
HAL Id: hal-01306989
https://hal.science/hal-01306989

Submitted on 26 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Object-oriented Model-based Extensions of Robot
Control Languages

Armin Müller, Alexandra Kirsch, Michael Beetz

To cite this version:
Armin Müller, Alexandra Kirsch, Michael Beetz. Object-oriented Model-based Extensions of Robot
Control Languages. 27th German Conference on Artificial Intelligence, 2004, Ulm, Germany. �hal-
01306989�

https://hal.science/hal-01306989
https://hal.archives-ouvertes.fr

Object-oriented Model-based Extensions of Robot
Control Languages

Armin Müller, Alexandra Kirsch, Michael Beetz

Informatik IX, Technische Universität München

Abstract. More than a decade after mobile robots arrived in many research labs
it is still difficult to find plan-based autonomous robot controllers that perform,
beyond doubt, better than they possibly could without applying AI methods. One
of the main reason for this situation is abstraction. AI based control techniques
typically abstract away from the mechanisms that generate the physical behavior
and refuse the use of control structures that have proven to be necessary for pro-
ducing flexible and reliable robot behavior. The consequence is: AI-based control
mechanisms can neither explain and diagnose how a certain behavior resulted
from a given plan nor can they revise the plans to improve its physical perfor-
mance.
In our view, a substantial improvement on this situation is not possible without
having a new generation of robot control languages. These languages must, on
the one hand, be expressive enough for specifying and producing high perfor-
mance robot behavior and, on the other hand, be transparent and explicit enough
to enable execution time inference mechanisms to reason about, and manipulate
these control programs. This paper reports on aspects of the design of RPL-II,
which we propose as such a next generation control language. We describe the
nuts and bolts of extending our existing language RPL to support explicit models
of physical systems, and object-oriented modeling of control tasks and programs.
We show the application of these concepts in the context of autonomous robot
soccer.

1 Introduction

Robot control languages have an enormous impact on the performance of AI-based
robot controllers. The languages allow for explicit and transparent representation of
behavior specifications for reasoning and execution time program manipulation, and
they provide the control structures for making the robot behavior flexible, reliable, and
responsive. Despite their importance research on the design of robot control languages
that enable intelligent robot control is largely neglected in AI — primarily for historical
reasons.

As the predominant software architecture for autonomous robot control most re-
searchers have used layered architectures, most notably the 3T architectures [15]. Char-
acteristic for these layered software architectures is the use of multiple control lan-
guages: a programming language for the low-level reactive control and a very simple
high-level language for strategic planning. This way the planner can still nurture the
illusion of plans being sequences of plan steps and many existing planning techniques

carry over to robot control more or less the way they are. To bridge the gap between
the partially ordered sets of actions (goal steps) and the low-level feedback control rou-
tines most software architecture use an intermediate control layer. In this intermediate
layer an interpreter for a reactive plan language, such as RAP [7] or PRS [9], takes the
high-level plan steps, selects methods for carrying them out based on sensor data, and
executes them in a robust manner.

Unfortunately, this layered abstraction of robot control comes at high cost. The
planning mechanisms cannot diagnose the behavior produced by a given plan because
the behavior producing mechanism is much more sophisticated than assumed by the
planning mechanisms. In addition, the planning mechanisms cannot exploit the variety
of control structures offered by reactive plan languages to produce better behavior.

Let us illustrate this point using the following example taken from the autonomous
robot soccer domain. A robot is to score a goal. An AI planner would typically produce a
simple two step plan: (1) get the ball; (2) dribble it into the goal, because ball possession
is a precondition for scoring. The navigation and the dribbling actions are considered as
atomic black boxes. Unfortunately, these mechanisms do not allow for the generation
of high performance plans with high scoring probability such as the one depicted in
Figure 1(right). To compute such a high performance plan planning mechanisms have to
tailor the parameterizations of the individual actions using accurate causal and physical
models of the control routines they use.

generated using
causal models

optimized using
projection functions

Belief State Intention Valid Plan Optimized Plan
"Score Goal"

Fig. 1. Chaining of actions.

As plan-based robot control systems come of age and are applied to real world tasks
a new generation of software architectures arises that are capable of dealing with these
problems. These second generation software architectures share a number of important
principles. These shared principles include (1) lightweight reasoning is embedded into
the robot control languages; (2) the architectures invite programmers to specify models
of the robot and its environment explicitly within the program code; (3) have much
richer languages for the specification of goals in terms of constraints on the values of
state variables.

In our research group we are currently working on the next generation of the robot
control/plan language RPL [12] called RPL-II. RPL-II allows for the explicit specifi-
cation and representation of robot learning problems [5], for the specification of explicit

robot and environment models, is object-oriented and supports the specification of spe-
cialization hierarchies for control tasks and routines and reasoning about them. RPL-II
is an industrial strength robot control/plan language. It is implemented unlike its pre-
decessor on a public domain CommonLisp using state of the art software tools such as
Corba, UFFI, etc. RPL-II is applied to a variety of control tasks with different char-
acteristics including mid-size robot soccer, a simulated household robot, and a robot
assistant in an intelligent camera-equipped office environment.

This paper focuses on a particular aspect of the design of RPL-II, namely the rep-
resentation and specification of the system that the controller controls and the control
tasks that it performs. In a companion paper [5] we have described the new language
features that support experience-based learning. The main contributions of the paper
are the means for specifying state variables and their management, control tasks and
control routines, and object oriented programming.

We demonstrate the application of these mechanisms to the implementation of our
next generation controller for autonomous robot soccer. The implementation results
in control programs that make extensive and explicit use of learning mechanisms and
routines that can be much better reasoned about and transformed. This is primarily
achieved through the explicit representation of physical entities and control tasks and
the reasoning about them.

The remainder of the paper is organized as follows. In section 2 we describe the
problems we encountered with our former control program for the AGILO soccer robots
and sketch the ways we want to solve them. Section 3 introduces the basic concepts for
model-based reasoning about physical control tasks. The use of these concepts is then
demonstrated in the sections 4 and 5. We conclude with our next intended extensions of
RPL-II, a discussion of related work, and our conclusions.

2 Languages at the Reactive Layer

The reasons why we want to use a model-based, object-oriented approach in structuring
our control programs, are our experiences with former controllers of the AGILO soccer
robots. [6] Let us therefore sketch how the controllers worked, which problems occurred
and the conclusions we draw from them.

The control program ran in a low-level control loop that (1) updates the world
model (section 2.1) and (2) chooses a command (section 2.2) in every time step (ev-
ery 0.01 sec).

2.1 State representation

We need a set of variables containing information about the most likely current state
of the world. We call this information “belief state”. The belief state is represented in a
class “world model”, that provides variables and functions for any value the robot might
want to know. It is not possible to differentiate between

– constant values (that would actually deserve the name “world model”),
– values taken from the percept or belief state vector, and

– values calculated from the belief state and world model.

So there is a representation of the state of the world, but with several drawbacks.
The variables representing the state are not related to any physical values. In different
parts of the program variables with different names, but the same physical meaning can
occur. The orientation of the robot might in one place be called phi, in another place
phi-deg. On the other hand does the same variable name not necessarily denote the
same physical value. The variable pos-x can at one time express the robot’s position, at
another time the position of the ball.

Besides, the robot and the environment are not represented explicitly. When starting
the robot in a certain environment the right configuration file has to be loaded and
constant values are set. So we have just variables filled with values that have apparently
nothing to do with the outside world.

Another problem is the heterogeneity of measuring units. This is especially hard
when it comes to angles. Sometimes the value is given in degrees, sometimes in radian
measure. In the action selector it is quite save to assume degrees, but there is no standard
if degrees range from

���
to ��� ��� or from ���
	 ��� to ���
	 ��� .

2.2 Action Selection

Figure 2 shows a simplified extract of our old action selection routine. As is easily
visible, there is only procedural knowledge in the controller. The information exchange
between calling and called procedures is done by passing a variable param. The value(s)
of this parameter sometimes denote the goal, sometimes a parameterization of the called
function.

Furthermore the structure of the code seems very arbitrary. The purpose of the first
three if-conditions is to trap failures. Then a more interesting part follows which decides
what to do whenever the robot has the ball. Then again we have two failure conditions
testing if the robot is in one of the penalty areas. Here we can see another problem. The
reaction of being in the own penalty area or in that of the opponent team is almost the
same and could be done by the same or a related function.

So in the end only three of eight cases build up the real controller code. The rest
is only there for trapping failures. Even worse, the interesting parts are spread over the
code and intercepted by failure testing. It is hopeless to reason about the best action,
when there is no difference between failure trapping and real action selection.

Also the granularity of decisions seems ill-founded in our old controller code. When
the robot has the ball, all we want to do is getting the ball somehow into the goal. Here
the controller already decides how to do this (by dribbling the ball into the goal, kicking
it or passing it to another player).

Another nuisance of our former controller is that it works in single time steps only
and the decisions are purely reactive.

3 Key Concepts of RPL-II

After we have given a summary of the necessity of building a model-based, object-
oriented system in section 2, we now have a closer look at the concepts we want to
employ. These concepts are

function run-soccer-agent(worldmodel)
var param := null
var command
if (not worldmodel.on-field) then command := NO-OP
elseif (worldmodel.stuck-time � MIN-STUCK-TIME) then command := STUCK
elseif (not worldmodel.localized) then command := RELOCALIZE
elseif worldmodel.ball-is-in-guiderail then

// do a lot of calculations and decide whether to call
// PASS2POS, SHOOT2GOAL or DRIBBLE (with the goal as destination)
param := � xdest,ydest �
command := DRIBBLE // for example

elseif (worldmodel.time-in-opp-penalty-area � MAX-PA-TIME) then
param := voronoi-pathplanning
command := LEAVE-OPP-PENALTY-AREA

elseif (worldmodel.time-in-own-penalty-area � MAX-PA-TIME) then
param := voronoi-pathplanning
command := LEAVE-OWN-PENALTY-AREA

elseif (worldmodel.nearest-to-ball = my-robot-no) then
param := voronoi-pathplanning
command := GO2BALL

else command := FACE-BALL
execute(command, worldmodel, param)

Fig. 2. Code extract of our old AGILO controller.

1. state representation with globally accessible state variables
2. goal representation as constraints over state variables
3. control tasks and control routines arranged in an object hierarchy

We use the robot control language RPL (section 3.1), that provides constructs for
monitoring failures while performing an action and parallel execution of processes. So
now we think more in terms of actions than in terms of low-level commands and control
loops.

For the representation of the robot’s belief state we use globally known state vari-
ables that are described in more detail in section 3.2. Every variable corresponds to
a physical value. We have not yet approached the representation of measuring units,
although it should not be difficult within our framework.

The goal is now specified explicitly, tightly coupled to the state variables (section
3.3). We regard a goal as an intention how the world should be changed.

Finally, we require means of how to reach a given goal from a certain belief state.
Our control procedures are structured along two lines, an object-oriented inheritance
hierarchy and a calling hierarchy involving two classes of control procedures (section
3.4). We represent procedures as first-class objects, which allows for the specification
of relevant calling parameters. Thus we can maintain a uniform calling mechanisms for
all procedures. Inheritance is also an important factor when it comes to representing
similarities between procedures. This makes the implementation very structured and
concise.

To structure the calling hierarchy we introduce two classes of procedures, control
tasks and control routines. A skill like “get-ball-into-goal” is implemented as a control

task. The different possibilities to fulfill the job like “dribble-ball-into-goal” or “kick-
ball-into-goal” are represented as control routines. Control tasks and routines are called
alternatively. The success and failure testing is completely done in the control task, as
well as the choice of the appropriate routine in the current situation.

3.1 The Reactive Plan Language RPL

The robot’s plans are implemented in RPL (Reactive Plan Language) [12], which has
been successfully employed in different projects [4, 3, 2]. RPL provides conditionals,
loops, program variables, processes, and subroutines as well as high-level constructs
(interrupts, monitors) for synchronizing parallel actions. To make plans reactive and
robust, it incorporates sensing and monitoring actions, and reactions triggered by ob-
served events.

Connecting Control Routines to “Sensors” Successful interaction with the envi-
ronment requires robots to respond to events and asynchronously process sensor data
and feedback arriving from the control processes. RPL provides fluents, registers or
program variables that signal changes of their values. Fluents are used to store events,
sensor reports and feedback generated by low-level control modules. Moreover, since
fluents can be set by sensing processes, physical control routines or by assignment state-
ments, they are also used to trigger and guard the execution of high-level control rou-
tines.

Fluents can also be combined into digital circuits that compute derived events or
states such as the robot’s current distance to the ball. That fluent would be updated
every time the position of the robot or the ball changes, since it is calculated out of the
respective fluents.

Fluents are best understood in conjunction with the RPL statements that respond
to changes of fluent values. The RPL statement whenever F B is an endless loop that
executes B whenever the fluent F gets the value “true.” Besides whenever, wait for(F)
is another control abstraction that makes use of fluents. It blocks a thread of control
until F becomes true.

Behavior Composition sources use control structures for reacting to asynchronous
events, coordinating concurrent control processes, and using feedback from control pro-
cesses to make the behavior robust and efficient. RPL provides several control struc-
tures to specify the interactions between concurrent control processes (figure 3). The
control structures differ in how they synchronize processes and how they deal with fail-
ures.

The in parallel do-construct runs a set of processes in parallel and fails if any of
the processes fails. The second construct, try in parallel, can be used to run alternative
methods in parallel. The compound statement succeeds if one of the processes succeeds.
Upon success, the remaining processes are terminated. Similarly try in order executes
the alternatives in the given order. It succeeds when one process terminates successfully,
it fails when all alternatives fail. with policy P B means “execute the primary activity B
such that the execution satisfies the policy P.” Policies are concurrent processes that run
while the primary activity is active and interrupt the primary if necessary. Additional
concepts for the synchronization of concurrent processes include semaphores and pri-
orities.

in parallel do ��������� ���
in parallel do navigate(� 1.3, 2.0 �)

face-ball()

try in parallel ��������� ���
try in parallel calculate-position-with-odometry()

calculate-position-with-camera()

try in order � � ����� � �
try in order score-goal()

distract-opponent()

with policy p b
with policy check-holding-ball()

dribble(� 4.2, 1.9 �)

Fig. 3. Some RPL control structures and their usage.

3.2 State Representation

We represent the state of the world by globally declared variables. Figure 4 shows the
class hierarchy of these variables.

Every value that is globally known throughout the system is called a global value.
Every variable has a name and a (current) value. The world consists of values changing
over time and values that remain constant. Constants are initialized when the system is
started and represent the world model (section 4).

More interesting are state variables. Their value is represented as an RPL fluent,
because it changes over time. Apart from being informed when a state variable has
changed, it is often necessary to have access to former values. A recording state vari-
able keeps a history of its past values. The history values can be accessed by the same
function get-value that is used to obtain the current value of a state variable by specify-
ing an additional parameter giving the number of steps we want to look back in time.

global value
name

state variable
fluent

recording state
variable
history

observable state
variable

goal

controllable state
variable

derived state variable
elements

combination function

constant

Fig. 4. Class hierarchy of globally known variables.

With these specifications we can now define observable state variables that repre-
sent our percept or belief state and controllable state variables representing the com-
mand. An observable state variable has an additional parameter for setting a goal value.
This is explained in more detail in section 3.3.

The representation of the plain percept as state variables is usually not sufficient to
make adequate decisions. For example we might want to react if a player is leaving the
boundary of the soccer field. Or maybe we want to know if the robot has been stuck
over a longer period of time. Therefore we introduced the concept of derived state

variables. From the outside, derived state variables are accessed just like observable
state variables. But instead of keeping a history we remember the components and the
function that produces the value of the derived state variable taking the component
state variables as input. When a past value is accessed it is calculated from the history
elements of the components.

As an example we have a look at the state variables in our soccer robots. The ob-
servable state variables include pos-x, pos-y and phi-deg which represent the x- and
y-coordinates of the robot and its orientation as well as ball-x and ball-y denoting the
position of the ball. The controllable state variables are c-rotation, c-translation, which
set the robot’s rotational and translational velocities, and kick, a boolean variable indi-
cating whether to use the kicking device. Now we can define a derived state variable
denoting the robot’s distance to the ball:

make-instance derived-state-var
name: distance-to-ball
elementary fluents: pos-x, pos-y, ball-x, ball-y
combination function:

� �
pos-x � ball-x ����� �

pos-y � ball-y ���
The fluent of the variable distance-to-ball depends on the state variables given in el-

ementary fluents. The combination function calculates the current distance of the robot
and the ball.

In order to test whether the robot is approaching the ball, we only need to check
whether the distance to the ball has decreased:

fluent approaching-ball
(get-value(distance-to-ball, t) 	 get-value(distance-to-ball, t-1))

Since distance-to-ball is not a recording state variable, it does not have a history of
its own. As the components and the function for obtaining the value are known and the
components have a history, older values of distance-to-ball can be calculated.

3.3 Goals

Up to now our controller follows the very simple policy of our former control program
described in section 2. In the future we would like to use a belief-desire-intention struc-
ture for the representation of top level goals or intentions (section 6). On the lower level
we have to address the issue of how to tell a routine what to do.

There are two points of view for representing goals. First, we could order a routine
to do something for us like “go to position
 1.0, -1.5 � ”. So we have to pass a data
structure that the routine must know how to interpret. The drawback of this idea is that
there is no explicit relationship to the state variables pos-x and pos-y. The routine just
knows that when these two state variables have the value of the goal specification the
work is done.

Now the situation can also be seen as follows. Our control program wants to alter
the world in a certain way, it might for example want to be in a state where the robot
is at position
 1.0, -1.5 � . It can now tell the corresponding state variables that it would
like to have them changed to a different value. Then the controller calls a routine that is

best fit to produce the desired state from the current situation. The called routine looks
up the goal values of the state variables and tries to reach them.

3.4 Procedures

To support an explicit representation of the agent program, we describe procedures as
first class objects, so that we can reason about aspects such as performance measures or
we can find out if a procedure has yet to be learned.

procedure

control procedure

control routine control task agilo controller

environment process

Fig. 5. Class hierarchy of procedures.

Figure 5 shows the basic class hierarchy of procedures. A procedure is any kind of
function. At the moment, the for us most interesting subclass of procedure is a control
procedure. A control procedure maps recent percepts to a command. Other kinds of pro-
cedures like environment processes, that map a command to a world state, might play a
larger role in the future when we will model environment and perception processes.

For a good robot behavior we found it necessary to introduce two concepts of con-
trol procedures, control tasks and control routines. A robot should have certain skills,
in the robot soccer domain we need skills such as dribbling or scoring a goal. These
skills are called control tasks. Usually there are different ways to perform a skill. For
example, in order to score a goal the robot might use its kicking device or dribble the
ball into the goal. These implementations are called control routines. The job of the
control task is to decide which control routine should be called in the current situation.
This decision is based on models of the control routines that predict the time needed to
fulfill a task or the probability of being successful.

Figure 6 shows a typical pattern of how control tasks and routines call each other.
The task of scoring a goal can be achieved by two routines. One of them kicks the ball
into the goal, the other one dribbles the ball to a point inside the goal. This second
routine can be implemented like this:

control routine dribble-ball-into-goal
p := find-goal-point()
adjust-goal(pos-x � p.x, pos-y � p.y)
execute(dribble)

We see that we need the task of dribbling in order to fulfill our goal. Therefore the
control task dribble is executed, which can again be implemented by different control
routines.

The “procedures” we are talking about are actually objects, the function that is really
running is the generic function execute. With an object oriented approach we use inheri-
tance mechanisms to get compact and concise implementations of the execute methods.
This object oriented approach is especially useful in the domain of robot soccer where

score goal

kick ball into goal dribble ball into goal

dribble

dribble 1 dribble 2 dribble 3

Fig. 6. Typical calling pattern of control tasks and control routines

almost every action comes down to navigation. So by using an object hierarchy we save
a lot of work and redundancy.

Control Tasks Every skill is modeled as a control task. It should know when it has
succeeded and when a failure has occurred and either react to it or abort execution. A
special case of a failure is the exceeding of time resources. Since a control task’s job
is to choose the best control routine, it must know which control routines are available.
All this information is given in the class definition:

class control task
success
failure
time-out
available routines

In most cases the control task will choose a control routine and check for failures or
success during the execution. Such a method is shown in figure 7. What remains to do
is the specification of the method choose-control-routine, which has to be implemented
for each control task using models provided by the control routines.

method execute (ct of class control-task)
r := choose-control-routine (ct)
with-policy

in parallel do
whenever ct.failure fail(”general failure”)
seq

wait time ct.time-out
fail(”time-out”)

try in parallel
execute(r)
wait for ct.success

Fig. 7. Method execute for class control task

Control Routines are implementations of a control tasks. Since a control routine
is always called by a control task, we don’t have to worry about success or failure
conditions. In both cases, the routine is interrupted by the control task. If there are
errors the control task cannot detect, we can check them in the execute function of the
control routine and return a fail command.

A control routine should not only reach a given goal state, it should also be able to
predict how long it will take to reach this goal, what the accuracy of the solution will
be or the probability of being successful at all. Thus, a control routine requires not only
an execute method, but also methods providing information about its behavior.

4 Description of the Agent and the Environment

An intelligent robotic agent is more than just a program. It is a complex system that
interacts with an environment through percepts and commands. We use this model to
describe the agent, the environment and their interactions.

4.1 Declaration of the System Components

Fundamentally our system consists of two parts: an agent and an environment as de-
scribed in [14]. These two components are absolutely independent, an agent can run in
different environments and an environment can be the home of different agents. There-
fore our first step is to state which agent should run in which environment. These dec-
larations are principally used to declare state variables and constants (see section 3.2).

Figure 8 shows the parts we have to specify and how this information is used in
global variables. Our agent consists of a body, an architecture and a program. The
program is a control procedure that is called when the agent is given the command
to run. The body describes physical properties of the agent like its dimensions. The
architecture provides the connection to the environment, it describes which features the
agent can receive as a percept and what kind of command can be given. The environment
the agent acts in has certain properties that remain unchanged over time.

width of soccer field
lendth of soccer field
position of own goal

...

Environment

Body
width
length

Program

Belief State
observable state variables

World Model
constants

Command
controllable state variables

percept:
pos−x
pos−y

phi

c−rotation
c−translation

kick

command:

Architecture
Agent

Fig. 8. Initialization of constants and state variables.

To summarize the information given by the agent and the environment we have
three kinds of information, which is then provided by the global variables described in
section 3.2: (1) a constant world model, (2) a belief state changing over time, and (3) a
command.

4.2 Running the System

Now that we have declared an agent and an environment, we can run the agent. To do
this, we call the function run-agent, which calls a method boot and starts a process
update, both depending on the agent-architecture and the environment, and starts an
RPL process that runs the agent-program. After initialization by the boot method agent
and environment don’t interact directly. The communication is done by the process
update that gives the command in the controllable state variables to the environment
and receives the percept, which it writes to the observable state variables. The state
variables are set and read by a different process called RPL process which is running
the agent program (figure 9).

Environment

Program

Architecture

Agent

Body

Belief State
observable state variables

World Model
constants

Command
controllable state variables

RPL PROCESS UPDATE STATE VARS

Fig. 9. The system at work.

When the agent has finished its job or when we want to stop the agent from the
outside, the function kill-agent is called to stop the RPL and update processes and to
call a method shutdown that specializes over the architecture and the environment.

5 The Agilo Controller

Using the concepts described in the previous sections we have implemented a very sim-
ple controller for our soccer robots. The controller consists of two processes: a moni-
toring and a controlling process. For this purpose the RPL construct with-policy can be
used very effectively as shown in figure 10. The action selection is now concentrated in
one loop, whereas the failure testing is done outside.

Of course, this is a very simple controller that has to be enhanced. We are planning
to use a belief-desire-intention architecture to make sophisticated decisions (see also
section 6).

with policy
in parallel do

whenever not-localized relocalize()
whenever ball-position-unknown find-ball()
whenever robot-is-stuck unstick()
whenever out-of-bounds return-to-field()

loop
try in order

when holding-ball score-goal()
when nearest-player-to-ball go-to-ball()
watch-field()

� ����������
Failure testing

� ��������
Action Selection

Fig. 10. Controller of our soccer robots

6 Research Agenda for RPL-II

We are developing RPL-II, the next generation of the robot control and plan language
RPL. RPL-II supports the specification of high performance robot control programs
by combining the expressiveness of RPL with respect to behavior specifications with
advanced concepts that enable AI based control mechanisms to better reason about and
manipulate control programs during their execution.

The extensions we have realized so far include the support of specifying explicit
models of the physical systems to be controlled and object-oriented modeling of con-
trol tasks and routines. In two companion papers we have described extensions for the
explicit representation of learning tasks in experience-based learning [5] and the tighter
integration of programming and learning [10].

Still, these research results present only initial steps of the development of RPL-II,
as a second generation AI-based robot control language. So let us briefly sketch the next
steps on our research agenda: (1) comprehensive mechanisms for goal management,
(2) improved physical system modeling, and (3) bootstrapping learning mechanisms
for complex application tasks.

Comprehensive Goal Management. At the moment we only have the notion of low-
level goals that are essentially constraints on state variables. So far RPL-II does not
support goal selection that is consistent with the robot beliefs and other intentions of
the robot. To support these goal management mechanisms we will add “desires” and
“intentions” in addition to the current concept “goals” as first class objects in RPL-II
and provide the respective reasoning mechanisms. This will give us the possibility of a
much better action selection than the rule-based policy we are using now.

Deep models of state variables. While our current extensions make state variables
explicit in the program code they still do not specify their physical meaning. We plan
to provide such mechanisms by requiring programmers to specify the physical mean-
ing in an explicit domain model formalized in a description logic. We believe that a
concept taxonomy for a wide range can be provided and only small modifications for
the individual application is needed. The slightly increased modeling effort will pay
off immensely because using the domain model automated reasoning processes will be
capable of solving much harder reasoning problems. For example, that all the condi-
tions of a behavior trigger are observable or that two control routines will not interfere
because the state variables they change are independent of each other.

Bootstrapping Learning Mechanisms. Finally, in RPL-II it will be possible to run
partially specified control programs. The interpreter will then detect control tasks that
the robot has no control routines for and acquire them by solving the associated learning
tasks. This way a control program can complete itself or adapt itself to new environ-
ments and tasks by means of bootstrap learning.

7 Related Work

Model-based programming has been a major issue in several space exploration projects
like Remote Agent [13], Livingstone [18], the Mission Data System Project [16], Re-
active Model-based Programming Language [17] and others [1, 8, 11]. All of these
projects represent the physical behavior of very complex systems in an explicit man-
ner. This gives them the power to use lightweight reasoning techniques. The systems in
these projects have to work very reliably. Vital parts of the physical systems are redun-
dant, so that in the case of failure the system can be reconfigured. For this purpose the
properties of the physical system parts have to be known by the controller. In our case
reliability is not such an important issue. However, the environment our soccer robots
have to deal with is much more dynamical. So we are interested in a robot that can adapt
its control program to changing situations in its environment.

8 Conclusions

In this paper we introduce model-based concepts for the programming of robot con-
trollers. The representation of state knowledge is done by state variables that are known
throughout the system. Tightly coupled to the state variables is the representation of
low-level goals. Those goals are achieved by control procedures arranged in two hierar-
chies: an object hierarchy that exploits inheritance mechanisms and a calling hierarchy
including control tasks and control routines.

These concepts enable us to describe the robot and its environment declaratively.
Using the robot control language RPL we can build a highly structured control program,
where failure handling and action selection are separated.

On this basis we plan to include learning mechanisms as well as lightweight rea-
soning techniques. We still need to implement higher-level concepts like a belief-desire-
intention architecture or logic representations to facilitate reasoning in the controller.

References

1. A. Barrett. Domain compilation for embedded real-time planning. In Proceedings of the
ICAPS’03 Workshop on Plan Execution, 2003.

2. M. Beetz. Structured Reactive Controllers. Journal of Autonomous Agents and Multi-Agent
Systems. Special Issue: Best Papers of the International Conference on Autonomous Agents
’99, 4:25–55, March/June 2001.

3. M. Beetz. Plan-based Control of Robotic Agents, volume LNAI 2554 of Lecture Notes in
Artificial Intelligence. Springer Publishers, 2002.

4. M. Beetz, T. Arbuckle, M. Bennewitz, W. Burgard, A. Cremers, D. Fox, H. Grosskreutz,
D. Hähnel, and D. Schulz. Integrated plan-based control of autonomous service robots in
human environments. IEEE Intelligent Systems, 16(5):56–65, 2001.

5. M. Beetz, A. Kirsch, and A. Müller. Rpl-learn: Extending an autonomous robot control
language to perform experience-based learning. In 3rd International Joint Conference on
Autonomous Agents & Multi Agent Systems (AAMAS), 2004.

6. M. Beetz, T. Schmitt, R. Hanek, S. Buck, F. Stulp, D. Schröter, and B. Radig. The AGILO
robot soccer team - experience-based learning and probabilistic reasoning in autonomous
robot control. Autonomous Robots, 2004. accepted for publication.

7. J. Firby. Adaptive Execution in Complex Dynamic Worlds. Technical report 672, Yale Uni-
versity, Department of Computer Science, January 1989.

8. M. Ingham, R. Ragno, and B. C. Williams. A reactive model-based programming language
for robotic space explorers. In International Symposium on Artificial Intelligence, Robotics,
and Automation in Space (i-SAIRAS), Montreal, Canada, 2001.

9. F. Ingrand, M. Georgeff, and A. Rao. An architecture for real-time reasoning and system
control. IEEE Expert, 7(6), 1992.

10. A. Kirsch, A. Müller, and M. Beetz. Programming robot controllers that learn. submitted to
International Conference on Intelligent Robots and Systems (IROS), 2004.

11. R. Knight, S. Chien, and G. Rabideau. Extending the representational power of model-
based systems using generalized timelines. In The 6th International Symposium on Artificial
Intelligence, Robotics, and Automation in Space (i-SAIRAS), Montreal, Canada, 2001.

12. D. McDermott. A Reactive Plan Language. Research Report YALEU/DCS/RR-864, Yale
University, 1991.

13. N. Muscettola, P. P. Nayak, B. Pell, and B. Williams. Remote agent: To boldly go where no
ai system has gone before. Artificial Intelligence, 103(1-2):5–48, August 1998.

14. S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice-Hall, Engle-
wood Cliffs, NJ, 1995.

15. S. Thrun, A. Bücken, W. Burgard, D. Fox, T. Fröhlinghaus, D. Hennig, T. Hofmann, M. Krell,
and T. Schmidt. Map learning and high-speed navigation in RHINO. In D. Kortenkamp,
R. Bonasso, and R. Murphy, editors, AI-based Mobile Robots: Case studies of successful
robot systems. MIT Press, Cambridge, MA, 1998.

16. R. Volpe and S. Peters. Rover technology development and infusion for the 2009 mars
science laboratory mission. In Proceedings of 7th International Symposium on Artificial
Intelligence, Robotics, and Automation in Space (i-SAIRAS), 2003.

17. B. C. Williams, M. Ingham, S. H. Chung, and P. H. Elliott. Model-based programming of
intelligent embedded systems and robotic space explorers. Proceedings of the IEEE: Special
Issue on Modeling and Design of Embedded Software, 9(1):212–237, January 2003.

18. B. C. Williams and P. P. Nayak. Livingstone: Onboard model-based configuration and health
management. In Proceedings of AAAI-96, 1996.

