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Abstract

Numerical simulations describing plunging breakers including the splash-up phe-
nomenon are presented. The motion is governed by the classical, incompressible,
two-dimensional Navier-Stokes equation. The numerical modelling of this two-phase
flow is based on a piecewise linear version of the volume of fluid method. Capillary
effects are taken into account such as a nonisotropic stress tensor concentrated near
the interface. Results concerning the time evolution of liquid—gas interface and ve-
locity field are given for short waves, showing how an initial steep wave undergoes
breaking and successive splash-up cycles. Breaking processes including overturning,
splash-up and gas entrainment, and breaking induced vortex-like motion beneath the
surface and energy dissipation, are presented and discussed. It is found that strong
vorticities are generated during the breaking process, and that more than 80% of
the total pre-breaking wave energy is dissipated within three wave periods. The nu-
merical results are compared with some laboratory measurements, and a favorable

agreement is found.
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1. INTRODUCTION

The breaking of surface waves in deep water has received considerable attention over the last
two decades because of both fundamental interest and its implications in oceanography and
naval hydrodynamics. For example, it is well known that breaking waves play an important
role in the air-sea interaction such as the transfer of heat, momentum and mass between the
atmosphere and ocean; the production of spray, aerosols and bubbles, and the generation of
turbulence in the sea (for a recent review see Melville!). Breaking waves exert by far the
largest wave-induced force (often in the form of impacts) on offshore structures and ships in
heavy seas, which may cause serious safety problems and structure damage of the systems.
Hence, it is of great importance to understand the mechanics of breaking process.

However, the breaking process is difficult to measure and to model owing to its physical
complexities involved. The breaking is a highly nonlinear phenomenon involving two-phase
and turbulent flow, and the process is intermittent in space and time. In view of these
difficulties, our current understanding of breaking process, in particular the later stage of
breaking is based in large part on the well-controlled laboratory experimental investigations.
Two modes, e.g. quasi-stationary and propagating, have been used to study respectively the
spilling?® and plunging breakers.*® Good description of basic properties of unsteady deep-
water breaking waves, such as the geometric properties, the phenomenon of splash-up, the
mode of air entrainment, was reported by Bonmarin.* The most comprehensive laboratory
studies have been made by Rapp and Melville.® They measured surface motion, momentum
and energy fluxes, breaking induced-current and turbulence, surface mixing, and energy
dissipation.

Numerical simulation of the evolution of breaking wave was first performed by Longuet-
Higgins and Cokelet® using boundary integral method (based on potential flow). Since
then a number of more robust, accurate and efficient numerical codes have been developed
successfully to describe the evolution of two-dimensional surface wave up to breaking, but
they are unable to continue beyond the point at which the surface impacts on itself (see for
10,

more detailed reviews Peregrine,? and Banner and Peregrine Numerical computations

suggest that the local particle velocity in a plunging breaker can have almost twice the



linear phase speed, and that the acceleration of particles in the free surface can have up
to six times that of gravity. The validity and usefulness of potential-flow computations
for predicting overturning waves up to breaking were examined and confirmed by several
independent comparisons of surface profile and velocity field in a deep-water breaking wave
to the experimental measurements (see for example Dommermuth et al.'! and Skyner!?).
More recently, by using particle image velocimetry (PIV) and particle tracking velocimetry
(PTV) techniques, Perlin et al.'? obtained full-field velocity in a deep-water plunging breaker.
Their vorticity calculations based on the measured velocity fields further confirm that the
flows are almost irrotational up to the impact of jet onto the forward face of the water
surface, and that plunging breaking has an insignificant influence on particle motions at
depths greater than half the wavelength.

There is little numerical simulation of this problem going beyond the time of impact
of the plunging jet. In Monaghan et al.,'* the smoothed particle hydrodynamics method
(SPH) was used to simulate the phenomenon of splash-up. However only one figure showing
splash-up was given and the spatial resolution of the method seems insufficient to resolve
the small scale viscous and capillary effects. The aim of the present work is to attempt
a numerical solution of the Navier-Stokes equations of this problem, on grids sufficiently
fine so that viscous and capillary effects could be retained. We wish to simulate the two-
phase flow of bubbles and droplets following splash-up as well as vortex-like motions, and
to investigate the role of breaking on the generation of vorticity and on the dissipation of
wave energy. To this end, we have used a robust numerical technique, based on the volume
of fluid method!® 2% that allows us to use rather large grids and to follow large interface
deformations and topology changes during the breaking process.

In Sec. II, we present the global formulation for two-fluid flows and the numerical meth-
ods used in this work. Sec. III reports on a series of numerical experiments, including
simulations of capillary waves and interfacial gravity waves, to illustrate the accuracy of the
numerical code. The initial condition used to obtain a breaking wave and parameters of
computations are given in Sec. IV. Numerical results are presented and discussed in Sec. V.

These include jet formation, phenomenon of splash-up, gas entrainment, breaking induced



vortex-like motion beneath the surface and energy dissipation during the breaking process.
Computations are compared with some laboratory measurements. Summary and concluding

remarks are presented in Sec. VI.

2. FORMULATION AND NUMERICAL METHOD

A. Global formulation for two-fluid flows

We consider the incompressible flow of two immiscible fluids. For convenience in what follows,
we shall call one of the fluids a liquid and the other a gas (see Fig.1). The mathematical
idealization of the problem is that of a two-dimensional flow with a constant surface tension
o on the liquid-gas interface and viscous dissipation in the bulk. Let ds be a delta function
concentrated on the surface S, then the governing equations for the velocity vector u = (u, v)
and pressure p in the bulk of each phase (liquid and gas) are the classical Navier-Stokes

equations supplemented by the condition of incompressibility:

0
p (a—ltl —I—u-Vu) = —Vp+ V- (2uD) + pg + ordsn, (1)
V.ou=0, (2)

where p is the density and p is the dynamical viscosity. They are constant in each phase
but may exhibit large jumps across phase boundaries. D is the rate of deformation tensor
whose components are D;; = (Ou;/0z; + Ouj/0u;)/2, and g = (0, —g) is the acceleration
due to gravity. The term ordsn represents capillary forces, with n the unit normal to the

interface. The curvature of the interface is k and may be expressed as
K = —VS - n, (3)

where Vg is the gradient operator restricted to the surface S.
It is possible to rewrite the Navier-Stokes equations in an explicit momentum conserving
form. In particular, capillary effects may be represented by a capillary pressure tensor,

denoted T. This tensor is tangent to the interface and given by



T = —0(I — n ®n)ds, (4)

where I is the unit tensor ¢;;. Furthermore, it is shown (see Lafaurie et al?') that the

capillary force may be written in the form
okésn = =V - T. (5)

One then obtains the following equivalent formulation to equation (1)

d(pu)
ot

==V (pI+pu@u-2uD +T)+pg. (6)

Apart from its momentum conserving nature, this representation of surface tension stresses
is especially interesting for the simulation of wave breaking, since it avoids the singularity
which would occur in the continuum limit when interfaces change topology and the curvature
becomes locally infinite.

The numerical solution of the basic equations is based on the method described in Lafau-
rie et al.*' Briefly, the Navier-Stokes equations (6) are solved using finite differences on
a staggered (MAC) Eulerian grid and split-explicit time differencing scheme. The incom-
pressibility condition (2) is accurately satisfied by a projection method?® with the help of a
multigrid Poisson solver.?* This yields, at each time step, a velocity field u which is used to
propagate the interface by a volume of fluid type numerical technique as described below.
This method allows us to follow interfaces beyond the point of reconnection, and is relatively

simple and robust.

B. Interface reconstruction and evolution

The existing methods for the treatment of interfaces between immiscible fluids can be divided
into two broad categories (see, for example, Floryan and Rasmussen'®): interface tracking
and interface capturing. In interface tracking methods the interface is specified by a series of
interpolated curves through a discrete set of marker points located on the interface. Although
this method can follow the evolution of a simple interface very accurately, its implementation
poses difficulties in dealing with changes in interface topology. In interface capturing methods

a data structure is defined in the entire computational domain, say, volume fractional field,



C'. The interface is captured in the sense that the actual physical discontinuity is someplace
near the middle of the gradient. This method is capable of handing merging and folding
interfaces and is relatively simple to implement. Volume of fluid (VOF) methods'®?? fall in
this category and have been widely used in the numerical simulation of viscous flows with
moving interfaces. In this method, one divides the computational domain into a number
of computational cells (z,7), the representation of the interface is made with the help of
the volume fraction Cj; in cell (7, 7). The field C; ;, with C' = 1 inside one fluid (liquid for
example) and C' = 0 in the other, is also called the color function. The interfaces occur
in cells with fractional volumes, i.e. 0 < C;; < 1. In the interface cells, the density and

viscosity in equation (6) are linearly interpolated between two phases

p=Cpr+ (1 —C)pa, (7)

p=Cur+(1—-0C)ua, (8)

where the subscripts L and G denote respectively the liquid and gas phases.

Reconstructing the interface from the field C;; is the first task in the VOF method. An
ideal representation of the interface would be a series of exactly matching segments, i.e.
segments connecting the sides of the cells, but this increases the computational complexity
and in practice is difficult to realize because it is necessary to solve a coupled system of
algebraic equations at each time step. In this work, the so-called Piecewise Linear Interface
Construction or PLIC method?? is used. The exact matchingis abandoned, but the algorithm
is faster and relatively simple.

PLIC method involves the following three steps. First, the interface is approximated by
a segment in each (interface) cell independently. The normal of the segment is estimated
using finite-difference approximations based on the neighboring cells. Once the normal is
computed one adjusts the position of the segment to obtain a volume fraction equal to the
prescribed value Cj;. In a second step, the interface motion is computed in a Lagrangian
manner with velocities obtained by linear interpolation. Finally, the volume fractions are
recalculated. With the PLIC method, the position of the interface is reconstructed with

errors of order O(kh?), where £ is the local curvature of the interface and h is the mesh size,



and thus more accurately than in most volume of fluid methods, including that of Lafaurie
el al?' Indeed, during the simulations, we observe that only a very small fraction of mass
is lost. For instance, in the complex case of Fig.4 this fraction is less that 1.2 x 107*% over
the entire simulation.

All the computations described herein are carried out in a square box. The motion is
assumed to be periodic in the horizontal coordinate x, though not necessarily in the time
t. In order to simulate the wave kinematics and dynamics in infinite depth, we have used
the free-slip condition at the bottom and top boundaries. Note that no-slip condition has
also been used at the bottom and top boundaries, but no difference in numerical results was
observed. This confirms in fact that breaking has no influence on the particle motion at

depths greater than half the wavelength.'?

3. CODE VERIFICATION

The verification of the validity of the numerical code was made through a series of numerical
experiments. As a first test, we performed the simulation of pure capillary waves (g = 0)
propagating on the interface between two viscous fluids in a square box of length equal to
the wavelength A. Taking as a length scale A and as a time scale (pr,A\*/o)'/2, the problem is
then defined by three dimensionless parameters: the density ratio p = pg/pr, the viscosity
ratio 7 = pe /i and the Ohnesorge number Oh = puy, /(oppA)/? (For a characteristic length
¢ the Ohnesorge number is defined as Oh = (£,,/()'/?, where {,, is the viscous capillary length
which is defined for a fluid of viscosity p and density p by £, = u*/(po)).

The initial conditions correspond to a linear cosine capillary wave. We carried out com-
putations for p = 0.01, @ = 0.1 and Oh = 0.01, and compared the measured frequency Qy

with the theoretical prediction for small-amplitude capillary waves (Lamb,? §266):

(271')3/2

Q:W. (9)

The amplitude of the wave was decreased until no variation in the measured frequency
was seen. The ratio Qx/§ is plotted in Fig.2(a) versus mesh size h. It can be seen that

the computation converged to a value of the frequency which, however, is not exactly the



theoretical predicted one, but the difference is within 3%. This (small) discrepancy can be
explained by the fact that there is a very small viscous contribution to the frequency in a
typical computation of viscous capillary waves, and such effect, however, is not accounted
for in the dispersion relation (9). The numerical diffusion due to discretization may also
attribute to this discrepancy.

In Fig.2(b), we display the evolution of interface position at « = 0 and compare it with
the expected decay rate v due to viscous effects:

(2Qp @)/

(1+7) (L+(Gm)'?)

.
fy:SWﬁ{E%Oh+2WOhU2 (10)

It is seen that the decay in time of the capillary wave was reproduced by the numerical
simulation.

To further test aspects of the algorithm and to illustrate the accuracy of the numerical
code, we performed a series of simulations of gravity waves propagating on the interface
between two viscous fluids. Taking as a length scale the wavelength A and a characteristic
time (A/g)'/? of the wave, the problem has four dimensionless parameters. They are the
(liquid) Reynolds number Re = pr.g'/2A*? [y, the Bond number B = prgA?/o, the density
ratio p = p¢/pr, and the viscosity ratio & = pg/prn. The results of our computation for
Re =10°, B =10% p =0.01 and 7 = 0.1 are shown in Fig.3 where we plot the evolution of
interface position at * = 0 and compare it with the theoretical prediction of the decay rate

~ for small-amplitude gravity waves:

7:=8w23jlgfarl4—2w3e—ﬂ2 (20p 1)/
1+p (I+p)(1+(pmY2)’

(11)

with the frequency © given by the dispersion relation (Lamb,* §267)

1—7% 1 \Y*
0= (2r—L 4B t——| . (12)
14+p 14+p

The initial conditions of the computation were linear cosine gravity interfacial waves. As
Fig.(3) makes clear, the decay in time of a sufficient small-amplitude gravity wave was well
reproduced by the numerical computation. With a grid size of 128 x 128, the measured
frequency is 2.534 and it is 2.533 with 256 x 256 resolution which agrees with the expected

linearized frequency (€2 = 2.531) to within 1%.



In summary, these computations and favorable comparisons provide a strong validation

of the numerical results reported below .

4. CONDITION OF COMPUTATION

In this section, we present the initial condition used to generate a breaking wave. It is known®
that wave breaking in the field may result from direct wind forcing, wave-wave interaction or
wave instability. Numerical computations of breaking waves usually form waves by applying
a pressure forcing at the surface®*® or obtain breaking conditions simply from an unsteady
wave having a large enough amplitude.?”? Note that the nonlinear development of the
lowest superharmonic instability of a steep Stokes wave may also lead to wave breaking.”®
We present here the results for waves developing from the initial condition that corresponds
to a Stokes wave in infinite depth calculated at the third order of wave amplitude a.

Let x and y denote respectively the horizontal and vertical coordinates, and the origin
be taken in the center of the box (see Fig.1), then using the same reference scales as in the
previous case of gravity waves, the initial wave profile (¢ = 0), n, of slope ¢ (= 2ma/)) is
(see, for example, Lamb,** §250)

1 1 3
n(x,0) = gy (6 cos(2ma) + 562 cos(4ma) + §63 cos(67T:L')> . (13)

™

The initial wave slope € was set to be 0.55. Since it is not a steadily traveling wave and
is steeper than any irrotational steady wave, such initial conditions evolve to breaking as
shown below. Although we obtain quantitative information for several breaking intensities as
determined by the initial wave slope €, we focus, in this paper, only on the plunging breaker
which is the most powerful breaker in deep and shallow water, and which is believed to play
an important role in air-sea interactions, especially for mass transfer phenomena across the
water surface. We present numerical results for Re = 10*, p = 1072, @ = 0.4 and B = 10*,
as other plunging breakers give qualitatively similar results. Computations were performed
on comparatively large grids, i.e. 512 x 512 uniform mesh, with a constant time step of 107%.

Before presenting numerical results it is useful to make some comments on the physical

scales that we are trying to simulate. There are two dimensionless numbers which are related



to the length scale (i.e. the wavelength A): the Reynolds number Re and the Bond number
B. Based on these two numbers and for a given liquid, one then obtains two (different)
length scales, say (r. and (g respectively. Specifically, if it were water and for Re = 10* and
B = 10, the physical scales would be (r. ~ 2.5¢m and (g ~ 27cm. We did not use real
physical properties of air and water in the computations because of the limitations in the
range of dimensionless numbers. It is well known that when the Reynolds number becomes
too large, one expects the formation of boundary layers smaller than the mesh size, thus a
loss of accuracy. In practice we reach without trouble Reynolds numbers of order 10 (in the
liquid phase) for boxes of size 512 x 512. At small Bond number, surface tension dominates
the inertial phenomena and one observes easily periodic capillary waves. This is one of
reasons why first order VOF methods, such as the SOLA-VOF method'® are numerically
instable in the absence of surface tension. The interface is progressively destroyed by the
generation of floatsam and surface tension is the only way to keep the interface stable. On
the other hand, the PLIC method?* that we used avoids the numerical instability. The
small structures created at large Bond number have a more physical meaning. Therefore,
the values of the dimensionless numbers have been chosen so as to reach the compromise
between the accuracy of computations and the physical phenomena which we are interested
in. In other words, we are trying to simulate dynamics of short gravity breaking waves. At
these physically relevant scales, the flow under breaking waves is believed not to be fully
developed turbulent, instead, it is in a laminar-turbulent transition. On the other hand,
we solved directly the full Navier-Stokes equations which are appropriate to the physical
phenomena at this Reynolds number. It is highly interesting to incorporate an adequate
turbulence model into the present numerical scheme. A full discussion of this question is
beyond the scope of the present paper, except to remark that most of existing numerical
models for breaking waves, e.g. based on depth-integrated equations, mixing length models
or simplified turbulent kinetic energy k—equation, can not describe the wave breaking process
adequately, because these “rudimentary” turbulence models are unable to trait the situation
far from equilibrium such as the wave breaking process. It is also difficulty to determine a

proper length scale of the turbulence in the breaking zone. In the future, we will examine
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the manner in which different turbulent models (e.g. & — ¢ and Reynolds Stress models) can

be incorporated within the present numerical technique.

5. RESULTS AND DISCUSSION
A. General description of the breaking process

Figure 4 shows snapshots of a time series of the wave evolution and breaking process up
to time ¢ = 8 (noting that the present length and time scales are chosen such that a linear
cosine wave has a period of (2m)!/2). The initial wave given by (13) has its crest at « = 0
and is moving from left to right. At ¢ = 0, the velocity field in the liquid part is obtained
from the velocity potential (without surface tension, i.e. B — o0), while the gas is at rest,
and then motion is generated in the bulk of the gas phase through dynamical coupling with
liquid at the interface. As a periodic boundary condition is imposed in the direction of wave
propagation, the fluid moving out of the domain on the right will rejoin it on the left. It is
seen that the wave breaks in the form of plunging. During the pre-breaking stage, the wave
profile, particularly near the crest, becomes more and more asymmetric (Fig.4(a)), while the
trough remains relatively smooth. The wave breaks at the time when the front face of the
crest steepens and becomes approximately vertical, and then a jet of liquid is formed just
forward of the crest of the wave. The jet develops and projects forward into a characteristic
overturning motion (Fig.4(b)). Under the influence of gravity, the jet lengthens as it is “fed”
from the primary flow and touches down on the forward face of the wave, entraining a pocket
of gas (Fig.4(c)). The process is followed by forcing up a second jet, e.g. splash-up (Fig.4(d))
which in turn impinges on the forward face. The volume of gas enclosed beneath the splash-
up is relatively small compared to that entrained by the first falling jet. As pushed forward
by the plunging jet, the splash-up is growing in size (Fig.4(e)) and can rise as high as the
the original plunging crest (not shown here). Once rising at the highest level, the splash-up
loses most of its kinetic energy and its forward momentum, and moves back with respect to
the original plunging jet, entraining a non-negligible amount of gas into the wave (Fig.4(f)).

This entrained gas persists in the wave in the form of one relatively large bubble and several

11



small bubbles (Fig.4(g)). In our simulation we observed several successive splash-up cycles
with a gradual decrease of the potential energy from one cycle to the next, as shown in
Fig.4(e). At t =8, the wave loses most of its potential energy, splashing no longer occurs.
The breaking process described herein, including the wave overturning, the phenomenon
of splash-up and the mode of gas entrainment, is generally in accordance with the laboratory
observations of Bonmarin,* for deep-water plunging breaking waves. In addition, Bonmarin
has observed in his laboratory experiments that the first splash-up can rise as high as the
original plunging crest (c.f. his figures 22 and 23), which may provide a validation of our
numerical finding. More recently, Perlin et al.,'> have made measurements of highly resolved
surface elevations in a deep-water plunging breaker. Our simulation resembles also very
nicely their images of post-breaking process, e.g. splash-up and subsequent evolution (M.

Perlin, personal communication. Unfortunately these images are not shown in their paper).

B. Overturning motion

As shown in Fig.4 (b) and (c), the most characteristic feature of a plunging breaker is the
overhanging jet of liquid that forms near the crest of the wave and plunges forward into
the surface below. Progress has been made towards an analytical time-dependent descrip-
tion of various parts of the flow in irrotational plunging, breaking waves. For instance,
Longuet-Higgins® proposed a simple self-similar cubic solution which fits the forward face
of a plunging breaker while New?! found that the curve of underside or loop of a plunging
jet is often well described by an ellipse with axes in the ratio /3. Both of models, however,
accounted for only a limited region of the loop and not for the rest of wave. An advance has
been made by Greenhow?? who extended and modified the ellipse model of New and the jet
model of Longuet-Higgins to include the rest of the wave. Note that the flow in plunging
breakers has sometimes been approximated by a stationary flow pattern (see, for example,
Dias and Tuck®® and Jenkins®).

Time-dependent numerical simulations of irrotational waves as they overturn and form jet
have been performed by a number of authors.51:12:26729 Fy]] details of the wave profile, veloc-

ity and pressure fields in waves during the overturning process up to the instant when the jet

12



is about to impinge into the forward face are obtainable from these detailed unsteady numer-
ical computations. The most remarkable feature discovered from those computations!!:26:2
is that a region of large fluid accelerations, corresponding high pressure gradients, develops
on the front face of a wave. Typical computed maxima are as high as five or six times that
due to gravity.

Our results of velocity and acceleration fields during the overturning process have quali-
tatively similar feature as previous irrotational computations. A typical result is illustrated
in Fig.5, showing the velocity field (Fig.5(a)) and corresponding accelerations in the region
around the crest of wave at t = 1.2. From this figure one may classify three regions of partic-
ular interest: (i) high particle velocities in the prominent jet: the largest velocity magnitude
is 0.68 and its horizontal component is 0.67 which is up to 45% greater than the phase speed
of the wave (the phase speed of the initial wave is 0.46); (ii) high particle accelerations on
the underside of the jet: the maximum acceleration is 3.25 times larger than that due to
gravity and directed approximately towards the center of curvature of the overturning loop;
(iii) low particle accelerations having negative horizontal component on the rear face. As
can be seen, the jet seems to be formed and projected forward by some convergence of the
flow. Also, it is noticed that large accelerations do not occur at the jet tip but within the
jet with magnitude being relatively greater than that due to gravity.

Fig.6 shows the velocity field and magnified view of the acceleration field in the late stage
of the wave overturning process at t = 1.4, that is, just priori to the “touchdown” of the jet
on the forward face. It can be seen that the three regions mentioned above remain. The
largest velocity, which is located in the jet, is 0.83 with horizontal component equal to 0.81,
i.e. 76% greater than the phase speed of the wave. The most striking feature revealed from
Fig.6(b) is that while the most part of the jet has downward acceleration, the accelerations
near the jet tip are directed upward and forward. This is due to the gas entrained beneath
the plunging jet which develops high pressure in the region between the tip of the jet and
its forward face. On the other hand, these upward accelerations, i.e. the particle velocities
decrease with time, are also expected because the jet is approaching to impinge on the surface

below and to splash.
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It is possible to compare our Navier-Stokes simulation with potential-flow theory. Indeed,
we have also developed a potential-flow code using a boundary integral formulation. The
numerical model is similar to that developed by Vinje and Brevig,?” but viscosity and surface
tension are accounted for in the computations. A full description of the formulation and
computations will be reported elsewhere. Here, we just mention that the effect of viscosity
is included in the computations by using boundary-layer theory as formulated by Lundgren
and Mansour.*

Fig.7 shows the wave profiles and velocities along the free surface which are obtained
respectively from Navier-Stokes simulation (Fig.7(a)) and potential-flow theory (Figs.7(b)
and (c)). The computations with potential-flow theory are performed by using the same
initial condition as in the Navier-Stokes simulation. Fig.7(b) corresponds to the Bond num-
ber B = 10* and the Reynolds number Re = 10* (as in the Navier-Stokes simulation),
while Fig.7(c) is the classic potential-flow computation in which viscosity and surface ten-
sion are neglected. It is seen that up to the point of the jet re-entry onto the forward surface
potential-flow theory with surface tension taken into account models the flow as good as the
Navier-Stokes simulation. Indeed, two quite different models yield qualitatively similar wave
profile and velocity distribution along the free surface. The main discrepancy between two
computations lies in the size of the enclosed gas; the potential-flow theory tends to give a
larger volume, but the difference in the maximum velocity is only about 1%. It should be
pointed out that a smaller volume of the enclosed gas can be expected in a two-phase flow
simulation due to the frictional and inertial influences of the gas surrounding the jet which
are not accounted for in the potential-flow computations. The effect of surface tension on the
shape of the plunging jet is clearly illustrated in Fig.7(b) compared to (c): the jet exhibits
a rounded tip, rather than a sharp cusp as displayed in Fig.7(c).

Also shown in these figures (dashed lines) are the ellipses of aspect ration /3 which
are fitted numerically using a technique based on the method of least squares. Such ellipse
solution has been found by New.?' Tt can be seen that when neglecting surface tension
(Fig.7(c)) the profile of the underside of the overturning crest is indeed well approximated

by a /3 aspect-ratio ellipse. The length of the major axis and its inclination to the horizontal
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x—direction are respectively a = 0.05 and § = —35° which are in the range of values obtained
by New.?! We note that even in the Navier-Stokes simulation large portion of the underside
of the plunging jet still displays approximately a y/3-aspect-ratio ellipse having a smaller

length of the major axis (¢ = 0.03) and a steeper angle (§ = —40°).

C. Phenomenon of splash-up

Once the plunging jet hits the liquid in front of the breaking wave, a sequence of splashes is
created. Fig.8 shows the occurrence of the splash-up (Fig.8(a)) and the subsequent evolution
of the wave (Fig.8(b)). It is clear that the splash-up starts from the plunge point, i.e. the
place and instant of time where the falling jet touches forward undisturbed surface. The
liquid in splash-up must come partly from the jet and partly from previously undisturbed
liquid. However, a close inspection of the velocity fields shown in Fig.8 reveals that in the
early stage the liquid in the splash-up originates from the plunging crest; the previously
undisturbed surface acting like a solid surface. Indeed, the resulting splash has very large
forward velocity component, i.e. 1.0. However, in the late stage of the splash-up, the
jet penetrates the surface below and then, because of its forward motion and downward
momentum, it pushes up a portion of previously undisturbed liquid, contributing to the
development of the initial splash-up. It appears from the velocity field shown in Fig.8(b)
that most of liquid in the splash-up comes from the previously undisturbed liquid.

One direct consequence of the impact of jet is the generation of vortex-like motions
beneath the surface. The velocity field shown in Fig.8(b) suggests that there is essentially
two large vortices, one around the entrained gas and another around the second entrained
gas within the splash-up. Since these rotate in the same direction, the regions between them

must have high shear rates, which result in a high rate of energy dissipation in these regions.

D. Entrainment of gas

The most obvious and important entrainment of gas arises from the closing of the jet on the

lower surface (see Fig.8). Gas entrainment process occurs also at each successive splash-up
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cycle, the amount of gas entrained decreasing from one splash-up to the next one.

The interaction between the plunging jet and the rear part of the splash-up contributes
to a non-negligible amount of gas entrainment (see Fig.4(f) and (g)). This interaction can
display two modes: in the early stage, the falling crest and the rear part of the splash-up
turn in opposite direction, and subsequently, the splash-up attains the maximum elevation
and looks like a falling liquid jet moving backwards and penetrating the front of the original
breaking crest as it moves forward. These two modes of gas entrainment resulting from the
interaction of the plunging jet and the rear part of the splash-up are consistent with the
laboratory observations by Bonmarin.*

The processes of wave evolution and gas entrainment have considerable dynamical cou-
pling. Air entrainment measurements in laboratory by Lamarre and Melville®® suggest that

a large fraction (up to 50%) of the surface wave energy dissipated is expended in entraining

air against buoyancy forces.

E. Generation of vorticity

The vorticity field w is defined in a usual way and can be easily obtained from the velocity

filed (u,v):
dv  Ou

Fig. 9 shows the time history of the maximum positive vorticity (4) in the liquid phase.
Though an initially irrotational motion is set in the bulk of each phase, a small amount of
the vorticity, i.e. Wy ~ 2, does exist at the liquid/gas interface. This is because that at
t = 0, there is a discontinuity in tangential velocity across this boundary, which is in fact
equivalent to a sheet vortex at the interface. The vorticity is equal in magnitude to the local
jump in tangential velocity and is thus finite. As time goes on, several effects determine the
vorticity distribution. First, the vorticity which was concentrated at the interface at ¢ = 0
diffuses into the fluid by the action of viscosity. It can be shown that at small values of
t, the vorticity is within a layer of thickness of order (v£)'/? near the interface. Secondly,

convection is able to transport vorticity toward or away from the interface. Third effect is
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the local distortion and rotation of the fluid which modifies the local vorticity.

Fig.9 shows that the maximum vorticity increases approximately as a linear function
of time up to the impact of jet (¢ &~ 1.5). A typical vorticity field during the overturning
process is illustrated in Fig. 10(a). In vorticity plots, positive contours are shown by solid
lines, while negative contours are shown by dashed lines with equally vorticity increment.
It is seen that positive vorticity layer is mainly located at the tip of the jet, and negative
vorticity layer is confined on the underside of the jet. The rest of the flow is essentially
vorticity-free. Thus this vorticity distribution is consistent with the general remarks made
before. A dramatical change in vorticity can be seen after the jet re-entry onto the forward
surface. Indeed, the jet plunging on the surface below creates the vortical motion. But it is
in the processes of splash-up that the largest vorticities are generated. Maxima can rise as
high as 120. Fig. 10(b) suggests that strong vorticities are likely associated with the local
(large) curvature of the interface. As this figure makes clear further, the gas entrapped by
wave breaking has a direct consequence of the generation of vorticity: negative vorticity
contours are essentially located around them.

Oscillations in the vorticity history in Fig.9 are due to successive splash-up cycles which
take place during the breaking process. After ¢ > 6, most of wave energy was dissipated,
wave motion becomes again almost irrotational state.

The mechanisms responsible for generation of vorticity at a two-fluid interface has been
discussed by Yeh.?” He showed that there are only two mechanisms to create vortical motion
(i.e. vorticity) at a two-fluid interface: baroclinic torque and viscous-shear torque. When
surface-tension forces are included, an additional torque is possible due to the discontinuity in
stress tensor at the interface. Also, it is well-known that curvature at a free surface generates
locally intense vorticity. This mechanism has been investigated by Longuet-Higgins®*® who
showed that in any steady flow in which the tangential stress vanishes, the strength of the
vorticity is 2kq, where & is the curvature of the streamline at the surface and ¢ is the stream
velocity. Vortex-like motions which appeared in breaking wave must have been created by
those mechanisms. Though effect of the curvature of the interface seems to be the most

important contribution of vorticity, a more detailed investigation would be necessary to
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examine which mechanism is the dominant contribution to the source of vorticity.

F. Energy dissipation

Let 17, Vi, and 1l denote respectively the wave kinetic energy, the wave (gravitational)
potential energy and the surface-tension energy, which are calculated in the liquid part

(C'#0) over one wavelength. Using the present reference scales, they are given by

|

T :—// 2dedy, |
D=5 ) f, P ey (15)

v, —// dady + ~ (16)
L = C;éopy ray g’

TR (17)
-~ ,

where T is the total arclength of liquid-gas interface. The constant 1/8 appearing in equation
(16) is introduced to define zero potential energy for a non perturbed surface.

The total wave (mechanical) energy, F, is then obtained by summing these three parts.
It is well-known that due to the viscosity the total energy of an infinitesimal amplitude wave
in deep depth decays as exp(—2vt) and the amplitude as exp(—~t), where the decay rate v
is defined by equation (11). For the purpose of comparison, we use the parameters given in
Sec. IV and obtain v = 1.9 x 1072,

The time evolutions of normalized values (by its initial value) of F, T}, and V},, are plotted
in Fig. 11. The initial values of the energies are respectively £/ = 4.9 x 1073, Ty, = 2.7 x 1073
and Vz, = 2.2 x 107°. The surface-tension energy is two orders of magnitude smaller than
the gravitational potential energy and the kinetic energy (II(¢ = 0) = 1.1 x 107°): its
contribution to the total wave energy is negligible, thus, its time evolution is not plotted in
the figure. It is seen that the time evolutions of energies display distinctly different regimes
before, during and after the breaking process. Before the formation of the jet (¢t < 0.5),
the kinetic and potential energies decrease smoothly. After the formation of the jet and
under the influence of gravity, the jet plunges down, the potential energy decreases rapidly

and goes into kinetic energy, leading to increase the latter up to the time of impact of the
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jet onto the forward surface (¢ ~ 1.5). The curves of Ty, and V7, exhibit some oscillations
due to the formation of successive splash-up cycles generated by the first falling jet; each
fast decreasing of the potential energy is associated with a relatively increase in the kinetic
energy and vice versa.

The total wave energy is dissipated by viscosity, thus decreases always with the time.
Its evolution as shown in Fig. 11 is not a simple function of time. An attempt is made
to determine a possible time dependence (exponential or algebraic). It is found that the
curve of F actually exhibits three different slopes indicating different wave energy decay
regimes. Fig. 12 summarizes our finding. Fig. 12(a) is a linear-log plot while Fig. 12(b) is a
log-log plot. It is seen that during the wave evolution, plunging and breaking process, the
the wave total energy follows approximately a classic exponential decay but has different
decay rate. Before the impact of the jet (t < ¢; = 1.5), the decay rate is found to be
y1 = 3 x 1072. Relatively large decay rate, e.g. 4, = 0.16, is found during the breaking
process (11 <t < t3 = 5.2). This decay value is more than five times v; and is eight times
the linear decay rate v that we mentioned. This indicates that the wave energy is mainly
dissipated during the breaking process. At two wave periods after breaking, the total energy
is found to follow approximately an algebraic decay. More precisely, the decay of the total
energy with time is found to be proportional to t=!. This =1 dependence can be clearly seen
in Fig. 12(b).

From Fig. 11, it is seen that after three wave periods about 30% of the kinetic energy
and only a small percentage (5%) of the potential energy remain in the wave, and that more
than 80% of the total pre-breaking wave energy is dissipated.

Using the dispersive properties of deep water waves to focus a wave packet in a laboratory
channel, Melville and Rapp,® and Rapp and Melville® measured the wave momentum flux (or
energy density) of the wave field upstream and downstream of the breaking region, thereby
inferring the losses from the wave field due to breaking. The measurements of Rapp and
Melville® show that more than 90% of the total prebreaking wave energy is dissipated after
four wave periods (from the onset of breaking). From this time on, the kinetic energy in

the residual flow is found to decay as ¢~'. Our numerical results of energy dissipation and
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t~1 dependence of total energy are comparable to their measurements. However, it should
be stressed that we calculated the dissipation in a single breaking wave while Rapp and
Melville® measured the dissipation in a wave group. Also, the inherent feature of our two-
dimensional simulation may be the most important factor which leads to the discrepancy.
It is well-known that the two-dimensional turbulence is less dissipative compared to three-
dimensional turbulence as in their experiments. Indeed, in three-dimensions, a very small
amount of viscosity suffices to produce a finite energy dissipation. While in two-dimensions,
when the viscosity is small, so is the energy dissipation. Taking these into consideration, we
may say that our numerical simulations are consistent with Rapp and Melville’s laboratory

measurements, and confirm that the turbulence generated by breaking is highly dissipative.

6. SUMMARY AND CONCLUDING REMARKS

Plunging breakers are due to the formation of a jet forward the crest of the wave. Under
the influence of gravity the jet plunges down into the surface causing splashes, air entrain-
ment and vortical motions beneath the surface. Classical numerical codes based on potential
theory are unable to describe evolution of breaking waves beyond the point at which the
jet impacts the surface. In this work, we employed a piecewise linear version of the vol-
ume of fluid method to simulate wave breaking as a two-phase flow. The incompressible,
two-dimensional Navier-Stokes equations were directly solved with explicit tracking of the in-
terface between the two phases. Numerical simulations of the evolution of an initially steep
short gravity wave with surface tension captured most of dynamics of plunging breaking
waves, and results are in reasonable agreement with laboratory observations for a deep-
water wave breaking process, including wave overturning, plunging, air entrainment and
successive splash-up cycles.

The generation of vorticity in breaking waves is due to the baroclinic torque and viscous
shear torque. With surface tension taken into account vorticity can also be created in regions
of large curvature of the interface due to the additional baroclinic generation term in the
stress tensor at the interface, and diffused away from the immediate neighborhood of the

interface by viscosity. Our calculations show that up to the appearance of the vertical front
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face of the wave, the wave motion is quasi-irrotational. Then, as a localized vorticity layer
develops near the tip of the liquid jet (positive vorticities) and along the underside of the jet
(negative vorticities), the magnitude of the vorticity becomes appreciable. Nevertheless, the
flow remains irrotational in most of the wave, and it is unlikely that the wave overturning
process is much influenced by the rotational flow. In this regard, our Navier-Stokes cal-
culations support previous potential-theory computations for wave evolution up to the jet
re-entry onto the forward surface. Indeed, the velocity and acceleration fields obtained from
the present work are qualitatively similar to those obtained from computations of potential
flows. However, considerable vorticity is generated in the subsequent development of the
wave breaking process. The most obvious of which is at the head of, and around, the tip of
the injection jet after its entry into the surface below. A second source of vorticity is the
shear layer formed between the falling jet and the rear part of splash-up moving upwards.
The instability of this shear zone is also a source of high energy dissipation in breaking
waves. The gas bubbles entrapped by wave breaking directly generate vorticity: negative
vorticity contours are essentially located around them. Overall, we may say that the most
striking effect of a breaking wave is the generation of rotational motions beneath the surface
and the energy dissipation; the latter being a direct consequence caused by the former.

Our calculated velocity fields reveal that the splash-up commences from the plunge point,
and that the origin of the splash-up comes first from the plunging crest which acts like a
direct reflection on the undisturbed surface. Subsequently, the plunging jet pushes up the
undisturbed liquid, feeding the splash-up. The most part of the liquid in splash-up arises
from this process.

Different decay regimes of the total wave energy with time were found. In the early stage
of the breaking process, the total energy follows approximately two different exponential
decays with a relative large decay rate during splash-up. After two wave time periods, the
total energy follows an algebraic decay and was found to have a t=! dependence. More than
80% of the total pre-breaking wave energy was dissipated within three wave periods.

The results highlight the power of advanced numerical techniques to unveil the fasci-

nating complexity involved in wave breaking process (splash-up, vortex-like motion and gas
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entrainment). However, difficulties remain with such calculations. First difficulty is the slow
convergence with the number of grid points. The lower resolution experiments produce a
similar breaking process as provided by higher resolution ones, the main difference being in
smaller structures created in the former. This phenomenon is clearly illustrated in Fig.13
where we try to compare the results obtained with two different resolutions (256 x 256 and
512 x 512). Indeed, the breaking phenomenon tends to create structures of very small size
(such as droplets, see Fig.13(a)) because of the systematic stretching of a thin filament of
liquid as shown in Fig.13(b). If and when these structures reach sizes smaller than the mesh
size, a loss of accuracy occurs. With a higher resolution, capillary effects which are rela-
tively important in these small structures are more captured and resolved, the interface is
thus more stable. However, the overall dynamics of breaking waves are unlikely affected by
these smaller structures. A quantitative comparison of the numerical results obtained with
two different resolutions is shown in Fig.14 where we plot the time evolutions of the total
wave energy. It is seen that before the impact of the jet (¢ < ¢; = 1.5) and after two wave
time periods (¢ > t; = 5.2) the results obtained are almost indistinguishable between two res-
olutions. The differences occur during the breaking process, but the maximum relative error
between two resolutions is within 10%. From this figure, it is worth noting that the amount
of the total wave energy dissipation is unchanged, indicating to some extent the convergence
reached by the present resolution, i.e. 512 x 512 grid points. A second difficulty is the two-
dimensional nature of these computations. As is well known, coherent vortical structures
and cascade to smaller scales are quite different in two with respect to three dimensions,
and hence so should evolution of the vorticity field and energy dissipation. Despite these
difficulties, the present numerical simulation of breaking waves is promising. Comparison
of the numerical results with some laboratory experiments is encouraging, and we regard
two-dimensional simulations as a very useful warmup for more realistic three-dimensional
investigations. The ability of the code to simulate the dynamics of the gas phase also offers

the perspective of simulating breaking waves in presence of wind.
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FIGURES
Fig. 1. Coordinate system and schematic drawing of initial interface profile n(z,¢t = 0). In the
simulations described in this paper, we have used periodic boundary condition in the direction of

wave propagation and free-slip condition along the others.

Fig. 2. Simulation of small-amplitude capillary waves on the interface between two viscous fluids.
(a) The ratio of the measured frequency to the predicted one (equation (9)) as a function of the
mesh size h (= 1/N, where N is the number of grid points along one direction), (b) Time evolution
of the interface position at @ = 0, obtained from computation with grid size of 128 x 128. The
dashed curve is the predicted viscous envelope in the inviscid linear theory, i.e. 7(0,0)exp(—~t),

where the decay rate v is given by equation (10).

Fig. 3.  Simulation of small-amplitude gravity waves propagating on the interface between two
viscous fluids. The solid curve is the time evolution of the interface position at @ = 0. The dashed
curve is the predicted viscous envelope in the inviscid linear theory, i.e. 7(0,0)exp(—7t), where the
decay rate v is given by equation (11). (a) computation with 128 x 128 grid points, (b) computation

with 256 x 256 grid points.

Fig. 4. Snapshots of time sequence of a plunging breaking wave. Displayed region is
—0.5 < 2 < 0.5 (corresponding to one wavelength) and —0.3 < y < 0.3. Physical parameters
and initial conditions are given in the text. (a) ¢ = 0.56, (b) t = 1.2, (¢) t = 1.44, (d) t = 1.76, (e)

t=2.08, () t = 2.96, (g) t = 5.76, (h) ¢ = 8.0.

Fig. 5. Close-up of the active region during the wave overturning at ¢ = 1.2. The liquid-gas
interface is represented by bold line. (a) Velocity field. The velocity vectors are plotted in every
four computational cells. The largest velocity magnitude is 0.68 and its horizontal component is
0.67. (the phase speed of the initial wave is 0.46); (b) acceleration. Maximum acceleration is 3.25
which is located on underside of the overhanging jet and directed out of the fluid. The reference of

acceleration is such that the gravitational acceleration ¢ is equal to unity.
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Fig. 6.  The overturning process at ¢ = 1.4, priori to the impingement of the jet on the forward
face. (a) Velocity field. The largest velocity magnitude is 0.83 and its horizontal component is

0.81. (b) close-up of accelerations. Maximum acceleration is 3.62.

Fig. 7. Comparison between Navier-Stokes simulation with potential-flow theory using a bound-
ary integral formulation. The dashed lines denote the \/3 aspect-ratio ellipses, fitted numerically to
the profiles of underside of the overturning crest. (a) Navier-Stokes simulation, The largest velocity
magnitude is Up,q, = 0.83. (b) potential-flow theory computation with the effects of surface ten-
sion and viscosity taken into account. Up,q, = 0.84 (¢) potential-flow theory computation without

surface tension and viscosity. U,q. = 0.89.

Fig. 8. Velocity fields near the plunge point at ¢ = 1.56 (a) and at t = 1.92 (b), showing the
occurrence of splash-up and the subsequent development. The maximum velocities are respectively

1.1 and 0.86

Fig. 9. Time history of the maximum vorticity (+).

Fig. 10.  Contours of constant positive (slide line) and negative (dashed line) vorticity at t = 1.4
() Win = —17.3, Wnaw = 49.8, and at t = 1.92 (b) winin = —85.2, wiey = 88.1. Contours are in

increments of (Wyaz — Wmin)/18 from the minimum vorticity wy,iy,.

Fig. 11.  (a)Time evolutions of the total wave energy (F, solid line), the wave kinetic energy (77,
dashed line) and the wave potential energy (V7, dashdot line). Each energy is normalized by its

initial value.

Fig. 12.  Different decays of the total wave energy with time. Numerical results are represented
by +. (a) Exponential decay. Plotted solid line is a fit function given by exp(—2v1t) ( 71 = 0.03
and t < t; = 1.5). The dashed line represents a fit function given by FE(t = t1)exp(—2v2(t — t1))
(y2 =0.16, t; <t <ty =5.2). (b) Algebraic decay after two wave periods. The solid line is a fit

function given by E(t = t2)ta/t (t > t3).
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Fig. 13.  Comparison of two different resolutions. (a) 256 x 256 grid points; and (b) 512 x 512

grid points.

Fig. 14.  Time evolutions of the total wave energy F obtained with two different resolutions. (a)

256 x 256 grid points (dashed line); and (b) 512 x 512 grid points (solid line).

30



Fig.1

0.5

MN(x,t=0)
AN

-0.5

-0.5

31

0.5

Chen et al.



I_I
+
+
+

+

+
,77,,77,,77,,77,,77,,77,,77,,
<t O © o 0 T o o
g & 8 & & & §&§ §
- - - o o © o O

sarouanbaig jo onex

0.04 0.06 0.08

0.02

0.00

UOIJBAQ[Q 90BJINS

time

Chen et al.

Fig.2

32



surface elevation

surface elevation

Fig.3

0.030

0.020

0.010

0.000

-0.010

-0.020

0.030

0.020

0.010

0.000

-0.010

-0.020

; I T N R N N N R I R R N R R [ ;
0 10 20 30 40
time
; I T N R N N N R I R R N R R I S N R N N N ;
0 10 20 30 40
time

33

Chen et al.



(b) (f)

(c) (2)

(d) (h)

34



L —
L e
- -
e — — «—

e

e

— — — —

e

‘ e N
AN N N
AN
AN S SN NN
AN S SN NN

e T 7T T

— - e 7 T T T T

I

I
I

A

N o — — —

=~

G A A A G S SR A A
R A A A A

1
t

!
'

I A A A
G T A A A A

7

7
’

B I A A A A A A A A

’

7

P A A A A N S

-0.35

R S R I

N

0.05
0.00
-0.05

-0.10

-025 -0.20

-0.30

-045 040

-0.50

P YNV
P P
R P PP
P P PP P PO
e

e

RUNAR RN TR
NANNAN VAV
N W U O O O O O O
NANA VAV Yy
AN A U O O O R O SR
A U O O O O O R
ANAAAA TV L
AL T U O T O S R B I
ANV U
LR R A
RN
BERE NN EEEEE
IR
IR A O A N SR A
VIt
Trrtt 107
Pttt 4
Trrtrt sy
Pttt
Prrrrrrrr i)
VAV A AV AV R AV AV
VA A A A A A AV AV AV
VA A A A A
VAV AV A A R A AV A AV
VAV AV AV A A A N N A
AL TS s
P

)

N e e
— N e L
AN N NN NSNS S s o S s s e e s i
R T T T T e e e i S L
R T i i e 1
N I I L
LA AN NN NSNS SN S s N |
ST T T N
B LU L L L NN NN NN N N N NS S s s s s s s s s .
T N T T T T
T N N T T N N
R T T T T T T N
IR N N N NN
Lo | VER R EVINTIG 0 IS VI RN
wv — V) ) 78) )
— — S () () —
S S S o o o
[ 1

-045 -040 -035 -030 -025 -0.20

-0.50

Chen et al.

Fig.5

35



- <
TS
I i

N

Ve
7
e
/
7
-
7

PV g

v e

e e e

AN N N N NN
NN NN NN
A NN NS N NENENENEN
AN NN

[ A
I i
T i A

/
X
N
N\
\
\
\
\
\
4
|
|
!
|
!
1
!
!
t
!
!

P

\\\\\

fffff

fffff

T e A A
b = - =~ =~ = = = - =~ o s s s s s S
T T e A A G G A A
| e T A A A A A

015+~

0.10 -

0.05

-0.10

-030 -025 -020 -0.15 -0.10 -0.05

-0.35

=

~ -~ < -

r 7 = o ‘@ ¢
|

/

G

v , \\\\\\
. wwwww\\ \\@\\mmm\\\\\\\\

R NI Y Y
AT

vy \«\ﬂ\\\\\

/
ZzZ 277

> 7 7 77T 7T A

s
N
\‘}‘
s > =T
———— s> >
I L L |

NN N S s

N
)

X
Z\

\\\&«7

7 LI 7N
727 AN
7 W
A7 A

7
‘.‘
7/ 1 /

DN S

s
NG e

D e
DN N T

PN i

AT ITIITIIAIAAAAA AT
N P A AT T T T T T A 7 A T
NS s —_————— T TP T T T T T T T T 7

Vv

V

v

oA I ATAT T T AL
1%

%4

8

L

N e e g

C A A

N NN N TSP > T > > 7 |
L J

L 1 | L i L 1y L | \ﬁ Lo

0.10

W o "
S S

<
o o =

-0.20 -0.15 -0.10 -0.05

-0.25

Chen et al.

Fig.6

36



-0.10

0.15-

-0.30

-0.05

-0.20 -0.15

-0.25

-0.05

-0.25

-0.30

-0.15 -0.10

-0.20

37



-0.25 -0.20 -0.15 -0.10 -0.05

-0.30

Chen et al.

Fig.7

38



Voo
‘&\o/ L ]
A 2
9 Lo -
;, N e w mwmw w ~ ~ ~ ~ ~ o~y
M ]
I N N N
/ ///// A NN N S SR SN
////// AN NN N NN
//////// RN NN
///v//// AN A N N N NN |
//////v/ N\ AN S N N N NN
/////// \ A N N O N
IR N N A NN,
IR U
g)//)/z \ /////,////\
AR S TR A S A U NN
BRI
IREE R
ﬂﬂﬁﬁﬂaﬁﬁ4a 1 [ I T SR
R R
(A I N O O T T R S S AR T A P,
\\N\ﬂﬂﬂﬁﬂ 1 [ R S IR
A N N A A I AN AT AN AR
A A A N A B O S S A A A AR S,
\ VAV ARV, it bow o wow v Lyyy T
Q) e} v O
< < < —
s S S 3
K

-025 -020 -0.15 -0.10 -005 0.00

-0.30

e
| T I

-

0.05

-005 000 005 0.10

-0.10

Chen et al.

Fig.8

39



| 7 I 7 I 7 I 7 | ,L:V,

— g

AT

120 -

100 -

- )
o0 \O

AIIomI0A

S
4

S S
N

time

Chen et al.

Fig.9

40



0.10

0.05

0.00

-0.05

I | I
-0.20

I | I
-0.05

0.10

0.05

0.00

-0.05

-0.10

| | ‘ | | | | ‘ | | | | ‘ | | | L

Fig.10

T S
-0.05

0.00

41

0.10

0.15

0.20

Chen et al.
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Fig.13 Chen et al.
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