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Nomenclature 

A matrix in eigenvalue 

problem 

cRe  critical Reynolds nmber 

B matrix in eigenvalue 

problem 

s  Surface of the liquid bridge 

B  Buoyant effect S Dimensionless stress 

tensor , ))((
2
1 TUU

!!
∇+∇  

Bi Biot number, 
k
hR  T dimensionless time 

Bo static Bond 

number,
0

2
0

σ
ρ gR  

zt
!

 the unit vector tangent to the free surface in 

the (r, z) plane 

Ca Capillary number,
0σ

γ TΔ  ϕt
!

 the unit vector tangent to the free surface in 

the (r,ϕ ) plane 

kD  mechanical dissipation T dimensionless temperature 

thD  thermal dissipation 0T  mean temperature of the upper and lower 

ends 

kE  Kinetic energy of 

disturbances 

ambT  dimensionless temperature of the ambient 

air 

thE  “thermal” energy of 

disturbances 

coldT  dimensionless temperature on the cold rod 

g gravitational 

acceleration 

U
!

 dimensionless velocity vector , ),,( wvu  
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g0 normal gravitational 

acceleration, 

9.806 )/( 2smkg ⋅  

max
w  maximal value of w  on the free surface 

Gr Grashof 

number, 2

3

υ
β TRg Δ  

X vector composed of disturbance velocity, 

pressure and temperature,  

T)',',',','( Tpwivu  

h heat transfer coefficient 

on free surface 

X the basic steady axisymmetric state, 

)},(),,(,),({ zrTzrPeWeUzrU zr
!!!

+=  

h(z) free surface local radius ),,( zr θ  cylindrical coordinates 

i  1−  0V  the liquid volume with cylindrical shape 

I  Interactive term in 

kinetic energy equation 

Greek 

symbols 

 

1J ， 

2J  

Interactive term in 

“thermal” energy 

equation decomposed in 

cylindrical coordinates 

α  thermal diffusivity coefficient 

k thermal conductivity 

coefficient 

β  thermal expansion coefficient 

L height of the liquid 

bridge 

TΔ  applied  temperature difference between 

two solid ends 

1M ， 2M  

3M  

Work done by 

thermocapillary force 

γ  negative temperature gradient of surface 

tension 
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decomposed in 

cylindrical coordinates 

n!  the outward-directed 

normal vector of the 

free surface 

Γ  aspect ratio, 
R
L  

zN  number of the grid 

points in axial direction 

µ  dynamic viscosity coefficient 

rN  number of the grid 

points in radial direction 

υ  kinematic viscosity coefficient 

P dimensionless pressure ),( ηξ  coordinates in computational domain 

sP  dimensionless static 

pressure 

max
ψ  maximal absolute value of the stream 

function 

Pr Prandtl number, 
α
υ  0ρ  mean density 

Q  “thermal” energy 

transport from the free 

surface 

0σ  mean free surface tension 

R radius of the liquid 

bridge 

)(mσ  the complex growth rate of the 

corresponding perturbation mode 

Re Reynolds number, 

µυ
γ TRΔ  

Ω  Volume domain occupied by the liquid 

bridge 
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Abstract 

In present study, effect of interfacial heat transfer with ambient gas on the onset 

of oscillatory convection in a liquid bridge of large Prandtl number on the ground is 

systematically investigated by the method of linear stability analyses. With both the 

constant and linear ambient air temperature distributions, the numerical results show 

that the interfacial heat transfer modifies the free surface temperature distribution 

directly and then induces a steeper temperature gradient on the middle part of the free 

surface, which may destabilize the convection. On the other hand, the interfacial heat 

transfer restrains the temperature disturbances on the free surface, which may stabilize 

the convection. The two coupling effects result in a complex dependence of the 

stability property on the Biot number. Effects of melt free-surface deformation on the 

critical conditions of the oscillatory convection were also investigated. Moreover, to 

better understand the mechanism of the instabilities, rates of kinetic energy change 

and “thermal” energy change of the critical disturbances were investigated 

 

 

 

 

 

Keywords: liquid bridge, interfacial heat transfer, oscillatory convection, critical 

condition 
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Introduction 

Floating-zone (FZ) technique is a crucible-free process for the growth of high 

quality single crystal, which the melt zone is confined by the surface tension of melt 

free surface. However, the diameter of the grown crystal is limited under the 

terrestrial condition due to easy breakage of the melt zone induced by gravity. The 

essential reason to go to space for melt growth of single crystals lies in a promise that 

a substantial reduction of gravity level achieved in spacecraft may result in a 

quiescent melt pool, thereby allowing a diffusion-controlled growth condition to be 

realized. Moreover, the microgravity environment provides the possibility of growing 

large size crystal by the FZ technique. However, experimental facts revealed that 

during the FZ process in microgravity, thermocapillary flow driven by the surface 

tension gradient of the melt free surface, depending on such factors like temperature, 

solutal concentration, electric potential etc., occurs in the melt zone even when the 

buoyancy-driven flow is greatly reduced. The thermocapillary flow may be oscillatory 

when the Reynolds number exceeds certain critical value and responsible for 

striations in crystals grown in space [1]. Therefore, numerous experimentations and 

analytical studies (linear instability analyses and direct numerical simulations) have 

been devoted to the oscillatory thermocapillary flows in liquid bridge model (see 

Fig.1) mimicking the half of FZ for the sake of simplicity during the last decades. It is 

now well established that a steady axisymmetric (2D) thermocapillary flow loses its 

stability first to a steady asymmetric (3D) flow and then to an oscillatory flow in 
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liquid bridges of low Prandtl numbers (Pr ≤ 0.06) while it loses its stability directly 

to an oscillatory flow (3D) in those of large Pr numbers [2]. On the other hand, the 

corresponding critical conditions determined through the analytical studies can not 

agree well with the experimental results in quantity, especially for high Pr number 

fluids. It is noted that most of the analytical studies on the liquid bridge were carried 

out with an adiabatic melt free surface assumption, i.e., there is no heat transfer across 

the melt free surface. In practice, interfacial heat transfer in the experimentations, 

especially under high temperature conditions, may play an important role in the flow 

dynamics (for example, see [3-8]). Kamotani et al. [3] studied the effect of interfacial 

heat loss in liquid bridges of high Pr fluids considering the ambient air flow. They 

calculated the average interfacial heat transfer rate (indicated non-dimensionally as 

average Biot number in their notation), and found that the critical conditions decrease 

with the increased heat loss when the average Biot number is less than 1.5. Melnikov 

and Shevtsova [7] numerically investigated the effect of interfacial heat transfer on 

the thermocapillary flow in a liquid bridge of Pr = 14 with aspect ratio equal 1.8 under 

normal gravity condition, and the ambient air temperature was assumed to equal the 

cold rod temperature. They found that the heat loss leads to destabilization of the flow 

at small Biot numbers (Bi ≤ 2) contrary to the stabilization of the flow at large Bi 

numbers (Bi ≥ 5). Similarly, Kousaka and Kawamura [5] studied the thermocapillary 

flow in a liquid bridge of Pr = 28.1 with unitary aspect ratio under zero gravity 

condition, and a linear ambient air temperature distribution was adopted. In their case, 
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in the range of small Bi numbers (Bi < 1), there is heat loss through the free surface 

near the cold rod and heat gain near the hot rod, and the destabilization of the 

thermocapillary flow by the interfacial heat transfer was also found. Recently, Wang 

et al. [8] studied the situation with interfacial heat gain. They found that the critical 

conditions are not significantly affected by the interfacial heat gain, and there is a big 

jump of the critical conditions when the interfacial heat transfer is changed from heat 

gain to heat loss [3]. However, the aforementioned results are fragmental due to the 

computation task of 3D direct numerical simulation, and the detailed dependency of 

the critical conditions on the interfacial heat transfer is still lacking. On the other hand, 

to the end of the manipulation of oscillatory thermocapillary flow through varying the 

interfacial heat exchange, extensive preliminary experimental studies should be 

conducted on the ground due to the scarce space experiment opportunity. Therefore, 

the effect of melt free-surface deformation, which is usually ignored in previous 

studies such as [7], should be taken into account. 

In present study, linear stability analyses were conducted to systematically 

investigate the dependency of the critical conditions of oscillatory convection on the 

interfacial heat transfer under normal gravity condition with both the constant and 

linear ambient air temperature distributions (The studies on the corresponding cases in 

the microgravity environment will be reported elsewhere). Moreover, effects of melt 

free-surface deformation on the critical conditions of oscillatory convection were 

investigated.  
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2. Governing Equations and Numerical schemes 

Figure 1 shows the scheme diagram of the liquid bridge considered in the present 

study. The liquid bridge is formed by 1cst oil with height L, radius R and an applied 

temperature difference TΔ  between two solid ends. The local radius of the melt free 

surface is denoted as h(z). The length, velocity, pressure and time are scaled by R, 

µ
γ TΔ , 

R
TΔγ  and 

υ

2R  respectively, and the temperature measured with respect to 

0T  is scaled by TΔ , where 0T  is the mean temperature of the upper and lower ends, 

µ  the dynamic viscosity coefficient, υ  the kinematic viscosity coefficient and γ  

the negative temperature gradient of surface tension. The Reynolds number, Prandtl 

number, Grashof number, aspect ratio, Biot number and static Bond number are 

defined as follows respectively, 

µυ
γ TRΔ

=Re , 
α
υ

=Pr , 2

3

υ
β TRgGr Δ

= , 
R
L

=Γ , 
k
hRBi = , 

0

2
0Bo
σ

ρ gR
= , 

where α  is the thermal diffusivity coefficient, h the heat transfer coefficient, 0ρ  

the mean density, 0σ  the melt surface tension and g the acceleration of gravity. The 

thermophyscical properties of 1cst silicone oil are listed in Table 1. 

  In the cylindrical coordinate ),,( zr θ , the non-dimensional governing 

equations are as follows: 

0=•∇ U
!

                                                          (1) 

zeT
GrUPUU

t
U

Re
)Re( +Δ=∇+∇•+

∂

∂ !!!
!

                                  (2) 

TTU
t
T

Δ=∇•+
∂

∂

Pr
1)Re(

!
                                             (3) 

where ),,( wvuU =
!

 indicates the dimensionless velocity vector, P the pressure, T 
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the temperature and t the time. The corresponding boundary conditions are as 

following: 

2
1,0:,0 ∓

"
==Γ= TUz                                             (4) 

)(,)(
)(,0:h(z)

amb

zz

TTBiTnTtnSt
TtnStUnr

−−=∇•∇•−=••

∇•−=••=•=
!!!!

!!!!!

ϕϕ

                       (5) 

where ambT  indicates the dimensionless ambient air temperature, 

))((
2
1 TUUS

!!
∇+∇= the stress tensor in non-dimensional form. The Vector n!  is the 

outward-directed normal vector of the free surface, and the vectors zt
!

 and ϕt
!

 

denote the unit vector tangent to the melt free surface in the (r, z) plane and (r,ϕ ) 

plane respectively. 

Considering the asymptotic limit of capillary number, 0
0

→
Δ

=
σ
γ TCa , the melt 

free surface shape is symmetric to the axis of melt zone and the normal-stress balance 

can be approximated by the Young-Laplace equation: 

znPs Bo+•∇=
! ,                                                    (7) 

where sP  is the dimensionless static pressure. Before calculating the flow and 

temperature fields, the free surface shape h(z) is determined by Eq. (7) with the liquid 

bridge volume equal LR2π . As shown in Fig. 1, if Bo=0, the free surface shape is 

cylindrical with h(z) = 1 as indicated by the dashed lines (hereafter, we use h(z) to 

indicate the dimensionless local radius of the free surface without confusion) while 

0Bo ≠ , the free surface is curved as indicated by the solid lines. For the case with 

curved free surface shape, the body-fitted curvilinear coordinates are employed. The 

original physical domain in the (r, z) plane occupied by the liquid bridge is 
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transformed into a rectangular computational domain in the ),( ηξ  plane by the 

transformation: 

⎪⎩

⎪
⎨

⎧

=

=

z
zh
r

η

ξ
)(                                                           (9) 

For the sake of brevity, the details of the transformed equations in the curvilinear 

coordinates ),( ηξ , which is the same as the excellent work [9], are not shown here. 

For the linear stability analysis, the basic steady axisymmetric state, 

)},(),,(,),({ zrTzrPeWeUzrUX zr
!!!

+== , is first determined for a given set of 

parameters (Re, Pr，Bi and Γ ), and then small three-dimensional disturbances are 

added to the basic state and linearized by neglecting high orders of disturbances 

[10-12]. The disturbances are assumed to be in the normal mode: 

∑
∞+

−∞=

+
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

m m

m

m

jmtm
zrT
zrp
zru

T
p
u

])(exp[
),('
),('
),('

'
'
'

φσ

!!

,                                (10) 

where the variables with prime denote the disturbances, m the azimuthal wave 

number, )(mσ  the complex growth rate of the corresponding perturbation mode, and 

1−=i . The discrete form of the linearized equations can be written as a generalized 

eigenvalue problem: 

 xxBimXx BA),Pr,,Re,,,g( =≡Γ ,                             (11) 

where T)',',',','( Tpwivux =  denotes a vector composed of disturbance velocity, 

pressure and temperature. A is a real-valued non-symmetric matrix, while B is a 

singular real-valued diagonal matrix. The eigenvalues and related eigenfunctions of 

problem (8) are solved by the Arnoldi method [13]. The critical Reynolds number 
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cRe  is obtained when the maximal real part of )(mσ  for all m is zero. 

In order to well resolve the boundary layers at both ends, a non-uniform grid with 

denser points near both solid ends and free surface is adopted in this study. The grid 

we used in the calculation is 14181×=× zr NN , where rN  and zN  indicate the 

number of the grid points in radial and axial direction respectively. Moreover, to 

validate the present code under curved free surface situation, we reproduced some 

calculations in the work [9] and [14] using their definitions of the dimensionless 

numbers, and the computed results show good agreement (see Table 2).  

 Moreover, to better understand the mechanism of the instabilities, rates of kinetic 

energy (Ek) change and “thermal” energy (Eth) change of the critical disturbances 

were investigated in the following way: the disturbance equations for momentum and 

temperature [10-12] were multiplied by the velocity and temperature disturbances 

respectively, and then integrated over the volume of liquid bridge and normalized by 

the mechanical dissipation (Dk) and thermal dissipation (Dth) respectively, thus the 

following equations were obtained: 

11
321 −++++= IBMMM

dt
dE

D
k

k

,                        (12) 

11
21 −++= JJQ

dt
dE

D
th

th

.                          (13) 

where ∫Ω Ω= duEk 2
'2! , ∫Ω Ω= dTEth 2

'2 , ∫Ω Ω= dSSDk 2
'': , ∫Ω Ω

•∇∇
= dTTDth Pr

''  are 

the integrations over the volume of liquid bridge ( Ω ) respectively, 

∫∫∫∫∫∫∫∫ ∂
∂

−
∂
∂

−
∂
∂

−=++=•∇−=
sksksksk

ds
z
Tw

D
dsTv

D
ds

r
Tu

D
MMMdsTu

D
M ''1''1''1''1

321 ϕ
!
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the integrations over the surface of Ω  denoting the work done by the 

thermocapillary force induced by the temperature disturbance per unit time, 

∫
Ω

Ω= dTwGrB ''
Re

 the work done by the buoyant force, ∫
Ω

Ω••−= duSuI ''
2
Re !!  the 

interactive term between the basic state stress tensor and the velocity disturbance, 

∫∫−=
s

dsTBiQ 2'
Pr

 the transport of “thermal” energy through the free surface, and 

∫
Ω

Ω•∇−= dTTu
D

J
th

')'(Re !
∫∫
ΩΩ

Ω
∂
∂

−Ω
∂
∂

−=+= dT
z
Tw

D
dT

r
Tu

D
JJ

thth

')'(Re')'(Re
21  the 

interactive terms between the basic state temperature and the velocity and temperature 

disturbances. 

 

3. RESULTS AND DISCUSSIONS 

3.1 Constant ambient air temperature distribution ( coldamb TT = )  

A liquid bridge model (see Fig. 1) formed by 1cst silicone oil (Pr = 16) with 

=Γ 1.8 (L = 4.5mm and R = 2.5mm) is adopted in this subsection. With the unitary 

volume ratio, 0.10 =VV , the free surface is deformed under normal gravity with the 

maximum of h(z) = 1.1713 and the minimum of h(z) = 0.8066. The ambient air 

temperature is assumed to equal the temperature of the cold rod. Therefore, the 

interfacial heat transfer is always heat loss from the melt to the ambient air. Figure 2 

shows the dependency of cRe  upon Bi according to the computed results listed in 

Table 3, and the corresponding neutral modes are all oscillatory convections with the 

wave number (m = 1). The cRe  profile in the case of under normal gravity condition 

( 0gg = , 965.2Bo = ) exhibits a convex dependency upon the increasing heat loss. In 
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the parameter range studied, the cRe  decreases with the increasing Bi up to 1≈Bi , 

and this is followed by an approximately linear increase. Noted that the interfacial 

heat loss starts to stabilize the convection at 5.2≈Bi  compared to the corresponding 

adiabatic case. The isotherms and streamlines of the two-dimensional axisymmetric 

convection at the selected cRe  are shown in Fig. 3a-3c respectively. The thermal 

boundary layer is developed in the neighbor region of the hot end while the isotherms 

in the cold corner is compressed due to the concentrated streamlines induced by the 

shift of vortex core to the convex part of the free surface. Note that all disturbances 

must satisfy the no-slip boundary conditions at the solid ends, the magnitude of the 

disturbances inside the boundary layers should be smaller than those outside the 

boundary layer, and the part of the liquid bridge with largest disturbances is the most 

unstable. Therefore, the stability property of the basic flow is mainly determined by 

the “effective” temperature gradient on the middle part of the liquid bridge [15]. From 

this point of view, it is useful to investigate the temperature gradient at the middle part 

of the free surface. It is known that the interfacial heat transfer modifies the 

free-surface temperature distribution directly and then the thermal and flow fields. In 

the neighbor region of the melt free surface, the increasing interfacial heat loss pulls 

up the isotherms near the cold end, and the temperature gradient near the cold rod is 

smoothed while the temperature gradient near the hot rod is enhanced. Moreover, the 

vortex of the flow distributes more homogeneously in the bulk region of the liquid 

bridge. The net effect of the above modifications is that the temperature gradient 

along most part of the melt free surface gets steeper with increasing Bi (see Fig. 4a). 
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Therefore, a lower cRe  may be required to destabilize the stationary convection with 

increasing interfacial heat loss. On the other hand, according to the perturbation 

equation of the melt free-surface heat transfer: 

'' TBiTn ×−=∇•
!  on r = h(z),                                         (12) 

whenever a positive temperature disturbance appears somewhere on the melt free 

surface, it is accompanied by an increase of heat loss through that part of the melt free 

surface, and vice versa. Therefore, the interfacial heat transfer restrains the melt 

free-surface temperature disturbances, especially at larger Bi. To verify the remarks, 

Figure 2 also shows the numerical results that Bi in the perturbation equation (12) is 

set to be zero. With the same basic flow, the interfacial heat transfer significantly 

delays the onset of the oscillatory convection, and the stabilization effect gets stronger 

with increasing Bi. In practice, the convex tendency of the cRe  profile shown in Fig. 

2 could be due to the competition of the aforementioned two mechanisms. 

For a further investigation of the physics of the instabilities, the kinetic and 

“thermal” energy balances normalized by the mechanical and thermal dissipation kD  

and thD  respectively are shown in Fig. 5a. For the “thermal” energy of the 

disturbance flow, the destabilizing effect (J1) is produced by the amplification of the 

high radial gradient of the basic thermal field mainly occurred in the bulk through the 

radial flow disturbances. On the other hand, in addition to the major stabilizing effect 

contributed by the thermal diffusion (Dth), the stabilizing effects are produced by the 

amplification of the high axial gradient of the basic thermal field (J2) mainly occurred 

near the hot end and cold corner through the axial flow disturbances [14] and the 
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transport of “thermal” energy through the free surface (Q), the only term directly 

involving the effect of interfacial heat transfer. The kinetic energy is insignificant for 

fluids of high Pr number [14]. However, it’s interesting to note that the effect of 

buoyant force (B) always serves the destabilization although the liquid bridge is 

heated from above. The rate of change of “thermal” energy with the increasing 

interfacial heat loss at Re = 428, the critical Reynolds number for the corresponding 

adiabatic case, is shown in Fig. 5b. It can be seen that the destabilizing effect (J1) 

overwhelms the major stabilizing effect of heat diffusion (Dth) at small Bi, and it is 

overwhelmed by the heat diffusion at large Bi. The general trend of the corresponding 

cRe  profile is determined by the relative magnitude of (J1) to the thermal diffusion 

(Dth). However, the details of the trend, such as the position of the local minimum, are 

also contributed by (J2) at small Bi while by (Q) at large Bi. 

To evaluate the effect of melt free-surface deformation on the stability of the 

stationary convection, an artificial case of under normal gravity condition but 

neglecting the melt free-surface deformation ( 0gg = , 0Bo = ) is studied. The 

numerical results show that the corresponding flow fields are quite different from 

those in the cases with deformed domain (see Fig. 3) where the vortex cores shift to 

the hot corner with the crowded streamlines. Noted that the temperature gradient at 

the middle part of the melt free surface is flattened by the convection with the 

boundary layers formed at both the cold and hot ends where the temperature gradient 

increases sharply (see Fig. 4b). The corresponding cRe  profile roughly exhibits a 

similar tendency as the case of under normal gravity, however, with much lower 
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quantity (see Fig. 2). It reveals the significant stabilization effect on the stationary 

convection through the modifications of the thermal and flow fields due to the 

free-surface deformation. The corresponding neutral mode keeps (m = 1). On the 

other hand, the cRe  profile exhibits a local maximum roughly at 1=Bi . Note that 

the temperature gradient distribution along the free surface exhibits the similar 

configuration in the middle part of the free surface except that it exhibits undulation at 

the lower half of the free surface in the range of small Bi (see Fig. 4b). The 

configuration transition of the temperature gradient distributions at 1=Bi  

coincidently corresponds to appearance of the local maximum of the cRe  profile. 

The details of the relationship between the undulation of temperature gradient 

distribution and the sudden increasing stabilizing effect of the flow need further 

investigation. Figure 6 shows the corresponding results of the energy analysis. Similar 

to the case with the free surface deformation, the destabilizing effect for the “thermal” 

energy of the disturbances flow is produced by the radial energy transfer from the 

basic thermal field to the disturbance flow (J1). The main stabilizing effects are 

contributed by the thermal diffusion (Dth) and the axial energy transfer from the basic 

thermal field to the disturbance flow (J2). The rate of change of “thermal” energy as a 

function of Bi at Re = 292, the critical Reynolds number for the corresponding 

adiabatic case, is shown in Fig. 6b. It can be seen that the destabilizing effect (J1) 

generally exhibits a convex trend while it keeps nearly constant in the range of Bi 

from 0.5 to 1.0. The stabilizing effect (J2) also exhibits a concave trend with a local 

minimum at Bi = 1.0. The coupling of the above contra-effects and the thermal 
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diffusion (Dth) results in local maximum suppressing of the instability at Bi = 1 in the 

rate of the “thermal” energy (Eth) change of the disturbance, which corresponds to the 

appearance of the local maximum of the cRe  profile at Bi = 1. 

 

3.2 Linear ambient air temperature distribution ( 5.0−Γ= zTamb ) 

In this subsection, the same liquid bridge model as that in the subsection 3.1 is 

adopted except that the ambient air temperature is assumed to be linearly distributed 

along the axial direction [4, 5]. Therefore, it is heat-loss to the ambient air at the lower 

part of the free surface while heat-gain from the ambient air at the upper part of the 

free surface (see Fig. 7a). With the increasing interfacial heat transfer, the isotherms 

and streamlines of the two-dimensional axisymmetric convection (not shown) at the 

corresponding cRe  behave quite similarly to the case with ( coldamb TT = ) (see Fig. 3), 

so does the temperature gradient distribution on the middle part of the free surface 

(see Fig. 7b), which gets steeper with the increasing Bi. On the other hand, the 

temperature gradient at the lower part of the free surface in the present case is 

increased compared with Fig. 4a at the same Bi, the distributions of the “effective” 

temperature gradient, therefore, behave more smoothly. Figure 8 shows the 

dependency of cRe  upon Bi according to the computed results listed in Table 4. Due 

to the two coupling mechanisms mentioned in the subsection 3.1 (Figure 8 also shows 

the numerical results that Bi in the perturbation equation (12) is set to be zero), the 

cRe  profile roughly exhibits a similar convex tendency as the corresponding case 

with ( coldamb TT = ) except the appearance of local maximum cRe  in the range of 
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small Bi. In the parameter range studied, the wave number of the corresponding 

neutral mode is also (m = 1). The kinetic and “thermal” energy balances normalized 

by the mechanical and thermal dissipation kD  and thD  respectively are shown in 

Fig. 9a. In the “thermal” energy of the disturbances flow, the energy transfer from the 

basic thermal field through the radial flow disturbances (J1) always serves as the 

destabilizing effect. Both the thermal diffusion (Dth) and the effect involving the 

direct effect of interfacial heat transfer (Q) serve as the stabilizing effect, while the 

latter is much less important in the energy contribution. The energy transfer from the 

basic thermal field through the axial flow disturbances (J2) also behaves as the 

stabilizing effect until it reverses to serve as the destabilizing effect at large Bi. The 

rate of change of “thermal” energy with the increasing interfacial heat transfer at Re = 

356, the critical Reynolds number for the case (Bi = 1), is shown in Fig. 9b. It can be 

seen that in the range of small Bi, the stability property of the stationary convection is 

determined by the contributions from the destabilizing energy transfer (J1), the 

stabilizing energy transfer (J2) and the thermal diffusion (Dth). The destabilizing 

energy transfer (J1) overwhelms the heat diffusion (Q) and exhibits a local minimum 

around Bi = 0.5. On the other hand, the destabilizing energy transfer (J2) nearly keeps 

constant until Bi = 0.5. The net effect of the coupling stabilizing energy transfer and 

the destabilizing energy transfer results in local maximum suppressing of the 

instability at Bi = 0.5 in the rate of the “thermal” energy (Eth) change of the 

disturbance, which may relate to the appearance of the local maximum of the 

corresponding cRe  profile. Finally, the effect of melt free-surface deformation on 
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the stability of the stationary convection was briefly studied as shown in Fig. 9. For 

the artificial case of under normal gravity condition but neglecting the melt 

free-surface deformation ( 0gg = , 0Bo = ), the corresponding cRe  profile exhibits a 

similar convex tendency as the case of under normal gravity. Noted that the profile 

does not exhibit any local maximum in the parameter range studied. The computed 

results also reveal the significant stabilization effect on the stationary convection 

through the modifications of the thermal and flow fields due to the free-surface 

deformation.  

 

4. Conclusions 

In the present paper, effect of interfacial heat transfer on the onset of oscillatory 

convection in liquid bridges formed by 1cst silicone oil on the ground is 

systematically studied in an extended range of Bi. With both the constant and linear 

ambient air temperature distributions, the numerical results show that the interfacial 

heat transfer modifies the free surface temperature distribution directly and then 

induces a steeper temperature gradient on the middle part of the free surface, which 

may destabilize the convection. On the other hand, the interfacial heat transfer 

restrains the temperature disturbances on the free surface, which may stabilize the 

convection. The two coupling effects result in a complex dependence of the stability 

property on the Biot number, and the appearance of the local maximum of the cRe  

profile closely relates to the ambient temperature distribution. Moreover, the 

computed results reveal that the effect of free-surface deformation serves a significant 
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stabilization on the two-dimensional axisymmetric stationary convection. To better 

understand the mechanism of the instabilities, rates of kinetic energy change and 

“thermal” energy change of the critical disturbances were also investigated. The 

“thermal” energy of the disturbances, which is important in liquid bridges of large 

Prandtl number, is mainly produced by the interaction between the basic thermal field 

and the flow disturbances and the thermal diffusion (Dth). The net work of the 

coupling effects above determines the stability property of the oscillatory convection 

in the liquid bridge. 
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Table 1: Thermophysical properties of 1cst silicone oil 

0ρ  818( 3/mkg ) β  0.00129(K-1) 

υ  )/(10 26 sm−  γ  5.63 )/(10 25 skg−×  

K 2.4 )/(10 2 ksmcal ⋅⋅× −  0σ  16.9 )/(10 3 mN−×  
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Table2: code validation 

(a): Pr = 0.02, Re = 2000, g = 0 

 Aspect 

ratio 

contact angle at 

hot rod: hα  

Present code 

7151×=× zr NN  

Ref. [9] 

max
ψ  1=Γ  40° 8.62 8.42 

140° 25.04 24.67 

2.1=Γ  40° 5.76 5.61 

140° 21.76 21.95 

max
w  on free 

surface 

1=Γ  40° 190.59 188.61 

140° 182.05 182.95 

2.1=Γ  40° 188.39 184.46 

140° 190.40 202.55 

(b): Pr = 4, 1=Γ , g = 0, Bi = 0 

contact angle at hot 

rod: hα  

m Present code 

7151×=× zr NN  

Ref. [14] 

30° 1 1293 1350 

50° 1 1487 1470 

2 1449 1445 

90° 2 996 1010 

110° 2 865 840 

130° 2 805 800 
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Table 3: Rec versus Bi when 5.0−=ambT  

Bi g=g0, Bo=0 g=g0, Bo=2.965 

0 292 428 

0.3 270 386 

0.5 281 356 

1.0 337 334 

1.5 332 356 

2.0 325 395 

3.0 346 475 

4.0 389 544 

5.0 442 610 
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Table 4: Rec versus Bi when 5.0−Γ= zTamb  

Bi g=g0, Bo=0 g=g0, Bo=2.965 

0 292 428 

0.2 275 452 

0.5 257 465 

1.0 240 356 

1.5 234 323 

2.0 234 317 

3.0 247 336 

4.0 270 373 

5.0 293 417 
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Figure 1. Scheme diagram of a liquid bridge. 
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Figure 2. Critical Reynolds number versus Bi for cases of Tamb = -0.5: (g = g0, Bo = 
0)-diamond points on solid line; (g = g0, Bo = 2.965)-triangle points on solid line and 
(g = g0, Bo = 2.965) when Biot number is set to zero in the perturbation equation (12)- 
triangle points on the dotted line respectively. 
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       (a)                                   (d) 

 
      (b)                                  (e)                         

 
       (c)                                   (f) 

Figure 3. Isotherms and streamlines at the corresponding Rec for different Bi under 
normal gravity condition for Tamb = -0.5 (left: Bo = 2.965, right: Bo = 0): (a) Bi = 0, 
Rec = 428; (b) Bi = 1, Rec = 356; (c) Bi = 4, Rec = 373; (d) Bi = 0, Rec = 292; (e) Bi = 
1, Rec = 240; (f) Bi = 4, Rec = 270. 
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(a) 

 
(b) 

Figure 4. Temperature gradient distribution along the melt free surface at the 

corresponding Rec for Tamb = -0.5: (a) 0gg = , 965.2Bo = ; (b) 0gg = , 0Bo = . 



 32 

 

（a） 

 

（b） 

Figure 5. Kinetic and thermal Energy balance for cases of Tamb = -0.5 when 0gg = , 

965.2Bo =  at the corresponding cRe (a) and at Re equals 428(b). 
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（a） 

 

（b） 

Figure 6. Kinetic and thermal Energy balance for cases of Tamb = -0.5 when 0gg = , 

0Bo =  at the corresponding cRe (a) and at Re equals 292(b). 
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(a) 

 
(b) 

Figure 7. Temperature (a) and Temperature gradient (b) distribution on free surface at 
the corresponding Rec for linear Tamb  under normal gravity condition. 
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Figure 8. Critical Reynolds number versus Bi for cases of linear ambient temperature 
(g = g0, Bo = 0)-diamond points on solid line; (g = g0, Bo = 2.965)-triangle points on 
solid line and (g = g0, Bo = 2.965) when Biot number is set to zero in the perturbation 
equation (12)- triangle points on the dotted lines respectively. 

 

 

 

 

 

 

 



 36 

 

（a） 

 

（b） 

Figure 9. Kinetic and thermal Energy balance for cases of Tamb is linear when 0gg = , 

965.2Bo =  at the corresponding cRe (a) and at Re equals 356(b). 



 37 

 

（a） 

 

（b） 

Figure 10. Kinetic and thermal Energy balance for cases of Tamb is linear when 

0gg = , 965.2Bo =  at the corresponding cRe (a) and at Re equals 240(b). 


