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Abstract

RNA modification is a post-transcriptional process by which certain nucleotides are altered after their initial incor-
poration into an RNA chain. Transfer RNAs (tRNAs) is the most heavily modified class of RNA molecules. These
modifications expand the chemical and functional diversity of tRNAs and enhance their structural stability. To date,
more than 100 modifications have been identified, the majority of which are specific from one domain of life. How-
ever, few modifications are extensively present in the three domains of life. Among those, the m1A nucleotide, which
consists in the methylation at position 1 of the adenine aromatic ring, is found in tRNAs and ribosomal RNAs. In
tRNAs, the m1A modification occurs at position 9, 14, 22, 57 and 58. The enzyme TrmK catalyzes the m1A forma-
tion at position 22. Here we report the backbone 1H, 15N and 13C chemical shift assignments of TrmK from Bacillus
subtilis obtained by heteronuclear multidimensional NMR spectroscopy as well as its secondary structure in solution
as predicted by TALOS+. These assignments of TrmK pave the way for interaction studies with its tRNA substrates.
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1. Biological context

The biosynthesis of transfer RNAs (tRNAs) is a
complex process composed of several steps leading
to the formation of mature tRNAs with correct
structures and functionalities. Apart from the pro-
cessing of their extremities, the most salient prop-
erty of the maturation process consists in the post-
transcriptional incorporation of a large number of
chemical modifications by the so-called modifica-
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tion enzymes. Among the modification enzymes, the
methyltransferases (MTases) are the most frequent
and diverse (Hori 2014). They catalyze the transfer
of a methyl group from a methyl donor, mostly the
S-adenosyl-L-methionine (SAM), towards different
positions of the nucleotides. The m1A modification,
which consists in the incorporation of a methyl
group at position 1 of adenines, occurs on nucle-
otides 9, 14, 22 and 58 of tRNAs. This modification
brings a positive charge on the adenine aromatic
ring. We focused our work on the methyltrans-
ferase TrmK from B. subtilis that catalyzes the
methylation of adenine 22 of tRNASer and tRNATyr

(Roovers et al. 2008). B. subtilis TrmK belongs to
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the COG2384 (Cluster of orthologous groups). The
members of this family are found in Gram-negative
and Gram-positive bacteria. Their sequences are
well-conserved in many bacterial pathogens (L.
Monocytogenes, V. Cholerae, S. Pneumoniae. . . ).
Since TrmK is essential for cell viability in S. Pneu-
moniae and since no homologues are found in hu-
mans, it was proposed to be a good target for the
discovery of novel antibiotics (Thanassi et al. 2002).
We solved the X-ray structure of B. subtilis TrmK
(Dégut et al., manuscript in preparation) and used
NMR chemical shift mapping to get insight on the
protein-RNA recognition mode. We report here the
backbone chemical shift assignments of TrmK, as-
signments that were necessary to interpret the NMR
chemical shift mapping with its tRNA substrate.

2. Methods and experiments

2.1. Protein expression and purification

Recombinant B. subtilis TrmK was expressed
and purified with a protocol adapted from Roovers
et al. (Roovers et al. 2008). Since wild-type TrmK
is prone to aggregation through cysteine oxida-
tion, we produced a protein variant with cysteine
to serine mutations (i.e. C35S and C152S), which
abolished protein aggregation and retained full
enzymatic activity (Dégut et al., manuscript in
preparation). Mutagenesis was performed by use
of the Quickchange site-directed mutagenesis kit
(Stratagen). The presence of the desired mutations
in trmK was checked by sequencing. This variant
was overexpressed in BL21(DE3) E. coli cells, in
rich labeled media or minimum media (see below)
supplemented with kanamycin at 30 µg.mL−1. The
cells were grown at 37 °C to OD600 ∼0.6, cooled
down at 18 °C and induced by adding isopropyl-β-
D-thiogalactopyranoside (IPTG) to a final concen-
tration of 1 mM. Cells were harvested 24 h after
induction by centrifugation and frozen at -80 °C
until further use. The frozen cells were suspended
in 1/50 of the culture volume of a 50 mM Tris-
HEPES buffer pH 8.2 containing 500 mM NaCl, 5%
glycerol and 1 mM of phenylmethanesulfonylfluor-
ide (PMSF). The suspension was sonicated and the
lysate was centrifuged for 30 min at 45’000 g. The
resulting supernatant was loaded to a 5 mL Nickel
Sepharose column (HisTrap, GE Healthcare) previ-
ously equilibrated with a 50 mM Tris-HCl buffer pH
8.0 containing 500 mM NaCl and 5% glycerol (equi-

libration buffer). The resin was then washed with
30 mL of buffer and the protein was eluted with a
gradient of the equilibration buffer supplemented
with 500 mM imidazole pH 8.0. The N-terminal
His6-tag of TrmK was removed by thrombin cleav-
age (25 U thrombin/mg of protein) performed
overnight at 4 °C. PMSF at 250 µM, and EDTA
at 1 mM were then added to the protein sample.
The sample was concentrated with Amicon 10’000
MWCO (Millipore) and injected on a size exclu-
sion chromatography column (Superdex-75 26/60,
GE Healthcare) equilibrated with a 50 mM sodium
phosphate buffer pH 7.0 containing 500 mM NaCl
and 2% glycerol.

Doubly labeled (15N/13C) and triply labeled
(2H/15N/13C) TrmK samples were obtained by
growing the cells in Spectra-9CN and Spectra-
9DCN media, respectively (Spectra Stable Isotopes,
Inc.). Singly labeled (15N) TrmK samples were ob-
tained by growing the cells in M9 minimum media
supplemented with 15NH4Cl. To achieve high yield
of protein in the fully deuterated medium, a double
selection protocol of the strain was performed as
previously described (Sivashanmugam et al. 2009).
Besides, specifically unlabeled samples were pro-
duced in M9 minimum media supplemented with
15NH4Cl and with non-labeled histidine, arginine,
or lysine at a final concentration of 1 mM, 1 hour
before induction (Rasia et al. 2012). NMR samples
of TrmK at ∼0.7 mM were prepared in a 50 mM
sodium phosphate buffer pH 7.0, 500 mM NaCl,
2% glycerol, 1 mM EDTA, 250 µM PMSF and 10%
D2O. The sample was put in a 3 mm-diameter
NMR tube.

2.2. NMR experiments

All NMR spectra were recorded at 15 °C onBruker
600, 800, or 950 MHz spectrometers equipped with
cryogenic probes. Backbone assignment was per-
formed using the following standard 3D NMR ex-
periments (Salzmann et al. 1998): TROSY-HNCA,
TROSY-HNCACB, TROSY-HN(CO)CACB and
[1H-15N] NOESY-HSQC. A 3D (H)N(COCA)NH
experiment was also measured (Bracken et al. 1997).
Internal DSS standard was used for direct referen-
cing of the 1H chemical shifts, and indirect refer-
encing of 15N and 13C shifts (Wishart et al. 1995).
Data processing was carried out with Topspin 3.2
for standard acquisition, and with MddNMR (Orek-
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hov and Jaravine 2011) for non-uniform sampling
acquisition. Analysis of spectrum and backbone
assignment was performed with the Sparky suite
(Goddard and Kneller). Table 1 summarizes the
NMR experiments used for the assignment.

Table 1
NMR experiment recorded for backbone chemical shift
assignment of TrmK

Spectra Spectrometer 2H Duration NUS

HNCA 800 MHz Y 27 h Y (65%)

HNCACB 800 MHz Y 86 h Y (62%)

HN(CO)CACB 600 MHz Y 90 h N

(H)N(COCA)NH 600 MHz Y 89 h N

HNCO 950 MHz Y 24 h Y (35%)
15N-HSQC-NOESY 950 MHz N 49 h N

2H: indicates whether TrmK was deuterated (Y: yes, N:
no). Duration: indicates the experimental time in hours.
NUS: indicates whether non-uniform sampling was used for
the acquisition of data (Y: yes, N: no). The percentage in
parenthesis indicates the amount of measured data using
sparse sampling compared to conventional acquisitions.

3. Resonance assignments and data
deposition

Before tackling the assignment of TrmK NMR
signals, we needed to cope with problems of pre-
cipitation and proteolysis of TrmK. Indeed, TrmK
precipitated during concentrations steps, needed
high concentrations of salt (500 mM NaCl) and
was subjected to intensive proteolysis within a few
days after purification. Numerous conditions were
tested using dialysis buttons. They allowed us to
test the stability of TrmK in various conditions of
buffer and temperature while working at high con-
centrations of TrmK (15 mg/mL) and low volumes
(50 µL). As a result, TrmK does not precipitate at
high concentration (> 15 mg/mL) in a phosphate
buffer whereas we observed precipitation more rap-
idly in a Tris-HCl buffer. A high concentration of
salt (400 to 500 mM NaCl) limited the precipit-
ation of TrmK and its proteolysis. Anti-proteases
(PMSF, Pepstatine A, Leupeptine, EDTA) were
tested. PMSF and EDTA revealed to be efficient
to stop proteolysis. PMSF was added in the lysis
buffer and at different stages of purification and in
the NMR tube. Lastly, glycerol was necessary to
prevent precipitation when concentrating TrmK.

5% of glycerol was an optimal concentration during
purification steps and for storage of the protein.
For the NMR studies, 2% of glycerol was used as
the best compromise between the stability of the
protein and the linewidth of NMR signals.

The protein sample in this study consists in
238 residues after the cleavage of the N-terminal
His-tag and contains 5 prolines. NMR assignments
were based on 3D heteronuclear NMR experiments
performed on 2H/15N/13C-labeled TrmK. Interest-
ingly, the use of the (H)N(COCA)NH experiment
(Bracken et al. 1997), which correlates each NH
group to the nitrogen of the amide group of the
following residue in the sequence of the protein, re-
vealed to be very efficient for the achievement and
the validation of the assignments. This experiment
is not sensitive and is commonly used for unfolded
protein. However, with a fully deuterated protein,
this experiment turned out to be very helpful in
the assignment procedure. Besides, we used several
specifically unlabeled samples to confirm the assign-
ment or to provide starting point for the assignment
(Fig. 1). For instance, Fig.1 shows the unlabeling of
all the lysines of TrmK. In this sample, all the amide
groups of TrmK are 15N-labeled except those of lys-
ines. Consequently, the lysines are not observable
in the red spectrum of Fig. 1. The superimposition
with a reference TROSY spectrum (in black, Fig.
1) allows one to easily localize the peaks originating
from lysine amide groups.

Backbone amide 1H-15N resonance assignment
of TrmK was achieved for 222 of 233 non-proline
residues, corresponding to 96% of completeness
(Fig. 2). Amide groups from residues M1, S28,
H30, A31, L39, N40, H41, K42, T113, E116 and
R117 could not be assigned the majority of which
are found in loop regions. In addition, 98% of Cα
98% of Cβ and 92% of CO were assigned. The
backbone chemical shift assignments of TrmK
were deposited in the BioMagResBank (http:
//www.bmrb.wisc.edu) under accession number
26744.

An analysis of the chemical shifts of HN, N, CO,
Cα and Cβ atoms was conducted with the TALOS+
webserver (Shen et al. 2009). Fig. 3 compares the
prediction of TrmK secondary structure obtained
from TALOS+ with the secondary structure ob-
served in the crystal structure of TrmK (Dégut et
al., manuscript in preparation). The only light dif-
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ferences lie in the prediction from the NMR data of
short α-helical turns (2 or three residues) around
residue 68 and 165 that are not observed in the
crystal structure. Therefore, both data are in very
good agreement. The TrmK fold in solution and
in the crystal is thus identical. Subsequently, the
NMR footprint of binding of the tRNA on TrmK
will be mapped on the X-ray structure of TrmK.
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Figure 1. Superimposition of two 1H-15N TROSY spectra of TrmK in black for TrmK uniformly 15N-labeled
and in red for TrmK 15N-labeled except on lysines. Lysines are thus not observable on the red spectrum
confirming immediately the assignment of amide group for each lysine of the protein.
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Figure 2. Two-dimensional 1H-15N TROSY spectrum of TrmK measured at 950 MHz and 15 °C on a protein
sample uniformly deuterated and 15N/13C-labeled. Resonance assignments are indicated and reported in
BMRB accession number 26744.
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Figure 3. Prediction of TrmK secondary structure based on its backbone NMR chemical shifts using TALOS+
(Shen et al. 2009). The secondary structure prediction obtained with TALOS+ is shown as red bars for
α-helices and yellow ones for β-strands, the height of the bars represent the probability of the secondary
structure assigned by the software. Secondary structure of the TrmK X-ray structure is reported under the
graph with yellow arrows for β-strands and red cylinders for α-helices.
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