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The Stable, Center-Stable, Center, 
Center-Unstable, Unstable Manifolds 

AL KELLEY 

Institute for Advanced Study, Princeton, New Jersey 

1. INTRODUCTION 

Our purpose is to give a proof of the existence and smoothness of the 
invariant manifolds in the title for a system of ordinary differential equations 
defined in a neighborhood of a critical point, periodic orbit, or periodic 
surface. In system (1) below when the center equation (y-equation) is absent, 
the existence, and to some extent the smoothness, of stable and unstable 
manifolds is well known (see Theorem 4.1 on page 330 and Theorem 4.2 
on page 333 of Coddington and Levinson [1], for example). For the associated 
perturbed system with no center equation [system (45) below with no 
y-equation] the existence of an invariant manifold called a periodic surface 
or integral manifold is well known [2]-[8]. For smoothness of this manifold 
see [2], p. 480; [3], [8]. Sections 6 and 7 of this paper are in part related to 
the idea of the classical periodic surface. See the remark at the end of Section 6 
and Theorem 5 in Section 7. A discussion of the work of Krylov-Bogoliubov­
Mitropolsky [2], [6], Diliberto [3], and Levinson [7] occurs in Hale [4]. 
The techniques we use in this paper are closely related to those of Krylov­
Bogoliubov-Mitropolsky. 

For Hamiltonian systems or systems of differential equations with an 
integral, the existence of two-dimensional subcenter manifolds (invariant 
manifolds related to pairs of imaginary eigenvalues) is known; see, for 
example, [9]-[12]. Lykova [13], [14] seems to have been the first to consider 
systems from the manifold standpoint with a center equation present but 
without an integral. However, she considered only the two-dimensional 
center case. Chen [15] has considered a corresponding problem for diffeo­
morphisms in the one-dimensional and two-dimensional center case. With 
no restriction on dimensions the center-stable, center, center-unstable 
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manifolds have occurred only recently in the work of Pliss [16] and Kelley 
[/7], [18]. The theorem of Pliss states (without going into detail) that the 
stability of the center-stable manifold is completely determined by the 
stability of the center manifold. Although Pliss only proved the theorem for 
systems of ordinary differential equations in a neighborhood of a critical 
point, the same theorem is true for systems in a neighborhood of a periodic 
orbit or periodic surface. A proof of this extension to the Pliss theorem is 
given in [18]. In (17] is found an elementary application of the concept of 
the center manifold to Hamiltonian systems of equations. 

Professor J. Hale has brought to our attention many of the references for 
this paper-in particular, [2], [4], [6], [7], [13], and [14]. The referee has 
pointed out that Lemma 2 below is a direct consequence of Gronwall's 
inequality since the right-hand derivative of the absolute value is less than 
or equal to the absolute value of the derivative. Section 4 of the present 
paper is due to D. V. Anasov. 

2. NOTATION 

The norm I · I will represent the Euclidean norm on vectors and the 
operator norm on matrices, and ( ·, ·) will represent the usual scalar product 
on pairs of vectors. If F = F(p) is a smooth vector valued function of the 
vector p, then F '1) will represent the Jacobian matrix of partial derivatives. 
D~ will designate the usual partial differential operator; D~ = (}IPijop'I_t ... op~", 
where p = (p1 , ... , Pn) is ann-tuple of nonnegative integers, I pI= p1 + ... + Pn, 
and n = dimp. In the proof of Lemma 3 below, it will be convenient to 
use the notation p = p1 + p2 , where plj = 1, 2) designates an n-tuple 
rather than a component of an n-tuple. The meaning will be clear from the 
context. 

3. INVARIANT MANIFOLDS 

Consider the real, Ck( 1 ~ k < oo) system of ordinary differential equations 

e =a+ B(e, x,y, z), x =Ax+ X(O, x,y, z), 
(1) 

y = By + "?(0, x, y, z), z = Cz + 2(0, x,y, z), 

where A, B, C are constant square matrices in real canonical form; A has 
eigenvalues with negative real parts; B has eigenvalues with zero real parts 
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(B ="' 0 is allowed); C has eigenvalues with positive real parts; 8, x, etc., are 
vectors; a is a constant vector; e, X, r, 2 are defined and Ck in 

N 8 = {(8, x, y, x)l8 arbitrary, I x I + I y I + I z I < 8}, 

and have multiple period w in 8; e, x, f, Z, (X, :f, Z)(x,y,z) = o when 
(x,y, z) = 0. 

Equation (I) represents a system of ordinary differential equations in a 
neighborhood of a critical point, periodic orbit, or periodic surface, depending 
on whether 8 is absent from (I), dim() = I, or dim 8 > I, respectively. 
In the last two cases the condition a cj= 0 would also hold, but for our 
purposes one need not assume anything about a except that it is constant. 

THEOREM 1. For system (1) with 3 ~ k < oo, there exists invariant 
manifolds 

M+ = {(8, x, y, z)l() arbitrary, I x I < 81 , y = v+(8, x), z = w+((), x)}, 

M- = {(8, x, y, z)l() arbitrary, x = u-((), z), y = v-((), z), I z I < 81}, 

where v+, w+, u-, v- are real vector-valued functions defined and Ck-Z in some 
neighborhood N 8 for 81 sufficiently small; v+, w+, u-, v- have multiple period w 
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in (); v+, w+, u-, v-, (v+, w+, u-, v-)(x.z) = 0 when (x, z) = 0; M+, M- are 
(locally) unique. 

For system (I) with 2 ~ k < oo there exist invariant manifolds 

M*+ = {(8, x, y, z)IB arbitrary, I x I + I y I < 81 , z = w*+((), x, y)}, 

M* = {(8, X, y, z)l8 arbitrary, X = u*((), y), I y I < 81 ' z = w*((), y)}, 

M*- = {((), x, y, z)l() arbitrary, x = u*-(8, y, z), I y I + I z I < 81}, 

where w*+, u*, w*, u*- are real vector-valued funct£ons defined and Ck-l in 
some neighborhood N

81
for 81 sufficiently small; w*+, u*, w*, u*- have multiple 

period win 8; w*+, u*, w*, u*-, (w*+, u*, w*, u*-)(x,y,z) == 0 when (x,y, z)= 0 
(M*+, M*, M*- need not be unique). 

The invariant manifolds M+, M*+, M*, M*-, M-are called, respectively, 
the stable manifold, the center-stable manifold, the center manifold, the 
center-unstable manifold, and the unstable manifold. 

Proof Introducing the scalar change of variables (x, y, z) ---+ (.\x, .\y, ,\z) 
and multiplying e, X, r, 2 by r/>(1 X 12 + I y 12 + I z 12 + K.\2) where K is 
a sufficiently large positive constant and r/>(r) is a C00 real-valued function 
satisfying rp(r) === I for 0 ~ r ~ t and ,P(r) === 0 for I ~ r < oo, we obtain 

0 = a + E>(8, x, y, z, ,\), x = Ax + X(8, x, y, z, .\), 
(2) 

y = By + Y(8, x, y, z, .\), z = Cz + Z(8, x, y, z, .\), 
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where 

e(e, X, y, z, A) = c/>(1 X 12 + I y 12 + I z 12 + KA2)B(e, Ax, Ay, .\z), 

X(e, x, y, z, A) = 4>(1 X 12 + I y 12 + I z 12 + KA2)A-1X'(e, Ax, Ay, .\z), 

etc., and the following conditions hold. 

(2i) e, X, Y, Z exist and are continuous for all (e, x, y, z, A) and for 
each A fixed are Ck in (e, x, y, z). 

(2ii) e, X, Y, Z have multiple p.eriod w in e. 
(2iii) e, X, Y, Z, (X, Y, Z)c,, 11 ,z> == 0 when (x, y, z) = 0. 
(2iv) e, X, Y, z == 0 for I X 12 + I y 12 + I z 12 ~ 1. 
(2v) D~e.x,y,z)(B, X, Y, Z)--* 0 uniformly in (e, x, y, z) as A--* 0 for 

o ~I pI~ k. 

If A ::1= 0, then systems (1) and (2) are locally (near {(e, x, y, z)le arbitrary, 
(x, y, z) = 0}) related by a scalar change of variables. Therefore it 
is sufficient to prove Theorem 1 for system (2). More precisely, however, 
we will prove Theorem 2 which will imply Theorem 1. 

THEOREM 2. For system (2) with 3 ~ k < oo there exists invariant 
manifolds 

M;.+ = {(e, x,y, z)le arbitrary, I xI < 1, y = v+(e, x, A), 
z = w+(e, x, A), I A I < S}, 

M~.- = {(e, x, y, z)le arbitrary, x = u-(e, z, A), y = v-(e, z, A), 
I z I < 1, I A I < S}, 

where the following conditions hold. 

(3 i) v+, w+, u-, v- are real vector-valued functions defined and continuous 

in 

N1
8 = {(e, x, z, A)le arbitrary, I xI + I z I < 1, I A I < S} 

for some S > 0 sufficiently small, and for each A fixed these functions are Ck-2 

in (e, x, z). 

(3 ii) v+, w+, u-, v- have multiple period win e. 
(3 iii) v+, w+, u-, v-, (v+, w+, u-, v-)(x,z) - 0 when (x, z) = 0. 

For system (2) with 2 ~ k < oo there exist invariant manifolds 

M[+ = {(e, x, y, z)l(e, x, y) arbitrary, z = w*+(e, x, y, A), I A I < S}, 
Mt = {(e, x, y, z)l(e, y) arbitrary, x = u*(e, y, A), z = w*(e, y, A), I A I < S}, 

Mt- = {(e, x, y, z)l(e, y, z) arbitrary, x = u*-(e, y, z, A), I A I < S}, 

where the following conditions hold. 
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(3 iv) w*+, u*, w*, u*- are real vector-valued functions defined and 
continuous in 

N 6 = {(0, x, y, z, A.)I(O, X, y, z) arbitrary, I A I < o} 

for some 8 > 0 sufficiently small, and for each A fixed these functions are Ck-I 

in (0, x, y, z). 

(3 v) w*+, u*, w*, u*- have multiple period win 0. 

(3 vi) w*+, u*, w*, u*-, (w*+, u*, w*, u*-)<x.y,z) == 0 when (x, y, z) = 0. 
Moreover, MA+, MA- are (locally) unique (but M'f+, M'f, Mf- need not be). 

Proof. Let (tfo, t, YJ, ~) where tfo = t/J(t) = !f(t, 0, x, y, z, A.), g = t(t) = 
t(t, 0, x, y, z, A.), etc., represent the unique solution of (2) with initial condition 
(0, x, y, z) at t = 0. From (2 i, iv) the solution exists and is continuous for all 
(t, 0, x, y, z, A.) and for each A fixed is Ck in (t, 0, x, y, z). 

The functions v+, w+ which determine MA +will now be constructed as the 
unique solution to the differential-integral system 

() = a + 6J(O, x, v+(O, x, A.), w+(O, x, A.), A.), 
(3a) 

x = Ax + X(O, x, v+(O, x, A.), w+(O, x, A.), A.), 

v+(O, x, A.) = r e-BaY(!f+, g+, v+(!f+, g+, A.), w+(!f+, g+, A.), A.) da, 
+oo 

0 . 

w+(O, x, A.) = J e-caz(!f+, g+, v+(!f+, g+, A.), w+(!f+, g+, A.), A.) da, 
+oo 

(3b) 

where (tfo+, g+) with tfo+ = !f+(t) = !f+(t, 0, x, v+, w+, A.), g+ = g+(t) = 
g+(t, 0, x, v+, w+, A.) represents the unique solution to (3a) with initial condition 
(0, x) at t = 0. To explicitly designate the functional dependence of the 
solution of (3a) on v+, w+, these functions are included in the arguments of 
tfo+, g+. In (3b) the functions tfo+, g+ occurring in the integrand are understood 
to be !f+(a) = !f+(a, 0, x, v+, w+, A.), g+(a) = g+(a, 0, x, v+, w+, A.). 
Assuming (3) has a unique solution (v+, w+), v+ =v+(O, x, A.), w+ = w+(O, x, A), 
which satisfies conditions (3 i-iii), we can easily show that MA+ is an invariant 
manifold for system (2). Since (3a) is an autonomous system, 

!f+(a, !f+(t, 0, x, v+, w+, A), g+(t, 0, x, v+, w+, A), A.) 
= !f+(t + a, 0, x, v+, w+, A.), 

g+(a, !f+(t, 0, x, v+, w+, A), g+(t, 0, x, v+, w+, A), v+, w+, A.) 
= g+(t + a, 0, x, v+, w+, A.). 
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Replacing (8, x) in (3b) by (rjJ+(t), ~+(t)), we have 

v+(ifi+(t), g+(t), .\) = r e-B<>Y(rp+(t +a), ... ) da 
+"' 

= r e-B(T-tlY(!fo+(r), ... ) dr, 
+OJ 

w+(ifi+(t), g+(t), .\) = r e-cuz(rjJ+(t +a), ... ) da 
+oo 
t 

= J e-C(T-tlZ(rp+(r), ... ) dr. 
+oo 

Let v+(t) = v+(rjl+(t), g+(t), .\), w+(t) = w+(rjJ+(t), g+(t), .\); then a direct 
calculation shows 

(djdt)v+(t) = Bv+(t) + Y(rjJ+(t), g+(t), v+(t), w+(t), .\), 

(djdt)w+(t) = Cw+(t) + Z(.p+(t), g+(t), v+(t), w+(t), .\). 

Because solutions of (2) are unique, 

rp(t, 8, x, v+(8, x, .\), w+(8, x, .\), .\) = ifi+(t, B, x, v+, w+, .\), 

g(t, 8, x, v+(8, x, .\), w+(8, x, .\),A) = g+(t, 8, x, v+, w+, .\.), 

TJ(t, 8, x, v+(O, x, .\.), w+(O, x, .\), .\.) 
= v+(rjJ+(t, 8, x, v+, w+, .\.), g+(t, 8, x, v+, w+, .\), .\.), 

((t, 8, x, v+(O, x, .\), w+(O, x, ..\), .\) 
= w+(ifi+(t, 8, x, v+, w+, .\), g+(t, 8, x, v+, w+, .\), .\.), 

and MA + is an invariant manifold for (2). 
To solve (3), inequalities involving the matrices A, B, Care basic. 

LEMMA l. There exists fl. > 0, y;;;:;, 0, ifl. > y, such that, for all x, y, z, 

and these inequalities imply 

(Ax, x) ~ -2/l.l x 12, 

I (By,y) I~ riY 12, 

<Cz, z) ;;;:;, 2!1.1 z 12 

1 t!Jt 1 ~ e;viti (-OJ< t <OJ), 

(4) 

(5) 
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This lemma is well known and the proof is omitted. These inequalities are 
introduced as a lemma because they are used extensively below. 

We now develop a useful generalization of an inequality used by Hale [5]. 

LEMMA 2. Let a be a nonnegative constant, and let b(t) be a continuous 
real-valued function defined on a finite or infinite interval I which contains the 
origin. If cp(t) is a C1 vector or matrix which satisfies 

I g;(t) I ~ al cp(t) I + b(t), tEl (6) 

then 

Proof. From (6) fort~ 0, 

I cp(t) I - I cp(O) I ~ I cp(t) - cp(O) I = If: g;(-r) dr I 
~ It I g;(r) I dr ~ r {al cp(r) I + b(r)} dr. 

0 0 

Therefore, 

I cp(t) I ~ I cp(O) I + ( {al cp(r) I + b(-r)} d-r. (7) 

Consider the scalar function rp(t) defined by 

r/;(t) = arp(t) + b(t), rfo(O) = I cp(O) I· 

Thus 

tfo(t) = lcp(O) I + r {atfo(r) + b(r)} dr. 
0 

(8) 

Subtracting (8) from (7), we obtain 

I cp(t) I - tfo(t) ~ f a{l cp(-r) I - t/J(r)} dr 
0 

and it now follows from the Gronwall inequality ([1], problem I, Chapter 1) 
that, fort~ 0, tEl, 

The proof for t < 0 is similar. This completes the proof of Lemma 2. 
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We now proceed to solve (3) by means of a contraction mapping in a 
Banach space. For l, m positive integers define 

Im! = {x = x(8, x) satisfying (9i-v)}. 

(9 i) X is a real vector-valued function defined and C! for all 8 and 

I X I< 1. 
(9 ii) dim x = m. 

(9 iii) x has multiple period w in 8. 

(9 iv) x, Xx = 0 when x = 0. 

(9 v) II X II = max sup sup I 1Y(9,o:)X(8, x) I < 00. 
o,; [PI,;; l 6 [x[ <I 

With the norm II ·II given in (9 v), Im! is a Banach space. Define Xm 1 to be 
the closed unit ball in Im1• 

Let Iv! = I~im Y , etc. For v E 1:~-1 , wE l:~-I, 2 "( k < oo, consider the 
system 

0 = a + f9(8, x, v(8, x), w(8, x), A.), 
(10) 

x = Ax + X(8, x, v(B, x), w(8, x), A.), 

where 
tj/V,W) = .p = tjl(t) = tjl(t, 8, X, V, W, A), 

( 11) 
g(v,w) = g = g(!) = g{t, 8, X, V, w, A.) 

represents the unique solution of (10) with initial condition (8, x) at t = 0. 

LEMMA 3. For 0 "( t < oo, all 8, I xI < 1, v E l:~-1, wE l:!-I, I A I < S0 
with S0 > 0 chosen sufficiently small, the solution (t/J, g) of (10) [given explicitly 
in (11)] exists and satisfies 

(11 i) I g(t) I "( r~'tl x J, 
(11 ii) I D~e.xlifl(t) I "( ex(t)ell(~) t (1 "( I PI "( k - 1), 
(11 iii) I D~e.x)g(t) I "( ex(t)e(-1'+/l(~)) t ( 1 "( I p I "( k - 1 ), 

where ex(t) is a polynomial in t with positive coefficients, f3(A.) ~ 0 is continuous 
in A., f3(A.)---->- 0 as A---->- 0; these inequalities are uniform in 8, v E l:=-1, w E l:~-1, 
and (11 ii, iii) hold uniformly in I x I < 1 also. 

Proof. The proof is accomplished in a finite number of steps wherein 
we find a succession of ex's and f3's. In (11 ii, iii) we take ex and f3 to be the 
largest of the ex's and f3's constructed, respectively. 
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IfF = F(B, x) is any smooth vector-valued function of (8, x), then 

F(B, x') -F(B, x") = r Fx(B, sx' + (1 - s)x") ds • {x'- x"}. 
0 

In particular if F(B, 0) - 0, then 

F(B, x) = r Fx(O, sx) ds. X. 
0 

Thus from (2 iii), (9 iv), for v E X111, wE X/, I xI < 1, we have 

X(B, x, v(B, x), w(B, x), ,\) = r {Xx(B, sx, v(B, sx), w(B, sx), ,\) 
0 

+ Xy(B, sx, ... )vx(B, sx) 

+ X.(B, sx, ... )wx(B, sx)} ds • x. 

Hence from (2 v), 

I X(B, x, v(B, x), w(B, x), ,\) I < fLI x I, (I X I < 1, I,\ I < 80) (12) 

for o0 > 0 sufficiently small. From (4), (10)-(12) with I x I < I, I,\ I < o0 , 

t = Ag + X(rp, g, v(rp, g), w(rp, g),,\), 

(djdt)l g 1
2 = 2(Ag, D + 2(X(rp, g, ... ), t), 

(dfdt)l g 12 < -4~LI g 12 + 21 X II g I < -2~LI g 12, 

which implies inequality (11 i) and the existence of (rp, g) as stated. From (10), 

~<e.x> = [8e + eyve + e.weN<e.x> + [ex + euvx + e.wx]g<e.x» 
(13) 

t(e.x) =[A+ Xx + XyVx + x.wx]g<e.x) + [Xe + XyVe + x.we]ifl<e.x)> 

where 8 8 = 8 8(rp, g, v(rp, g), w(rp, g),,\), etc. Since the matrix [in (13)] 

as,\--+ 0, it follows from (4) for I,\ I < o0 , o0 restricted further if necessary, 

(14) 

for all real vectors p, dim p = dim x. The procedure used to obtain (12) also 
yields 

I Xe + Xuve + X.wel < .81(,\)l g I < .81(,\)e-,.t (15) 
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for I xI < 1 where Xe = X 6(1/l, g, ... ), etc.; {31(>..) ~ 0, {31(>..)--+ 0 as A--+ 0. 
From (2 v) and (13)-(15), 

I f<e.x) I ,::;; /32(>..) 11/J<e.x) I + /32(>..) lg(e,x) I, 
(dfdt) lg<e.x) 12 ,::;; -2fLI g(e,x) 12 + 2{32(..\)e-l'tl!fl<e.x) II g(e,x) I, (16) 

11/J<e.x)(O) I = I g(e.x)(O) I = 1, I X I < I, I,.\ I <Do, 

where {32(>..) ~ 0, {32(>..)--+ 0 as)..-+ 0. From Lemma 2 for 0 ,::;; t < oo, 

so that 

(dfdt)l g(e,x) 12 ,::;; - 2~--tl g(e x) 1
2 + 2{32(/..)e-~'tefl•<:t>t 

X l1 + S: e-fl.<.\>~1 g(e.x)('r)[ dr!l g(e.x) I· (18) 

By restricting D0 further if necessary, we may assume {32(>..) < f.t for I).. I ~ D0 

so that near t = 0, I g(e,x)(t) I is a decreasing function of t; I g(e,x)(t) I ,::;; I 
for 0 ,::;; t < E, E > 0 sufficiently small. Now compare (18) with the real 
scalar equation 

with the initial condition f (0) = 1. As long as If (t) I ,::;; 2 holds, it follows 
that 

I g(e,x)(t) I ,::;; f (t). (20) 

From (19) 

j = - fLf + {32(/..)e<-l'+fl.(A)}t ! 1 + r e-fl.(.\h2dr!. 

Since f (0) = I, the inequality j ~ -f.tf implies f ( t) > 0 for 0 ,::;; t < oo. 
Thus 

J,::;; ( -~--t + /32(/..)) f + {32(>-.)e<-l'+fl.<mt{l + 2t}, 

f (t) ,::;; {1 + f32(A)(t + t2)}e<-1'+fl2 <mt, 

and by restricting D0 further if necessary we have If (t) I ,::;; 2 for 0 ,::;; t < oo 
so that (20) holds for all 0 ~ t < oo. Hence we have proved (11 iii) for 
I p I = 1. The crude inequality I g<e.x>(t) I ~ 2 in (17) yields 

10



so that (11 ii) holds for I p I = I. We now proceed inductively. Let 
DfB,x)rf = rfp, D(e,x)g = qP, and consider the case p = p1 + p2 , I p1 I = 
I P2l =I, I pI = 2. Assuming k;? 3 (otherwise we are done), we have 
from (10) 

~p = [61 8 + Buve + e.we]fp 

+ [61., + Buvx + e.w.,]qp + 6188fp.fp, + ... , 
gp = [A+ X.,+ Xuvx + X.w.,]qp 

(21) 

+ [X8 + Xyv 8 + X.wa]!f" + X.,e!fpip, + .... 

The notation Beerfp
2
rfp

1 
, etc., is defined by writing out (21) in complete detail. 

Since (II ii, iii) hold for I p1 I = I p2 l = I, we obtain from (21) 

I ~PI ~ .Sa(A)I!ftP I + ,83(A)I qP I + ,83(A)rx1(t)efl,Wt 

(dfdt)l gp 12 ~ -2/LI gp 12 + 2,83(A)e-~'1 l!ftp II gp I + 2,83(.\)rxl(t)e!-t.•+fl.w>tl gp I, 

l!ftp(O) I = I gp(O) I = 0, (22) 

where rx1(t) is a polynomial with positive coefficients and ,83(A) ;? ,82(,\) ;? 0, 
,83(A) ~ 0 as A ~ 0. From Lemma 2 

Since I qP(O) I = 0, it follows that near t = 0 

(23) 

and as long as this inequality holds, it follows that 

(24) 

where 

rxlt) = r {I + rx!(T)} dr. 
0 

Using inequality (24) in (22) we have 

Comparing this differential inequality with the scalar equation 

(djdt)f2 = -21Lf2 + 4,BiA)rx3(t)e<-!'+fJ,<;>.>>tl, 1(0) = t, 
j = -~L I+ 2,Bi.\)rxa(t)e<-!'+fl,u))t, I (0) = t, 
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where exa(t) is a polynomial in t with positive coefficients, exa(t) ~ cx2(t), 
exa(t) for 0 ~ t < oo; {3-t(>..) ~ {33(>..), [f.Ja(>..)]2 ~ 0; f.Ji>..)-+ 0 as >..-+ 0; it 
follows that 

(25) 

fort ~ 0 as long as I gP(t) I ~ 1. Since 

j ~ -fl-f, f(O) = t, 

we havef(t) > 0 for 0 ~ t < oo, so that 

j ~ ( -~L + f.Ji>..))f + 2,Bi>..)exa(t)e<-"+ll,<-'llt, 

f(t) ~ e<-1'+/l,<-'llt ~~ + J: 2,Bi>..)cxa(r) drl. 
(26) 

Thus by restricting 80 further, if necessary, it follows that f (t) ~ 1 for 
0 ~ t < oo and hence (23)-(25) are valid for all 0 ~ t < oo. Inequalities (24)­
(26) show that (11 ii, iii) hold for 1 ~ I p I ~ 2. By continuing in this 
manner (a finite number of steps), one proves (11 ii, iii) valid for all1 ~ I p I 
~ k - 1. This completes the proof of Lemma 3. 

For v E X~-1, wE X~-1, define 

where 

(T1v) (II, x) = fo e-»ay<v,wl da, 
+o:> 

(Tzw) (8, x) = r e-caz<v,w) da, 
+oo 

y<v,wl = Y(!f<v,wl, g<v,wl, v<v,wl, w<v,wl, >..), 

z<v,wl = Z(!f<v,wl, g<v,wl, v<v,wl, w<v,wl, >..), 

v<v,w) = v(!f<v,w)' g<v,wl), 

w<v,w) = w(!f<v,w), g<v,wl), 

(27a) 

(27b) 

and (!fo<v,wl, g<v,wl) is the solution of (10) which is given explicitly in (11). 
For (v, w) E X~-1 X X~-1 define 

T(v, w) = (T1v, T2w). 

LEMMA 4. For 2 ~ k < oo and for I A I ~ 81 ~ 80 , 81 > 0 sufficiently 
small, the transformation T maps X~-1 X X~-1 into itself and is a contraction 
in the Ck-z topology: 

ll(v, w)ll = max (II vII, II w Jl), 

II ·11 =II •lik-2 = max sup sup I D'(e.a:l • j. 
o<;: IPI<;:k-2 e 1"'1 <1 
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Proof. The fact that T maps .I~-1 X .I~-1 into itself for 1 A I ~ 81 , 81 

sufficiently small, is an immediate consequence of (2 iii, v), (5), and Lemma 3. 
To show that T is a contraction in the Ck-2 topology, it is sufficient to 

show that T1 is a contraction on .I~-1 in the Ck-2 topology uniformly in 
w E .I!-I, and similarly that T2 is a contraction on .I~-1 in the Ck-2 topology 
uniformly in v E .I~-1 • We will give the argument for T1 ; the argument for 
T2 is completely analogous. To show T1 a contraction, it is sufficient to show 
uniformly in e, I X I < I, I A I ~ 81' wE x;-1, 0 ~ I pI ~ k- 2, that the 
inequality 

(28) 

holds for vi, v2 E .{~-1. 
Let (yi, gi) = (tjJ(vi,w>, g(vi,w>), (j = 1, 2), and let P = y(v;,w) = 

Y(tjJi, g1, ... ),(j = I, 2). To prove(28)we will show that uniformly in{}, I xI <I, 
I A I ::;:;; 81 , wE .I~-1 , 0 ~ I p I ~ k - 2, the inequalities 

I D~e.xM1 - tjJ2)1 ~ cx(t)eflWt II vl - v211, 
(29) 

I D~e.x)W - g2)1 ::;:;; cx(t)eh•+J'I(,\))t II v 1 - v 2 ll 

hold where cx(t) is a polynomial in t with positive coefficients, {3(A) ;:?: 0 is 
continuous in I A I ~ 81 , {3(A) --* 0 as A -+ 0. If we suppose (29) valid, then, 
by restricting 81 to be sufficiently small, inequality (28} is immediate. One 
computes from (27) 

D{e.xl(T1v1 - T1v 2) = r e-B"D(e,xl(YI - Y 2
) da 

+oo 

and then uses (2 iii, v), (5), Lemma 3, and (29) to verify that the interchange 
of differentiation and integration is valid and that {28) holds. The mean-value 
theorem as presented at the beginning of the proof of Lemma 3 is used 
repeatedly. 

Hence it remains to prove (29). From (10), 

(dfdt)(tjJ1 - tjJ2) = (91 - (92, 

(djdt)(e - g2) = A(e - g2
) + X 1 

- X 2
, 

(30) 

I (dfdt)(tjJl - ifJ2) I ~ I f91 - f92 J, 

(d(dt)l g1 _ g2 12 = 2<A(g1 _ g2), gt _ g2) + 2<x1 _ x2, g1 _ g2) 
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and, from inequality (4), 

Using the mean value theorem, we obtain 

I eJl - e2 I ,s;; ~l(A){I t/J1 
- t/J2 I + I e - e I + I v1(t/JI, e) - v2(t/J2

, g2
) I 

+ I w(t/JI, e) - w(t/J2, g2) 1}, 

where (31(A) ~ 0, ~1(A) -+ 0 as A-+ 0. Since 

and v1 E i~-I, w E i~-I, we have 

1 v1
( t/J\ e) - v2

( t/12
, e) I ,s;; I t/J1 

- t/J2 I + I e - g
2 I + II v1 

- v2 II, 
(31) 

Thus 

where ~2(A) = 3~1(A) ~ 0, (32(A)-+ 0 as A-+ 0. By using properties (2 iii, v) 
and applying the mean-value theorem, we obtain 

I XI - X 2 I ,s;; /33(A){I g1 I + I gz I} ·{I t/J1 
- t/J2 I 

+ I g1 _ gz 1 + I vl(!fl, g1) _ v2(!f2, e) 1 

+ I w(t/J\ e) - w(t/J2
, e) 1}, (32) 

where {33(A) ~ 0, (33(>..)-+ 0 as A-+ 0. From (11 i) for I xI < 1, 

I e(t) I + I g2(t) I ,s;; 2e-~'t, 

so that (31) and (33) in (32) yields 

I X 1 
- X 2 I ,s;; (34(>..)r~'t{l tf1 - t/J2 I + I g 1 

- gz I + II v1 - v2 ll}, 

(33) 

where (34(>..) ~ {33(A) + f3lA) ~ 0, (34(>..) -+ 0 as A-->- 0. By restricting <\ to 
be sufficiently small we may assume (34(A) ,s;; JL for ) >.. ) ,s;; 81 ; then from (30) 
we finally obtain 

I (d/dt)(t/11 - t/12
) I ,s;; f3i.\){l t/11 - t/12 I + I g1 

- e2 I + II v1 
- v2 1\}, (34a) 

(dfdt)l e - g 2 12 ,s;; -2fLI gl - e2 12 

+ 2(3iA)e-~'t{l !fl- t/12 I + \1 vi- v211}. I gl- g2(. (34b) 
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Since rftl(O) - rp2(0) = 0, we have from (34a) and Lemma 2, for t ~ 0, 

Since g1(0) - gz(O) = 0, the inequality 

(35) 

is valid in some neighborhood of t = 0, and as long as (35) remains valid 
(t ~ 0), 

I rp1(t) - rp2(t) 1 ~ 2,84(,.\)tefl,CAltiJ v1 - v21J. 

Using (36) in (34b) we obtain 

(dfdt)l e _ g2 12 ~ _ 2,.,1 g1 _ g2 12 
+ 2,84(-\)a:1(t)eh•+fJ4WHIJ vi - v2 11 • 1 g1 _ g2 I, 

where a:1(t) = 1 + 2,84(-\)t. Comparing (37) with the scalar equation 

with f (0) = ill v1 
- v2 II > 0, we see that 

holds so long as (35) remains valid. From (38), 

j = -p.f + ,Bi-\)a:t(t)eh<+llplltjl vi - v211 

and since, for 0 ~ t < oo, 

is valid, it follows thatf(t) > 0 for 0 ~ t < oo and therefore 

where 

j ~ ( _,_, +,Bit..))/+ ,84(/..)o:l(t)eh+fJ,O.Jltll vl - v2JI, 

f(t) ~ el-i•+f3,WJt g II v1 - v211 + ( ,84(/..)cxt(r) drl/ v1 - v2 II I, 
f(t) ~ j~ + ,84(A)a:2(t)leh+!l,WJtll vi - v2 II, 

(36) 

(37) 

(39) 
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Therefore, by restricting o1 further if necessary, we have for I ,\ I :s;;; 01 that 

f(t):s;;;llv1-v21J 

holds for all 0 :s;;; t < oo. Thus (35)-(37) and (39) are valid for all 0 :s;;; t < oo 
and (29) is proved for the case I p I = 0. 

Assuming that k ? 3 (otherwise we are finished), we now want to show 
that (29) is valid for 1 pI = 1. Let D~e.x)tf1 = t/J/, etc. Then from (10), 

(dfdt)(tfi/ - tfp2) = Be1tP/ - Be2tfp2 + Bx1t/ - e,2t/ + ···, 
(dfdt)(t/ - tp2

) = A(t/ - tp2
) + Xitfi/ - X 8

2t/lp2 +. ···, 
and, by means of (2 iii, v), Lemma 1, Lemma 3, inequality (29) for the case 
I p I = 0, and the mean-value theorem, one achieves 

I (dfdt)(t/J/ - t/Jp2 I :s;;; .Bs(.\){1 t/J/ - t/Jp2 1 + I t/ - tp2 1} 
+ ,85(.\)<Xa(t)e-861mll V

1 
- V

2 II, 

(dfdt)l t/ - gp2 12 :s;;; - 2fLI e - g2 12 + 2,85(.\)<Xa(t)eh'+!!,Wlt • 

·{I t/J/ - t/Jp2 I + II v1 
- v2 ll} · I e - e I, 

where <X3(t) is a polynomial in t with positive coefficients, ,85(.\) ? 0, ,85(.\)-+ 0 
as ,\ -+ 0. By restricting o1 further if necessary, one now readily establishes 
that (29) is valid for all I p I :s;;; 1. In an analogous manner one proceeds 
inductively (a finite number of steps) to establish(29) for all 0 :s;;; I p I :s;;; k-2. 
This completes the proof of Lemma 4. 

The fixed point of the transformation T is designated v+ = v+(8, x, .\), 
w+ = w+(8, x, .\), and these functions define the stable manifold MA+· 
The unstable manifold MA- is constructed in an analogous manner. 

The function w*+ = w*+(8, x, y, ,\) which defines the center-stable 
manifold M[+ is taken to be the unique solution to the differential-integral 
system 

e = a + 8(8, x, y, w*+(8, X, y, ,\), ,\), 

x = Ax + X(8, x, y, w*+(8, x, y, .\), .\), 

y = By + Y(8, x, y, w*+(8, x, y, .\), .\), 

w*+(8, x, y, .\) 

(40a) 

= r e-CaZ(tfi*+, t*+, 17*+, w*+(tfJ*+, t*+, 17*+, .\), .\) da, (40b) 
+"' 

where tfi*+ = tfi*+(t) = tfi*+(t, 8, x,y, w*+, .\), t*+ = ···, 1)*+ =···,represents 
the unique solution of (40a) with initial condition (8, x,y) at t = 0. This 
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system is also solved by iteration, but with the following modification. For l, 
m positive integers define 

Xm1 = {x = x(B, x,y) satisfying (41 i-v) below}. 

(41 i) xis a real vector-valued function defined and C1 for all (B, x,y). 

(41 ii) dim x = m. 

{41 iii) X has multiple period win B. 

{41 iv) x, X<x.v) == 0 when (x, y) = 0. 

{41 v) • II X II = max sup I D1e.x.vJx(B, x, y)l < oo. 
0~ jpj ~! (B,x,y) 

With the norm in (41 v), Xm 1 is a Banach space. Define Xm 1 to be the closed 
unit ball in Xm 1• For conciseness let 1:.1 = x~imz. Now, for wE x.k consider 
the system 

B = a + B(B, x, y, w(B, x, y), A.), 

x = Ax + X(8, x, y, w(8, x, y), A.), 

y = By + Y(B, x, y, w(8, x, y), A.). 

(42) 

Let ,pw = ,P(t) = ,P(t, 8, x, w, A.), tw = ... , 7Jw = ... , represent the unique 
solution of (42) with initial condition (8, x,y) at t = 0. Now define the 
transformation T acting on Xzk as follows. For wE X/, 

(Tw)(B, X, y) = r e-cazc,pw, tw, 7)w, w(,pw, tw, 7Jw), ,\) da. 
+OO 

Corresponding to Lemma 4, we can now prove 

LEMMA 5. For I ~ k < oo and I,\ I ~ 82 , 82 > 0 sufficiently small, the 
transformation T maps Xzk into itself and is a contraction in the Ck-l topology: 

II ·11 = II ·llk-1 = max sup I D1e.x,y) • 1. 
o~ IPI ~ k-l <e,x,y) 

The proof of Lemma 5 is analogous to the proof of Lemma 4. In fact, the 
details are even easier to carry out. The function w*+ = w*+(8, x, y, A.) is 
the unique fixed point of T. 

The proof of the existence and smoothness of the center-unstable manifold 
is similar to that for the center-stable manifold. Once we have both Mf+ and 
M[-, then 
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However, we can also construct the center manifold MI directly by con­
structing the functions u* = u*(8, y, .\), w* = w*(8, y, .\) as the unique 
solution of the following differential-integral system: 

(j = a + 0(8, u*(8, y, A), y, w*(8, y, A), A), (43a) 

u*(8, y, A) = r e-AaX(.j;*, u*(if;*, YJ*, A), YJ*, w*(if;*, YJ*, A),,\) du, 
-oo 

y =By+ Y(8, u*(8, y, ,\),y, w*(8, y, ,\), ,\), (43b) 
0 

w*(8, y, A) = J e-caz(if;*, u*(.j;*, YJ*, A), YJ*, w*(tf;*, YJ*, ,\),A) du, 
+co 

where tf;* = tf;*(t) = tf;*(t, 8, u*, y, w*, ,\), "'* = ... , represents the unique 
solution of (43a, b) with initial condition (8,y) at t = 0. The procedure 
followed here is similar to the procedure used to solve (40). 

If another invariant manifold 

M~ = {(8, x, y, z)l8 arbitrary, I x I < 1, y = v'(8, x, ,\), z = w'(8, x, ,\)} 

satisfies all the properties of MA+, then M; is composed of solutions of (2) 
which we designate tf;', g', YJ 1 = v'(.j;', g', ,\), ~~ = w'(tf;', f, A.). Since I g' I 
goes exponentially to zero as t ____,.. o, so do 1 v' ( tf;', g', A.) 1 and 1 w' (if;', r, .\) 1· 

Therefore v', w' must satisfy (3); but since the solution of (3) is unique, 
(v', w') = (v+, w+) and M; = MA+. A similar argument shows that M 11- is 
also unique. An example of non-uniqueness for the center manifold is given 
in Section 4 below, and this same counter-example can be used to show 
non-uniqueness for the center-stable and center-unstable manifolds also. 
This completes the proof of Theorems 1 and 2. 

Let us point out what should already be obvious. Namely, the reason that 
the center-stable manifold has one more derivative than the stable manifold 
is because the factor e-Ca occurring in the integrand in ( 40b) is an exponently 
converging factor whereas the factor e-Ba occurring in the integrand in (27a) 
is not. (See (5).) However, all the manifolds have one more derivative. This 
will be discussed in Section 5 below. 

4. NoN-UNIQUENESS OF THE CENTER MANIFOLD 

Consider the pair of real scalar equations 

x = -x, (44) 

Dividing x by y we obtain 

dxfdy = -(xfy2) 
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which can be integrated to yield 

where c is the constant of integration. This give us the following phase 
portrait in the (y, x) plane for system (44). 

Let 

X 

\ \ 
--~----------~------~---Y 

( 
\ce1r' 

u(y, c)= IO 

( 
for y < 0, 
for y?: 0. 

Clearly, u(O, c) = u11(0, c) = 0 so that 

M(c) = {(x,y)[x = u(y, c), y arbitrary} 

is a center manifold for each real constant c. By adding the scalar equation 
i' = z to (44) we see that the center-stable and center-unstable manifolds 
are also non-unique. If, however, the center-stable manifold is stable [the 
origin is (Lyapounov) stable with respect to the center-manifold], then it is 
not difficult to show that the center-stable manifold is unique. With respect 
to -t, the same is true of the center-unstable manifold. If both the center­
stable and center-unstable manifolds are unique, then the center-manifold 
is also unique. 

5. ADDITIONAL SMOOTHNESS 

In our construction of M~+ and MA-, the procedure was to construct 
a mapping T on the closed unit ball ik-l of the appropriate Banach space 
with a Ck-1 topology. Then we proved 

T : ik-1 ~ ik-l 
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and T is a contraction in the Ck-2 topology. Thus the fixed point (say, p) 
of T has k - 2 derivatives. But also p is the limit in the Ck-2 topology of 
elements in ik-1• Thus the (k - 2)th derivatives of p are uniformly 
Lipschitzian. Using this fact and the proof method of Theorem 4.2. on 
page 333 of [1], one can show that, for ,\ sufficiently small, p E Ck-1, and 
even more, p E ik-1. (The details of this program are quite laborious so we 
do not present them here.) Thus the manifolds M~+, M~- E Ck-1 where 
system (2) is Ck, 2 ,.;:;_; k < oo. An analogous argument shows that MJ+, 
MJ, Mf- E Ck where system (2) is Ck, I ,.;:;_; k < oo. 

When the y-equation in (1) is absent, then M+ = M*+, M- = M*-. 
Therefore in this case M+, M- are as differentiable as system (1). This fact 
will be used in Section 7 below. 

Finally, we remark that multiple periodicity in 8 for system (l) is not 
essential in the proof of Theorem I. Rather, one needs only to be able to put 
the original system in a form similar to (2), but without multiple periodicity 
in 8. Of course, the invariant manifolds also will not exhibit multiple 
periodicity in 8. 

6. PERTURBATION THEORY FOR M*+, M*, M*-

For simplicity we will not discuss the perturbation theory of M+, M- in 
the general case. But notice that when the center equation (y-equation) is 
absent from (1), then M*+ = M+, M*- = M- so that the results of this 
section apply toM+, M-in that special case. 

Consider the real Ck, 1 ,.;:;_; k < oo, system of ordinary differential equations 

e =a+ 8(8, x,y, z, E), X= Ax+ X(8, x,y, z, E), 

y = By + "?(8, x, y, z, E), z = Cz + 2(8, x, y, z, E), 
(45) 

where a, A, B, Care as in (1); 8, x, etc., are vectors; Eisa real (perturbation) 
scalar; 8, X, ?, 2 are defined and Ck in 

N 8 = {(8, x, y, z, E)l8 arbitrary, I x I + I y I + I z I + I E I < 8} 

for some 8 positive and have multiple period w in 8; e, x, ?, 2, 
(X, ?, 2)(m, 11,z) - 0 when (x, y, z, E) = 0. Thus when E = 0, (45) reduces 
to a system of the form (1). 

THEOREM 3. For system (45) there exists invariant manifolds 

M*+ = {(8, x, y, z)l8 arbitrary, I x I + I y I + I E I < 81 , 

z = w*+(8, x, y, E)}, 
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M* = {(0, x, y, z)IO arbitrary, x = u*(O, y, E), I y I + I E I < 81, 
z = w*(O, y, E)}, 

M*- = {(0, x, y, z)JO arbitrary, x = u*-(0, y, z, E), 
I y I + I z I + I E I < 81}, 

where w*+, u*, w*, u*- are real vector-valued functions defined and Ck in some 
neighborhood N 8 for 81 sufficiently small; w*+, u*, w*, u*- have multiple 

1 

period w in 0; w*+, u*, w*, u*-, (w*+, u*, w*, u*-)<x.v,z) = 0 when 
(x,y, z, E)= 0. 

The proof of this theorem is essentially a copy of the proof of Theorem 1. 
One merely introduces a scalar change of variables 

(x, y, z, E)-+ (.\x, .\y, ,\z, ,\2E) 

and then changes the system outside a neighborhood of the (x, y, z, E) origin 
similar as in the proof of Theorem 1. The essential property of the trans­
formed system will be the analog of (2 v), namely, 

D'/e.x.v.z,,)(e, X, Y, Z)-+ 0 

uniformly in (0, x, y, z, E) as ,\-+ 0 for 0 ~ I p I ~ k, where analogous to 
the procedure in the proof of Theorem 1, 

8(0, X, y, z, E, ,\) = .P(I X 1
2 + I y 1

2 + I z 1
2 + E2 + K,\2)B(O, AX, ,\y, AZ, A2

E), 

etc. With this property there is no difficulty in solving the appropriate 
differential-integral system for w*+, etc., provided ,\ is sufficiently small. 

If there is no center equation (y-equation) in (45), then M*+ = M+, 
M*- = M-. Since we haven't defined M+, M-in the general perturbation 
case, we can take this as a definition. Also, with no center equation in ( 45), 
the center manifold 

M* = {(0, x, z)IO arbitrary, x = u*(O, E), 

is the same as what is known as the periodic surface. There is an extensive 
literature concerning this invariant manifold. See, for example, [2], [3], 
[5], and [8]. As a corollary to Theorem 3 we have that the periodic surface 
is as differentiable as the system of differential equations. 

7. PERTURBATION THEORY WITHOUT CENTER 

In this section we want to discuss how M+, M- vary with respect to the 
perturbing function. 
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Consider the real Ck, 1 :s;; k < oo, system of ordinary differential equations 

8 = a + e(B, x, y) + Ef?J(B, x, y), 

x =Ax+ X(8, x, y) + EX(8, x, y), 

y =By+ Y(8, x,y) + EY(IJ, x,y), 

(46) 

where A, B are constant matrices in real canonical form; A has eigenvalues 
with negative real parts; B has eigenvalues with positive real parts; 6, x, etc. 
are vectors; a is a constant vector; € is a perturbation parameter; e, e, X, X, 
Y, Y are defined and Ck in 

N 8 = {(8, x, y)IIJ arbitrary, I xI + I y I < 8} 

and have multiple period w in 8; e, X, Y, (X, Y)<x.ul = 0 when (x, y) = 0. 
Let P (for perturbation) represent the triple (EJ, X, Y). From Theorem 4 

we know that locally (for (x, y, E) sufficiently small) there exists stable and 
unstable manifolds M± = M±(P, E). Since M±(P, 0) are independent of P, 
let M±(P, 0) = M 0±. Define Xk,l to be the set of all triples P = (EJ, X, Y) 
which are defined and Ck in N 8 , have multiple period w in 8, and satisfy 

max sup sup I D~e.x,y)P I :s;; 1, 
O~IPI~l a txl+lul<8 

where l < k is a positive integer. For P E Xlc,l let 

M+(P, E) = {(8, x, y)l8 arbitrary, y = v+(IJ, x, P, E)}, 

where P in the argument of v+ denotes a functional dependence, 

THEOREM 4. Uniformly in P E Xk,l, v+ is defined and Ck on 

N 8o = {(8, x, E)l8 arbitrary, I x I < 80 , I E I < 80}, 

where 80 is a sufficiently small positive constant which is independent of P. 
Moreover, 

max sup sup I D~a.x)(v+((}, x, P, E) - v+(6, x))l --+ 0 
0~\Pi<;;l a txl<50 

as E--+ 0 uniformly in P E Xk,l, where v+(8, x) ~ v+((}, x, P, 0). 

The proof of Theorem 4 is also essentially the same as the proof of 
Theorem 1. After introducing a scalar change of variables and changing the 
system outside a neighborhood of the origin, the assertions are readily proved. 
But the assertions are logically equivalent for both the original system (46) 
and the transformed system. A similar theorem holds forM-. 
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Since A, B in (46) have eigenvalues with nonzero real parts, M* = 

M+nM-. 

THEOREM 5. M+, M- have the following characterization for e sufficiently 
small: 

M+ = {(8, x,y)l(.f, ~. 'TJ)-+ M* as t-+ +oo}, 

M- = {(8, x,y)l(.f, ~. 'TJ)-+ M* as t-+ -oo}, 

where if= .f(t, 8, x,y, e),~= ···, 'TJ = ···, represents the unique solution 
of (46) with initial condition (8, x, y) at t = 0. 

Proof It is sufficient to prove this theorem for a system which has been 
transformed from ( 46). Let 

()=a+ 8(8, x,y, e), 

x =Ax+ X(8, x,y, e), 

y =By+ Y(8, x,y, e) 

be a transformed system. If we introduce the change of variables 

p = x- u-(8,y, e), 

q = y - v+(8, x, e), 

then, in these new coordinates, (47) has the form 

()=a+ B(8,p, q, e), 

p = Ap + P(8,p, q, e), 

q = Bq + Q(8,p, q, e), 
where 

I P(8,p, q, e) I::;;; fLIP I, 

I Q(8,p, q, e) I ::;;; fLI q I, 

(47) 

(48) 

(49) 

(50) 

and fL is the positive constant given in (5). [B in (49) is C in (5).] Let us 
compute P, for example, to see that inequality (50) is true. From (48), 

p = x - v- = Ax +X - v8-{a + 8} - v., -{Ax +X} 
= Ax - v8-{a + 8(8, v-, y, e)} - v., -{Ax + X(8, v-, y, e)} 

+ X(8, p + v-, y, e) + v8-{8(8, v-, y, e) - 8(8, p + v-, y, e)} 
+ v.,-{X(8, v-,y, e)- X(8,p + v-,y, e)} 

= Ax - Av- - X(8, v-, y, e) + X(8, p + v-, y, e) 
+ v8-{8(8, v-, y, e) - 8(8, p + v-, y, e)} 
+ v., -{X(8, v-, y, e) - X(8, p + v-, y, e)} 

= Ap + P(8,p, q, e). 
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Thus we see that p E Ck-1 and that p satisfies (50) provided e, X, y have 
sufficiently small first-order derivatives. From (5), (49), (50), 

(djdt)Jp \2 = 2(Ap,p) + 2(P,p) ~ -4JLIP \2 + 2JLIP \2 ~ -2JLIP \2, 

(dfdt)J q \2 = 2(Bq, q) + 2(Q, q) ~ 4{-t[ q J
2 - 2{-t[ q J

2 ~ 2fLI q [2• 

Our theorem follows immediately from these differential inequalities. 
Finally we state a theorem which is closely related to Theorem 4. We want 

to show that M+(P, E) --4- M+(P0 , E) in the C1- 1 topology as P --4- P0 in the 
C1 topology where E is small but fixed. A similar statement will hold relative 
toM-. 

THEOREM 6. For P, P0 E Xk,! if P --4- P0 in the C 1 topology, 

max sup sup [ IY(9,.,,y)(P - P0)\-4- 0, 
o,;; IPI,;;t B i"'l+lvl <6 

then v+(B, x, P, E) --4- v+(B, x, P0 , E) in the C1-1 topology, 

The proof of Theorem 6 is obtained by introducing the change of variables 
(48) relative to P0 , 

p = x- u-(B,y, P0 , E), 

q = y - v+(B, x, P0 , E). 

System ( 49) will now only be Ck-1, but otherwise Theorem 6 reduces to 
Theorem 4 with only minor modifications. 
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