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Background: The planar cell polarity pathway plays important roles in morphogenetic processes.
Results: PTK7 and ROR2 form a heterodimeric complex and bind to WNT5A, promoting JNK phosphorylation and regulating
expression of paraxial protocadherin.
Conclusion: PTK7 and ROR2 promote cell movement in mammalian cells and coordinate cell polarity during morphogenetic
movements.
Significance: We reveal new mechanisms of action of PTK7 in WNT/PCP signaling.

The non-canonical WNT/planar cell polarity (WNT/PCP) path-
way plays important roles in morphogenetic processes in verte-
brates. Among WNT/PCP components, protein tyrosine kinase 7
(PTK7) is a tyrosine kinase receptor with poorly defined functions
lacking catalytic activity. Here we show that PTK7 associates with
receptor tyrosine kinase-like orphan receptor 2 (ROR2) to form a
heterodimeric complex in mammalian cells. We demonstrate that
PTK7 and ROR2 physically and functionally interact with the non-
canonical WNT5A ligand, leading to JNK activation and cell move-
ments. In the Xenopus embryo, Ptk7 functionally interacts with Ror2
to regulate protocadherin papc expression and morphogenesis. Fur-
thermore, we show that Ptk7 is required for papc activation induced
by Wnt5a. Interestingly, we find that Wnt5a stimulates the release of
the tagged Ptk7 intracellular domain, which can translocate into the
nucleus and activate papc expression. This study reveals novel molec-
ular mechanisms of action of PTK7 in non-canonical WNT/PCP sig-
naling that may promote cell and tissue movements.

Initially described in Drosophila melanogaster, planar cell
polarity (PCP)5 regulates multiple processes during embryonic

development and tissue homeostasis. Its importance in devel-
opment is best highlighted by its role in convergence extension
cell movements during gastrulation that are necessary for the
proper elongation of the anterior-posterior body axis. PCP
serves also to orient apical structures or groups of cells within
the plane of the epithelium and drives oriented cell migration of
epithelial and non-epithelial cell types (1– 4). PCP is assigned
molecularly to a non-canonical WNT pathway (hereafter
named the WNT/PCP pathway) that, in contrast to the canon-
ical WNT pathway, does not involve the transcriptional regu-
lator �-catenin. WNT/PCP utilizes small Rho-like GTPases
and JNK to promote actin cytoskeleton reorganization and cel-
lular movements (5). Several WNT/PCP genes have been iso-
lated from various species and have been shown to encode
conserved proteins across evolution at the molecular and func-
tional levels (6, 7). A striking feature of WNT/PCP signaling is
the implication of a large spectrum of cell surface receptors
belonging to various protein families, including the multipass
membrane (Fz3, Fz6, VANGL1, VANGL2, and CELSR1),
proto-cadherin (FAT4 and PAPC), and tyrosine kinase receptor
(PTK7, ROR2, and RYK) families, that can interact directly or
indirectly with WNT ligands (8). How these receptors cross-
talk at the plasma membrane and how they initiate downstream
molecular cascades remain largely open questions.

PTK7 is a tyrosine kinase receptor (RTK) implicated in the
WNT/PCP pathway in mice, zebrafish, and Xenopus. Ptk7-de-
ficient mice die perinatally because of severe embryonic defects
of PCP and convergent extension. Embryos have an impaired
gastrulation, misoriented stereociliary bundles of sensory hair
cells in the inner ear, defective neural tube closure, smaller kid-
neys, eyelid closure defects, and polydactyly. Knockdown of
ptk7 in Xenopus leads to PCP-like phenotypes, including neural
tube closure defects and incomplete blastopore closure (9 –14).
At the structural level, PTK7 is well conserved across evolution
and displays a classical molecular organization with an extra-
cellular region comprising seven extracellular immunoglobulin
loops, a transmembrane region, and an inactive intracellular
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tyrosine kinase domain able to translocate into the nucleus
upon proteolytic cleavage (15–18). Both extra- and intracellular
domains of PTK7 are required for its functions in mammals,
zebrafish, and Xenopus (9, 10, 13). Previous works have
detected interaction between PTK7 and cell surface receptors
unrelated to the WNT/PCP pathway (VEGFR1, Plexin-A, and
LRP6) (19 –21). In addition, PTK7 has been shown to co-immu-
noprecipitate with Fz7 and canonical WNT ligands (WNT3
and WNT8) to repress canonical WNT signaling in Xenopus
(11), whereas it binds WNT2 and WNT4 in Drosophila to trig-
ger non-WNT/PCP-related functions (11, 22). Overall, how
PTK7 transduces a WNT/PCP signaling cascade from the
plasma membrane remains largely unknown.

In analogy to poorly active RTKs that heterodimerize with
heterologous active RTKs to transmit a signal (23), we hypoth-
esized that PTK7 may utilize such a means to propagate WNT/
PCP functions. We focused on ROR2, a catalytically active RTK
that, upon binding to non-canonical WNT5A, triggers WNT/
PCP functions in Xenopus and in the mouse (24). We find that
PTK7 and ROR2 form a heterodimeric complex and that PTK7,
like ROR2, binds to WNT5A and promotes JNK phosphoryla-
tion and cell movements in mammalian cells. In Xenopus, Ptk7
and Ror2 interact functionally and regulate the expression of
paraxial protocadherin (papc), a gene that coordinates the
polarity of cells during morphogenetic movements (25, 26).
Furthermore, we report that, in Xenopus, Wnt5a triggers the
release and translocation of the Ptk7 intracellular domain in the
nucleus, where it can activate papc expression. This study high-
lights some new mechanisms used by PTK7 to mediate WNT/
PCP signaling in vertebrates.

Experimental Procedures

Cell Culture and Cell Transfection—HEK 293T cells were
purchased and grown in accordance with ATCC recommenda-
tions. Cells were grown in DMEM supplemented with 100
units/ml of penicillin and 100 mg/ml of streptomycin. MEFs
isolated from WT or gene-trapped ptk7 (PTK7 KO) mice (9)
were grown in DMEM supplemented with 100 units/ml of pen-
icillin, 100 mg/ml of streptomycin, 1 mM sodium pyruvate, 1
mM non-essential amino acids, 50 �M �-mercaptoethanol, and
15% heat-inactivated FBS. All cell lines tested negative for
mycoplasma contamination. Cells were transfected with plas-
mids using Lipofectamine 2000 reagent according to the
instructions of the manufacturer (Invitrogen).

Xenopus Experiments—Xenopus embryo collection, microin-
jection, whole-mount in situ hybridization, animal cap assays,
and papc quantitative RT-PCR conditions have been described
previously (27, 28). Riboprobes against Xenopus ptk7 and papc
have been described previously (9, 27). Antisense morpholino
oligonucleotides (Gene Tools LLC) have been described previ-
ously: Ptk7 MOs (9, 12) and Ror2 MO (25). Synthetic capped
mRNAs were produced with the Ambion (Applied Biosystems)
mMessage mMachine kit. Xenopus PTK7-FL-Venus and Xeno-
pus PTK7-ICD-Venus fusions were cloned into the pSpE3 vec-
tor, and capped mRNAs were synthesized with T3 polymerase
after plasmid linearization with SfiI. For Wnt5a- and mRFP-
capped RNA, Wnt5a in pCS2� (provided by H. Steinbeisser)
and mRFP in pCS2� were linearized with Not1 and transcribed

with Sp6. For immunofluorescence staining, whole gastrula
embryos were blocked in 15% serum and incubated with anti-
Venus and anti-RFP antibodies overnight at 4 °C, followed by
90-min incubation in Alexa Fluor 568 (anti-mouse) and Alexa
Fluor 488 (anti-chick) fluorophore-conjugated antibodies. The
injected ectoderm was explanted and mounted in Fluoromount
for confocal analysis, and imaging was performed using a Zeiss
LSM 780 microscope.

Knockdown Experiments—The ROR2 siRNA sequences used
were as follows: ROR2 siRNA1, 5�-GCAA T G T GC T AG T G
T ACGA TT-3�; ROR2 siRNA2, 5�-TAAAGGGTCGTTCG-
GATCCAGAACC-3�. Non-targeting siRNA controls were
used (Life Technologies). Transfection with siRNAs was car-
ried out with RNAiMAX (Invitrogen) as recommended by the
supplier.

Antibodies and Recombinant Proteins—Monoclonal rat and
polyclonal rabbit antibodies to PTK7 (1G9 and KN) were gen-
erated in the laboratory. Other antibodies used in this study
according to the recommendations of the manufacturers were
as follows: mouse antibody to �-tubulin (Sigma, catalog no.
B512), rabbit antibody to Thr-183/Tyr-185 SAPK (stress-acti-
vated protein kinase)/JNK (Cell Signaling Technology, catalog
no. 9251), polyclonal rabbit antibody to JNK (Santa Cruz Bio-
technology, catalog no. sc-571), monoclonal mouse antibody to
FLAG (Sigma, catalog no. F3165), monoclonal mouse antibody
to MYC (Santa Cruz Biotechnology, catalog no. 9E10), mono-
clonal mouse antibody to HA (Covance, catalog no. MMS-
101R-500), and secondary antibodies coupled to horseradish
peroxidase (Jackson ImmunoResearch Laboratories). Recom-
binant human WNT5A was purchased from R&D Systems (cat-
alog no. 645-WN-010).

Western Blots and Immunoprecipitation—Cells were lysed in
lysis buffer (50 mM Hepes, 150 mM NaCl, 1 mM EDTA, 1 mM

EGTA, 10% glycerol, 1% Triton X-100, 25 mM NaF, and 10 �M

ZnCl2) supplemented with 0.5 mM PMSF, 1 mM orthovanadate,
1 mM �-glycerophosphate, and a protease inhibitor mixture
(Sigma-Aldrich). For immunoprecipitation, after preclearing
with agarose beads and incubation with antibodies, protein
G-agarose beads were added to the lysates, and bound immune
complexes were recovered and washed three times in lysis
buffer. Proteins were resolved by SDS-PAGE, transferred to
nitrocellulose filters, blocked for 1 h at room temperature in
Tris-buffered saline/5% nonfat dry milk/0.1% Tween 20, and
blotted overnight with primary antibodies in blocking solution.
After extensive washings in TBS/0.1% Tween 20, filters were
incubated for 1 h at room temperature with an HRP-conjugated
secondary antibody before being revealed with an enhanced
chemiluminescence substrate (West Pico, Thermo Scientific).
Acquisition was performed with a G-BOX imager (Ozyme).

AP-1-responsive Firefly Luciferase Assays—HEK 293T cells
expressing Renilla luciferase were seeded in 48-well plates and
cultured until 80% confluence. Cells were co-transfected with
an AP1-responsive firefly luciferase construct (Qiagen, AP1
reporter (luc) kit, catalog no. CCS-011L) plus expression vector
and starved overnight. Then cells were stimulated with DMEM
and 1% FCS with or without WNT5A. Luciferase expression
was measured using Dual-Luciferase� reporter assay system
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protocol (Promega) and a Centro LB 960 microplate luminom-
eter (Berthold Technologies).

Wound Healing Assays—Cells were seeded in 6-well plates
precoated with rat tail collagen I and cultured on collagen I until
confluence. Then cells were starved overnight and wounded
using a pipette tip. Three wounds were made for each sample.
Cells were stimulated with DMEM and 1% FCS with or without
WNT5A. Cell migration was followed using video microscopy
for 8 h, and analysis was performed with Metamorph software
(Molecular Devices).

Results and Discussion

PTK7 Binds to ROR2 and WNT5A—PTK7 has been shown to
heterodimerize with VEGFR1 (19), an endothelial RTK. Here
we hypothesized that ROR2, another active RTK implicated in
PTK7-like developmental processes, may act as a candidate co-
receptor for PTK7 in other cell types. ROR2 belongs to an RTK
family comprising another homologous receptor, ROR1 (24).
To evaluate the interaction between PTK7 and ROR fam-
ily members, co-immunoprecipitation between ectopically
expressed ROR1, ROR2, and PTK7 was performed in HEK
293T cells. We found that PTK7 formed a complex with ROR2
but not with ROR1 (Fig. 1A). To determine the region of PTK7
involved in the binding to ROR2, we generated a series of PTK7
mutants lacking extracellular Ig-like or intracellular regions
(Fig. 1B). In co-immunoprecipitation assays, we showed that
deletion of the whole extracellular region, but not of the intra-
cellular region, inhibited the interaction with ROR2. The entire
extracellular region of PTK7 was apparently required because
deleted forms (PTK7�1–3 and �4 –7) could still co-immuno-
precipitate with ROR2 (Fig. 1, C and D). Using a cell fraction-
ation procedure, we showed that all PTK7 mutants were pres-
ent in the membrane fractions (Fig. 1E).

We confirmed the PTK7-ROR2 interaction at the endoge-
nous level in MEFs expressing or not expressing Ptk7 (Fig. 1F).
Together, these data identify ROR2 as a receptor able to asso-
ciate with PTK7. ROR2 has been described as a cell surface
receptor for non-canonical WNT ligands such as WNT5A (24).
Indeed, ROR2 and WNT5A could be co-immunoprecipitated
upon ectopic expression in HEK 293T cells (Fig. 2A). To inves-
tigate a potential interaction between PTK7 and WNT5A,
PTK7 was co-expressed with HA-tagged WNT5A or WNT1 in
HEK 293T cells, and lysates were prepared for co-immunopre-
cipitation. As shown in Fig. 2B, PTK7 efficiently interacted with
WNT5A but not WNT1. The presence of the entire extracellu-
lar region of PTK7 was required for the interaction with
WNT5A (Fig. 2C). Deletion of the Ig-like loops (�1–3) or
(�4 –7) did not abolish the binding, although a weaker interac-
tion was found between WNT5A and PTK7�4 –7 (Fig. 2C). To
evaluate whether WNT5A binding to PTK7 was indirect and
due to PTK7-ROR2 heterodimerization, we depleted ROR2
with a specific siRNA and repeated the PTK7-WNT5A co-im-
munoprecipitation (Fig. 2D). The absence of ROR2 did not
impair the interaction between WNT5A and PTK7, and over-
expression of PTK7 did not modify the amount of ROR2 co-
immunoprecipitated with WNT5A (Fig. 2E). Moreover,
WNT5A stimulation did not affect the PTK7-ROR2 interac-
tion, suggesting that these receptors bind independently to

WNT5A (Fig. 1F). Taken together, these results show that
PTK7 can form a complex with ROR2 and WNT5A in mam-
malian cells through its extracellular region. Loops 4 –7 in
PTK7 are apparently required for optimal binding to WNT5A
but not ROR2.

PTK7 Participates in WNTA Signaling and Cell Movements
in a JNK-dependent Manner—To further analyze the contribu-
tion of PTK7 to WNT5A-induced signaling, we examined
the phosphorylation of JNK, a downstream effector of the
WNT5A/ROR2 pathway (29). In HEK 293T cells, expression of
ROR2 or PTK7 alone did not lead to JNK phosphorylation.
However, stimulation of each receptor with WNT5A induced a
comparable and robust phosphorylation of the p54 and p46
JNK isoforms (Fig. 3A). Phosphorylated JNK activates the
c-JUN protein, which is known to form the activator protein 1
(AP-1) transcription factor. We used an AP-1-responsive firefly
luciferase construct to monitor the transcriptional activity of
AP-1 in HEK 293T cells expressing PTK7 or ROR2. Upon
WNT5A stimulation, ROR2 and PTK7 similarly induced AP-1-
dependent gene transcription that correlated to JNK phosphor-
ylation. Co-expression of both receptors led to an additive
effect on AP-1 reporter activation (Fig. 3B). From these data, we
concluded that, like ROR2, PTK7 responds to WNT5A by
inducing a JNK cascade in mammalian cells. Interestingly, in
experiments using the truncated forms of PTK7, we found that
deletion of loops 4 –7 decreased JNK phosphorylation upon
WNT5A stimulation (Fig. 3C). These data are in agreement
with binding data showing weaker binding of WNT5A to the
PTK7 �4 –7 mutant (Fig. 2C). We next aimed to assess the role
of the WNT5A-PTK7-JNK pathway at the functional level. We
used primary MEFs because these cells express endogenous
PTK7 (Fig. 1F) and have been used to characterize the
WNT5A/ROR2/JNK cascade for its involvement in cell motil-
ity (30). We first looked at the level of JNK phosphorylation
upon WNT5A stimulation in WT and PTK7-deficient (PTK7
KO) MEFs. We observed robust JNK phosphorylation after
WNT5A treatment (Fig. 3D), which was impaired significantly
(50% decrease) in the absence of PTK7. These data confirmed
that PTK7 is implicated, in part, in WNT5A signal transduction
in MEFs. We next used a wound healing assay to evaluate the
contribution of the WNT5A-PTK7-JNK pathway to cell move-
ments. Unstimulated wild-type MEFs closed 40% of the wound
in 8 h, whereas addition of WNT5A led to an almost (90%)
complete closure (Fig. 3E). In contrast, PTK7-deficient MEFs
were not responsive to WNT5A and presented a similar closure
with or without ligand. Importantly, we could rescue WNT5A-
induced cell migration by re-expressing PTK7 in PTK7-defi-
cient MEFs (PTK7 KO � PTK7 cDNA). To investigate the con-
tribution of JNK activity in PTK7-induced cell movements,
wild-type MEFs were treated with two different JNK inhibitors
(CAS 129-56-6 and SP600125) or dimethyl sulfoxide and
assayed in wound healing experiments as in Fig. 3E. WNT5A-
induced cell motility of wild-type MEFs was abolished by JNK
inhibition compared with the control condition (Fig. 3F). We
concluded that PTK7 promotes cell movements in primary
MEFs upon WNT5A stimulation by activating a JNK-depen-
dent signaling pathway. These data are very comparable with
those showing that WNT5A triggers a ROR2-JNK signaling
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pathway to regulate MEF cell migration (30). Therefore, both
receptors bind and respond to WNT5A. However, despite the
expression of ROR2 in MEFs (data not shown), which allows a
partial phosphorylation of JNK upon WNT5A stimulation (Fig.
3D), the presence of PTK7 is required for WNT5A activity in
wound healing assays (Fig. 3E).

Functional Interaction between PTK7 and ROR2 in
Xenopus—During Xenopus development, the Wnt5a/Ror2
pathway regulates embryonic morphogenesis through induc-

tion of the key downstream effector papc (also known as pcdh8)
in the involuting mesoderm (25). On the basis of the above data,
we hypothesized that Ptk7 could be involved in the activation of
papc by the Wnt5A/Ror2 pathway. Consistent with this possi-
bility, Ptk7 transcripts were detectable in the ectoderm and in
the involuting mesoderm during gastrulation (Fig. 4A). To test
our hypothesis, we first injected Ptk7 antisense morpholinos
(Ptk7-MO) (9). This led to a dramatic decrease of papc expres-
sion on the injected side of gastrula embryos (Fig. 4B). To fur-

PTK7 Δ 1-3 

PTK7 Δ 4-7 

PTK7 Δ 1-7 

PTK7

IG LOOPS (1 TO 7) TM KINASE DOMAIN

PTK7 ΔKN

A B

C D

F

+

-

-

-

+

-

+

-

+

+

-

-

PTK7

ROR1-FLAG

ROR2-FLAG

IP: PTK7
WB: FLAG

WB: FLAG

WB: PTK7Ly
sa

te
s

175

80

175

80

WB: PTK7

WB: ROR2

IP: ROR2
WB: PTK7

+
+
-

+
-
+

+
-
-

ROR2-FLAG

PTK7

PTK7 ΔKN-FLAG

Ly
sa

te
s

+
+
-
-
-

+
-
+
-
-

+
-
-
+
-

+
-
-
-
+

+
-
-
-
-

-
-
-
-
-

ROR2-FLAG
PTK7

PTK7 Δ 1-3

PTK7 Δ 4-7

PTK7 Δ 1-7

IP: FLAG (ROR2)
WB: PTK7

WB: FLAG (ROR2)

WB: PTK7

Ly
sa

te
s

175

80

58

46

175

80

58

46

80

80

175

175

80

WB: PTK7

WB: ROR2

C
on

tr
ol

 Ig
G

PT
K

7 
m

A
b

PT
K

7 
m

A
b

PT
K

7 
m

A
b

IP

Lysates

M
EF

 W
T

M
EF

 P
TK

7 
K

O

M
EF

 W
T

M
EF

 W
T

WNT5A +- + -
175

cytoplasm membrane

PTK7
PTK7 Δ KN
PTK7 Δ 1-3
PTK7 Δ 4-7
PTK7 Δ 1-7

+
+

+
+

+

- - ---
-- - --

- - ---
-- ---

- - ---

+
+

+
+

+

- - ---
-- - --

- - ---
-- ---

- - ---

WB: PTK7

WB: β-TUBULIN

E

175

80

58

46

M
EF

 W
T

M
EF

 P
TK

7 
K

O

M
EF

 W
T

M
EF

 W
T

+- + -

FIGURE 1. PTK7 interacts with ROR2. A, PTK7, FLAG-ROR1 and FLAG-ROR2 were co-expressed in HEK 293T cells. Proteins extracted from cell lysates were
immunoprecipitated (IP) with anti-PTK7 antibody and revealed with the mentioned antibodies. WB, Western blot. B, schematic of PTK7 constructs used in this
study. TM, transmembrane domain. C and D, FLAG-ROR2 was co-expressed in HEK 293T cells with the constructs expressing the truncated forms of PTK7, and
co-immunoprecipitation was done as in A. E, cytosol/membrane fractionation of HEK 293T cells expressing the truncated forms of PTK7. Cell lysates were
obtained using hypotonic lysis buffer. Samples were centrifuged to obtain cytosolic fractions. Membrane fractions were obtained by ultracentrifugation (1 h,
40,000 rpm) of the cytosolic fraction. �-Tubulin was used as a cytosolic control. F, proteins extracted from MEFs stimulated with WNT5A (200 ng/ml) or left
unstimulated were subjected to co-immunoprecipitation with anti-PTK7 (PTK7) antibody or an isotype-matched control antibody (IgG). After Western blot
analysis, total cell lysates and immunoprecipitated proteins were probed with the mentioned antibodies.
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ther test a possible functional interaction between Ptk7 and
Ror2, we injected Ptk7-MO and Ror2-MO (25) separately or
together. When injected separately at high doses, both
Ptk7-MO and Ror2-MO injection severely interfered with
embryonic morphogenesis (Fig. 4C) and repressed papc expres-
sion, as measured by quantitative RT-PCR (Fig. 4E). In contrast,
development proceeded normally, and papc expression was
maintained when suboptimal amounts of Ptk7-MO or
Ror2-MO were injected (Fig. 4, D and E). However, co-injection

of suboptimal amounts of both MO led to severe morphogen-
esis defects, and papc was repressed significantly (Fig. 4, D and
E). Together, these data support the existence of a functional
interaction between PTK7 and ROR2 in Xenopus that is
required for correct morphogenesis.

We next decided to test the potential conservation of PTK7
function between humans and Xenopus. We performed rescue
assays of Ptk7 morphants with the human PTK7 constructs
used as shown in Fig. 1B. Using the recovery of blastopore clo-
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FIGURE 2. PTK7 interacts with WNT5A. A, FLAG-ROR2 and MYC-WNT5A were co-expressed in HEK 293T cells. Cell lysates were subjected to co-immunopre-
cipitation (IP) with anti-FLAG antibody and then submitted to Western blot (WB) analysis with the mentioned antibodies. FLAG-NECTIN4 was used as a negative
control. B, FLAG-PTK7 was co-expressed with HA-WNT1 or HA-WNT5A in HEK 293T cells. Co-immunoprecipitations were done as in A. C, full and truncated
isoforms of PTK7 were co-expressed with MYC-tagged WNT5A in HEK 293T cells. Cell lysates were subjected to co-immunoprecipitation with anti-MYC
antibody and then submitted to Western blot analysis with the mentioned antibodies. D, PTK7-FLAG and HA-WNT5A were co-expressed in HEK 293T cells
transfected with a siRNA directed against ROR2 or left untransfected. Cell lysates were subjected to co-immunoprecipitation with anti-FLAG antibody followed
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sure as a readout, we obtained significant rescue with full-
length human PTK7 and with the �1–7 deletion construct but
not with other mutant forms (Fig. 5, A and B). The rescue with
full-length PTK7 indicates that the human and frog counter-

parts share the same biochemical activity and that functional
conservation exists between species. The lack of rescue with
�1–3, �4 –7, and �KN deletion constructs implies that both
extracellular and intracellular domains of PTK7 are important and
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FIGURE 3. WNT5A utilizes the PTK7-JNK pathway to promote cells movements. A, FLAG-PTK7 and FLAG-ROR2 were overexpressed in HEK 293T cells. After
8-h starvation, cells were stimulated for 15 min with WNT5A (200 ng/ml). Cell lysates were subjected to Western blot (WB) analysis with the mentioned
antibodies. pP54 and P54 refer to the phosphorylated and non-phosphorylated p54 JNK isoform, respectively. pP46 and P46 refer to the phosphorylated and
non-phosphorylated p46 JNK isoform, respectively. B, FLAG-tagged PTK7 and ROR2 were co-expressed with an AP-1 luciferase reporter in HEK 293T cells, and
luciferase activity was measured as detailed under “Experimental Procedures.” Data are representative of three experiments. Significant difference was
determined by Student’s t test. **, p � 0.01. C, various constructs expressing full-length or truncated forms of PTK7 (two asterisks) were overexpressed in HEK
293T cells. After 8-h starvation, cells were stimulated for 15 min with WNT5A (200 ng/ml). Cell lysates were subjected to Western blot analysis with the
mentioned antibodies. Endogenous PTK7 is indicated by one asterisk. D, MEFs isolated from WT or gene-trapped ptk7 (PTK7 KO) mice were starved for 8 h and
stimulated for 15 min with WNT5A (200 ng/ml). Cell lysates were subjected to Western blot analysis with the mentioned antibodies. NS, nonstimulated. E, MEFs,
WT or PTK7 KO, were seeded in 6-well plates, starved, and incubated with DMEM and 1% FCS with or without WNT5A (200 ng/ml) and submitted to wound
healing. The percentage of wound closure was evaluated after 8 h. Re-expression of PTK7 (right panel, Western blot of protein extracts using the mentioned
antibodies) was able to partially rescue the loss of cell migration in PTK7 KO cells. Data are representative of three experiments. Significant difference was
determined by Student’s t test. *, p � 0.05; **, p � 0.01. �-TUB, �-tubulin. F, JNK activity is required for WNT5A-induced wound healing in MEFs. The experiment
was performed as shown in E, except that MEFs were treated with two JNK inhibitors: CAS 129-56-6 (CAS, 100 �M) and SP600125 (100 �M) (left panel). Right panel,
lysates of MEFs were probed with the indicated antibodies. DMSO, dimethyl sulfoxide.
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that these constructs are likely unable to interact with the natural
PTK7 partners. Of interest, the potent rescue with �1–7 human
PTK7 suggests that perhaps it acts through the intracellular
domain of PTK7 (PTK7-ICD) (15, 18). In addition, papc expres-
sion was rescued in Ptk7 morphants by re-expressing full-length
human PTK7 and the PTK7 �1–7 construct (Fig. 5C).

Next we examined more directly whether Ptk7 was required
for Wnt5a-induced papc expression (25). Injection of Wnt5a
RNA in naïve ectoderm induced a massive induction of papc
expression that was totally suppressed in the presence of
Ptk7-MO (Fig. 6A). It has been shown that the PTK7 receptor is

subjected to proteolytic cleavage in cancer cell lines and that the
released PTK7-ICD is able to translocate into the nucleus (15,
18) We hypothesized that, in Xenopus cells, Wnt5A could trig-
ger the cleavage and translocation of Ptk7-ICD. As expected,
injection into naïve ectoderm of a construct encoding a C-ter-
minal fusion of GFP with full-length Ptk7 revealed a strict local-
ization at the cell membrane (Fig. 6, B and C). However, when
this construct was expressed together with Wnt5a RNA, we
could detect the GFP signal in the membrane, in the cytoplasm,
and in the nucleus (Fig. 6C). This result was consistent with the
release of Ptk7-ICD induced by Wnt5A but could also reflect

FIGURE 4. Ptk7 cooperates with Ror2 during Xenopus embryo morphogenesis. A, whole-mount in situ hybridization of ptk7 in early (stage 10), mid- (stage
11), and late (stage 12) gastrula embryos. B, two-cell embryos were injected (inj) into one single blastomere with 10 ng of Ptk7-MO and processed for
whole-mount in situ hybridization of papc at mid-gastrula stage. Uninj, uninjected; Ctrl, control. C, two-cell embryos were injected into each blastomere with 10
ng of Ptk7-MO or 40 ng of Ror2-MO. Morphology was analyzed at tail bud stage. D, two-cell embryos were injected in each blastomere with the indicated
amounts of Ptk7-MO and Ror2-MO. Morphology was analyzed at tail bud stage. The number of injected embryos is indicated above the columns. Class I
embryos are morphologically normal, class II embryos are shorter and have a wider neural plate, and class III embryos show severe neural tube closure defects.
E, embryos injected as in D were collected at late gastrula (stage 13) and processed for quantitative RT-PCR. For all quantitative PCR graphs, error bars represent
mean � S.E. of three independent experiments with two technical duplicates. For statistical analyses, samples were compared with the respective control using
unpaired Student’s t test. *, p � 0.05; **, p � 0.005; ***, p � 0.005.
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changes in the trafficking of full-length Ptk7. Therefore, we
evaluated the subcellular localization of a truncated construct
encoding Ptk7-ICD fused to GFP at its C terminus. We found
that, upon injection of this construct into naïve ectoderm, the GFP
signal was also distributed between the plasma membrane, the
cytoplasm, and the nucleus (Fig. 6D). Importantly, quantitative

RT-PCR analysis revealed that Ptk7-ICD, in the absence of exoge-
nous Wnt5a, was capable of strongly activating papc expression in
a dose-dependent manner (Fig. 6E). Our data suggest that, beyond
its interaction with Ror2, Ptk7 may be cleaved when bound to
Wnt5a and may directly participate in transcriptional activation of
downstream targets such as papc.

papc

Ptk7
MO

Δ1-7FL
+ Ptk7-MO

Δ1-3 Δ4-7 ΔKNPtk7 MO Δ1-7FL

+ Ptk7-MO

Δ1-3 Δ4-7 ΔKNΔ1-7FL
+ Ptk7-MO

Ptk7
MO

A

B

C

FIGURE 5. Rescue assays of Ptk7 morphant phenotypes by human PTK7 constructs. A and B, two-cell embryos were injected in each blastomere with 10 ng
of Ptk7 MO, followed by injection at the four-cell stage of synthetic transcripts (200 pg total for each RNA on the basis of initial dose-response tests) encoding
the various human PTK7 constructs used in this study (see Fig. 1B). A, blastopore closure was estimated using the ratio of blastopore diameter to the mean of
control blastopore diameter at stage 13. Bars represent maximum and minimum values, and the line represents the mean. 15–27 embryos/condition were used
for the analysis. A.U., arbitrary units. B, representative blastopore closure phenotypes recorded (vegetal views, the blastopore is delineated in red). Note that
only full-length (FL) human PTK7 and �1–7 PTK7 could significantly rescue blastopore closure of Ptk7 morphant embryos. C, embryos injected as in A were
processed for quantitative RT-PCR at stage 13 for papc expression. Full-length human PTK7 and �1–7 PTK7 could significantly reactivate papc expression in
morphant embryos. For statistical analysis of blastopore closure, samples were compared with the respective control (asterisk over the column) and Ptk7-MO
(asterisk over the line) using unpaired Student’s t test. For the quantitative PCR graph, error bars represent mean � S.E. of two independent experiments with
two technical duplicates. For quantitative RT-PCR statistical analysis, samples were compared with the respective control (asterisk over the column) and
Ptk7-MO (asterisk over the line) using unpaired Student’s t test. *, p � 0.05; **, p � 0.005; ***, p � 0.005.
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Our report highlights novel findings regarding the role of
PTK7 in WNT/PCP signaling. First, we provide compelling evi-
dence of a physical interaction between PTK7 and ROR2, a
WNT/PCP-related receptor. Binding is specific in the ROR
family and occurs through the entire PTK7 extracellular

domain (Fig. 1). Second, in contrast to a report published pre-
viously (11), we find that WNT5A readily co-immunoprecipi-
tates with PTK7 and, like ROR2, induces JNK phosphorylation
and cell movements (Figs. 1 and 3). We cannot explain the lack
of interaction between WNT5A and PTK7 reported by Per-

FIGURE 6. Ptk7 is required for Wnt5A-mediated papc induction. A, four-cell embryos injected with Wnt5a mRNA (30 pg/cell) in the animal pole received a second
injection of Ptk7-MO (2. 5 ng/cell) in all animal blastomeres at the eight-cell stage. Animal caps were isolated at blastula stage, cultured for 4 h at 23 °C, and then
processed for quantitative RT-PCR. Ctrl, control. B, schematic of Xenopus full-length PTK7 and PTK7-ICD constructs. GFP was added at the C terminus to generate the
fusions used in experiments C–E. TM, transmembrane domain. C, eight-cell embryos were injected with full-length Ptk7-GFP mRNA (250 pg/cell) and mRFP mRNA (50
pg/cell) to reveal cell membranes, with or without Wnt5a mRNA (30 pg/cell) in all animal blastomeres. Embryos were grown until early gastrula stage (stage 10.5) and
processed for confocal imaging. PTK7-GFP localized strictly to cell membranes in the absence of Wnt5a and partly relocalized to the nucleus in the presence of Wnt5a.
D, eight-cell embryos were co-injected with Ptk7-ICD-GFP mRNA (300 pg/cell) and mRFP mRNA (50 pg/cell) in all animal blastomeres. Embryos were grown until early
gastrula stage (stage 10.5) and processed for confocal imaging. PTK7-ICD-GFP was found at the cell membrane and in the nucleus. E, eight-cell embryos were injected
with the indicated amounts of PTK7-ICD-GFP mRNA in all animal blastomeres, and animal caps were isolated at blastula stage, cultured for 4 h at 23 °C, and then
processed for quantitative RT-PCR. For all quantitative PCR graphs, error bars represent mean � S.E. of three independent experiments with two technical duplicates.
For statistical analyses, samples were compared with the respective control using unpaired Student’s t test. **, p � 0.005; ***, p � 0.005.

PTK7 and ROR2 Interaction in the Vertebrate WNT/PCP Pathway

30570 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 290 • NUMBER 51 • DECEMBER 18, 2015

 at IN
SE

R
M

 on January 5, 2016
http://w

w
w

.jbc.org/
D

ow
nloaded from

 

http://www.jbc.org/


adziryi et al. (11). The recipients used for the co-immunopre-
cipitation experiments are, however, different between this
study and ours. In the cited report, co-immunoprecipitations
were performed in Xenopus egg extracts, whereas ours were
done in HEK 293T cells. However, we controlled the function-
ality of our WNT5A construct by showing its interaction with
ROR2, a well known interactor (Fig. 2A). In Peradziryi et al.
(11), the authors proposed that, by binding to canonical
WNT3A or WNT8 ligands, PTK7 inhibited canonical WNT
activity by sequestering these ligands. Another report has
shown that WNT5A inhibited the canonical WNT pathway by
promoting the degradation of �-catenin (31). Our findings sug-
gest that PTK7 can directly trigger the non-canonical WNT
signaling pathway through its binding to WNT5A. Binding
could be direct or indirect through Frizzled receptors, as shown
for WNT3a (11), and is partially dependent on loops 4 –7 (Fig.
2C). Third, we evidence a functional interaction between Ptk7
and Ror2 in Xenopus and a dependence of Wnt5a to Ptk7 (Fig.
4). Fourth, using rescue assays in Xenopus, we determined that
human and frog PTK7 have conserved functions (Fig. 5). How-
ever, compared with our assays in HEK 293T cells, the situation
is more complicated in Xenopus because both extracellular and
intracellular regions of PTK7 are required for the function of
the receptor, in particular its ICD. Indeed, we provide evidence
for a physiological function of Ptk7 ICD (Fig. 6), which, added to
data obtained in cancer cells, suggest that cleavage and nucle-
arization are important processes for Ptk7 activity (15, 17, 18).
Accordingly, aberrant proteolysis of Ptk7 has a profound effect
on embryonic development (32). However, under the condi-
tions of our assay, Ror2 appeared to be dispensable for the
release and nuclear translocation of PTK7 ICD in Xenopus
(data not shown). Future studies will have to assess how PTK7
and ROR2 cross-talk within the heterodimeric complex at the
signaling and functional levels.
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