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THE HISTORY OF THE CONCEPT OF A 
FINITE-DIMEHSIONAL VECTOR SPACE 

Jeremy Gray 
Faculty of Mathematics, the Open University, 

Milton Keynes, England 

The purpose of this note is to draw attention to an interest
ing problem in the history of mathematics which the pressure of 
work will prevent me from taking up, and to make a suggestion 
about a possibly neglected aspect of the problem that should be 
explored. The problem is: to describe the origins of the concept 
of a vector space and its recognition as a central topic in 
mathematics. Moves towards the explicit treatment of topics, 
and their axiomatization, are always of interest; in addition, 
it seems that vector spaces have had a curious and convoluted 
development. 

My specific suggestion, drawn from my research into the 
history of the monodromy group and differential equations in the 
complex domain, is that the theory of ordinary linear differen
tial equations and geometric complex function theory provided a 
rich source of finite-dimensional vector spaces throughout the 
late 18th and 19th centuries. The existence of a finite-dimen
sional basis for the solutions of an nth-order linear ordinary 
differential equation with constant coefficients is described, 
for example, in Euler [1743], and the theory is oeveloped by 
many subsequent writers, culminating in Fuchs [1865]. Fourier, 
in a study of heat diffusion among n bodies in a circle, derived 
n simultaneous linear ordinary differential equations, which he 
solved to obtain finite "Fourier Series" [Grattan-Guinness 1972]. 
He was well aware, as were his contemporaries, of the linear 
character of his problems and of the orthogonality properties of 
his basis of solutions, which are expressed by the familiar pro
perties of integrals of the form 
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sin mx sin nx. 

Fourier's work is also important for the study of infinite ma
trices and function spaces which began at the end of the 19th 
century. 

The matrices which appear explicitly in the study of the 
monodromy (and the monodromy group) of an algebraic function 
and in the related study of the singular points of a differential 
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equation operate implicitly on vectors (the n-tuples of possible 
values or independent solutions); see, for example, Hermite [1851], 
Riemann [1857], Jordan [1872), or most writers on complex funct
tion theory throughout the century. The sheer size of the liter
ature on complex functions is daunting, and I wish to draw atten
tion to an important source of ideas about vectors which might, 
perhaps, otherwise be ignored. 

It does not seem that much has been written on the history of 
vector spaces, with the notable exceptions of Bernkopf [1966], 
on the origin of function spaces; Bourbaki [1960], which examines 
number-theoretic roots; Bourbaki [1975), which considers rather 
more topics; and Hawkins' considerable reconstruction of the 
theory of matrices [1977a, 1977b]. In a methodological way, 
Hawkins' papers are also germane to the topic raised in this 
note; they suggest a sequence of stages for the theory of matri
ces, from their origins in the study of systems of differential 
equations by Lagrange and Laplace, through an explicit but un
theoretical period, to a generic and finally rigorous theoretical 
treatment by Weierstrass and Frobenius. It is likely that the 
study of vector spaces passed through similar reformulations. 
Hawkins suggests that the modern pedagogic approach, which puts 
vector spaces first and matrices or, better, linear maps second, 
dates only from the 1930's [Hawkins 1977a, 109]. 

Two problem areas are important if one looks for early ex
plicit formulations of the concept of a vector space. In the 
course of a study of systems of n linear first-order ordinary 
differential equations, Peano [1888] gave an explicit axiomatic 
definition of an n-dimensional vector space over the reals. He 
called his n-tuples "number complexes of order n," which suggests 
affinity with the study of hyper-complex numbers. Significantly, 
he had just read Grassmann [1844], which contains a long-neglected 
treatment of vector spaces and exterior algebras. The study of 
differential equations with irregular singular points led directly 
to the study of infinite vector spaces, or rather, as it was then 
expressed, the study of linear equations in infinitely many 
unknowns and infinite determinants [Hill 1877; Appell 1884; Poin
care 1884, 1886). These topics are treated in Bernkopf [1966], 
for they merged into the study of integral equations and thence 
function spaces, so decisively established by Hilbert from 1904 
to 1910. However, as Bernkopf points out, Hilbert was more inter
ested in integral equations and their kernels (generalizations, 
accordingly, of matrices) than in the spaces of functions. The 
study of the topological aspects of these spaces is due to Frechet 
[1906], and the geometric aspects to Schmidt [1906]. It may well 
be that the unexpected richness and complexity of infinite-dimen
sional vector spaces (which need not be isomorphic to their duals, 
for example) first inclined mathematicians to study the finite
dimensional spaces explicitly. This interesting possibility 
merits further study. 
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The concept of a finite-dimensional vector space also appears 
explicitly in the development of Galois theory. Kronecker's con
structive idea of a "RationaliUitsbereich" [1882] consists typi
cally of finite linear combinations of algebraic numbers taken 
over the rationals. The totality of these linear combinations is 
an algebraic extension of the rationals and therefore a vector 
space over the rationals. Unhappily, Kronecker's ideas are 
notoriously hard to date (see Kiernan [1971]). The same idea of 
a field extension is quite explicit in Dedekind and ~Ieber [1881], 
where it is called a "Modul." Here the module is over a field, 
usually the field of rational functions. Dedekind had long been 
interested in fields because of his interest in number theory, 
and in the paper he wrote with Weber he sought a common language 
to describe the similar domains of algebraic number theory and 
algebraic function theory. The first abstract treatment of 
fields is given in Weber [1893], but here vector spaces do not 
appear explicitly: algebraic extensions of a given field are 
called "congruence fields" by Weber and treated as fields. The 
concept of a vector space was, of course, of considerable im
portance for Artin's modern reformulation of Galois theory [Artin 
1938, 1959] (and see also van der Waerden [1971]). 

Hilbert (1894] took up the concepts of fields and vector 
spaces in number theory, as did Hensel and Landsberg [1902] in 
function theory. It is apparently from number theory that Hilbert 
extracted the theory of finite-dimensional vector spaces, which 
he said he was generalizing in his work in integral equations. 
(It is interesting to note that Dedekind and Peano, the two 
mathematicians of the period who are most prominently identified 
with the question of what a number is, should be among the first 
to identify vector spaces as objects worthy of interest.) 

Finite-dimensional vector spaces also appeared in the work 
of S. Lie, F. Engel, W. Killing, and E. Cartan in the theory of 
continuous transformation groups. The infinitesimal action on 
a "Lie" group by its Lie algebra was the first object of study, 
and the successful classification of the complex semisimple 
algebras is described in Bourbaki (1975] and Helgason [1977]. 

Geometry, with its n-tuples of points in ann-dimensional 
space, is another obvious sorce of the concept. Although interest 
is not usually centred on the ambient space but upon configura
tions within it, linear combinations of figures do occur. For 
example, if S = 0 and S' :: 0 define two conics, so does "AS + "AS' ::0 
for scalars A, A'. The investigations of matrix representations by 
Frobenius and others, the related study of hyper-complex numbers, 
and researches into finite-dimensional algebras would also have to 
be considered in any study of the origins of finite-dimensional 
vector spaces (see [Hawkins 1972 and Navy 1973, Chap. 4]). Final
ly, there is the physicist's vector algebra (see Crowe [1967]) 
and its generalization to tensors (see Weyl [1920]). 
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It is perhaps worth raising the related questions: when did 
the concept of a vector space with additional structure, such 
as an inner product, first emerge, and how and when did it gain 
general acceptance? The concept may first have emerged with the 
Killing form of a Lie algebra [Killing 1888, 1889), its final 
acceptance may have come with von Neumann's work on unitary 
operators in the late 1920's (see, e.g., [von Neumann 1927]). 

It is possible that the concept of a vector space is one of 
many which mathematicians have found they have been using for 
many years without knowing it, or, perhaps one should say, need
ing to know it. Other examples taken at random are semigroups, 
long used in the theory of integral equations [Hille 1965], and 
even groups (see Wussing [1969)). If this is so, then subtle 
attention paid to the ideas in their historical context may 
prove to be instructive about the nature of mathematical activity 
and the necessity, or otherwise, of abstraction. For the problem 
is not merely to assess the neglect of Grassmann by mathematicians, 
but to respond to the fact that for 50 years mathematicians worked 
confidently without feeling the need to elaborate an abstract 
structure, when it is now so often assumed that making such 
abstractions is essential to mathematical work. 
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