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Abstract

A linear stability analysis is applied to determine the onset of oscillatory thermo-
capillary convection in cylindrical liquid bridges of large Prandtl numbers (4 6
Pr 6 50). We focus on the relationships between the critical Reynolds number Rec,
the azimuthal wave number m, the aspect ratio Γ and the Prandtl number Pr.
A detailed Rec-Pr stability diagram is given for liquid bridges with various Γ. In
the region of Pr > 1, which has been less studied previously and where Rec has
been usually believed to decrease with the increase of Pr, we found Rec exhibits
an early increase for liquid bridges with Γ around one. From the computed surface
temperature gradient, it is concluded that the boundary layers developed at both
solid ends of liquid bridges strengthen the stability of basic axisymmetric thermo-
capillary convection at large Prandtl number, and that the stability property of the
basic flow is determined by the “effective” part of liquid bridge.
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1 INTRODUCTION

The instability of thermocapillary convection in liquid bridges has been studied
extensively in the last decade due to its fundamental interest in transition pro-
cess and its importance in floating-zone material processing, in particular un-
der microgravity conditions. For simplification, early theoretical investigation
on thermocapillary instability was focused on infinite liquid bridges (Xu and
Davis (1983, 1984)). However, the critical Marangoni numbers obtained from
this model are much smaller than those obtained in laboratory experiments.
Theoretical analyses of thermocapillary convection and small surface defor-
mations in finite liquid bridges were provided by Kuhlmann (1989) and Chen
and Roux (1991).

A number of experimental works on thermocapillary flow in liquid bridges
have been carried out by several research groups (Chun and Wuest, 1978;
Schwabe et al., 1978; Chun and Wuest, 1979; Chun, 1980; Velten et al., 1991;
Kamotani et al., 1984; Yao et al., 1996; Preisser et al., 1983). The experimen-
tal evidence of thermocapillary flow in a liquid bridge was given by Chun and
Wuest (1978) and by Schwabe et al. (1978). Chun and Wuest (1979) studied
the flow transition from steady state to oscillatory state in a liquid bridge un-
der reduced gravity condition. Chun (1980) found an S-shape distribution of
the temperature on free surface before the onset of oscillation. A microgravity
experiment of liquid bridge with varying aspect ratios during the D2-Spacelab
mission was reported by Carotenuto et al. (1998). Yao et al. (1997) studied the
oscillatory features using the drop shaft facility of Japan Microgravity Cen-
ter. Very recently, Schwabe (2005) studied the instability of thermocapillary
flow in a liquid bridge with aspect ratio near the Rayleigh limit (aspect ratio
Γ=5) during the flight of the sounding rocket MAXUS-4. By measuring the
temperature distribution on free surface with thermocouple, Schwabe found
that the critical Marangoni number would be much closer to theoretical result
if the temperature gradient at the middle point of free surface instead of the
mean gradient of whole free surface is used.

Meanwhile, there are also many numerical works devoted to the thermocapil-
lary flow and its instability in liquid bridges during the last decade, e.g. direct
three-dimensional numerical simulations (Levenstam and Amberg, 1995; Ley-
poldt et al., 2000; Savino and Monti, 1996), energy stability analyses (Shen
et al., 1990; Neitzel et al., 1991), and linear stability analyses (Neitzel et al.,
1993; Kuhlmann and Rath, 1993; Wanschura et al., 1995; Chen et al., 1997;
Levenstam et al., 2001).

It is now well established that a steady, axisymmetric (2D) thermocapillary
convection loses its stability first to a steady asymmetric (3D) flow and then
to an oscillatory flow in liquid bridges of small Prandtl numbers (Pr . 0.06),
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while it loses its stability directly to an oscillatory flow (3D) in liquid bridges
of large Prandtl numbers (up to Pr = 7) (Levenstam et al., 2001). The mech-
anism responsible for instability is found to be either purely hydrodynamic in
nature or hydrothermal wave type, depending on the Prandtl number of the
liquid (Wanschura et al., 1995; Chen et al., 1997). In the range of interme-
diate Prandtl numbers (0.05 . Pr . 0.85), the two mechanisms counteract
with each other resulting in a drastic increase of critical Reynolds number Rec

(Levenstam et al., 2001).

To our knowledge, the stability property when Pr > 10 has not yet been stud-
ied in detail, presumably for two reasons. First, it’s more difficult to compute
the thermocapillary flow in liquid bridges of large Prandtl numbers because a
relatively high numerical resolution is required to resolve thin boundary lay-
ers. Second, it has been believed that the stability boundaries in the range of
large Prandtl numbers would keep decreasing monotonously according to the
results for 1.0 . Pr . 7.0, as shown by Levenstam et al. (2001).

In this paper we show that the stability boundaries exhibit different behaviors
in different ranges of large Prandtl numbers. More specifically, an unexpected
increase of Rec related to the boundary layers formed at both solid ends is
found. Sections 2 contains a brief description of governing equations and nu-
merical methods. Section 3 presents numerical results and offers a discussion
on behaviors of Rec and Mac for liquid bridges of different Pr. Finally, con-
clusions are given in Section 4.
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Fig. 1. Schematic of a floating half zone bridge.
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2 Governing Equations and Solution Methods

We consider a cylindrical half-zone liquid bridge of height L and radius R. An
imposed temperature difference ∆T is applied between two solid ends (Fig. 1).
The length, velocity, pressure and time are scaled by R, γ∆T

µ
, γ∆T

R
and R2

ν

respectively, and the temperature measured with respect to T0 is scaled by
∆T , where T0 is the mean temperature of the upper and lower ends, µ the
dynamic viscosity coefficient, ν the kinematic viscosity coefficient, and γ the
negative temperature gradient of surface tension. In the cylindrical coordinate
(r, θ, z), the thermocapillary flow in a cylindrical liquid bridge is governed, in
dimensionless form, by the following equations (under microgravity condition):

∇ · v = 0, (1)

∂v

∂t
+ Re(v · ∇)v = −∇p +∇2v, (2)

∂T

∂t
+ Re(v · ∇)T =

1

Pr
∇2T, (3)

where v = (u, v, w) denotes the velocity vector in the cylindrical coordinate,
p the pressure, T the temperature, Re = γ∆TR

µν
the Reynolds number and

Pr = ν/α the Prandtl number.

The boundary conditions are as follows:

v = 0, T =
1

2
, on z = Γ, (4)

v = 0, T = −1

2
, on z = 0, (5)

u = 0,
∂T

∂r
= 0, on r = 1, (6)

∂w

∂r
+

∂T

∂z
= 0,

∂v

∂r
− v

r
+

1

r

∂T

∂θ
= 0, on r = 1, (7)

where Γ = L/R is the aspect ratio of the liquid bridge.

As in Wanschura et al. (1995), the free surface condition Eq. (7) is changed
into:

∂w

∂r
+

∂T

∂z
f(z) = 0,

∂v

∂r
− v

r
+

1

r

∂T

∂θ
f(z) = 0, on r = 1, (8)
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where

f(z) =





1
4
[1− cos(10πz)]2 for 0 6 z 6 0.1

1 for 0.1 6 z 6 0.9

1
4
[1− cos(10π(1− z))]2 for 0.9 6 z 6 1.0.

(9)

In this work, both cases were considered, namely the original condition Eq. (7)
and the modified condition Eq. (8).

The basic steady axisymmetric state, denoted by

X = {V(r, z) = Uer + Wez, P (r, z), T (r, z)},

is first determined for a given set of parameters (Re, Pr and Γ), and then small
three-dimensional disturbances are added to the basic state and linearized by
neglecting high orders of disturbances (Kuhlmann and Rath, 1993; Chen et
al., 1997; Neitzel et al., 1993). The disturbances are assumed to be in the
normal mode:




v′(r, θ, z, t)

p′(r, θ, z, t)

T ′(r, θ, z, t)




=




v′(r, z)

p′(r, z)

T ′(r, z)




exp(σ(m)t + imθ), (10)

where the variables with prime denote the disturbances, m the azimuthal
wave number, σ(m) the complex growth rate of the corresponding perturbation
mode, and i =

√−1.

The discrete form of the linearized equations can be written as a generalized
eigenvalue problem

g(x, X, Re, m, Pr, Γ) ≡ Ax = σBx, (11)

where x ≡ (u, iv, w, p, T )T denotes a vector consisting of disturbance veloc-
ity, pressure and temperature. A is a real-valued nonsymmetric matrix, while
B is a (singular) real-valued diagonal matrix. The eigenvalues and related
eigenfunctions of problem Eq. (11) are solved by the Arnoldi method (Golub
and Van Loan, 1996). The critical Reynolds number Rec is obtained for a
given Pr when the maximal real part of σ(m) for all m is zero.

It is worth noting that if we use the governing equations in the form of
Eqs. (1−3), then the matrix B = diag{· · · -1 -1 -1 -1 0 · · ·} will only have one

5



class of nonzero values, namely -1 coming from Eqs. (2, 3); zero values in the
diagonal being related to Eq. (1) and to the boundary conditions Eqs. (4−7).
However, if we use another form of the energy equation Eq. (3) in our calcu-
lation, i.e.:

Pr[
∂T

∂t
+ Re(v · ∇)T ] = ∇2T, (12)

then we will obtain a diagonal matrix B = diag{· · · -1 -1 -1 −Pr 0 · · ·} with
two nonzero values (-1 and -Pr), coming from Eq. (2) and Eq. (12) respec-
tively. The similar situation appears with matrix A. Therefore, when Pr À 1,
the elements of the corresponding rows of A and B are much larger than the
other rows; the numerical property of the matrixes would become very bad,
making the computations very difficult. Theoretically speaking, the calculated
eigenfunctions of problem Eq. (11) using Arnoldi method should be orthogo-
nal. By examining the orthogonal property of the calculated eigenfunctions of
the eigenvalue problem Eq. (11), it is found that our numerical code by using
Eq. (3) provides much better results compared to that by using Eq. (12) for
large Pr.

In order to well resolve the boundary layers at both ends, a nonuniform grid
with denser points near both solid ends and free surface is used in this work.
Fig. 2 shows an example of the grid points distribution when the number of
the grid points are Nr = 21 and Nz = 36 at the radial and axial direction
respectively. The number of grid points we used in the calculation is, however,
much larger: typically with Nr ×Nz = 91× 125 for Γ = 1.

The numerical scheme used in the present work is essentially the same as
the previous one used by Chen et al. (1997), except that the energy Eq. (12)
was replaced by Eq. (3) in order to obtain a better performance of numerical
scheme for large Pr. As a further verification of validation of our numerical
code, we reproduced some calculations of thermocapillary convection in liquid
bridge both for small and large Prandtl for which relatively accurate numerical
results exist in the literature, and the results are in good agreement. For
example, at Pr = 0.1 and Γ = 1, we obtained Rec = 16250, close to Rec =
16094 given by Levenstam et al. (2001).
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3 RESULTS AND DISCUSSIONS

3.1 Liquid bridge with Γ = 1

We report first the numerical results for a liquid bridge of unit aspect ratio.
Fig. 3 shows the Rec − Pr plot for Pr > 4 according to the computed results
listed in Tab. 1. As shown in Levenstam et al. (2001), Rec is very large at in-
termediate Prandtl numbers (0.05 . Pr . 0.85), and monotonously decreases
with increasing Prandtl number when Pr & 0.85. Indeed, this behavior is also
found in this work when Pr < 8. However, our numerical results reveal that
for Pr & 8, Rec first increases with increasing Prandtl number and then de-
creases, which exhibits a local maximum around Pr ≈ 28. Correspondingly,
the critical azimuthal wave number m changes from m = 2 to m = 1 around
Pr ≈ 28. Fig. 4 shows the critical Marangoni number Mac(= RecPr) as a
function of Prandtl number. It is seen that Mac increases approximately lin-
early with increasing Prandtl number for the same m, but with different slopes
for different m.

Fig. 5 shows the free surface temperature distribution of the basic steady ax-
isymmetric state at the critical Reynolds number Rec for different Pr. The
S-shape temperature distributions, first reported by Chun (1980) in his experi-
ment, can be clearly noted. The temperature gradient is steep in the boundary
layers formed at the solid ends, and very small for the most part of the free sur-

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

r

z

Fig. 2. An example of distribution of the grid points with Nr = 21 and Nz = 36.
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Pr Rec m Pr Rec m

4 1000 2 28 1310 2

6 890 2 30 1300 1

8 870 2 35 1175 1

10 905 2 40 1075 1

15 1095 2 45 1000 1

20 1227 2 50 930 1

25 1285 2
Table 1
Computed critical Reynolds number Rec and the corresponding azimuthal wave
number m as a function of Prandtl number Pr for Γ = 1.

face (see also Fig. 6). For instance, the temperature difference between z = 0.1
and z = 0.9 is less than ∆T

10
at Pr = 15 (Rec = 1095). The boundary layers

become thinner with steeper temperature gradient inside it with increasing
Prandtl number. Correspondingly, the temperature gradient at the rest of the
free surface decreases. The axial velocity distributions on the free surface as
shown in Fig. 7 exhibit similar behavior with increasing Prandtl number.

Since the disturbances must satisfy the no-slip boundary conditions at the

0 5 10 15 20 25 30 35 40 45 50
850

900

950

1000

1050

1100

1150

1200

1250

1300

1350

Pr

R
e c

Fig. 3. Rec versus Pr for Γ = 1. The points “∗” correspond to the critical az-
imuthal wave number m = 2, and the diamond m = 1. The points with double size
correspond to the original free surface condition Eq. (7), others correspond to the
modified condition Eq. (8).
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Fig. 4. Mac versus Pr for Γ = 1. The points “∗” correspond to the critical azimuthal
wave number m = 2, and the diamond m = 1.
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Fig. 5. Temperature distribution on free surface at the corresponding Rec for dif-
ferent Pr.

solid ends, the absolute values of disturbances in the boundary layers should
be smaller than those outside the boundary layers. This is indeed as illustrated
in Fig. 8- 9 from the calculated eigenfunctions of the problem Eq. (11). It is
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Fig. 6. Temperature gradient along the free surface at the corresponding Rec for
different Pr.
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Fig. 7. Axial velocity W on free surface at the corresponding Rec for different Pr.

noticed that the basic state loses its stability more easily with the disturbances
of such eigenfunction since they correspond to the most unstable mode of
disturbances. Therefore, the part of the liquid bridge with largest disturbances
is the most unstable. As a good estimation, only the disturbances outside the
thin boundary layers need to be taken into account (Schwabe, 2005). From

10



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

r 

z 

Fig. 8. Distribution of disturbance velocity on θ = 0 and π of liquid bridge with
Γ = 1.0 at Pr = 30, where m = 1.
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Fig. 9. Distribution of disturbance velocity on free surface of liquid bridge with
Γ = 1.0 at Pr = 30. where m = 1. The time step between the pictures is a quarter
of the oscillating period.

this point of view, it is useful to introduce the idea of an “effective” part of
the liquid bridge in the analysis. More specifically, we use the temperature
gradient at the middle part of free surface instead of ∆T

L
. In the following,
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the “effective” aspect ratio is denoted as Γe and the “effective” temperature
difference (∆T )e.

As shown in Fig. 6, the dimensionless temperature difference (∆T )e

∆T
decreases

with increasing Prandtl number, and a larger Rec is needed to destabilize
the thermocapillary flow. However, when Pr is larger than 22, the dimension-
less temperature distribution remains nearly the same, and Rec drops down
slowly with increasing Prandtl number. On the other hand, it is known that
the critical azimuthal wave number m is mostly determined by the aspect
ratio (Preisser et al., 1983). The larger the aspect ratio (in our case, the effec-
tive aspect ratio), the smaller the critical azimuthal wave number. As shown
in Fig. 5 and Fig. 7, the boundary layers at the two solid ends become thinner
with larger Pr, leading to a larger effective aspect ratio Γe, so that the critical
azimuthal wave number is decreased from m = 2 to m = 1.

Finally, as shown in Fig. 3, it is interesting to note that the computed results
obtained by using the original free surface condition and the modified free
surface condition Eq. (8) do not differ much. A plausible explanation is that
due to the elliptical property of the governing equations, the recension of the
free surface condition near both solid ends does not affect the result at the
middle part of the liquid bridge. As mentioned above, the transition from
steady state to oscillatory state depends mainly on the middle part of the
liquid bridge, thus the modified free surface condition does not affect the
critical Reynolds number much.

3.2 Liquid bridges of different aspect ratios

We report here briefly the numerical results for liquid bridges of different
aspect ratios. The computed results are shown in Tab. 2. Fig. 10 shows the Rec-
Pr plot for various Γ. The differences between the Rec-Pr plot for various Γ
are the location of the local maximum region of Rec and the critical azimuthal
wave number. For example, with Γ = 1.2, Rec increases when 6 . Pr . 15.
There is a local maximum around Pr ≈ 15, and the critical azimuthal wave
number changes from m = 2 to m = 1 with the increase of Pr around Pr ≈ 15.
The peak of Rec in this region is sharper than that with Γ = 1.

The aspect ratio affects the critical Reynolds number and the critical az-
imuthal wave number. Larger the aspect ratio, smaller the Rec and m, with
an early increase region of Rec and the location of the local maximum. It is
found that the early increase of Rec is sharper for larger aspect ratio, which
may be associated with the quicker development of the boundary layers in
smaller increase region of Pr. A further study is needed to explain this be-
havior.
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Pr Γ Rec m Pr Γ Rec m

4 1.2 940 2 50 1.2 840 1

6 1.2 895 2 4 0.6 1885 4

8 1.2 965 2 8 0.6 1398 3

10 1.2 1133 2 15 0.6 1280 3

15 1.2 1540 1 20 0.6 1310 3

20 1.2 1285 1 25 0.6 1350 3

25 1.2 1140 1 30 0.6 1385 3

30 1.2 1040 1 35 0.6 1415 3

35 1.2 970 1 40 0.6 1440 3

40 1.2 917 1 45 0.6 1390 2

45 1.2 875 1 50 0.6 1338 2
Table 2
Computed critical Reynolds number Rec and the corresponding azimuthal wave
number m as a function of Prandtl number Pr for different aspect ratios Γ.
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Fig. 10. The Rec-Pr plot
for 4 6 Pr 6 50 (solid
line: Γ = 1.0; dash line:
Γ = 1.2, the dot line:
Γ = 0.6). The circle
point corresponds to the
critical azimuthal wave
number m = 4, the “+”
points m = 3, the “∗”
points m = 2, and the di-
amond m = 1.

4 CONCLUSIONS

In conclusion, extended plots of Rec and Mac versus Pr have been obtained for
cylindrical liquid bridges of different aspect ratios. For liquid bridge with unit
aspect ratio, we found an unexpected increase of Rec around 8 . Pr . 22,
which is associated with the development of boundary layers at both solid ends.
The behavior of Rec and m relies more on the “effective” part of liquid bridge
beyond the boundary layers. The effect of the aspect ratio is also studied. The
aspect ratio doesn’t change the qualitative features of the Rec versus Pr plot,
but only some quantitative features, such as the early increase region of Rec.
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The present work has been focused on cylindrical liquid bridges, however, it is
well known that the shape of the free surface, or the volume of the liquid bridge
is another important parameter of the thermocapillary flow (Chen and Hu,
1998; Chen et al., 1999; Nienhuser and Kuhlmann, 2002; Hu and Tang, 2003;
Shevtsova, 2005). Therefore, the variation of the critical Reynolds number
with Prandtl number for different volume and aspect ratios, in particular in
the case of large Prandtl number, remains to be investigated.
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