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Abstract

We consider the instability of the steady, axisymmetric thermocapillary convection

in cylindrical liquid bridges. Finite-difference method is applied to compute the steady

axisymmetric basic solutions, and to examine their linear instability to three-dimensional

modal perturbations. The numerical results show that for liquid bridges of O(1) aspect

ratio Γ (=length/radius) the first instability of the basic state is through either a regu-

lar bifurcation (stationary) or Hopf bifurcation (oscillatory), depending on the Prandtl

number of the liquid. The bifurcation points and the corresponding eigenfunctions are

predicted precisely by solving appropriate extended systems of equations. For very small

Prandtl numbers, i.e. Pr < 0.06, the instability is of hydrodynamical origin that breaks

the azimuthal symmetry of the basic state. The critical Reynolds number, for unit aspect

ratio and insulated free surface, tends to be constant, Rec → 1784, as Pr → 0, the most

dangerous mode being m = 2. While for Pr ≥ 0.1, the instability takes the form of a

pair of hydrothermal waves traveling azimuthally. The most dangerous mode is m = 3

for 0.1 ≤ Pr ≤ 0.8 and m = 2 for Pr ≥ 0.9. Dependence of the critical Reynolds number

on other parameters is also presented. Our results confirm in large part the recent linear-

theory results of Wanschura et al. [7] and provide a more complete stability diagram for

the finite half-zone with a non-deformable free surface.

PACS numbers: 47.20.Dr, 47.27.Te, 02.60.Cb

Keywords: Instability, Thermocapillary convection, Liquid bridge, Critical surface-tension

Reynolds number.

1 Introduction

Since the floating-zone crystal growth process is considered to be a promising method of

obtaining high quality crystals in microgravity, the thermocapillary convection (driven

by surface-tension gradients along the free-surface of the melt) in floating-zone melts

has received much research interest during the last fifteen years. Experimental studies

have been performed by many investigators in the so-called half-zone model, in which a

cylindrical liquid bridge is suspended vertically between two, equal-diameter, differentially

heated rods. High Prandtl number (Pr > 1) fluids have been used in the experiments,

although Pr of melt semiconductors and metals are about 10−2. It has been shown that

if the temperature difference between two rods is sufficiently small, the flow is steady

and axisymmetric. The flow pattern can be characterized by a single toroidal vortex
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with motion on the free surface whose direction goes from the hot cylinder toward the

cold one. By increasing the temperature difference, this two-dimensional (2D) basic state

undergoes a transition to time-dependent three-dimensional (3D) flow. The appropriate

dimensionless parameter for fluids with large Pr is the Marangoni number. The azimuthal

wavenumber m of slightly supercritical flow was found to be primarily determined by the

aspect ratio of liquid bridge Γ (=height/radius). The instability of this convective mode

has been believed to be responsible for the appearance of undesirable striations in the

final crystals (see for example a review by Schwabe [1]).

Motivated by the experimental observations, several theoretical and numerical studies

have been devoted to stability of the flow in a half-zone model, including energy stability

theory [2, 3], linear stability analysis [4, 5, 6, 7] and 3D direct numerical simulation [8, 9].

It is now well established (see Ref. [7]) that for liquid bridges of O(1) aspect ratio the first

instability is through either a regular bifurcation (stationary) or Hopf bifurcation (oscilla-

tory), depending on the Prandtl number of the liquid. In both cases, the most dangerous

mode is non-axisymmetric. This dependence of stability property on the Prandtl num-

ber has been observed for the first time by Rupp et al. [8] in their 3D simulation for

Γ = 1.2 and adiabatic free surface. In fact, they found that for small Prandtl numbers

the time-dependent flow is preceded by a bifurcation to a steady 3D state, but no critical

numbers for this bifurcation are given. For unit aspect ratio and a small Prandtl num-

ber (Pr = 0.01), Levenstam and Amberg [9] found the critical Reynolds number for this

bifurcation is 1960 with azimuthal wavenumber m = 2.

In this paper, instead of conducting time-dependent simulation and directly comput-

ing the eigenvalues that characterize the regular or Hopf bifurcation, we used bifurcation

theory combined with a finite difference method to determine the stability boundaries of

the axisymmetric basic state in liquid bridges for a wide range of parameters. The stabil-

ity of the basic state is examined by considering small three-dimensional disturbances in

the normal form in the azimuthal direction. Resulting linearized disturbance equations

form an eigenvalue problem for the complex growth rate. It depends on the parameters,

azimuthal wavenumber m, Reynolds number Re, and basic state which in turn depends

on parameters Re, Pr and Γ, and is solved numerically by successive Newton-Raphson it-

erations. The critical Reynolds number and the convective flow at the onset are predicted

by solving an appropriate extended system of perturbation equations. Our stability cal-

culations confirm in large part the recent linear-theory results of Wanschura et al. [7] and

provide a more complete stability diagram for the finite half-zone with a non-deformable

free surface.
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2 Problem Formulation

We consider a cylindrical liquid bridge of length L held by surface tension forces between

two parallel, coaxial solid rods of equal radii R (> L/2π). A temperature difference ∆T

is imposed over the liquid bridge by prescribing Tu and Tl at the upper and lower disks,

respectively. The liquid is a Newtonian fluid with constant values of the viscosity µ,

reference density ρ0, thermal diffusivity α, and volume expansion coefficient β; ν = µ/ρ0

is the kinematic viscosity. The surface tension on the free surface is considered to be

linearly depend on the temperature

σ = σ0 − γ(T − T0), (2.1)

where σ0 is the mean surface tension at the reference temperature T0 = 1
2
(Tl + Tu). For

common liquids, we have γ = −(dσ/dT ) > 0, so that there is surface flow from the hot

end toward the cold end. We assume that the free surface is not permitted to deform and

has a perfectly cylindrical shape. This corresponds to requiring that the volume of the

liquid zone is πR2L and that both capillary number, Ca = γ∆T/σ0, and Bond number,

Bo = ρ0gR
2/σ0, are asymptotically small, i.e., Ca→ 0 and Bo→ 0.

We consider the fully three-dimensional system in the usual cylindrical coordinate

(r, φ, z) with origin in the center of the bottom end face. Gravity acts downward along

the z-axis. The length (r, z), velocity vector ~u = u~er + v ~eφ +w~ez, pressure p, temperature

difference T −T0, and time t are referred to scales R, γ∆T/µ, γ∆T/R, ∆T = Tu−Tl and

R2/ν, respectively. As a result, there arises the following dimensionless groups:

Re =
γ∆TR

µν
, Pr =

ν

α
,Gr =

gβ∆TR3

ν2
,Γ =

L

R
,Bi =

hR

κ
.

These are respectively the surface-tension Reynolds number, Prandtl number, Grashof

number, aspect ratio and surface Biot number in which h is the heat transfer coefficient.

Another useful dimensionless group is the Marangoni number, defined as Ma = RePr.

The governing equations for the flow and temperature fields in the liquid bridge are the

Navier-Stokes, continuity and energy equations, subject to the Boussinesq approximation:

∂~u

∂t
+Re~u · ∇~u = −∇p+∇2~u+

Gr

Re
θ~ez, (2.2)

∇ · ~u = 0, (2.3)

Pr(
∂θ

∂t
+Re~u · ∇θ) = ∇2θ. (2.4)
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The boundary conditions applied to complete the problem specification are:

at bottom and top solid surfaces, z = 0,Γ,

~u = 0, (2.5)

θ = ∓1

2
, (2.6)

on the free surface, r = 1,

u = 0, (2.7)

∂w

∂r
+
∂θ

∂z
= 0, (2.8)

∂v

∂r
− v

r
+

1

r

∂θ

∂φ
= 0, (2.9)

∂θ

∂r
+Bi(θ −Θa(z)) = 0, (2.10)

Equation (2.7) is the kinematic condition. Equations (2.8) and (2.9) are the shear stress

conditions. Heat transfer between liquid zone and surrounding gas is modelled by Equa-

tion (2.10) in which Θa(z) is the dimensionless ambient temperature. Positive values of Re

and Gr represent the system which is heated from above, while negative ones correspond

to the system heated from below.

3 Basic State Problem

For sufficient weak axial temperature gradients, i.e. low surface-tension Reynolds num-

bers, equations (2.2–2.10) admit steady axisymmetric solutions with a flow in the r-z-plane

which can be characterized as a single toroidal vortex.

The steady axisymmetric basic state is denoted by ~X = {~U(r, z) = U ~er+W ~ez, P (r, z),Θ(r, z)},
and satisfies the equations

Re(U
∂U

∂r
+W

∂U

∂z
) +

∂P

∂r
− (∇2U − U

r2
) = 0, (3.1)

Re(U
∂W

∂r
+W

∂W

∂z
) +

∂P

∂z
−∇2W − Gr

Re
Θ = 0, (3.2)

∂U

∂r
+
U

r
+
∂W

∂z
= 0, (3.3)

RePr(U
∂Θ

∂r
+W

∂Θ

∂z
)−∇2Θ = 0, (3.4)

subject to the following boundary conditions:

z = 0,Γ : U = W = 0,Θ = ∓1

2
, (3.5)
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r = 0 : U =
∂W

∂r
=
∂Θ

∂r
= 0, (3.6)

r = 1:

U = 0, (3.7)

∂W

∂r
+
∂Θ

∂z
= 0, (3.8)

∂Θ

∂r
+Bi(Θ−Θa(z)) = 0. (3.9)

The partial differential equations (3.1-3.4) are approximated by second-order central

formulae for spatial derivatives and the boundary conditions (3.5-3.9) are approximated

by second-order forward or backward difference approximations, on a non-uniform mesh.

The resulting nonlinear algebraic system of equations, written in the vector form, reads

f( ~X;λ, ~µ) = 0, (3.10)

where λ is a specific parameter (Re in the present case) and ~µ is the vector of the remaining

parameters of the problem (Pr,Gr,Bi and Γ). The nonlinear equations (3.10) are solved

by successive Newton-Raphson iteration:

f ~X( ~Xn;λ, ~µ)d ~Xn = −f( ~Xn;λ, ~µ), (3.11)

~Xn+1 = ~Xn + d ~Xn. (3.12)

where f ~X = ∂f/∂ ~X is the Jacobian matrix. These iterations continue until the largest

variation (relative) of any variable is less than some convergence tolerance which we set

to 10−6. Depending on the parameters of the problem, 4 to 8 iterations can be required,

provided that initial guess is close enough to the solution.

4 Linear Stability Problem

The stability of the basic state ~X is examined by considering small three-dimensional

perturbations, denoted by ~x′ = {~u′(r, φ, z, t), p′(r, φ, z), θ′(r, φ, z)}, which satisfies the lin-

earized perturbation equations

∂~u′

∂t
+Re(~u′ · ∇~U + ~U · ∇~u′) +∇p′ −∇2~u′ − Gr

Re
θ′~ez = 0, (4.1)

∇ · ~u′ = 0, (4.2)

Pr
∂θ′

∂t
+RePr(~u′ · ∇Θ + ~U · ∇θ′)−∇2θ′ = 0. (4.3)
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Since the basic state is axisymmetric, we can expand the perturbed velocity, pressure

and temperature fields in the form ~u′

p′

θ′

 =
+∞∑

m=−∞

 ~u(m)(r, z)
p(m)(r, z)
θ(m)(r, z)

 eσ(m)t+jmφ, (4.4)

where j =
√
−1, m is the (integer) azimuthal wave number, and σ(m) is the complex

growth rate of the corresponding perturbation mode. Substituting (4.4) into (4.1-4.3)

yields, for each value of m, a set of equations having the similar form to (4.1-4.3) except

that ∂/∂t→ σ(m) and ∂/∂φ→ jm. The resulting discrete form of the equations, obtained

by using finite-difference approximations for derivatives of the field variables, can be

written as a generalized matrix eigenvalue problem

g(~x, ~X,Re,m, ~µ) ≡ A~x = σB~x, (4.5)

where ~x ≡ (u, jv, w, p, θ)T denotes a vector consisting of disturbance velocity, pressure and

temperature. A ≡ g~x( ~X,Re,m, ~µ) is a real-valued, non-symmetric matrix, and B is a

(singular) real-valued, diagonal matrix. The Jacobian matrix g~x is not the same as for the

stationary solution f ~X except for the case of m = 0, i.e. two-dimensional perturbations.

In such a case, we make no difference between the two Jacobian matrices and either of

them can be used in the analysis.

The complex growth rate σ (=σr + jω, where ω is the angular frequency of the oscil-

lations) depends on the parameters m and Re, and the axisymmetric basic state which

in turn depends on the parameters Re, and ~µ (Pr,Gr,Bi and Γ). If ~µ is fixed, then

σ = σ(Re,m). The condition that the ’leading’ eigenvalue (i.e. the eigenvalue with the

maximum real part) has σr = 0 defines a neutral curve Re(m) (m should be an integer

number). The minimum of Re(m) over all m determines a critical value of Re, say Rec,

and corresponding values of m and ω, say m and ωc. The basic state is stable to such

small disturbances if Re < Rec, but for Re > Rec there exists values of m such that there

is at least one eigenvalue σ with σr > 0, so that the corresponding eigenmode will grow

and is linearly unstable. If the corresponding imaginary part of this leading eigenvalue is

zero, i.e. ω = 0, at Rec, then we have a regular bifurcation to a new branch of steady

solutions. However, if it is non-zero, so that a leading complex conjugate pair of eigenval-

ues crosses the imaginary axis into the right-half plane, then we have a Hopf bifurcation

to a time-periodic solution from the stationary solution branch, whose frequency at the

onset of this instability is determined by the magnitude of the imaginary part of the

eigenvalue ωc. In either case, the spatial form of the bifurcating solution is determined

by the eigenspace of the crossing eigenvalue or conjugate pair of eigenvalues.
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5 Extended Systems for Locating Bifurcation Points

We describe below two appropriate extended systems to locate, respectively, regular (sta-

tionary) bifurcations and Hopf (oscillatory) bifurcations. The resulting nonlinear algebraic

set of equations are solved by Newton’s method to give both the solution at the bifurcation

point and the value of the bifurcation parameter.

5.1 Stationary bifurcation points

The system of equations we use to calculate a stationary bifurcation point is the one

proposed by Moore and Spance [10] for locating limit points:

f( ~X, λ, ~µ) = 0, (5.1)

g(~x, ~X, λ,m, ~µ) = 0, (5.2)

(~ek)
T · ~x = 1, (5.3)

where the last equation defines a normalization condition of the eigenvector ~x (note that

~x ∈ ~R), ~ek is the unit vector with components (~ek)i = δik. We solve the above system

for the basic state ~X,the bifurcating eigenvector ~x and the critical value of one specific

parameter λ (Re in the present case), at the prescribed values of all the other parameters

m and ~µ.

5.2 Hopf bifurcation points

The determination of the bifurcation point for a Hopf bifurcation is more complicated than

for a stationary one. At a Hopf bifurcation point a complex-conjugate pair of eigenvalues

with non-zero imaginary parts, ±jω, crosses the imaginary axis. That bifurcation is the

solution of the following extended system [11] of equations:

f( ~X, λ, ~µ) = 0, (5.4)

g(~x, ~X, λ,m, ~µ) = jωB~x, (5.5)

(~ek + j~ek)
T · ~x = j, (5.6)

where the last equation in the set is a normalization condition for the eigenvector ~x (note

that ~x ∈ ~C). We solve for the basic state ~X, the bifurcating eigenvector ~x, the angular

frequency ω and the critical value of the bifurcation parameter λ, i.e. Re, at the fixed

values of all the other parameters m and ~µ.
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6 Results and Discussion

The principal results of the calculations for Γ = 1, Bi = 0 and Gr = 0 are presented in

Table 1. As can be seen, the Hopf frequency becomes non zero when Pr ≥ 0.1; indicating

that there exists two distinctly different instabilities of the base state, namely, stationary

instability (ωc = 0, for Pr < 0.1) and oscillatory instability (ωc 6= 0, for Pr ≥ 0.1).

6.1 Stationary instability

For small Prandtl numbers (Pr < 0.06), the basic state losses its stability to a stationary

non-axisymmetric disturbance and thus bifurcates into a three-dimensional steady state.

The most dangerous mode has azimuthal wavenumber m = 2. When Pr goes to zero,

the critical Reynolds number remains finite and tends to be a constant Rec = 1784;

indicating that the instability is hydrodynamic in origin. This limiting critical Reynolds

number deviates less than 0.5% from that of Wanschura et al. [7] (Rec = 1793).

Typical critical disturbance temperature and flow fields at Pr = 0.02 are presented

in figure 1. It is seen from fig.1(a) that in a horizontal cut at z = 0.5 the disturbance

temperature field consists of two hot spots at φ = π/2 and 3π/2, and two cold spots at

φ = 0 and π. Fig.1(b) shows the critical disturbance flow field on the free surface. It is of

interest to note that the azimuthal flow on the free surface is from the cold spots towards

the hot spots. This is opposite to what would be expected from the thermocapillary effect

which would drive an azimuthal flow away from hot spots and towards cold spots. Thus

for small Prandtl numbers, the thermocapillary effect acts as a weak force counteracting

the azimuthal flow.

The energy analysis by Wanschura et al. [7] shows that the small Pr instability mech-

anism is due to an energy feed by a disturbance flow normal to the basic axial shear flow.

The presence of rigid rods is responsible for such a mechanism. In fact, Xu and Davis [4]

did not find this type of instability in an infinitely long cylindrical liquid bridge (Γ→∞)

when Pr → 0.

The effect of the aspect ratio on the critical Reynolds number is shown in figure 2 for

Pr = 0.02, Bi = 0 and Gr = 0. It can be seen that the presence of rigid walls stabilizes the

basic flow and thus the instability is suppressed as the aspect ratio Γ increases. Plotted

is also a fit function giving the dependence of the critical Reynolds number on the aspect

ration. For this Prandtl number, we obtained the following dependence by using a linear
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regression:

Rec = 2160 Γ−1.26. (6.1)

As the aspect ratio increases from Γ = 0.4 to 1.8, the critical azimuthal wavenumber

decreases from m = 4 to m = 1. In an attempt to give a relation between aspect ratio

and wavenumber, we multiple Γ by the corresponding critical azimuthal mode m and

obtain:

1.6 ≤ mΓ ≤ 3.2. (6.2)

Note that Preisser et al. [12] found the product of mΓ = 2.2 in their experimental study

with a fluid of Pr = 7. This value is in the range given by equation (6.2). However, it

must be pointed out that the instability for Pr = 7 was not a stationary but an oscillatory

one as shown below.

6.2 Oscillatory instability

As shown in Table 1, when Pr ≥ 0.1, another type of instability appears. The instability

is oscillatory with Hopf frequency ωc. For Γ = 1, Bi = 0 and Gr = 0, we found two

different critical modes with azimuthal wavenumber m = 2 for Pr ≥ 0.9 and m = 3 for

0.1 ≤ Pr < 0.9. The Hopf frequency ωc has the same dependence on Prandtl number as

critical Reynolds number, i.e., it decreases with increasing Prandtl number. Our result

of Rec(Pr = 1) = 2532 deviates less than 2% from that of Neitzel et al. [5] (Rec =

2484) and agrees within 2% with the result given by Wanschura et al. [7] (Rec = 2539).

However, the latter authors obtained much larger critical Reynolds numbers in the range

of 0.5 ≤ Pr ≤ 0.7, while at Pr = 0.8 they found a much lower critical Reynolds number

(Rec = 4086). This can be explained by the fact that these authors obtained a different

critical azimuthal wavenumber, namely, m = 2.

The dependence of the critical Marangoni number Mac = Rec Pr on Pr is shown in

figure 3. It is noted that Mac is nearly a linear function with Pr for Pr > 1 and it

increases with increasing Prandtl number. This indicates that the Marangoni number is

a more appropriate dimensionless parameter to characterize the oscillatory instability in

the range of large Prandtl number (Pr > 1). In the range 0.1 ≤ Pr < 1, the Mac curve

exhibits a dramatical change with a peak at Pr = 0.7. We note that Rupp et al. [8] also

observed an order of magnitude change of Mac in this region of the stability diagram. This

phenomenon may be due to the fact that there is a jump of instability (from stationary

to oscillatory) near Pr = 0.1 and the critical mode has an azimuthal wavenumber m = 3

while it becomes m = 2 for Pr ≥ 0.9.
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A representative example for the critical disturbance flow and temperature field at

Pr = 7 is given in figures 4(a) and 4(b). In a horizontal cut at z = 0.5 the disturbance

flow field consists of four cells, one in each quadrant, but slightly shifted in the positive

φ-direction. The surface flow originates from the hot surface spots at φ = 0 and π,

and moves toward the cold surface spots. It can be seen that there exists a phase shift

between the disturbance flow and temperature field. Such a phase shift can only be

maintained if the whole disturbance propagates azimuthally. This is confirmed in figure

5 in which we see that the disturbance temperature field on the free surface propagates

in the positive φ-direction (from left to right in the figure). Moreover, we note that

during the disturbance propagation two hot spots and two cold spots remain at the same

horizontal position. This indicates that the large Prandtl number instability is due to the

surface hydrothermal wave traveling azimuthally. Due to the presence of endwalls, we did

not find an axial component of this hydrothermal wave as observed by Xu and Davis [4]

in an infinitely long cylindrical liquid bridge.

The heat transfer from the liquid bridge to its surrounding is modelled by equa-

tion (2.10), where the ambient temperature Θa(z) is assumed to be the conducting profile.

The effect of cooling on the stability of the basic state may be observed by examining

the data in Table 2 for Pr = 1, Γ = 1, Gr = 0 and varying Biot number Bi. It is clear

that increasing heat loss at the free surface stabilizes the flow, in agreement with the

linear theory analysis in [4]. As the Biot number increases, the Hopf frequency of the

hydrothermal wave increases and modes with higher azimuthal wavenumber m become

critical.

The effect of weak buoyancy forces on the stability limit can be seen from data in

Table 3 for Pr = 1, Bi = 0, Γ = 1 and varying values of Grashof number. These positive

values of the Grashof number correspond to heating from above in our notation. It is

seen that critical Reynolds number decreases with increasing Grashof number, indicating

the destabilizing effect of buoyancy force. This trend is in contrast to the speculation

of Xu and Davis [4] , who reasoned that the axial temperature gradient in the half-zone

experiments (heated from above) would have a stabilizing effect. But our result is in

agreement with the calculations by Neitzel et al. [5].

7 Conclusion

We have investigated numerically the stability of the steady, axisymmetric thermocapillary

convection in non-deformable cylindrical liquid bridges. The numerical results show that
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for liquid bridges of O(1) aspect ratio the first instability of the basic state is through

either a regular bifurcation (stationary) or Hopf bifurcation (oscillatory), depending on the

Prandtl number of the liquid. The bifurcation points and the corresponding eigenfunctions

have been determined by solving appropriate extended systems of equations. For very

small Prandtl numbers, i.e., Pr < 0.06, the basic state loses stability to a stationary

disturbance with azimuthal wavenumber 2. It has been shown that the instability is of

hydrodynamical nature. While for Pr ≥ 0.1, the instability is oscillatory which takes

the form of a pair of hydrothermal waves traveling azimuthally. Two different critical

azimuthal wavenumbers have been found, depending on the Prandtl number. The most

dangerous mode is m = 3 for 0.1 ≤ Pr ≤ 0.8 and m = 2 for Pr ≥ 0.9.

For large Prandtl numbers, we found that heat loss at the free surface leads to a

stabilization of the base state. But buoyancy force has a destabilizating effect, this is may

be due to the strong radial temperature gradients of the basic state.

For small Prandtl numbers, we found a strong coupling of the azimuthal wavenumber

of the instability with the aspect ratio of liquid bridge. The product of the most dangerous

mode with the aspect ratio, mΓ, has been found to be in the range of 1.6 and 3.2, indicating

that the most unstable mode has some feature of pattern selection.

Our results confirm in large part the recent linear-theory results of Wanschura et al. [7]

and provide a more complete stability diagram for the finite half-zone with a non-deformable

free surface.
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Table 1

Critical Reynolds number Rec, Hopf frequency ωc, and corresponding azimuthal mode m

as a function of Prandtl number Pr for Γ = 1, Bi = 0 and Gr = 0.

Pr Rec ωc m Pr Rec ωc m
10−10 1784 0 2 0.4 9528 277.4 3
10−6 1784 0 2 0.5 9033 250.2 3
10−3 1793 0 2 0.6 8543 222.4 3
0.01 1892 0 2 0.7 7566 187.1 3
0.02 2054 0 2 0.8 4769 120.7 3
0.03 2299 0 2 0.9 3040 73.8 2
0.04 2704 0 2 1.0 2532 64.7 2
0.05 3528 0 2 2.0 1398 40.1 2
0.055 4541 0 2 3.0 1127 32.4 2
0.056 4939 0 2 4.0 995 28.3 2
0.057 5590 0 2 5.0 923 25.7 2
0.1 16201 450.0 3 6.0 892 24.1 2
0.2 13278 391.4 3 7.0 869 22.7 2
0.3 10524 315.9 3 8.0 855 21.9 2

Table 2

Critical Reynolds number Rec, Hopf frequency ωc, and corresponding azimuthal mode m

as a function of Biot number Bi for Pr = 1, Γ = 1, and Gr = 0.

Bi Rec ωc m
0 2523 74.7 2

0.1 2624 66.4 2
0.5 3183 75.2 2
1 4618 115.2 3
2 7613 182.0 3
5 10700 260.0 3
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Table 3

Critical Reynolds number Rec and Hopf frequency ωc, as a function of Grashof number

Gr for Pr = 1, Γ = 1, and Bi = 0. The azimuthal wavenumber is m = 2.

Gr Rec ωc
0 2523 64.7

500 2500 63.2
103 2474 62.1

2× 103 2467 60.5
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Figure 1: (a) Critical disturbance temperature field in a horizontal cut at z = 0.5 (hot spot
maxima are indicated by “+” and cold spot minima by “−”) and (b) critical disturbance
flow field on the free surface for Rec = 2054, Pr = 0.02, Γ = 1, Bi = 0 and Gr = 0.
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Figure 2: Dependence of the critical Reynolds number Rec and corresponding azimuthal
wavenumber m on the aspect ratio Γ for Pr = 0.02, Bi = 0 and Gr = 0. Numerical
results are shown by “◦”. Plotted solid line is a fit function given by Rec = 2160Γ−1.26.
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Figure 3: Dependence of the critical Marangoni number Mac on the Prandtl number Pr
for Γ = 1, Bi = 0 and Gr = 0.

19



0

0.5

1

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Figure 4: Critical disturbance flow (a) and temperature field (b) in a horizontal cut at
z = 0.5 for Rec = 869, ωc = 22.7, Pr = 7, Γ = 1, Bi = 0 and Gr = 0.

20



0.5

1

0.5

1

21



0.5

1

0.5

1

φ/π

Figure 5: Time-dependence of the critical disturbance temperature field on the free surface
(surface hydrothermal wave) for Rec = 869, ωc = 22.7, Pr = 7, Γ = 1, Bi = 0 and Gr = 0.
The isotherms are shown at times 0 (a), 1/4 (b), 1/2 (c) and 3/4 (d), in units of 2π/ωc.
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