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Human-aware Navigation in Domestic Environments
Using Heuristic Decision-Making

Alexandra Kirsch

Abstract—Robot navigation in domestic environments is still a
challenge. This paper introduces a cognitively inspired decision-
making method and an instantiation of it for (local) robot
navigation in spatially constrained environments. We compare the
method to two existing local planners with respect to efficiency,
safety and legibility.

I. MOTIVATION

Domestic robots are one of the major application scenarios
for future robots. A prerequisite is the basic skill of efficiently
and safely navigating in apartments in a manner that is un-
derstandable and predictable for the human inhabitants. Robot
navigation has often been researched in museums, shopping
malls or office environments with an emphasis of finding
a path between two locations. But space in an apartment
is much more limited. Path planning is required to move
between rooms, but inside a room local navigation (also called
navigation control) is the crucial factor. The situation can
change quickly, obstacles may not be on the map, either
because they move themselves (like people or pets or other
household robots) or because they are movable (like chairs).
Relying too much on path planning in dynamic environments
leads to illegible1 behavior [11, 14]. On the positive side,
rooms are usually furnished in a way to make navigation easy
for people and thus hardly contain dead ends.

In this paper we present a navigation control method that
moves a robot efficiently, safely and legibly to a given coor-
dinate and orientation in a (typical) room in a household. We
first introduce the Heuristic Problem Solver (HPS), a general,
cognitively inspired decision-making framework, and show
how to use it specifically for robot navigation.

We assume in this paper that at least one way of achieving
legibility is to copy human movement patterns. Doing this can
best be achieved by copying or at least approximating the way
that humans make decisions and act. HPS uses concepts from
cognitive science to implement a decision process similar to
that of humans (but we do not claim that it models human
decision-making in detail).

HPS generalizes the AI search paradigm by Newell and
Simon [17], consequently navigation with HPS generalizes
the Dynamic Window Approach for navigation [7, 4]. In the
Dynamic Window Approach the state space is first filtered to
contain only those commands that do not lead to a collision in
the near future, and then every state (i.e. navigation command
and its expected effect) is evaluated with a weighted sum of

1Lichtenthäler et al. [14] define a robot’s behavior as being legible “, if a
human can predict the next actions of the robot and the robot behavior fulfills
the expectations of a human interaction partner.”

three optimization aspects (we call those aspects heuristics).
We extend this approach in two respects: 1) a generalization
of the optimization function to contain an arbitrary set of
heuristics, the composition of which can be adapted during
the navigation task; 2) generation rather than filtering of the
state space to make the decision procedure more efficient and
the resulting behavior more legible.

We evaluate our approach in a simulated kitchen with a PR2
robot, comparing the navigation with HPS to a P-controller
and the Dynamic Window Approach. We use a 3D simulation
rather than a real robot to give us more freedom in the
experiments. We switch off the physics of the furniture and
let the robot pass through it to see the full functioning of an
algorithm without it being stopped by obstacles. It also helps
to make the results more comparable as all algorithms can use
the same ground truth information and noiseless laser data.

The omnidirectional drive gives the PR2 a lot of freedom to
move, but even if the robot moves to its goal on a direct path,
the orientation is often disregarded by control algorithms and
this is a source for illegibility. We will use the orientation of
the robot on its path as a proxy to measure the legibility of
the movement.

This paper makes the following contributions: 1) it intro-
duces the Heuristic Problem Solver as a general decision-
making algorithm; 2) it proposes an instantiation of HPS
with heuristics for navigation for use as a local planner, 3) it
compares the navigation method in a simulated household
environment with two state-of-the-art methods.

II. APPROACH

The Heuristic Problem Solver (HPS) generalizes AI search
for asynchronous control tasks and incorporates knowledge
from cognitive science to robustly handle dynamics and un-
certainty. We explain the use of HPS for robot navigation, but
we are convinced that the same basic approach can benefit any
kind of decision-making process in autonomous systems, not
just navigation.

A. Heuristics

The term “heuristic” has been used in many different
contexts. In psychology and other cognitive sciences it is often
used as a catch-term for “any behavior in animals or humans
we can’t explain”. In artificial intelligence it is usually defined
as a function estimating the cost of getting from some state
to a goal state.

Gigerenzer and Gaissmaier [8] propose the following defi-
nition:



“A heuristic is a strategy that ignores part of the
information, with the goal of making decisions more
quickly, frugally, and/or accurately than more com-
plex methods.” [8]

This definitions encompasses the AI definition of heuristics,
as they make decisions more quickly and frugally; being
an estimation of the true costs they also ignore part of the
information. But the definition goes further in claiming that
heuristics can help to make better decisions than complex,
“rational” methods.

The cause lies not in the method, but in the environment:
“rational” decision methods are designed for “small” worlds
— “[situations] in which all relevant alternatives, their conse-
quences, and probabilities are known, and where the future
is certain, so that the optimal solution to a problem can
be determined” [8]. But in “large” worlds, and reality is a
large world, less information or a simpler form of decision-
making can lead to better information than when all available
knowledge is considered.

In this paper, we use the following definitions:
A heuristic is an isolated piece of knowledge that is
efficient to compute and relevant to a given problem.
Heuristics may be problem-specific or general.

An example of problem-specific a heuristics for navigation
is “to reach a goal, you must decrease the distance between
the current and goal position”. A general heuristic that may be
of use is “if consecutive commands differ a lot, any movement
becomes jerky and illegible”.

A heuristic method is an algorithm or architecture
that combines heuristics to make adequate decisions
in realistic environments.

The Heuristic Problem Solver is a heuristic method.
An expert is a function or process that uses a
heuristic to advance a problem solving task. HPS
differentiates two types of experts: Producers gen-
erate options for the problem solution or the next
step (command) in the solution process; evaluators
vote on the proposed options, they can also remove
options and propose new ones.

The example of the general heuristic can be used in a
producer by proposing the last issued command to be repeated
as the next command. It can be used in an evaluator by
preferring those proposed commands that are most similar to
the last issued command.

B. Heuristic Problem Solver

The Heuristic Problem Solver (Figure 1) is a blackboard
architecture [5]. The blackboard is a common memory used
by expert processes to exchange information. Action processes
monitor the “discussion” on the blackboard and at appropriate
times pick the highest-rated command and execute it. The
experts may contradict each other, for example one evaluator
may prefer to turn the robot towards the goal, while another
prefers it to turn along its movement trajectory.
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Fig. 1. Architecture of the Heuristic Problem Solver.

We call the data objects on the blackboard chunks. The
evaluators can have a weight between 0 and 1 and their votes
are numbers between 0 and 1. The joint evaluation of a chunk
is a weighted sum of the evaluators’ weights and votes.

This architecture in principle enables a highly flexible, asyn-
chronous decision procedure with intertwined decision-making
on the blackboard and execution in several action processes.
However, a full parallel execution of all the processes makes
debugging a nightmare.

For navigation, we use HPS in a synchronous, cyclic way.
In each iteration, the action process chooses one command and
executes it. An iteration can consist of several decision cycles,
each of which goes through three steps: 1) consulting all pro-
posers, 2) collecting votes from all evaluators, and 3) checking
whether the evaluators agree enough to execute the highest-
rated chunk. If after a decision cycle one chunk surpasses a
fixed threshold (we use 0.4) and its joint evaluation surpasses
the next-best chunk by more than a given percentage (we use
10%), the action process executes it right away. Otherwise
another decision cycle starts: At this point there may be chunks
with incomplete evaluations on the blackboard (those proposed
by evaluators in exchange for some chunk that the evaluator
removed). First the evaluation of these chunks is completed.
After that, those proposers able to produce more than one
command (typically those involving randomness) are called
again and another decision cycle starts. After a maximum
number of decision cycles, the action process executes the
highest-rated chunk regardless of its specific value or the
distance to the second-best chunk.

Since evaluators may remove chunks (e.g. for safety rea-
sons), it may happen that after the maximum number of
decision cycles, there is no command on the blackboard.
For this case, one can specify an emergency command, for
navigation it stops the robot completely. If no applicable
command is found after several iterations, HPS stops with a
failure.

After each iteration, the composition of proposers and
evaluators may be changed.

C. HPS for Navigation

The PR2 robot has an omnidirectional drive. Our chunks
consist of a navigation command (cx, cy, cθ) with cx: transla-
tion forward and backward, cy: translation left and right, cθ:
rotation around robot z axis.



TABLE I
PROPOSERS FOR NAVIGATION. THE RIGHT COLUMN SHOWS THE PARAMETERS OF EACH EXPERT AND THE VALUES WE USED IN THE EVALUATION. c IS

THE COMMAND TO BE RETURNED AS A CHUNK.

Explanation of variables:
robot position: r = (x, y, θ); predicted robot position: r̂ = (x̂, ŷ, θ̂); goal position: g = (xg , yg , θg); robot velocity: v = (vx, vy , vθ); maximum

translational velocity: vmax =
√
v2

xmax + v2
ymax; velocity control command: c = (cx, cy , cθ); maximum velocity command: cmax = (cxmax, cymax, cθmax);

Name Calculation Parameters
Control

P CONTROLLER ∆x = xg − x, ∆y = yg − y
cx = (∆x cos(θ) + ∆y sin(θ)) · ρ
cy = (∆x sin(θ) + ∆y cos(θ)) · ρ
cθ = |θg − θ| · ρ
c = (cx, cy , cθ), scaled between minimum and maxi-
mum control value

ρ = 1.2

REPEAT LAST c = (ci−1
x , ci−1

y , ci−1
θ )

Sampling

DWA DISCRETIZATION

S = {(cx, cy , cθ)|cx from range(0.0, 1.0, step νx),

cy from range(−1.0, 1.0step νy),

cθ from range(−1.0, 1.0step νθ)}
Chunks = remove-unsafe-commands(S)

ν = (0.5, 0.2, 0.2)

RANDOM SAMPLING

draw S = {(cx, cy , cθ)|cx = rand(−cxmax, cxmax),

cy = rand(−cymax, cymax),
cθ = rand(−cθmax, cθmax)}

|S| = η

η = 20

Motion Primitives
STOP c = (0, 0, 0)

MOVE FORWARD c = (rand(0, cxmax), 0, 0)

MOVE BACKWARD c = (rand(−cxmax, 0), 0, 0)

MOVE LEFT c = (0, rand(0, cymax), 0)

MOVE RIGHT c = (0, rand(−cymax, 0), 0)

TURN LEFT c = (0, 0, rand(0, cθmax))

TURN RIGHT c = (0, 0, rand(−cθmax, 0))

TABLE II
EVALUATORS FOR NAVIGATION. THE RIGHT COLUMN SHOWS THE PARAMETERS OF EACH EXPERT AND THE VALUES WE USED IN THE EVALUATION. c IS

THE COMMAND IN THE CHUNK TO BE EVALUATED, e IS THE RETURNED EVALUATION VALUE.

Explanation of variables:
robot position: r = (x, y, θ); predicted robot position: r̂ = (x̂, ŷ, θ̂); goal position: g = (xg , yg , θg); robot velocity: v = (vx, vy , vθ); maximum

translational velocity: vmax =
√
v2

xmax + v2
ymax; velocity control command: c = (cx, cy , cθ); maximum velocity command: cmax = (cxmax, cymax, cθmax)

Name Calculation Parameters
P CONTROL ∆x = xg − x, ∆y = yg − y

cpx = (∆x cos(θ) + ∆y sin(θ)) · ρ
cpy = (∆x sin(θ) + ∆y cos(θ)) · ρ
cpθ = |θg − θ| · ρ
cp = (cpx, cpy , cpθ), scaled between minimum and
maximum control value
e = scale(dist(c, cp), 0, |vmax|)

ρ = 1.2

DWA ALIGN e = scale(|ϕ∆|, 0, α · π) α = 0.5

DWA VELOCITY e =

{ |v|
vmax

if dist(r, g) > ψ

1− |v|
vmax

if dist(r, g) ≤ ψ
ψ = 0.5

DWA GOAL REGION e =

{
0 if dist(r, g) > ψ

1 if dist(r, g) ≤ ψ ψ = 0.5

STOP e = scale(|c|, 0, |vmax|)
GOAL DISTANCE e = max(0, scale(dist(r̂, g), 0, α · dist(r, g))) α = 1.5

GOAL DIRECTION e = max(0, scale(|θg − θr̂|, 0, α · |θg − θr|)) α = 1.5

VELOCITY e = (νt

√
c2x+c2y

vmax
+ νr

∣∣∣ cθ
vθmax

∣∣∣)/(νt + νr) νt = 1, νr = 0.5

MOVEMENT DIRECTION e = max(0, scale(|r̂θ − ϕmotion|, 0, α · π)) α = 0.5

LOOK AT GOAL e = max(0, scale(|r̂θ − ϕgoal|, 0, α · π)) α = 0.5



r = (x, y, θ)

r̂ = (x̂, ŷ, θ̂)

g = (xg, yg, θg)

θ

θ̂

θg

ϕmotion

ϕgoal

ϕ∆

Fig. 2. Angle definitions used by experts.

We now introduce a set of experts for navigation.
a) Proposers: Table I2 shows the proposers, ordered by

their motivations: “Control” contains proposers that compute
one specific command, by calculating the command of a P-
controller or simply repeating the last issued command.

“Sampling” contains standard approaches to discretize from
a sate space (DWA DISCRETIZATION) or to randomly sam-
ple from the state space (RANDOM SAMPLING). A notable
difference is that DWA DISCRETIZATION follows the scheme
of the original Dynamic Window Approach to eliminate all
commands that would lead to a collision in the near future,
whereas RANDOM SAMPLING does not care about safety, it
relies on evaluation experts to remove unsafe commands.

Another set of proposers is motivated by “Motion Primi-
tives”. These proposers generate the simple commands stop-
ping, moving forward, backward and sideward, or turning on
the spot. The magnitude is chosen randomly.

We also experimented with “Command Modifications” (not
shown in Table I), generating new commands from exist-
ing commands on the blackboard, similar to mutation and
crossover operations in genetic algorithms. We did not use
them for the evaluation, because they result in similar behavior
as random sampling (both combined with motion primitives).

b) Safety checks and evaluators: To ensure safe navi-
gation, the Dynamic Window Approach removes all unsafe
commands from consideration. But as the evaluators in HPS
can remove chunks, the other producers ignore safety and we
define two evaluation experts to check for safety, the same
checks are used in the DWA DISCRETIZATION producer: using
the robot’s laser sensor covering 190 degrees of its front and
sides, and a geometric collision check of the robot and tables
or other objects that cannot be easily detected by the laser.

Both safety experts remove a command when it would cause
a collision. The SAFETY-LASER replaces it by one with half
the total translational velocity (the cx and cy components being
reduced by the relative direction in which the collision would
take place). This new command will be evaluated and checked
for safety in the next decision cycle.

As domestic environments have little space to move, we
used very narrow safety margins. Thus it can happen that

2The definitions of the symbols are explained in the table captions and in
Figure 2.

TABLE III
THE ALGORITHMS USED IN THE EVALUATION AS A CONFIGURATION OF

HPS. THE NUMBERS BEHIND THE EVALUATORS GIVE THE USED WEIGHTS.
THE DISTINCTION BETWEEN “CLOSE TO GOAL” AND “FAR FROM GOAL” IS

ALSO IMPLICITLY MADE IN TWO OF THE EVALUATION EXPERTS OF THE
DWA.

Algorithm Proposers Evaluators
PCONTROL P CONTROLLER P CONTROL

DWA DWA DISCRETIZATION DWA ALIGN (0.8)
DWA VELOCITY (0.1)

DWA GOAL REGION (0.1)
HPSNAV STOP SAFETY TABLES (0.3)

MOVE-FORWARD SAFETY LASER (0.3)
MOVE-BACKWARD far from goal:

MOVE-LEFT GOAL DISTANCE (1.0)
MOVE-RIGHT VELOCITY (0.5)
TURN-LEFT MOVEMENT DIRECTION (1.0)

TURN-RIGHT LOOK AT GOAL (1.0)
REPEAT-COMMAND DWA ALIGN (0.5)

RANDOM SAMPLING close to goal:
STOP (1.0)

GOAL DIRECTION (1.0)
LOOK AT GOAL (1.0)

P CONTROL (1.0)

even with the safety checks the Dynamic Window Approach
or HPSNAV can slightly touch obstacles.

If a command is safe, the SAFETY-TABLES expert rates it
with 1. The SAFETY-LASER expert selects the laser beam that
is closest to the projected robot movement and returns the
quotient of the length of the laser beam and the range of the
laser, thus preferring directions with more free space.

All other evaluators are listed in Table II, some angle
definitions are explained in Figure 2. Many evaluators compare
a chunk to some ideal value. For example, the P CONTROL
evaluator calculates the same control command as the P
CONTROLLER proposer and would rate this as the best pos-
sible command with 1. The function scale maps the distance
between a chunk and an ideal command to an output value
between 0 and 1 using a linear interpolation; it takes three
parameters: distance between given value and ideal, minimum
distance (resulting in an output of 1), maximum distance (if
the distance is greater than or equal to the maximum distance,
the rating is 0).

c) Reconfiguration of experts: The DWA VELOCITY and
DWA GOAL REGION experts differentiate between situations
close to and far from the goal. HPS supports a more general
mechanism of changing the proposers and evaluators after
each iteration. For navigation we only use the restricted
distinction of cases as in the Dynamic Window Approach, but
we implement it as a change of experts. The condition is the
same as in the DWA experts: a radius of 0.5m from the goal
differentiates between being close to or far from the goal.

III. EVALUATION

A. Tested Algorithms

HPS can be instantiated in different ways to construct
different navigation algorithms. We evaluate the following
three (see Table III):



PCONTROL implements a standard P-controller, modeled
in HPS by one proposer and one evaluator that both compute
the same command. It has no parameters.

DWA is the Dynamic Window Approach modeled in HPS by
one proposer that removes unsafe commands as in the original
Dynamic Window Approach algorithm and three evaluators,
taken from [4]. The proposer discretizes the space of all safe
commands. As discretization we follow the default configu-
ration of the Dynamic Window Approach implementation in
ROS3, but with a cruder discretization for the rotations, as this
worked just as well and we also evaluate the efficiency of the
decision process. This generates 300 commands (chunks) that
can be reduced if they lead to collisions. The weights of the
evaluators is taken from [7].

HPSNAV uses several proposers: all motion primitives (each
generating one command per decision cycle), repeating the
last command (one per iteration) and randomly sampling
commands (20 per decision cycle). The proposers do not check
for collisions, this is done by the safety evaluators. Pre-tests
showed that pure random sampling is not good or needs a
high number of samples. Motion primitives alone are also
not enough, they should be combined with some additional
randomization.

HPSNAV uses more evaluators than DWA, not only for
safety, but also to account for other aspects of good navi-
gation, especially the robot’s orientation. The evaluators are
re-configured depending on whether the robot is closer or
further than 0.5 m away from the goal. This distinction may
look like a “hack”, but it could also be regarded as a special
case of reconfiguring the experts according to any situation.
Doing this manually is cumbersome, but if adjustments were
learned from observations, it could make the procedure more
powerful. It turned out in pre-tests that the distinction of being
close to or far from the goal improves the navigation behavior
significantly and it is also used in two of the DWA evaluators,
but is there implicit in the formulas.

We did not specifically optimize the weights of the eval-
uators. The parametrizations in Table III worked well in our
tests.

B. Experimental Setup

We defined a course of four navigation goals — defined by
the position and an orientation — through a simulated kitchen
(Figure 3). The single navigation tasks consisted of going from
the start point to goal 1, going from goal 1 to goal 2, and so
on. A goal was registered as being achieved if the robot was
less than 20 cm away from the goal point and achieved its
goal rotation within 0.3 rad (17◦). A timeout of 30 seconds
ended a run if the goal was not achieved, but this did not
happen in the evaluated runs. None of the evaluators in the
DWA configuration considers the robot’s orientation and we
did not include any additional control to turn the robot at the

3ROS: Robot Operating System, coming with packages for standard tasks.
The package dwa_local_planner (http://wiki.ros.org/dwa local planner)
is part of the ROS navigation stack (http://wiki.ros.org/navigation).
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Fig. 3. Course through kitchen, shown in simulator (above) and map (below).
The tasks were to go from the starting pose (S) to a cupboard (goal 1), from
the cupboard to the table (goal 2), from the table to the dishwasher (goal 3)
and from the dishwasher to the door (goal 4) with the orientations as shown.

end. The goal orientation was nevertheless reached in all our
trials.

We used the 3D simulator Morse [13], which provides
realistic physics and an adjustable degree of realism regarding
perception. As we were only interested in the action selection,
we used ground truth perception and a noiseless laser sensor.

Every algorithm was run three times for each goal to
account for variations that come from randomizations in the
experts and uncertainties inherent even in a simulation.

Our goal was to evaluate efficiency, safety and legibility of
the movements. To this end we recorded the robot’s position
at every iteration as well as the state of the blackboard and
afterwards calculated the following measurements:

• duration: the time to reach the goal, for measuring nav-
igation efficiency, which probably also benefits legibility
to some extent [15]. This duration includes some startup
time to register the goal of about 5 seconds, which applies
to all three algorithms.

• chunks: the median number of chunks on the blackboard
at the time of the decision. For PCONTROL this value is
always one, for DWA it is 300 minus unsafe commands,
for HPSNAV it depends on the number of decision cycles
and the reduction of chunks by the safety evaluators. The
maximum is 132. This measure indicates the efficiency
with which decisions are made. If the robot’s only task is
to navigate, this measure is not too relevant with today’s
hardware. But if many different control decisions have to
be taken, it can be relevant.

• collisions: the percentage of iterations in which the

http://wiki.ros.org/dwa_local_planner
http://wiki.ros.org/navigation


robot base overlapped with furniture or a wall in the
environment, calculated in 2D. In our simulation we
switched off the physics for the furniture to allow the
robot to move through objects, so we could observe the
whole trajectory without the robot going to pieces. The
collisions are calculated afterwards based on a 2D map.
This leads to small inaccuracies, for instance it would
be possible for the robot to move below the kitchen bar
without an actual collision. But those miscalculations are
rare and apply to all tested algorithms alike.

• side-/backward: the percentage of iterations in which
the robot moved sidewards (|vy| > |vx|) or backwards
(vx < 0). This is at least one important criterion for the
legibility of the movement. Robots with omnidirectional
drives have the advantage of a high variety of movements,
but they tend to overuse this freedom. People hardly
ever move side- or backwards, so it looks strange. More
importantly, the rotation of the robot can indicate its
intended goal or path and thus help people to anticipate
its movements.

C. Data

Figure 4 shows the data of the just explained measurements
for each individual run. The goal assignments are indicated
by different symbols and the averages of the three runs per
algorithm are connected by lines. Figures 5 and 6 depict one
individual trajectory per algorithms for reaching goals 2 and 3,
showing the robot’s pose at every fifth interval and its overall
trajectory. We show these two tasks as they were the most
difficult ones. The attached video shows the three runs for
goal 3.

Both PCONTROL and DWA move mostly sidewards to reach
the goals, while HPSNAV turns or moves in an arc, looking
into its movement direction, then moves towards the goal and
there corrects the remaining rotation. This strategy was not
explicitly programmed into the algorithm, it emerged from the
combination of the experts that try to steer the robot to the
goal point, but at the same time take care to look towards the
goal or in the movement direction.

We are not the first to note the strong sideward movement of
the Dynamic Window Approach. The ROS implementation has
a parameter “alignment costs”. But we have found no publi-
cation that mentions such a parameter and the implementation
seems to treat the alignment as an additional measure outside
the core Dynamic Window Approach.

D. Discussion

In our experiment, all three algorithms reach the goals fast
and reliably. For DWA and HPSNAV we had pre-tests with
different configurations of producers that failed to move from
the cupboard to the table (cp. Figure 5). Those configurations
did not manage to turn the robot away from the cupboard to
move towards the table (cp. Figure 5). The robot then jiggled
around the starting point of the task. It is thus important to
ensure that enough commands are proposed.

Goal 1 (cupboard)
Goal 2 (table)

Goal 3 (dishwasher)
Goal 4 (door)

PCONTROL DWA HPSNAV

10
20
30

duration
s

PCONTROL DWA HPSNAV

50
100
150
200
250 chunks

PCONTROL DWA HPSNAV

10
20
30
40

collisions
%

PCONTROL DWA HPSNAV

10
30
50
70
90

side-/backward
%

Fig. 4. Performance data: The graphs show the data of each trial, the lines
connect the averages from each algorithm.

The chunks on the blackboard at the time of decision are
always one for PCONTROL and somewhere below 300 for
DWA, depending on the obstacles present. The only algorithm
that had a “choice” was HPSNAV by the number of decision
cycles. The maximum number of chunks it could generate in
5 decision cycles was 132, diminished by unsafe commands.
For all runs the median number of decision cycles was 5,
the average lies between 4 and 5, depending on the task. So
HPSNAV usually uses all its available decision cycles, but there
are some clear situations in which it can save time. One may
argue that it is unfair to prescribe 300 chunks to DWA and only
allow a maximum of 132 to HPSNAV . Previous tests showed
that DWA needs a higher number of chunks to perform well
and we wanted to use a configuration in which it moved nicely.
HPSNAV also needs a lot more chunks if it is only run with the
random sampling producer, so the use of “motion primitives”
indeed reduces the number of necessary chunks.

A P-controller is often used to precisely position a robot
in spatially restricted environments, but it does not take into



PCONTROL

DWA

HPSNAV

Fig. 5. Trajectories from cupboard to table (goal 2).

account obstacles. It is therefore no surprise that it produces
the highest number of collisions. The other two are comparable
with respect to collisions. Going to goal 3, HPSNAV produces
significantly more collisions than DWA, but as can be seen
in Figure 6, the robot only slightly touches the furniture.
With higher safety margins this could be resolved and the
detected collisions may not have been real collisions, as they
are calculated in 2D and the robot base would fit under the
kitchen bar.

With respect to the robot orientation, HPSNAV is clearly
better than PCONTROL or DWA, as can be seen both in the
data in Figure 4 and the trajectories in Figures 5 and 6. Neither
P-controller nor Dynamic Window Approach explicitly take
into account the robot’s rotation except for the goal rotation in
the end. For DWA we have to add that the recorded trajectories
come with some randomness in the choice of the command;
using only the three evaluators, the joint evaluations for many
chunks on the blackboard are identical or close together.
The decision therefore also depends on which of the chunks

PCONTROL

DWA

HPSNAV

Fig. 6. Trajectories from table to dishwasher (goal 3).

happens to be in front after sorting the chunks.
HPSNAV generalizes the Dynamic Window Approach in

two ways: 1) by proposing commands rather than filtering
from all available commands and 2) by using more evaluators.
Our evaluation shows that both are beneficial: proposing
relevant commands (by using motion primitives and repeating
the last command together with some randomized proposers
or modifiers) reduces the number of chunks that need to
be evaluated. Newell and Simon [17] described the trade-off
between putting effort in choosing possible next states and the
effort of evaluating those states. But in most search algorithms,
states are at most filtered by rough criteria such as safety and
most of the effort lies in evaluating them. HPSNAV shows at
least for navigation that it pays off to explicitly consider the
choice of states.

More evaluators lead to a better mix of aspects that are rel-
evant for reaching the goal efficiently, safely and legibly. One
concern could be the parametrization of many evaluators. In
the case of navigation we had good results without particular



optimization of the composition and weights of the evaluators.
For other tasks this may be different.

We do not claim that our experts are the best and only ones
for navigation. More important is the insight that a generalized
AI search paradigm and heuristics can lead to robot behavior
that is not only safe and efficient, but also legible for people.
We also made the simplifying assumption that the robot has
access to noisless, ground-truth perceptions. On a real robot,
this is of course not true. Based on the findings in cognitive
science that heuristic decision-making is advantageous in large
worlds, we expect that the heuristic approach of HPS can cope
well with uncertain perceptions and dynamic environments.
But this has to be shown in future work.

IV. RELATED WORK

Nature provides many examples of well-adapted behavior
that is generated by simple heuristic rules. Herbort and Butz
[9] show for a grasping task that people’s decisions can neither
be explained by an optimization method, nor by a simple
rule-based method. Instead, a heuristic combination of both
methods can best explain the observed behavior.

In the domain of navigation and collision avoidance,
Moussaı̈d et al. [16] have suggested a heuristic model to
explain navigation in crowds. Different to most crowd models,
which are usually based on physical models, Moussaı̈d et al.
model each individual with heuristics for navigation decisions,
ensuring both the arrival at the person’s goal position and a
collision-free path. Huber et al. [10] explored human collision
avoidance behavior in crossing situations at different angles.
The behavior of all situations cannot be explained by one
single optimization technique. Rather, the behavior seems to
result from a combination of different mechanisms.

We are only aware of one work in the area of AI where
navigation has been implemented in a heuristic framework.
Epstein [6] implements what she calls “pragmatic” navigation
in her FORR architecture, which provides a heuristic decision-
making mechanism, including decision rules as well as shallow
search strategies. Epstein defines her navigation problems in
a discrete, deterministic grid world with unknown, but static
obstacles.

In the last decade it has become obvious that robot navi-
gation in proximity of people needs special attention. In this
context, several aspects have been explored, such as following
a person, approaching a person, moving in crowds or moving
in formations. Most approaches to human-aware navigation
follow the classical two-stage approach with a global path
planner and a local controller [12]. For example, Sisbot et al.
[19] enhance a global A∗ path planner with human-aware cost
functions for safety, comfort and visibility. Ohki et al. [18]
consider personal space for their path plan together with a
prediction of the human movement. Prediction of human paths
is also a basic component in the work of Bennewitz et al. [3].
They learn motion patterns of office workers and use those for
robot navigation.

HPSNAV is restricted to the role of a local planner. As we
have argued in the introduction, a local planner should be able

to navigate the robot safely and reliably through a normal
room that contains no navigation traps; navigation between
rooms would definitely need a planner. In the field of human-
aware navigation, local planning has mostly focused on how to
predict the movement of people and thus ensure their safety [1,
20]. In this paper, we have not even included a person, but even
in static environments an observer should be able to anticipate
and appreciate a robot’s movements. To our knowledge the
aspect of legibility has so far only been considered for global
planners, not for the controller.

We have evaluated HPSNAV with objective measures in
static environments. It remains to be tested in dynamic
environments, which allow for a much higher variance of
situations. Typical navigation algorithms such as the ones
implemented in ROS behave different in crossing situations
than people [11, 2] and are not really legible [14].

V. CONCLUSION

We have shown that a generalization of the Dynamic
Window Approach makes robot navigation more efficient
(regarding the computing resources) and more legible, while
moving efficiently and safely. The approach builds on the
original AI search paradigm proposed by Newell and Simon
[17], generating prospective commands rather than filtering
them. Both the generation and evaluation are done by simple
heuristics.

We are convinced that this approach is valuable to many
other kinds of decisions in autonomous systems, from control
problems such as grasping to abstract object-related decisions
like when to bring an object to a person. The Heuristic
Problem Solver is an implementation of this basic concept,
enabling the robot to make parallel decisions for different
modalities by using several action processes.
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[14] C. Lichtenthäler, T. Lorenz, and A. Kirsch. Influence of
legibility on perceived safety in a virtual human-robot
path crossing task. In RO-MAN, 2012 IEEE, pages 676–
681, Sept 2012. doi: 10.1109/ROMAN.2012.6343829.

[15] David V. Lu and William D. Smart. Towards more
efficient navigation for robots and humans. In IEEE/RSJ
International Conference on Intelligent Robots and Sys-
tems (IROS), 2013.

[16] Mehdi Moussaı̈d, Dirk Helbing, and Guy Theraulaz.
How simple rules determine pedestrian behavior and
crowd disasters. Proceedings of the National Academy
of Sciences of the United States of America, 108(17):
6884–6888, 2011.

[17] A. Newell and H. Simon. Human Problem Solving.
Prentice Hall, Upper Saddle River, New Jersey, 1972.

[18] Takeshi Ohki, Keiji Nagatani, and Kazuya Yoshida. Col-
lision avoidance method for mobile robot considering
motion and personal spaces of evacuees. In Intelligent
Robots and Systems (IROS), 2010.

[19] Emrah Akin Sisbot, Luis F. Marin-Urias, Rachid Alami,
and Thierry Simeon. A human aware mobile robot

motion planner. IEEE Transactions on Robotics, 23:874–
883, 2007.

[20] P. Trautman and A. Krause. Unfreezing the robot:
Navigation in dense, interacting crowds. In Intelligent
Robots and Systems (IROS), 2010 IEEE/RSJ Interna-
tional Conference on, oct. 2010.

http://onlinelibrary.wiley.com/doi/10.1002/cbdv.200490137/abstract http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=580977
http://onlinelibrary.wiley.com/doi/10.1002/cbdv.200490137/abstract http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=580977
http://onlinelibrary.wiley.com/doi/10.1002/cbdv.200490137/abstract http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=580977
http://hcai.in.tum.de/_media/spezial/bib/kruse12legible.pdf
http://hcai.in.tum.de/_media/spezial/bib/kruse12legible.pdf
http://www.sciencedirect.com/science/article/pii/S0921889013001048
http://www.sciencedirect.com/science/article/pii/S0921889013001048

	Motivation
	Approach
	Heuristics
	Heuristic Problem Solver
	HPS for Navigation

	Evaluation
	Tested Algorithms
	Experimental Setup
	Data
	Discussion

	Related Work
	Conclusion

