∞

u(m)(r, z)

p(m)(r, z)

θ(m)(r, z)

 eσ(m)t+jmφ, (18)

where j =
√
−1, m is the (integer) azimuthal wave number, and σ(m)(= σr + jω) is

the complex growth rate of the corresponding mode perturbation.

Let x = (u, jv, w, p, θ)T denote a vector of length of 4N+M , then, the discrete form

of the linearized equations can be written as a generalized matrix eigenvalue problem

of the form

g(x,X, Re,m,µ) ≡ Ax = σBx, (19)

where A ≡ gx is a real-valued, non-symmetric matrix, and B is a real-valued, diagonal

matrix. The Jacobian matrix gx is not the same as for the stationary solution fX

except for the case of m = 0, i.e. two-dimensional perturbations. In such case we make

no difference between two Jacobian matrices and either of them can be used in the

analysis.

The condition that max(σr) = 0 defines a neutral curve Re(m). The minimum of

Re(m) over all m gives a critical value of Re, Rec and corresponding values of m and

ω, mc and ωc.



6

5 Extended systems for locating bifurcation points

The general procedure we adopt for locating bifurcation points of the basic state is to

solve the equations simultaneously with the conditions satisfied at the bifurcation point.

We describe below two appropriate extended systems to locate, respectively, regular

(stationary) bifurcations and Hopf (oscillatory) bifurcations. The resulting nonlinear

algebraic set of equations are solved by Newton’s method to give both the solution at

the bifurcation point and the value of the bifurcation parameter.

In order to have a good initial guess for the leading eigenvalues and corresponding

eigenvectors of the problem (19), we use the Arnoldi-based scheme which yields iterative

approximations to several eigenpairs simultaneously, rather than once a time as in the

usual power or inverse iteration methods.

5.1 Stationary bifurcation points

The system of equations we use to calculate a stationary bifurcation point is the one

proposed by Moore and Spance (1980) for locating limit points:

f(X, λ,µ) = 0, (20)

g(x,X, λ,m,µ) = 0, (21)

(ek)T · x = 1, (22)

where the last equation defines a normalization condition of the eigenvector x (note that

x ∈ R), ek is the unit vector with components (ek)i = δik. We solve for the basic state

X, for the bifurcating eigenvector x and for the critical value of one specific parameter

λ (Re in the present case), at the prescribed values of all the other parameters m and

µ.

The system of equations (20-22) can be solved by the quadratically convergent

Newton iterations fX 0 fλ
gX gx gλ
0 eTk 0

 dXn

dxn

dλn

 = −

fg
0

 , (23)

starting from a suitable initial guess, until the desired convergence is satisfied. An

efficient numerical procedure for (23) is to first solve α0 and β0 from

fXα0 = −f ; fXβ0 = −fλ, (24)

then we obtain a set of equations as follows(
gx gλ + gXβ0

eTk 0

)(
dxn

dλn

)
= −

(
g + gXα0

0

)
, (25)

Like the procedure (24), we solve α1 and β1 from

gxα1 = −(g + gXα0); gxβ1 = −(gλ + gXβ0), (26)

Finally, the required solution updates are easily obtained from

dλn = −(ek)T ·α1/(ek)T · β1; (27)

dXn = α0 + β0dλ
n; dxn = α1 + β1dλ

n. (28)
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5.2 Hopf bifurcation points

The prediction of Hopf bifurcations is more complicated than stationary bifurcations as

described above. At the Hopf bifurcation point a complex-conjugate pair of eigenvalues

with non-zero imaginary parts, ±jω, crosses the imaginary axis. That bifurcation is the

solution of the following extended system (Griewank and Reddien 1983) of equations:

f(X, λ,µ) = 0, (29)

g(x,X, λ,m,µ) = jωBx, (30)

(ek + jek)T · x = j, (31)

where the last equation in the set is a normalization condition for the eigenvector x

(note that x ∈ C). We solve for the basic state X, for the bifurcating eigenvector x,

for the angular frequency ω and the critical value of the bifurcation parameter λ, i.e.

Re, at the fixed values of all the other parameters m and µ.

The system of equations (29-31) is solved by Newton-Raphson iterations from

a good enough initial guess. The solution procedure is similar to that described in

Sect. 5.1,

6 Results and discussion

We present our numerical results both for cylindrical liquid bridges (V = 1, Bo = Gr =

0) and non-cylindrical liquid bridges (V 6= 1, Bo = Gr = 0) in the case of an adiabatic

free surface (Bi = 0). Attention is focused on the parametric dependence of the critical

Reynolds number Rec upon such as the Prandtl number Pr, the aspect ratio Γ and

the relative liquid-bridge-volume V.

6.1 Cylindrical liquid bridge

The principal results of the calculations of stability diagram of the thermocapillary

flows in a cylindrical liquid bridge for Γ = 1, are plotted in Fig. 2. A steady, axisym-

metric (2D) thermocapillary convection loses its stability to a steady asymmetric (3D)

flow when Pr < 0.06, the most unstable mode has azimuthal wavenumber m = 2.

When Pr goes to zero, the critical Reynolds number Rec remains finite and tends

to be a constant indicating the instability is hydrodynamic in origin that breaks the

azimuthal symmetry of the basic state. The critical Reynolds number Rec is strongly

dependent on the aspect ratio Γ , we obtained the following relationship for small Pr

Rec = 2160Γ−5/4. (32)

When Pr ≥ 0.1, the instability of the basic state is oscillatory with Hopf frequency

ω. Two different critical modes were found: m = 2 for Pr ≥ 0.9 and m = 3 for

0.1 ≤ Pr ≤ 0.9. The Hopf frequency ω has the same dependence on the Prandtl

number as critical Reynolds number, i.e., it decreases with increasing Prandtl number.

Previous studies have shown that the large-Prandtl-number instability is due to the

surface hydrothermal wave traveling azimuthally, and that there is non axial component

of this hydrothermal wave because of the presence of endwalls. The phase speed c of
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Fig. 2 Stability diagram of the thermocapillary flows in a cylindrical liquid bridge for Γ = 1,
Bi = 0 and Gr = 0.

the critical disturbances can be obtained from the computed ω in such a way: c = ω/m.

The dependence of c as function of Pr is presented in Fig. 3, showing two different

slopes when the most unstable mode changes from m = 3 to m = 2, but the dependence

of c on Pr is less pronounced than the dependence of ω on Pr since the correction by

m.

In the range of intermediate Pr (0.06 < Pr < 0.1), the basic flow exhibits a striking

stability property. This feature is due to a competition between two different underlying

instability mechanisms and a change of the most unstable mode (see also Levenstam

et al. (2001)).

More recently, Xun et al. (2008) performed the calculations of stability in the case

of large Prandtl numbers (4 ≤ Pr ≤ 50). They found that for liquid bridge with unit

aspect ratio the stability boundary exhibits different behaviors in different ranges of

large Prandtl numbers: an unexpected increase of Rec around 8 < Pr < 22 accompa-

nied with a change of critical azimuthal wavenumber at m ≈ 22. From the computed

surface temperature gradient at bifurcation point, they concluded that the dependence

of Rec on Pr over this Pr range is due to the development of thermal boundary layers

at endwalls of liquid bridge, and that the behavior Rec and m relies more on the effec-

tive part of liquid bridge beyond the boundary layers. However, it should be pointed

out that the critical Marangoni (Mac = RecPr) increases monotonously with increas-

ing Prandtl number but with different slopes for different m. In this sense, Marangoni

number would be more appropriate dimensionless parameter than Reynolds number to

characterize the onset of oscillatory thermocapillary flows for fluids with large Pr.
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Fig. 3 Phase speed c (= ω/m) of the disturbances at bifurcation point as function of Prandtl
number Pr in a cylindrical liquid bridge for Γ = 1, Bi = 0 and Gr = 0.

Table 1 Neutral Reynolds numbers Rec(m) as function of the volume fraction V for Pr =
0.01. The contact angles αh (in deg.) are computed from equation (13). The parameters are
Γ = 1, Bo = 0 and Gr = 0

V Rec(m) m αh V Rec(m) m αh

0.6 2783 1 30 1.1 2080 2 106
3412 2

0.7 2475 1 42 1.2 2371 2 121
2404 2

0.8 2008 2 57 1.3 2731 2 134
0.9 1868 2 73 1.4 3131 2 145
1 1900 2 106

6.2 Non-cylindrical liquid bridge

The validity of the calculated Rec in the case of non-cylindrical liquid bridge was first

confirmed by comparison with the Benchmark (Shevtsova 2005): for example Test case

3.4 (Pr = 0.01, Gr = 0, Γ = 1.2 and αh = 60), we obtained Rec = 1857, compared

with Benchmark of 1863; the deviation being less than 0.5%.

We present here only the numerical results for a small Pr liquid (Pr = 0.01).

Attention is paid to determine the influence of the free-surface shape on the critical



10

Reynolds numbers by varying the relative liquid-bridge-volume. As in cylindrical liquid

bridge, the first instability of the basic flow, in the range of relative liquid-bridge-

volume V investigated, i.e., 0.6 ≤ V ≤ 1.4, is stationnary. The neutral Reynolds number

Rec(m) as function of V is presented in Table 1. Listed are also the contacted angles αh
computed from equation (13). It can be seen that the most unstable mode is mc = 2 for

moderately concave surface shapes (V < 1) as well as for convex surface shapes (V > 1).

The critical wavenumber becomes mc = 1 for slender liquid bridges (V < 0.7). A

plausible explanation for the decrease in the critical azimuthal wavenumber is through

an increase in the effective aspect ratio Γ ′. Indeed, the relationship between the the

aspect ratio Γ and the critical azimuthal wavenumber mc holds for cylindrical liquid

bridges (Chen et al. 1997):

1.6 ≤ mcΓ ≤ 3.2.

If we substitute Γ by Γ ′ and relate Γ ′ with V in a reasonably way such that:

Γ ′ = Γ/
√
V,

then the product of the critical azimuthal wavenumber mc with effective aspect ratio

Γ ′, mcΓ
′, satisfies still the aforementioned relationship for non-cylindrical bridges.

The influence of the relative volume on the critical Reynolds numbers Rec and

corresponding azimuthal wavenumber mc is plotted in Fig. 4. The critical Reynolds

numbers are found to take larger values whatever the free-surface shape becomes more

concave or more convex. A minimum of Rec(V) is found for a slightly concave free-

surface shape (V ≈ 0.9) with a contact angle (α ≈ 70o), this indicates that a straight

cylindrical liquid bridge is not the most stable configuration in terms of hydrodynamic

stability property.

7 Conclusions

We have presented a continuation method combined with finite-difference method to

investigate the linear stability of the two-dimensional steady flow in thermocapillary

liquid bridges with static free-surface shape. The key idea was to solve an appropriate

extended system of perturbation equations, depending on the nature of bifurcation of

the basic state. The critical Reynolds numbers and corresponding azimuthal wavenum-

bers were obtained for a wide range of parameters.

Two distinct instabilities of the two-dimensional flows exists both in cylindrical and

non-cylindrical liquid bridges. For small Prandtl numbers the instability is stationary,

whereas it is oscillatory for large Prandtl numbers with non-zero Hopf frequency. The

latter takes the form of a pair of hydrothermal waves traveling azimuthally. The phase

speed of these waves decreases when the Prandtl number is increased.

At a small Prandtl number (Pr = 0.01), we found a decrease in the critical az-

imuthal mode when the liquid bridge becomes more slender. This behavior was inter-

preted as an increase in the effective aspect ratio which was proposed to be scaled with

the inverse of the root of the relative volume . The critical Reynolds number takes a

smooth minimum near a volume V ≈ 0.9.

The present numerical method is robust, particularly for small-Prandtl-number

liquid bridges, and computationally very efficient. The code can be run on a usual

PC with typical CPU time of a few minutes, depending on numerical resolution. It

offers the perspective of further parametric study of the stability problem of thermal

convection in liquid bridges with relative high resolution.
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Γ = 1, Bi = 0 and Gr = 0.
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