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Abstract

In this report, the problem of robust performance analysis of interconnected uncertain systems

with hierarchical structure is considered. The computational load associated to such problems

does not allow a direct application of robustness analysis usual tools. To overcome this difficulty,

we exploit the hierarchical structure of the problem and propose an algorithm to perform robust-

ness analysis using IQC ”propagation” along the hierarchical structure. This algorithm allows to

establish a trade-off between computation time required to perform the analysis and the conser-

vatism of the obtained results. Furthermore, it is easy to perform parallel computation using the

proposed algorithm.

keywords Uncertain large scale systems, robustness analysis, IQC analysis, LMI optimization,

hierarchical approach, IQC propagation.
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1 Introduction

Robustness analysis of uncertain large scale systems (LSS) to ensure a certain level of performance in

the worst case scenario is a major topic in the automatic control community. These LSS (networks)

are obtained by interconnecting smaller subsystems within the objective of ensuring some global tasks.

Therefore, it is natural to consider the hierarchical structure of networks: subsystems define the local

level while their interconnection define the global level. In this report, we are interested in robustness

analysis of uncertain large scale systems with hierarchical structure.

Robustness analysis of uncertain LSS is a problem with many challenges. Major difficulties that

frequently arise in this problem are: robustness analysis and large scale aspects. Although the ro-

bustness analysis is an NP hard problem [1], many efficient methods have been developed based on

relaxations as convex optimization problem under Linear Matrix Inequality (LMI) constraints [2], see

e.g. the µ− upper bound [3] in the µ-analysis approach [4] or the Integral Quadratic Constraint (IQC)

approach [5].

The second aspect is the large scale associated to networks. Even when we consider the interconnec-

tion of systems without any uncertainties, the analysis problem remains complicated and the network

stability is not easy to certify. In this case, the robustness of the LSS is discussed with respect to size

of the network and its interconnection topology. The objective is to establish decentralized conditions

to ensure the stability of the LSS i.e. conditions that subsystems have to satisfy with respect to their

interconnection matrix to guarantee the overall stability of the network. These conditions are obtained

in different frameworks: [6] and [7] for dissipativity approaches, [8] and [9] for S-hull convexification

approaches, [10] and [11] for graph theory approaches, etc.

Nevertheless, when considering both aspects (robustness and large scale), the complexity and compu-

tation time increase dramatically which is due to the large size optimization problem we have to solve.

Therefore, the robustness analysis usual tools cannot be practically applied directly.

In order to reduce this computational load, researchers focused on exploiting the particular char-

acteristics of the subsystems and their interconnections. The authors of [12] propose a decomposable

approach to investigate the robustness of uncertain LSS. The obtained conditions involve the struc-

tured singular values of the individual systems and the eigenvalues of the interconnection matrix.

However, these results are valid only when the subsystems are homogeneous. Within the framework
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of IQC, characterizations of local systems and/or interconnections are used to obtain robust stability

conditions in the case where the interconnection matrix is normal [13], unitarily diagonalized [14] or

sparse with a chordal pattern [15] and [16]. However for a given LSS, it could be difficult to model

the network with a normal, unitarily diagonalized or interconnection matrix with a chordal pattern.

Furthermore, even if the network presents one of these structures, the previous methods allow only to

investigate the stability. Adding extra signals to investigate the performance may change the structure.

In addition, these results do not exploit an important aspect of the problem which is the hierarchical

structure. In this context, the Hierarchical approach was initially introduced in [17], in the case of

conic uncertainty i.e. non structured dynamical uncertainty, to split the overall analysis problem into

several low dimensional problems. Each uncertain system in the network can be characterized with

conic properties which are a special case of IQC. The overall analysis is then performed in hierarchical

manner by propagating conic properties along the hierarchical structure. Nevertheless, this approach

was not really exploited and implemented because it has neither been explained nor formulated how

to obtain these IQC characterizing uncertain systems.

In this report, we adapt the hierarchical approach and extend it to the case of structured uncer-

tainties. As a first contribution of this report, we define a set IQC characterizing different information

of the uncertain system: gain uncertainty, phase uncertainty, mixed gain-phase uncertainty. The IQC

set thus defines a basis to characterize uncertain systems. In order to reduce the conservatism of

this approach, a size measure is defined and minimized for each of the basis element. The problem

of minimizing each size measure is formulated as an LMI optimization problem which can be solved

efficiently. A second contribution of this report is an algorithm to investigate the robust performance

of the overall uncertain large scale system using basis propagation along the hierarchical structure.

This algorithms allows to establish a trade-off between computation time required for the analysis and

the conservatism of the results. Preliminary results of this approach can be found in [18–20].

Report outline

This report is organized as follows: Section 2 presents the formulation of uncertain LSS performance

analysis problem. Section 3 presents the usual approach to perform robustness analysis of uncertain

systems using dissipativity properties (IQC). Section 4 presents the proposed approach to solve the
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problem of robustness analysis of uncertain LSS using basis propagation. The formulation and prac-

tical computation of the basis elements are presented in Section 5. The benefits of the hierarchical

approach, compared to the direct analysis method, are illustrated through two examples: PLL network

in Section 6 and a chain of uncertain system in Section 7. We discuss in Section 8 the algorithmic com-

plexity and the computation time required to perform robustness analysis for a sub-class of uncertain

LSS with hierarchical structure. Conclusions and perspectives are presented in Section 9.

Notations

The maximum singular value of a matrix M is denoted σ̄ (M). If the index of a matrix or a signal is not

relevant and can be understood from the context, then this index will be omitted or replaced with ”•”.

The real and imaginary parts of the complex entity • are denoted Re (•) and Im (•) respectively. RH∞

(respectively RL∞) denotes the set of matrices of stable (resp. non causally stable) rational transfer

functions. Moreover, we consistently denote elementary uncertainties by ∆ and interconnections by M

which can be partitioned into M =

(
M11 M12

M21 M22

)
.

For several matrices Mi, i = 1, . . . , n, bdiag
i

(Mi) denotes the block diagonal matrix composed of

Mi given by

bdiag
i

(Mi) =

M1 . . . 0
...

. . .
...

0 . . . Mn


We denote by ∆ ? M the set {∆ ? M, ∀ ∆ ∈∆}, referred to as an uncertain system, defined by

∆ ? M = M22 +M21∆ (I −M11∆)−1M12

with ? standing for the Redheffer star product and it will be referred to as the Linear Fractional

Transformation (LFT) interconnection of M and ∆.

Finally, we denote by LS (•,Φ11,Φ12,Φ22) the matrix(
•
I

)∗( −Φ22 −Φ∗12

−Φ12 −Φ11

)(
•
I

)
.

and we denote by LP (•,Φ11,Φ12,Φ22, X, Y, Z, ε) the matrix

(
•
I

)∗
−Φ22 0 −Φ∗12 0

0 X − εI 0 Y
−Φ12 0 −Φ11 0

0 Y ∗ 0 Z − εI

( •I
)
.
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Figure 1: Uncertain linear large scale system T 1
1 with hierarchical structure of four levels

2 Problem Formulation

2.1 LSS Hierarchical Structure

Inspired by [17] and [18], an uncertain large scale system is defined by a tree composed of leaves

interconnected through branches. These leaves and branches will be organized by levels. An example

of tree is illustrated in Fig. 1 where a hierarchical structure arises with l = 4 levels.

An index i is associated to each level i.e. i = 1, . . . , l. At each level i, two types of components

may be found: leaves and branches.

The leaves represent the elementary uncertain components and they are denoted ∆i
j∆
∈ ∆ with

j∆ ∈ {1, . . . , N i
∆} where N i

∆ is the number of elementary uncertain components at level i and ∆ is

the uncertainty set traditionally considered in robust analysis literature. It is given as block diagonal
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combination of elementary uncertainties:

∆ =


∆

||∆||∞ < 1

∆ = bdiag(δr1Ir1 , . . . , δ
r
nr
Irnr

,

δc1Ic1 , . . . , δ
c
nc
Icnc

,

∆1, . . . ,∆nf
)


(1)

where

• δrj ∈ R is a real parametric uncertainty,

• δcj ∈ C is a complex uncertainty,

• ∆j is a LTI systems which represents dynamical uncertainty with kjm inputs and kjl outputs.

The set ∆ is an elementary uncertainty set in the sense that it is a bounded and connected set

with ”known” bound ||∆||∞ < 1. The input output signals of ∆i
j∆

are qij∆ and pij∆ respectively. The

elementary uncertain components ∆i
j∆

, of level i, are the end of the tree i.e. leaves since they are

only connected to the certain components of the level i− 1.

The branches are the certain components and they are denoted M i
jM

, assumed to be LTI systems,

with jM ∈ {1, . . . , N i
M} where N i

M is the number of certain components at the level i. In contrast

with ∆i
j∆

, which are only connected to certain components of the level below, M i
jM

are connected to

both levels: below and above. The certain components M i
jM

are connected to certain and to uncertain

components from level i+ 1 and to certain components from level i− 1. The signals wijM and pi+1
•

(and possibly zi+1
• ) are the input signals of M i

jM
while zijM and qi+1

• (and possibly wi+1
• ) are the output

signals.

After showing the different levels of the LSS with its different certain and uncertain components

(which can be seen as an horizontal decomposition), it is possible to regroup the components connected

vertically. The result will be an uncertain system denoted T ij , where i stands for the hierarchical level

and j is the index of the uncertain system at this hierarchical level. The signals wij and zij are the

input and output signals of the uncertain system T ij . The number of uncertain systems at each level i

is N i
T = N i

M .

Each uncertain system T ij , is the LFT interconnection of M i
j with either just only elementary

uncertain components of the next hierarchical level (∆i+1
• for example) or a block diagonal composition
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of elementary uncertain components ∆i+1
• and uncertain systems T i+1

• from the next hierarchical

level. For the ease of notation, and for the purpose of this report, both cases will be combined into

block diagonal augmented uncertainty that will be denoted Ωi+1
• ∈ Ω where Ω is the extension of the

elementary uncertainty set (1), that is

Ω =

{
Ω Ω = bdiag

j
(Ωj)

}
(2)

where Ωj is either an elementary uncertainty block i.e. Ωj ∈∆, or an uncertain LTI system that

belongs to a bounded and connected set without a priori ”known” bound.

It is possible now to model the LSS as

∀ i ∈ {1, . . . , l − 1}

∀ j ∈
{

1, . . . , N i
T

}
zij = Ωi+1

j ? M i
j︸ ︷︷ ︸

T i
j

wij

(3)

with

Ωi+1
j = bdiag

(
bdiag
m∈N∆(M i

j)

(
∆i+1
m

)
, bdiag
n∈NT (M i

j)

(
T i+1
n

))
(4)

where NT (M i
j) is the index set of the uncertain systems T i+1

• connected to M i
j and N∆(M i

j) is the

index set of the elementary uncertain components ∆i+1
• connected to M i

j respectively.

For purpose of illustration, let us consider the LSS presented in Fig. 1 where w1 and z1 are the

input and the output signals respectively. They define the system T 1
1 for which we want to investigate

the performance as it will be formally defined later. At level 2, the components can be regrouped into

n+1 uncertain systems T 2
j , for ∀j ∈ {1, . . . , n+ 1}, interconnected through M1

1 to form T 1
1 . Each T 2

j is

the LFT interconnection of M2
j with Ω3

j . Two types of Ω3
j appears: either Ω3

j = ∆3
j for j = {1, . . . , n}

or Ω3
n+1 = bdiag

(
∆3
n+1, T

3
1

)
. This last uncertain system T 3

1 , used to construct Ω3
n+1, is in itself the

interconnection of M3
1 with Ω4

1 which is the block diagonal combination of two elementary uncertain

components: Ω4
1 = bdiag (∆4

1,∆
4
2).
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2.2 Problem statement

The LTI system performance is achieved if the maximum singular value σ̄(•) of the system frequency

response respects, along the frequencies, some user-defined frequency dependent constraints (see [21]).

Since the uncertainties will impact the system frequency response, we denote γω0 as an upper bound

on the system maximum singular value σ̄(•) for a given frequency ω0 and over all the uncertainties.

Hence, the robust performance analysis boils down to check if the computed minimal value γω0 , for

each frequency ω0, is less than the user defined bound for all the possible uncertainties.

Now, the robust performance analysis problem of uncertain LSS can be formulated.

Problem 2.1 (Robust Performance) Given an uncertain LSS defined by (3) and (4) with ∆i
j ∈∆,

M i
j ∈ RH∞. Given l, N i

T , NT (M i
j) and N∆(M i

j) and given a frequency ω0,

test efficiently if the global system is stable ∀ ∆i
j ∈∆ for all i, j and solve efficiently

min
γω0

γω0

s.t. σ̄(T 1
1 (jω0)) < γω0 ∀ ∆i

j ∈∆

In the next section, we present robustness analysis tools from the robust control theory to investi-

gate the performance of uncertain systems.

3 Robustness Analysis of Uncertain Systems

3.1 Uncertain systems

An uncertain system will be defined as an interconnection T = Ω ? M with M ∈ RH∞ and Ω ∈ Ω

where Ω is bounded and connected set of LTI systems as in (2). Introducing the internal signals and

using the frequency domain, we obtain the following system description

p(jω) = Ω(jω) q(jω)(
q(jω)
z(jω)

)
= M(jω)

(
p(jω)
w(jω)

) (5)

where w(jω) and z(jω) are the input and the output signals of size nw and nz respectively. These

signals will be used to define and evaluate system performance as it will be explained later. The signals

p(jω) and q(jω) are internal signals of size np and nq respectively, see Fig 2.
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Figure 2: Uncertain Linear system

3.2 Robustness analysis

We will use dissipativity properties to characterize the performance of an uncertain system T . In the

field of robust control theory, Integral Quadratic Constraints (IQC) are often used to characterize the

system behavior in a form of input-output signal relations (also known as graph relations).

Definition 3.1 (IQC) The two signals w(jω) and z(jω) are said to satisfy the IQC defined by the

multiplier Φ ∈ RL∞, if ∃ ε > 0∫ +∞

−∞

(
z(jω)
w(jω)

)∗
Φ(jω)

(
z(jω)
w(jω)

)
dω ≥ ε

∫ +∞

−∞

(
z(jω)
w(jω)

)∗(
z(jω)
w(jω)

)
dω (6)

Since the problem considered in this report is the performance analysis of uncertain LTI systems

i.e.z(jω) = T (jω)w(jω), the integral term could be dropped and the IQC become Quadratic Con-

straints (QC). Furthermore if:

Φ(jω) =

(
X(jω) Y (jω)
Y (jω)∗ Z(jω)

)
with X(jω) = X(jω)∗, Z(jω) = Z(jω)∗ and Y (jω) are transfer functions of RL∞, the QC thus define

dissipativity properties for the uncertain system Ω?M that is Ω?M is said to be {X(jω), Y (jω), Z(jω)}
dissipative for every ω if:(

Ω(jω) ? M(jω)
I

)∗(
X(jω) Y (jω)
Y (jω)∗ Z(jω)

)(
Ω(jω) ? M(jω)

I

)
≥ ε

(
Ω(jω) ? M(jω)

I

)∗(
Ω(jω) ? M(jω)

I

)
(7)

Furthermore, if the uncertain system Ω ? M is {X(jω), Y (jω), Z(jω)} dissipative for every Ω ∈ Ω,

then the uncertain system Ω?M is {X(jω), Y (jω), Z(jω)} dissipative. As it is usual for LTI systems, a
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frequency by frequency approach can be performed without loss of generality [22]. A frequency griding

is defined and the different operations and ideas will be introduced for a given frequency ω0.

Lemma 3.1 For a given LTI system T , given γω0, the robust performance defined in Problem 2.1, can

be expressed in terms of {X, Y, Z} dissipativity in the following way

σ̄(T (jω0)) < γω0 ⇐⇒ T (jω0) is {X, Y, Z} dissipative

for all ∆i
j ∈∆i

j with X = −I, Y = 0 and Z = γ2
ω0
I.

In order to keep the discussion as general as possible, we will use, in this report, a general perfor-

mance measure defined by a general {X, Y, Z} dissipativity.

The following theorem gives necessary and sufficient conditions to perform Robust Performance

Analysis (RPA).

Theorem 3.1 (RPA Theorem) Let Ω be a bounded and connected set of LTI systems. The uncertain

system Ω ? M is stable and {X, Y, Z} dissipative if and only if

1. There exists a Ω0 ∈ Ω such that Ω0 ? M is stable.

2. There exists a hermitian matrix Φ = Φ∗ of RL∞ such that Ω is {Φ11,Φ12,Φ22} dissipative for

every Ω ∈ Ω

3. There exists ε > 0 such that LP (M,Φ11,Φ12,Φ22, X, Y, Z, ε) ≥ 0

Proof 3.1 The proof can be found in the Appendix.

Theorem 3.1 presents necessary and sufficient conditions for the uncertain system Ω ? M to be

{X, Y, Z} dissipative. Testing these conditions (find Φ such that conditions 2 and 3 are satisfied) is

a convex optimization problem. Nevertheless, it is infinite dimensional since condition 2 has to be

tested for all Ω ∈ Ω which is difficult from a computational point of view. In order to obtain a finite

dimensional convex optimization problem, let us introduce the set

ΦΩ =

ΦΩ =

bdiag
j

(Φ11)j bdiag
j

(Φ12)j

bdiag
j

(Φ∗12)j bdiag
j

(Φ22)j
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such that the second condition is satisfied for all Ω ∈ ΦΩ. Let us introduce as well the sets associated

to each Ωj ∈ ΦΩj as

ΦΩj =

{
ΦΩj

=

(
(Φ11)j (Φ12)j
(Φ∗12)j (Φ22)j

)}
Furthermore, for each Ωj, let us define BdissΩj

sets of Φk
j ∈ ΦΩj with k ∈ {1, · · · , ndj}, sets of con-

ically independent elements Φk
j i.e. each Φk

j cannot be expressed as the conic combination of Φl
j,

l ∈ {1, · · · , ndj} \ {k}. Please note, since Φk
j ∈ ΦΩj for all k ∈ {1, · · · , ndj}, the uncertainty Ωj is

{(Φ11)kj , (Φ12)kj , (Φ22)kj} dissipative with(
(Φ11)kj (Φ12)kj

(Φ∗12)kj (Φ22)kj

)
= Φk

j ∈ BdissΩj
(8)

Then, let us define Φ(BdissΩ ) a set of block diagonal conic combinations of the elements of BdissΩj
as

Φ(BdissΩ ) =



ΦΩ

∃ αkj ≥ 0, k ∈ {1, · · · , nkj}

ΦΩ =

(
ΦΩ

11 ΦΩ
12(

ΦΩ
12

)∗
ΦΩ

22

)

ΦΩ
gh = bdiag

j

 nk
j∑

k=1

αkj (Φgh)
k
j


with g, h ∈ {1, 2}

and Φk
j ∈ BdissΩj



(9)

Since ΦΩ is a convex cone, the subset Φ(BdissΩ ) ⊆ ΦΩ.

A counterpart of Theorem 3.1 with sufficient conditions only is given in the following corollary.

Corollary 3.1 Let Ω be a bounded and connected set of LTI systems as in (2), let:

1. There exists Ω0 ∈ Ω such that the system is Ω0 ? M is stable.

2. There exist ε > 0 basis sets BdissΩj
of conically independent elements Φi

j as in (8) for which Ωj is

{(Φ11)kj , (Φ12)kj , (Φ22)kj} dissipative ∀ k

Then, the uncertain system Ω ? M is stable and {X, Y, Z} dissipative if there exists a ΦΩ ∈ Φ(BdissΩ )

as in (9) such that

LP
(
M,ΦΩ

11,Φ
Ω
12,Φ

Ω
22, X, Y, Z, ε

)
≥ 0 (10)
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Proof 3.2 This is an immediate consequence of Theorem 3.1 after parametrization of Φ.

Remark 3.1 In contrast with Theorem 3.1 and if there exist the basis BdissΩj
, Corollary 3.1 presents

sufficient conditions for the uncertain system Ω ? M to be {X, Y, Z} dissipative. Testing these condi-

tions is a finite dimensional convex optimization problem under LMI constraints with αij as decision

variables. It can be solved efficiently [2]. The consequence of introducing this parametrization Φ(BdissΩ )

is a possible conservatism. However, it can be reduced by an appropriate choice of BdissΩj
, depending on

the class of the uncertainty sets Ωj. The conservatism depends as well on how precise each element

of BdissΩj
characterizes Ωj. Furthermore, the larger BdissΩj

sets are, the less conservative results can be

obtained.

In the case where the uncertainty set Ω is an elementary uncertainty set i.e. Ω = ∆, the associated

basis can be easily obtained from [3] and [4] and it will be denoted by Bdiss∆ . In this case Bdiss∆ can be

defined as the well-known D or DG scaling sets according to (9).

3.3 Application to the uncertain LSS

A solution to Problem 2.1 can be obtained by applying Corollary 3.1 if the LSS is expressed as (5).

After gathering all the different ∆i
j in ∆̃, defining the global uncertainty set ∆̃, while the different M i

j

and the interconnections are gathered in M̃ using LFT algebra, the global system T 1
1 will be given by

T 1
1 = ∆̃ ? M̃ (11)

with

∆̃ = bdiag
i

(
bdiag

j

(
∆i
j

))
, ∆i

j ∈∆, (12)

Please note that M̃ ∈ RH∞. It is a direct consequence of the fact that the LSS is designed to be

stable (in the nominal case).

The interest of transforming the LSS T 1
1 as in (11) and (12) is that the uncertainty ∆̃ is the block

diagonal composition of elementary uncertainties ∆i
j ∈∆. As a consequence, and as mentioned before,

the associated basis Bdiss
∆̃

is easily defined as in [3] and [4] and the set Φ(Bdiss
∆̃

) is straightforward.

Furthermore, ∆̃0 = 0 ensures the stability of (11) since M̃ ∈ RH∞.
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We can try to solve Problem 2.1 using a direct application of Corollary 3.1 where the basis Bdiss
∆̃

is chosen from [3] and [4]. This approach will be referred to as direct LSS RPA method and it is

summarized in the following corollary.

Corollary 3.2 (Direct LSS RPA) Let T 1
1 be the LSS defined by (11) and (12). Given a frequency

ω0, Problem 2.1 can be solved with the following optimization problem

min

γω0

Φ̃ ∈ Φ
(
Bdiss

∆̃

)
γω0

s.t.

LP
(
M̃, Φ̃11, Φ̃12, Φ̃22,−I, 0, γ2

ω0
I, ε
)
≥ 0 (13)

Proof 3.3 Corollary 3.2 is a direct application of Corollary 3.1 with Lemma 3.1 and the minimization

of γω0 to obtain the lowest upper bound on σ̃(T 1
1 (jω0)).

As it will be shown later with numerical examples, the direct LSS RPA method cannot be practically

applied when the size of the LSS becomes too important. This is due to the important number of

decision variables in the LMI (13) which leads to a dramatic increase of the computation load and

time. Please note that Corollary 3.2 can also be used to investigate only the stability of a network by

replacing condition (13) with

LS
(
M̃11, Φ̃11, Φ̃12, Φ̃22

)
≥ 0

In the next section, we propose a method that allows to take advantage of the hierarchical structure

to practically investigate the robust performance of uncertain LSS within a reasonable computation

time.

4 Hierarchical Approach

In the previous section, we have shown that the performance can be characterized using dissipativity

properties (IQC). Nevertheless, Corollary 3.1 reveals that to ensure robust performance, defined by
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the {X, Y, Z} dissipativity property, it is sufficient (and sometimes necessary) to exhibit a dissipativity

property, defined by ΦΩ ∈ Φ(BdissΩ ), satisfied by all Ω ∈ Ω i.e. Ω is
{

ΦΩ
11,Φ

Ω
12,Φ

Ω
22

}
dissipative such

that

LP
(
M,ΦΩ

11,Φ
Ω
12,Φ

Ω
22, X, Y, Z, ε

)
≥ 0

holds true. Therefore, the dissipativity properties (IQC) are suitable to characterize both uncertainty

and performance.

Corollary 3.1 allows to characterize the performance with {X, Y, Z} dissipativity property (IQC)

knowing that all the uncertainties Ω are
{

ΦΩ
11,Φ

Ω
12,Φ

Ω
22

}
dissipative where ΦΩ is constructed from

the basis of the uncertainty Ωj as in (8). and (9). Thereafter, if we have a method, which will use

necessarily Corollary 3.1, that allows to find a basis BdissT for the system T = Ω ? M from the basis BdissΩ

of the uncertainty, then Problem 2.1 can be solved efficiently in a hierarchical manner. This method

will be known as basis propagation and it consists in propagating the basis from one hierarchical

level to another starting from level l where the uncertainty basis is known since Ωi
j = ∆i

j. This basis

propagation method will be performed from basis of level i to basis of level i− 1 until reaching level 1

where the objective is to minimize γω0 .

The proposed Hierarchical Robust Performance Analysis (HRPA) approach is summarized in the

following algorithm
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Algorithm 1 Hierarchical Robust Performance Analysis

% First Step: level l-1

for j ← 1 to N l−1
T do

Find a basis Bdiss
T l−1
j

for each uncertain system T l−1
j from the given basis Bdiss

∆l
j

of elementary uncer-

tainties ∆l
j.

end

% Intermediate Steps: level l-2 to level 2 for i← l − 2 to 2 do

for j ← 1 to N i
T do

Find a basis Bdiss
T i
j

for each uncertain system T ij using the given basis Bdiss
∆i+1

m
of the elementary

uncertainties ∆i+1
m and the basis Bdiss

T i+1
n

of the uncertain systems T i+1
n obtained at level i+ 1.

end

end

% Last Step: level 1

Find the smallest γω0 such that T 1
1 is {−I, 0, γ2

ω0
I} dissipative by applying Corollary 3.1 using the

given basis Bdiss∆2
m

of the elementary uncertainties ∆2
m and the basis BdissT 2

n
of the uncertain systems T 2

n

obtained at level 2.

Remark 4.1 Algorithm 1 allows to investigate if the uncertain LSS is stable and {X, Y, Z} dissi-

pative. Nevertheless, if there are no performance signals for the LSS (w1
1 and z1

1) and the objec-

tive is just to certify the robust stability of the LSS, Algorithm 1 still can be applied. In this case,

condition (10) of Corollary 3.1 in the last step of Algorithm 1 is replaced with the following LMI:

LS
(
(M11)1

1 ,Φ
Ω
11,Φ

Ω
12,Φ

Ω
22

)
≥ 0. This will define the Hierarchical Robust Stability Analysis Algorithm

(HRSAA). Therefore, Algorithm 1 can be used for both certification: stability and performance.

Remark 4.2 Algorithm 1 allows to investigate the performance and the stability of uncertain LSS in

an efficient manner. The global LMI given in Corollary 3.2 will be replaced with several hierarchical

LMI of Corollary 3.1 linked with appropriate condition in the next hierarchical levels. Furthermore,

given a hierarchical level i, the different uncertain systems T i• do not interfere with each other since

their interconnections appear in level i− 1 and levels below. Therefore, the analysis performed at each

level i (the performance analysis of the different T i•) can be performed separately and in parallel. The
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consequence of this parallel analysis will be a very important decrease of the computation time as it

will be shown in Section 7.

Remark 4.3 In the case of parametric uncertainties and when the size of the uncertain LSS is not too

important such that Corollary 3.2 can be practically applied, the basis Bdiss
∆̃

can be chosen in the form

of the well-known DG scaling from [3]. In order to reduce the conservatism resulting from choosing

this parametrization, the basis Bdiss
∆̃

can be chosen in the from of DGL scaling from [23] instead of DG

scaling. In this case and since the basis is larger, the number of decision variables is more important

and Corollary 3.2 may not be practically applied even if the size of the LSS is not too important.

Nevertheless, Algorithm 1 allows to overcome this issue. Since the analysis in each level is performed

on small size systems T ij , it is possible to choose the basis Bdiss
∆i+1

m
in the from of DGL scaling. The

consequence will be a less conservatism results in the overall analysis compared to those when using

the hierarchical approach with DG scaling.

In the next section, we present three types of elements for the basis BdissT •
•

and we formulate the

problems of computing each one of them as a convex optimization problem allowing to minimize its

size measure.

5 Practical Formulation and Computation of The Basis Ele-

ments

In the previous section, we revealed how it is possible to solve Problem 2.1 with Algorithm 1 using

basis propagation from level i to level i − 1 with the assumption that we are able to find the basis

elements of each uncertain system given the basis of its uncertainty. However, the conservatism of the

overall result depends highly on the choice of the propagated basis. For this reason, it is important

to define and compute the ”best” basis for a given uncertain system. In the sequel, we consider an

uncertain system T such that z = Tw as in (5) with a given uncertainty basis BdissΩ .

Corollary 3.1 gives sufficient conditions to obtain {X, Y, Z} dissipativity property for the uncertain

system T by solving the following feasibility optimization problem

LP
(
M,ΦΩ

11,Φ
Ω
12,Φ

Ω
22, X

k, Y k, Zk, ε
)
≥ 0
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with ΦΩ ∈ Φ(BdissΩ ) is of the form (9) with a priori known BdissΩj
. This feasibility optimization problem

is convex and can be solved efficiently. The obtained {X, Y, Z} dissipativity property will define an

element of the basis BdissT . However, in order to ensure that this characterization is the best, it is

important to define a size measure for each element i.e. characterize T with the optimal {X, Y, Z} in

the sense that this size is minimized. In addition, one can characterize the uncertain system T not

with just one dissipativity property but with N different dissipativity properties which will be used to

construct the basis BdissT (
Xk Y k(
Y k
)∗

Zk

)
∈ BdissT , ∀ k = 1, . . . , Nd

In order to construct the largest basis BdissT , all its elements should be conically independent and

capture information, of different nature, characterizing the uncertain system T such as gain or phase

information.

In this section, for every frequency ω0 and in order to have a geometric interpretation of each

element of BdissT , we characterize the uncertain system T in the signals space using the system input

and output signals w and z. Within this context, a system T is said to be {X, Y, Z} dissipative if(
z
w

)∗(
X Y
Y ∗ Z

)(
z
w

)
> 0 (14)

Therefore, the search of each element of BdissT consists in the following: find {X, Y, Z} dissipativity

property such that (14) is ensured for all non null input signals w with its resulting output z = Ω ? Mw

for all Ω ∈ Ω.

5.1 Ellipsoid

If X < 0, constraint (14) rewrites in the signals space as

(z − zc)∗(−X)(z − zc) < w∗
(
Z − Y ∗X−1Y

)
w

with zc = −X−1Y w and (Z − Y ∗X−1Y ) is hermitian positive definite matrix since X < 0 and con-

straint (14) holds. Then, for all non null input signal w, the corresponding output signal z belongs to

the ellipsoid Ew (nz dimensional space) centered at zc and characterized with Pw such that

EPw = {z ∈ Cnz | (z − zc)∗Pw(z − zc) < 1} (15)
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where the matrix Pw determines how far the ellipsoid extends in every direction and it is given by

Pw =
−X

w∗ (Z − Y ∗X−1Y )w

We are now interested in finding X, Y and Z corresponding to the smallest ellipsoid EPw for all

inputs such that1 ‖w‖ = 1 and the uncertain system Ω?M is {X, Y, Z} dissipative. For this purpose,

a size measure v for the ellipsoid EPw can be defined as its volume v = vol (EPw), which is given by

v = β
√

det (P−1
w )

where β is a positive scalar which depends on nz.

Problem 5.1 Let Ω ? M be an uncertain system. Find X, Y and Z which

minimize maximize maximize v2

over X,Y,Z
X<0 over Ω ∈ Ω over w

s.t.

{
‖w‖ = 1
(Ω ? M)w ∈ EPw

Theorem 5.1 An upper bound ṽ on vopt optimal value of Problem 5.1 can be obtained by finding X,

Y , Z, ΦΩ
11, ΦΩ

12 and ΦΩ
22 with

ΦΩ =

(
ΦΩ

11 ΦΩ
12(

ΦΩ
12

)∗
ΦΩ

22

)
∈ Φ

(
BdissΩ

)
that minimize

log
(
det
(
−X−1

))
such that

1. LP
(
M,ΦΩ

11,Φ
Ω
12,Φ

Ω
22, X, Y, Z, ε

)
≥ 0 holds;

2.

(
I 0
0 0

)
≥
(
Z Y ∗

Y X

)
holds.

The upper bound ṽ is given by ṽ = β

√
det
(
−X̃−1

)
where X̃ = argmin log (det (−X−1)) such that

conditions 1 and 2 of Theorem 5.1 hold. The optimal ellipsoid EPoptw
corresponding to vopt will be

included in EP̃w
the ellipsoid corresponding to ṽ

EPoptw
⊆ EP̃w

.

1The normalization of the input signal w is absorbed in Pw.
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This optimization problem is a determinant maximization under linear matrix inequality constraints

[24] and is convex.

Proof 5.1 Problem 5.1 rewrites

minimize maximize maximize v2

over X,Y,Z
X<0 over Ω ∈ Ω over ‖w‖ = 1

subject to Ω ? M is {X, Y, Z} dissipative

Let us introduce the logarithm function on v2, which is strictly increasing according to its argument

log
(
v2
)

= 2 log (β) + log
(
det
(
−X−1

))
+ log

(
w∗
(
Z − Y ∗X−1Y

)
w
)

Maximizing log (v2) over the inputs ‖w‖ = 1 and with σ̄ as the maximal singular value of (Z − Y ∗X−1Y ),

it is possible to write

max
‖w‖=1

log
(
v2
)

= 2 log (β) + log
(
det
(
−X−1

))
+ log (σ̄)

Since (Z − Y ∗X−1Y ) is hermitian definite positive, then its maximal singular value is equal to its

largest eigenvalue λmax. We thus have

λmaxI ≥
(
Z − Y ∗X−1Y

)
Furthermore, as a dissipativity property is defined up to a strictly positive multiplicative coefficient and

as {X, Y, Z} dissipativity defines the same ellipsoid as {τX, τY, τZ} dissipativity for any τ > 0. Then,

one can search for X, Y and Z such that λmax = 1 without loss of generality. Since β is a constant,

the optimization problem is equivalent to

minimize maximize log (det (−X−1))
over X,Y,Z

X<0 over Ω ∈ Ω

subject to Ω ? M is {X, Y, Z} dissipative
I ≥ (Z − Y ∗X−1Y )

The last optimization problem is solved by applying Corollary 3.1 which gives condition 1 of Theo-

rem 5.1 while condition 2 is obtained by applying Schur’s lemma [25] on I ≥ (Z − Y ∗X−1Y ). Please

note that since Corollary 3.1 presents sufficient conditions, we are only able to compute an upper

bound ṽ on the optimal volume vopt.
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Remark 5.1 The interest of finding a bounded and connected set as ellipsoid, for which belongs the

output z, is to characterize the gain of the uncertain system T . At each frequency ω0, the frequency

response of the uncertain system is embedded in this ellipsoid i.e. it is possible to compute boundaries

for the system gain at this frequency ω0. Furthermore, if X = −I, Y = 0 and Z = γ2
ω0
I, the ellip-

soid {X, Y, Z} dissipativity property corresponds to the upper bound on the system maximum singular

value i.e. σ̄ (T (jω0)) < γω0.

5.2 Band

In the signals space and in case we enforce X = 0, constraint (14) rewrites as ξ∗z−η > 0 with ξ = 2Y w

and η = −w∗Zw. This last inequality expresses that for a given non null input signal w, the output

signal z belongs to a half plane which is characterized by the hyperplane: {z | ξ∗z = η} where ξ is

a vector normal to the hyperplane and η is twice the ’signed distance’ of the hyperplane to the origin

(the dot product of any point of the hyperplane with ξ). In addition to a half plane, it is possible

to define a band B(η1,η2)w
as the intersection of two parallel half planes with the same normal direc-

tion ξ but opposite sign, i.e. two parallel half planes defined by two dissipativity properties {0, Y, Z1}

and {0,−Y, Z2}, that is

B(η1,η2)w
=

z ∈ Cnz

∣∣∣∣∣∣
ξ∗z − η1 > 0

−ξ∗z − η2 > 0


with ξ = 2Y w, η1 = −w∗Z1w and η2 = −w∗Z2w.

Our objective now is to find the band B(η1,η2)w
with the smallest size measure for a fixed direction de-

fined by Y , for all inputs such that ‖w‖ = 1 and provided that the uncertain system Ω ? M is {0, Y, Z1}

and {0,−Y, Z2} dissipative. We can define a size measure d as the width of the band, that is

d = |η1 + η2|

Problem 5.2 Let Ω ? M be an uncertain system. For a given Y , find Z1 and Z2 which

minimize maximize maximize d

over Z1,Z2 over Ω ∈ Ω over w

s.t.

{
‖w‖ = 1
(Ω ? M)w ∈ B(η1,η2)w
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Theorem 5.2 An upper bound d̃ on dopt the optimal value of Problem 5.2 can be obtained by find-

ing Z1, Z2,
(
ΦΩ

11

)i
,
(
ΦΩ

12

)i
and

(
ΦΩ

22

)i
with

(
ΦΩ
)i

=

(
(ΦΩ

11)
i

(ΦΩ
12)

i

(ΦΩ
12)

i∗
(ΦΩ

22)
i

)
∈ Φ

(
BdissΩ

)
with i = {1, 2} that minimize

d

such that

1. LP
(
M,
(
ΦΩ

11

)1
,
(
ΦΩ

12

)1
,
(
ΦΩ

22

)1
, 0, Y, Z1, ε

)
≥ 0 holds;

2. LP
(
M,
(
ΦΩ

11

)2
,
(
ΦΩ

12

)2
,
(
ΦΩ

22

)2
, 0,−Y, Z2, ε

)
≥ 0 holds;

3. Z1 + Z2 ≤dI holds.

The upper bound d̃ is given by d̃ = |η̃1 + η̃2| = argmind such that conditions 1 and 2 of Theorem 5.2

hold. η̃1 and η̃2 correspond to the obtained solutions Z1 and Z2.

The optimal band B(η1opt ,η2opt)w

will be included in the band B(η̃1,η̃2)w
corresponding to d̃, that is

B(η1opt ,η2opt)w

⊆ B(η̃1,η̃2)w
.

This optimization problem is the minimization of a linear cost under LMI constraints [25] and is

convex. It is then also possible to search for the band direction by letting Y to be free.

Proof 5.2 Problem 5.2 rewrites

minimize maximize maximize |η1 + η2|
over Z1,Z2 over Ω ∈ Ω over ‖w‖ = 1

subject to Ω?M is {0, Y, Z1} dissipative
Ω?M is {0,−Y, Z2} dissipative

with η1 = −w∗Z1w and η2 = −w∗Z2w. Noting that, |η1 + η2| = −η1 − η2 > 0 since the set Ω ? M is

not empty, the previous optimization problem is equivalent to:

minimize maximize maximize − η1 − η2

over Z1,Z2 over Ω ∈ Ω over ‖w‖ = 1

subject to Ω?M is {0, Y, Z1} dissipative
Ω?M is {0,−Y, Z2} dissipative
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Therefore, max
‖w‖=1

(−η1 − η2) is equivalent to minimize d constrained by

dI ≥ Z1 + Z2.

The optimization is thus equivalent to

minimize maximize minimize d

over Z1,Z2 over Ω ∈ Ω over d

subject to
Ω?M is {0, Y, Z1} dissipative
Ω?M is {0,−Y, Z2} dissipative
dI≥(Z1+Z2)

Finally, condition 1 and condition 2 of Theorem 5.2 are obtained by applying Corollary 3.1. Again,

since Corollary 3.1 presents sufficient conditions, we are only able to compute an upper bound d̃ on

the optimal width dopt.

5.3 Cone Sector

The phase uncertainty presents an other important characterization of uncertain system behavior. In

contrast with the system gain, and beside for single input single output systems, there is no unique

definition of multiple input multiple output systems phase. Furthermore, taking into account uncer-

tainties in the system makes the phase characterization more complicated. It is possible to compare

the direction variation between the input and the output signals to measure the phase of a system

by measuring input direction variation added by the system. Furthermore, within this context, the

phase uncertainty is characterized using the notion of numerical range as shown in [20] and [26]. The

numerical range of a complex matrix Γ is defined to be a compact and convex set of C and it is given

by [27]

N (Γ) = {w∗z | z = Γw,w ∈ Cnw and ‖w‖ = 1} (16)

In order to define the phase of an uncertain system Ω ? M , the numerical range is extended to

the union of numerical ranges N (Ω ? M) for any Ω ∈ Ω. Let us define in the complex plane the

cone sector centered at the origin and containing all these numerical ranges. It is defined by a spread

angle α such that 0 < α < π and the angle β measured between the bisectrix of α and the real axis

direction. Please refer to [20] for more details. The angle β can be set to zero by introducing a

scaling matrix Ψ ∈ Cnz×nw . More generally, the cone sector can be centered at any point zc = Cw
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with C ∈ Cnz×nw and the objectives is to compute Ψ and α such that union of the numerical ranges

N (Ψ∗ (Ω ? M)) is included in the set of z∗w where ‖w‖ = 1 and z ∈ C(zc,α)w
with

C(zc,α)w
=

z ∈ Cnz

∣∣∣∣∣∣∣∣∣

(
z
w

)∗(
0 Y1

Y ∗1 Z1

)(
z
w

)
> 0(

z
w

)∗(
0 Y2

Y ∗2 Z2

)(
z
w

)
> 0

 (17)

where

Y1 = Ψ
(
I + j cot

(α
2

)
I
)

Z1 = − (Y ∗1 C + C∗Y1)

Y2 = Ψ
(
I − j cot

(α
2

)
I
)

Z2 = − (Y ∗2 C + C∗Y2)

with 0 <
α

2
<
π

2
. We are now interested in finding Yi and Zi corresponding to the smallest C(zc,α)w

for

all inputs such that ‖w‖ = 1. This inclusion ensures that the uncertain system Ω ? M is {0, Y1, Z1}

and {0, Y2, Z2} dissipative. This problem can be solved by finding Ψ such that the union of the

numerical ranges N (Ψ∗ (Ω ? M − C)) is in the right half plane and then search for α. Furthermore,

to obtain the smallest cone, a size measure a for C(zc,α)w
is needed. It can be defined as the tangent

of the angle α

a = tan
(α

2

)
Problem 5.3 Let Ω ? M be an uncertain system and given a complex matrix C. Find Ψ and α such

that the union of the numerical ranges N (Ψ∗ (Ω ? M − C)) is in the right half plane and which

minimize maximize maximize a

over Ψ,a over Ω ∈ Ω over w

s.t.

{
‖w‖ = 1
(Ω ? M)w ∈ C(zc,α)w

Theorem 5.3 The union of numerical ranges N (Ψ∗ (Ω ? M − C)) of Problem 5.3 is located in the

right half plane if ∃ Ψ and Φ̂ ∈ Φ
(
BdissΩ

)
such that(
M
I

)∗
B

(
M
I

)
≥ 0 (18)

where

B =


−Φ̂Ω

22 0 −
(

Φ̂Ω
12

)∗
0

0 −εI 0 Ψ

−Φ̂Ω
12 0 − Φ̂Ω

11 0
0 Ψ∗ 0 −(Ψ∗C + C∗Ψ)− εI
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Furthermore, an upper bound ã on aopt, optimal value of Problem 5.3, can be obtained by find-

ing a, Φ̂Ω and
(

Φ̃Ω
)i

with

Φ̂Ω+a−1(Φ̃Ω)
1
∈Φ(BdissΩ ) Φ̂Ω−a−1(Φ̃Ω)

2
∈Φ(BdissΩ )

that minimize

a

such that:

1. a

(
M
I

)∗
B

(
M
I

)
+

(
M
I

)∗
A1

(
M
I

)
≥ 0;

2. a

(
M
I

)∗
B

(
M
I

)
+

(
M
I

)∗
A2

(
M
I

)
≥ 0;

3. condition (18) holds.

where

Ai =(−1)i−1


−
(

Φ̃Ω
22

)i
0 −

(
Φ̃Ω

12

)i∗
0

0 0 0 −jΨ
−
(

Φ̃Ω
12

)i
0 −

(
Φ̃Ω

11

)i
0

0 (−jΨ)∗ 0 −j(Ψ∗C − C∗Ψ)



The upper bound ã is given by ã = argmina such that conditions 1, 2 and 3 of Theorem 5.3 hold.

The optimal cone sector C(zc,αopt)w
of Problem 5.1, with αopt = 2atan (aopt), will be included in the

cone sector C(zc,α̃)w
, with α̃ = 2atan (ã), that is

C(zc,αopt)w
⊆ C(zc,α̃)w

.

Minimizing a in Theorem 5.3 such that conditions 1, 2 and 3 hold is a generalized eigenvalues

problem which has been proved that it is a quasiconvex optimization problem [25] and it can be solved

efficiently [28].
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Proof 5.3 The union of the numerical ranges N (Ψ∗ (Ω ? M − C)) is in the right half plane if and

only if

Re (N (Ψ∗ (Ω ? M − C))) ≥ 0.

By (16), which defines the numerical range, the previous condition rewrites as(
z
w

)∗(
0 Ψ

Ψ∗ − (Ψ∗C + C∗Ψ)

)(
z
w

)
≥ 0 (19)

where z = Ω ? M . This constraint expresses that the uncertain system Ω ? M is {0,Ψ,− (Ψ∗C + C∗Ψ)}

dissipative for all Ω ∈ Ω. By applying Corollary 3.1, (19) is implied by (18) with Φ̂ ∈ Φ
(
BdissΩ

)
. Then,

the minimization of a is well-posed when the union of numerical ranges N (Ψ∗ (Ω ? M − C)) is in

the right half plane, that is 0 <
α

2
<
π

2
. With a = tan

(α
2

)
, Yi and Zi introduced in (17) become

Yi = Ψ + (−1)i−1ja−1Ψ

Zi = − (Ψ∗C + C∗Ψ) + (−1)ija−1 (Ψ∗C + C∗Ψ)
(20)

The problem of minimizing a rewrites

minimize maximize maximize a

over Ψ,a over Ω ∈ Ω over ‖w‖ = 1

s.t. Ω?M is {0, Y1, Z1} dissipative
Ω?M is {0, Y2, Z2} dissipative

where Yi and Zi are given in (20). Nevertheless, since the conditions of Corollary 3.1 are only suf-

ficient, we are able to compute only an upper bound ã on aopt, solution of Problem 5.3. Applying

Corollary 3.1 gives

LP
(
M,
(
ΦΩ

11

)1
,
(
ΦΩ

12

)1
,
(
ΦΩ

22

)1
, 0, Y1, Z1, ε

)
≥ 0

LP
(
M,
(
ΦΩ

11

)2
,
(
ΦΩ

12

)2
,
(
ΦΩ

22

)2
, 0, Y2, Z2, ε

)
≥ 0

(21)

with
(
ΦΩ
)1 ∈ Φ

(
BdissΩ

)
,
(
ΦΩ
)2 ∈ Φ

(
BdissΩ

)
. Yi and Zi are given in (20). However, since a−1 is

multiplied by Ψ the optimization problem is bilinear in a−1 and Ψ and this class of problems is known

to be NP hard. Fortunately, there is a sub-class of bilinear problems known as generalized eigenvalue

problem which is quasiconvex optimization problem and can be solved efficiently [25]. For this reason,

it is possible to rewrite the problem of minimizing a as generalized eigenvalue problem. In order

to make the terms multiplied by a positive semidefinite, we can choose
(
ΦΩ
)i

= Φ̂Ω with i ∈ {1, 2}.
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Nevertheless, fixing this structure to
(
ΦΩ
)i

will increase the conservatism. The latter can be reduced

with a more appropriate choice of
(
ΦΩ
)i

such as

(ΦΩ)
1
=Φ̂Ω+a−1(Φ̃Ω)

1
(ΦΩ)

2
=Φ̂Ω−a−1(Φ̃Ω)

2

This choice is interesting in the sense that Φ̂Ω will be used to make N (Ψ∗ (Ω ? M − C)) is in the

right half plane while
(

Φ̃Ω
)i

will ensure extra degree of freedom to minimize ã. Developing (21) and

factorizing a−1 give (
M
I

)∗
B

(
M
I

)
+ a−1

(
M
I

)∗
A1

(
M
I

)
≥ 0(

M
I

)∗
B

(
M
I

)
+ a−1

(
M
I

)∗
A2

(
M
I

)
≥ 0

Since 0 <
α

2
<
π

2
, then a ≥ 0 and we obtain

a

(
M
I

)∗
B

(
M
I

)
+

(
M
I

)∗
A1

(
M
I

)
≥ 0

a

(
M
I

)∗
B

(
M
I

)
+

(
M
I

)∗
A2

(
M
I

)
≥ 0

Minimizing a with the latter conditions is a generalize eigenvalue problem since condition (18) holds.

Please note that since Corollary 3.1 presents sufficient conditions, we are only able to compute an

upper bound ã on the optimal aopt.

Remark 5.2 The interest of finding a cone sector is to be able to characterize the phase variation by

embedding the numerical range of the uncertain system inside the cone sector. This phase uncertainty

information can be very important and critical in some applications such as the active control of

vibrations. Please note that for SISO system, if C = 0 and Ω = 0, the numerical range boils down into

one point and the cone sector is nothing else than the phase of the nominal SISO system, according to

the origin, at a given frequency ω0.

In the next section we present an application example to investigate the performance of an uncertain

LSS using the hierarchical approach.
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6 Performance analysis of PLL network

We consider the example of performance analysis of the active clock distribution network of [29]. It

is composed of N = 16 mutually synchronized Phase Locked Loop (PLL) delivering clock signals

to the chip. In order to synchronize all the network, the PLLs exchange information through an

interconnection structure. This example is suitable for illustration of the proposed hierarchical analysis

approach as the performance is naturally evaluated in the frequency domain.

6.1 PLL network description

The description of the N PLLs frequency responses are given by

Tj(jω0) =
kj(jω0 + aj)

−ω2 + kjjω0 + kjaj
∀j ∈ {1, . . . , N}

where kj and aj are the PLL parameters and ω0 is the current frequency defined by griding. Due to the

manufacturing process, technological dispersions are inevitable and the PLL parameters kj and aj are

uncertain: kj ∈ [0.76, 6.84]× 104 and aj ∈ [91.1, 273.3]. Furthermore, all the PLLs are homogeneous

i.e. have the same description and uncertainty set ∆. Therefore, and after normalization, it is possible

to present the PLLs as the interconnection of certain and uncertain part

Tj(jω0) = ∆j ? MPLL ∆j ∈∆ j = 1, . . . , N

where ∆ is given by

∆ =

{
∆ =

(
δk 0
0 δa

)
δk ∈ R, δa ∈ R ||∆||∞ ≤ 1

}
The information exchange between PLLs is modeled by an interconnection matrix Mint defined as
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The network performance is characterized by its global input and output signals wg and zg using

the global frequency response magnitude bound (more details in [18] and [19]). Therefore, the PLL

network has a three level hierarchical structure and it is a sub-class of the LSS of (3) and (4), see

Fig.3.
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Figure 3: PLL network modeled as three level hierarchical structure

The different characteristics of this hierachical structure are summarized in TABLE 1.

l 3

N i
T N1

T = 1, N2
T = N

N∆(M i
j)

N∆(M2
j ) = {j} ∀ j ∈

{
1, . . . , N2

T

}
N∆(M1

1 ) = ∅

NT (M i
j)

NT (M2
• ) = ∅

NT (M1
1 ) = {1, . . . , N}

M i
j M1

1 = Mint M2
j = MPLL ∀ j ∈

{
1, . . . , N2

T

}

Table 1: Three level hierarchical structure characteristics

6.2 Hierarchical Approach

The hierarchical approach used in this application consists of applying Algorithm 1 in two steps.
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6.2.1 Local step

find a basis BdissTj
for each PLL by applying Corollary 3.1 using the given basis Bdiss∆j

of the elementary

uncertainties ∆j. In order to construct the basis BdissTj
, we consider several elements

• ellipsoid: we can use Theorem 5.1 to find a disc2 center and an upper bound on the optimal

radius;

• band: we can use Theorem 5.2 to find an upper bound on the band width with free orientation;

• cone sector: given a fixed center C, we can use Theorem 5.3 to find an upper bound of the cone

angle.

Please note that since all the PLLs are homogeneous, the basis BdissTj
obtained for one PLL is valid

for all the 16 PLL. Therefore, computation time of the local step is equal to computation time required

to find the basis elements for one PLL.

6.2.2 Global step

find the smallest γω0 such that the network, denoted T 1
1 , is {−I, 0, γ2

ω0
I} dissipative by applying

Corollary 3.1 using the basis BdissTj
obtained in local step. In this step, one can combine the elements

of BdissTj
to characterize each PLL by

• ellipsoid alone;

• ellipsoid and band;

• ellipsoid and cone, . . .

and propagate these characterizations to investigate the performance of the network in the global step.

6.3 Results

6.3.1 Local step

In this step, we are interested in finding three elements of the basis BdissTj
: ellipsoid, band and cone

sector. The frequency responses of a PLL for different frequencies are presented in Fig. 4 in the complex

2In single input single output case, the ellipsoid boils down to a disc.
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plane. The red dot is the nominal frequency response and the green dots represent a sampling of the

uncertain frequency response obtained for a sampling of aj and kj for illustrations purposes only.
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Figure 4: Visualization of the three elements of BdissTj
characterizing each PLL

The three elements of BdissTj
are interpreted in geometric terms and presented in Fig. 4. The obtained

disc is presented in black with its center and we can see that the radius is minimized. The blue lines

represent the obtained band with a free direction and the band width is also minimized. The red lines

represent the obtained cone sector with its center C fixed as C = cdisc + j× 1.1× rdisc where cdisc and

rdisc are the disc center and radius respectively and the cone angle is minimized.
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Please note that since the uncertainty ∆ is parametric and in order to reduce the conservatism,

the basis Bdiss∆ is chosen in the form of DGL scaling from [23], see Remark 4.3.

6.3.2 Global step

The performance analysis results of the PLL network are presented in Fig. 5 and summarized in

TABLE 2. Please note that the direct approach corresponds to the approach of Corollary 3.2.

Approach Maximum peak Computation time
Direct 6.01 dB 361.7s
Hierarchical: ellipsoid 13.44 dB 16.9s
Hierarchical: ellipsoid+band 12.97 dB 53.5s
Hierarchical: ellipsoid+cone 6.45 dB 115.9s

Table 2: Comparison between the different approaches

6.3.3 Discussion

All the analysis reveal that the PLL network is able to track a ramp as the slope of frequency response

magnitude at low frequencies is 40 dB/dec (see [30] for more details) and the performance requirements

are satisfied. The direct approach presents the less conservative results with a maximum peak of 6.01dB

comparing to the different hierarchical approaches. However, computation time is significant: 361.7s.

TABLE 2 illustrates the trade-off between conservatism and computation time that can be set by the

user with the hierarchical approach. Please note that TABLE 2 gives the overall computation time for

each approach i.e. computation time required for both steps. When using the disc alone, the results

are conservative but they are obtained faster. The results are less conservative when using the disc

with the band, but they are obtained in more time. However the maximum peak is also important.

When using the disc with a cone sector, the results are much less conservative. Actually, they are close

to the results of the direct approach: the difference in the maximal peak value with direct approach

is +0.39 dB, that corresponds to 4.73 % of ratio. In addition, the results are obtained in 32.04 % of

the time needed for direct approach.
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Figure 5: The PLL network performance analysis

7 Stability Analysis of a Chain of Uncertain Systems

In this section, we consider the stability analysis of a chain of uncertain systems taken from [16]. Our

objective is to compare the computation time required in our hierarchical method, the direct analysis

approach and the method proposed in [16].

7.1 Chain of uncertain systems description

Consider a chain of N uncertain system Tj. The uncertainties are assumed to be scalar reals: δ1, . . . , δN

i.e. each system has one parametric uncertainty. The inputs and the outputs of each system Tj are

denoted wj and zj.

For j = {2, . . . , N − 1}, each system Tj has two inputs and two outputs i.e. wj, zj ∈ C2 while wj, zj ∈ C
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Figure 6: Chain of N uncertain systems

for j = {1, N}; hence it is possible, after normalization, to represent each uncertain system as

Tj = ∆j ? Mj ∆j ∈∆

with ∆ is given by

∆ = {∆ = δ, δ ∈ R ||∆||∞ ≤ 1}

Since each uncertain system Tj is only connected to Tj−1 and to Tj+1, see Fig.6, the interconnections

in this chain are defined by: w2
j = z1

j+1 and w1
j = z2

j−1 for j = {2, . . . , N − 1} and by w1 = z1
2 and

wN = z2
N−1 for j = {1, N}. The global system is given by

Tglobal = bdiag
j

(Tj) ? Mglobal

where Mglobal is the global interconnection matrix. This matrix is sparse and it corresponds to a

chordal graph, please refer to [16] for more details.

The systems are generated randomly as explained in [16] where the authors considered three con-

ditions that different systems should satisfy

1. each system has to be nominally stable;

2. each system has to be robustly stable;

3. the chain of N systems has to be nominally stable.
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7.2 Hierarchical approach

Let us suppose, without loss of generality, that N the number of systems in the chain is given by N = 2ν

where ν is a positive integer. It is possible to consider a three levels hierarchical structure as in TA-

BLE 1, with M1
1 = Mglobal and M2

j = Mj (the randomly defined) , and perform the analysis in two

steps as for the PLL application.

However, with this three level hierarchical structure, we will not exploit to the most the network struc-

ture which is sparse with a chordal pattern. To exploit this pattern, special optimization algorithms

can be used as shown in [16]. Nevertheless, our hierarchical approach is flexible enough to capture

this structure and exploit the chordal pattern. Since each system Tj is only connected to its direct

neighbors, let us define a two by two fully split hierarchical structure such that at each hierarchical

level we regroup systems two by two except level l and level l − 1, see Fig.7.
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Figure 7: Two by two fully split hierarchical structure of chain of uncertain systems

Therefore, the chain of uncertain systems with the fully split hierarchical structure is a sub-class
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of the LSS of (3) and (4). The different characteristics of its hierarchical structure are summarized

in TABLE 3.

l ν + 2

N i
T 2i−1

N∆(M i
j)

N∆(M l−1
j ) = {j} ∀ j ∈

{
1, . . . , N l−1

T

}
N∆(M i

•) = ∅ ∀ i ∈ {1, . . . , l − 1}

NT (M i
j)

NT (M l−1
• ) = ∅

NT (M i
j) = {2j − 1, 2j} for ∀ i ∈ {1 . . . , l − 2}

M i
j

M1
1 = ( 0 1

1 0 ) M l−1
j =Mj for ∀ j ∈

{
1, . . . , N l−1

T

}
M i

1=

(
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

)
, M i

N i
T

=

(
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

)
∀ i ∈ {2, . . . , l − 2}

M i
j=

 0 0 0 0 1 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 0 1 0 0

 ∀ i ∈ {2, . . . , l − 2}
∀ j ∈

{
2, . . . , N i

T − 1
}

Table 3: Two by two fully split hierarchical structure characteristics

We can thus use the Hierarchical Robust Stability Analysis Algorithm of Remark 4.1 to certify the

stability of the chain. The new hierarchical analysis setup will be performed in several steps.

7.2.1 First step

find a basis Bdiss
T l−1
j

for each uncertain system T l−1
j by applying Corollary 3.1 using the given basis Bdiss

∆l
j

of the elementary uncertainties ∆l
j.

7.2.2 Intermediate steps

for every i = l − 2, . . . , 2 and for every j = 1, . . . , N i
T , find a basis Bdiss

T i
j

for each uncertain system T ij

using the basis Bdiss
T i+1
n

of the uncertain systems T i+1
n obtained at level i+ 1.

7.2.3 Last step

given the basis Bdiss
T 2
j

obtained at level 2, test if LS
(
M1

1 ,Φ
Ω
11,Φ

Ω
12,Φ

Ω
22,
)
≥ 0.
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To prove the robust stability of the network, it is sufficient to consider only one element: ellipsoid

at each level. Furthermore and as we have seen, the uncertain systems of each hierarchical level i are

interconnected at level i − 1 and levels below, it is hence easy to perform the hierarchical approach

using parallel computation as it is explained in Remark 4.2.

7.3 Results

The objective here is to compute the ratio between the time required in the direct and the hierarchical

approach and to compare it to that obtained in [16]. Therefore, we will apply the different approaches:

direct and parallel hierarchical only for a single frequency3.

The analysis is performed for 10 realizations of the network presented earlier with different N . The

evolution according to N of the average CPU time required to perform the analysis of 10 realizations

in each approach is plotted in Fig.8.
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Figure 8: Average CPU computation time for different sizes N

3In order to conclude on the robust stability, the analysis has to be performed for a all the frequencies through a

frequency griding.
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Please note that in order to compare our results with those of [16], the basis Bdiss
∆̃

is the D-scaling

from [4].

The average CPU time required for the direct approach increases dramatically when increasing the

size of the network and it can reach 37.40s for a chain of 200 systems. For the hierarchical approach,

the analysis is performed in a parallel manner at each hierarchical level. The required CPU time, at

level i, is the maximum among all the CPU time required for the analysis of each sub-system T ij and

the global CPU time is the sum of the computation time of each level. The average CPU time required

for N = 200 is 0.2552s which gives a ratio of 154 between the time required in direct and hierarchical

approaches. For comparison, this ratio is 10 in [16].

Please note that for small size chains (less than approximately 36), the computation time of the

hierarchical approach is more important compared to the direct approach. When the chain size is

increasing, the computation time of the direct approach becomes more and more important compared

to the hierarchical approach. This behavior can be explained by analyzing how the network size N

affects the computation time in both approach. The objective of the next section is to discuss how

the computation time grows according to N .

8 Computation time for a Sub-Class of Uncertain LSS

The hierarchical structure considered in the previous section for the chain of uncertain systems can

be generalized by regrouping systems ns by ns instead of two by two, see Fig.7, to obtain a fully split

hierarchical structure. Without loss of generality, let us suppose that N the number of systems in the

chain is given by N = nκs where κ is a positive integer.

The chain of uncertain systems, regrouped ns by ns fully split hierarchical structure is a sub-class

of the LSS of (3) and (4). The different characteristics of this hierarchical structure can be given as

in TABLE 3 with the flowing differences

• l = κ+ 2;

• N i
T = ni−1

s ;

• NT (M i
j) = {ns(j − 1) + 1, . . . , nsj};
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• M i
j , for i 6= l − 1, are adapted according to ns.

Furthermore, the stability problem considered in the previous section can be extended to a perfor-

mance problem i.e. investigate if the chain is {X1, Y1, Z1} dissipative for all possible uncertainties by

introducing the global performance signal wg and zg and adapting M1
1 .

For illustration purpose of the computation time, and without lost of generality, we suppose that all

the uncertainties ∆l
j are homogeneous. Furthermore, again and without lost of generality, we perform

basis propagation in hierarchical approaches, form level l− 1 to level 2, with only one element of Bdiss
T i
j

such as the ellipsoid.

The objective is to characterize the computation time required to perform robustness analysis, at

a given frequency ω0, using the different approaches: direct, hierarchical and parallel hierarchical.

Computation complexity

Computation time of an algorithm characterizes how fast or slow this algorithm performs. This

computation time depends on the algorithm complexity which is defined as a numerical function of

the number of variables n.

Given an optimization problem under LMI constraints, the algorithmic complexity isO (n3) when using

the interior point method [28]. The computation time of an algorithm depends on implementation

details such as: processor speed, instruction set, etc. For this reason and subsequently in this report,

we will refer to the algorithmic complexity as the computation time.

8.1 Direct approach

For the direct analysis approach and given a dissipativity property {X1, Y1, Z1}, the number of decision

variables of the robust performance analysis is η{X1,Y1,Z1} +
∑N

k=1 η∆k
where η{X1,Y1,Z1} is the number

of decision variables corresponding to {X1, Y1, Z1} and η∆k
is the number of decision variable corre-

sponding to each elementary uncertainty ∆k. In the case where all the uncertainties are homogeneous,

all the η∆k
become η∆ and the required computation time is given by

TDA = O
((
η{X1,Y1,Z1} +Nη∆

)3
)

(22)

which is cubic according to N .

39



8.2 Hierarchical approach

Given l = κ+ 2 and N i
T = ni−1

s . The total number of analysis to be performed for all levels is

Ntotal = 1︸︷︷︸
level 1

+ ns + n2
s + · · ·+ nκ−1

s︸ ︷︷ ︸
intermediate levels

+ nκs︸︷︷︸
level l − 1

which is the sum of κ+ 1 first terms of a geometric progression, that is

Ntotal = N
ns

ns − 1
− 1

ns − 1

The algorithmic complexity of the hierarchical approach depends on the number of performed tests.

The latter changes according to the considered hierarchical structure i.e. the number of levels and the

number of analysis at each level

• each of the N analysis problem, at level l−1, has
(
η∆ + η{X,Y,Z}

)
decision variables with η{X,Y,Z}

is the number of decision variables corresponding to one {X, Y, Z} dissipativity property to be

propagated. The computation time is

N O
((
η∆ + η{X,Y,Z}

)3
)
.

• each of the N
1

ns − 1
−

ns
ns − 1

intermediate analysis problems, from level l − 2 to level 2,

has
(
ns + η{X,Y,Z}

)
decision variables4. The required computation time is

(
N

1

ns − 1
− ns
ns − 1

)
O
((
ns + η{X,Y,Z}

)3
)
.

• at level 1, the objective is to investigate if T 1
1 (jω0) is {X1, Y1, Z1} dissipative. The analysis

problem has
(
ns + η{X1,Y1,Z1}

)
decision variables and the computation time is

O
((
ns + η{X1,Y1,Z1}

)3
)
.

Then the global computation time, at a given frequency ω0, of the hierarchical approach THA is

THA =N O
((
η∆ + η{X,Y,Z}

)3
)

+O
((
ns + η{X1,Y1,Z1}

)3
)

+

(
N

1

ns − 1
− ns
ns − 1

)
O
((
ns + η{X,Y,Z}

)3
)

which is linear with respect to N .

4Here ns corresponds to the number of αkj of (9), with k = 1 and j ∈ {1, . . . , ns}, corresponding to the ns dissipativity

properties propagated from level i+ 1.
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8.3 Parallel hierarchical approach

In this approach, the computation time at each level i is the maximum among computation time

required for the analysis problems at this level i

• at level l − 1, the required computation time is

O
((
η∆ + η{X,Y,Z}

)3
)

• from level l− 2 to level 2, the number of intermediate levels is (l − 2) = κ, that is logns
(N) and

the required computation time is

logns
(N) O

((
ns + η{X,Y,Z}

)3
)

• at level 1, the required computation time is

O
((
ns + η{X1,Y1,Z1}

)3
)

The global computation time required in this parallel hierarchical approach TPHA is

TPHA =O
((
η∆ + η{X,Y,Z}

)3
)

+O
((
ns + η{X1,Y1,Z1}

)3
)

+ logns
(N) O

((
ns + η{X,Y,Z}

)3
)

which is logarithmic according to N .

We are able now to explain the results of Fig.8. Since the objective is to test the stability of the

chain, η{X1,Y1,Z1} = 0 and the computation time TDA becomes

TDA = O
(
(Nη∆)3)

For the parallel hierarchical approach with ns = 2, the computation time TPHA becomes

TPHA =O
((
η∆ + η{X,Y,Z}

)3
)

+ O
(
(2)3)+ log2 (N) O

((
2 + η{X,Y,Z}

)3
)

The algorithmic complexity of the direct approach is cubic according to N . For N < 36, the

algorithmic complexity is not really costly from computation time point of view and the analysis

can be performed relatively fast. In the parallel hierarchical approach, even if finding one {X, Y, Z}

for each uncertain systems is not costly (since we are dealing with small size systems), the overall
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algorithmic complexity is important compared to direct approach because of the multiplication term

by log2 (N). However, when N is increasing, the evolution of the logarithmic function is less important

than the cubic evolution which makes TDA really significant compared to TPHA. Fig.8 confirm this

trend. Please note that the scales in this figure are logarithmic.

Remark 8.1 It is possible to perform the same analysis for the case when N 6= nκs . The number

of levels and systems at each level will change and the expressions of THA and TPHA will be slightly

different. However, the linear and logarithmic evolution of THA and TPHA remain valid.

9 Conclusion and Future Work

In this report, robustness analysis of uncertain large scale systems with hierarchical structure is consid-

ered. In order to reduce the computational load, a hierarchical robust performance analysis algorithm

is proposed. This algorithm performs several hierarchical analysis using basis propagation from one

hierarchical level to another. We have also presented how to formulate and compute several basis

elements. The efficiency of this algorithm is illustrated through two examples: PLL network and chain

of uncertain systems. The proposed algorithm allows to establish a trade-off between conservatism

and computation time. Furthermore, we discuss the computation time for a sub-class of uncertain

LSS. In contrast with cubic evolution of computation time with respect to N in the direct approach,

the computation time grows linearly in the hierarchical approach and logarithmically in the parallel

hierarchical approach. Therefore, the hierarchical approaches are more suitable and adapted to per-

form the robustness analysis when N becomes very significant. Nevertheless, in this report, we did not

discuss how it is possible to obtain hierarchical structures neither the advantage of one hierarchical

structure with respect to another. Therefore, major future work directions are

• establish a systematic approach to obtain the optimal hierarchical structure with respect to

computation time and conservatism;

• combine the hierarchical approach with other approaches as the one presented in [15] and [16]

i.e. introduce specialized solvers into the hierarchical approach.
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A Appendix

Theorem 3.1 gives necessary and sufficient conditions for the system Ω?M to be stable and {X, Y, Z}

dissipative. The proof has to be done in two parts: stability and performance.

If the aim is only to investigate the system stability the external signals w(jω) and z(jω) could

be suppressed. After dropping the frequency dependence, the system description of (5) becomes a

feedback connection between M11 and Ω as follows:

p = Ω q

q = M11 p

A.1 Robust Stability Theorem

The following theorem is required to prove the stability statement in Theorem 3.1.

Theorem A.1 (Robust stability Theorem 4.1 of [31]) Let Ω be a bounded and connected set of

LTI systems. The uncertain system Ω ? M11 is stable if and only if

1. There exists a Ω0 ∈ Ω such that Ω0 ? M is stable.

2. There exists a hermitian matrix Φ = Φ∗ of RL∞ such that Ω is {Φ11,Φ12,Φ22} dissipative for

every Ω ∈ Ω

3. LS (M11,Φ11,Φ12,Φ22) ≥ 0

A.2 Proof of Theorem 3.1

The proof will be done for both statements stability and dissipativity.

A.2.1 Stability proof

The stability proof consists on proving that the conditions of Theorem 3.1 are equivalent to the con-

ditions of Theorem A.1
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Condition 1 and condition 2 of Theorem 3.1 are already given in Theorem 3.1. Condition 3 of

Theorem 3.1 remains to be proven.

Post and pre multiplying condition 3 Theorem 3.1 by

(
p
w

)
yields

(
p
q

)∗(−Φ11 −Φ12

−Φ∗12 −Φ22

)(
p
q

)
+

(
z
w

)∗(
X − ε Y
Y ∗ Z − ε

)(
z
w

)
≥ 0

Since we are interested only in stability, we consider

(
z
w

)
=

(
0
0

)
and with q = M11p

(
I
M11

)(
−Φ11 −Φ12

−Φ∗12 −Φ22

)(
I
M11

)
≥ 0

which is condition 3 of Theorem A.1. Hence, the conditions of Theorem 3.1 are equivalent to the

conditions of Theorem A.1.

A.2.2 Performance proof

Necessity The necessity is proved by supposing that Ω ? M is {X, Y, Z} dissipative and proving

condition 2 and condition 3 of Theorem 3.1.

By definition, for any Ω ∈ Ω, the uncertain system Ω ? M is {X, Y, Z} dissipative if:(
p
w

)∗(
M21 M22

0 I

)∗(
X Y
Y ∗ Z

)(
M21 M22

0 I

)(
p
w

)
≥ ε

(
p
w

)∗(
p
w

)
(23)

such that
p = Ω q

q =
(
M11 M22

) (
p
w

)
This last equality can be rewritten as

(
I −Ω

)( I 0
M11 M12

)(
p
w

)
= 0.

that is (
p
w

)∗(
I 0
M11 M12

)∗(
I
−Ω∗

)(
I −Ω

)( I 0
M11 M12

)(
p
w

)
= 0 (24)

48



Using the S procedure [32] and [25], condition (23) holds such that (24) if and only if there exist

τ such that for any5 Ω ∈ Ω

(
M21 M22

0 I

)∗(
X − ε Y
Y ∗ Z − ε

)(
M21 M22

0 I

)
+ . . .

· · ·+ τ

(
I 0
M11 M12

)∗(
I
−Ω∗

)(
I −Ω

)( I 0
M11 M12

)
≥ 0

which can be rewritten as
M21 M22

0 I
I 0
M11 M12


∗

X − ε Y
Y ∗ Z − ε 0

0 τ

(
I
−Ω∗

)(
I −Ω

)



M21 M22

0 I
I 0
M11 M12

 ≥ 0.

Let
(
µ1 µ2

)
be such that6

(
µ1 µ2

)
⊥ =


M21 M22

0 I
I 0
M11 M12

 ,

then, by applying Finsler’s lemma7 [25], we obtain the equivalent condition there exists τ and ζ such

that for any Ω ∈ Ω,

∃ τ, ζ such that
X − ε Y
Y ∗ Z − ε 0

0 τ

(
I
−Ω∗

)(
I −Ω

)
+ ζ

(
µ∗1
µ∗2

)(
µ1 µ2

)
≥ 0

It is equivalent by Schur’s lemma to:

(
X − ε Y
Y ∗ Z − ε

)
+ ζµ∗1µ1 ≥ 0

τ

(
I
−Ω∗

)(
I −Ω

)
+ ζµ∗2µ2 − ζµ∗2µ1

[(
X Y
Y ∗ Z

)
+ ζµ∗1µ1

]−1

ζµ∗1µ2 ≥ 0

Thus there exists τ , ζ and ε′ > 0 such that for any Ω ∈ Ω,

τ

(
I
−Ω∗

)(
I −Ω

)
+ ζµ∗2µ2 − ζµ∗2µ1

[(
X − ε Y
Y ∗ Z − ε

)
+ ζµ∗1µ1

]−1

ζµ∗1µ2 − ε′I ≥ 0

5In fact, τ should depend on Ω, that is τΩ. As shown in [22], it can be used a continuous function τ(Ω) on the closure

of Ω, but as Ω is bounded, it can be selected independent of Ω (take the maximum on the closure of Ω).
6A⊥ denotes the orthogonal of A i.e. AA⊥ = 0
7B∗AB ≥ 0⇔ A+ ζB∗⊥B⊥ ≥ 0
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Let us define

Φ =

(
ζµ∗2µ2 − ζµ∗2µ1

[(
X − ε Y
Y ∗ Z − ε

)
+ ζµ∗1µ1

]−1

ζµ∗1µ2 − ε′I

)
.

Then, using Finsler’s lemma, there exist τ such that for any Ω ∈ Ω,

τ

(
I
−Ω∗

)(
I −Ω

)
− Φ ≥ 0

is equivalent to for any Ω ∈ Ω, (
Ω
I

)∗
Φ

(
Ω
I

)
≥ 0.

That is condition 2 of Theorem 3.1.

For the remaining part, let us notice that

−Φ + ζµ∗2µ2 − ζµ∗2µ1

[(
X − ε Y
Y ∗ Z − ε

)
+ ζµ∗1µ1

]−1

ζµ∗1µ2 ≥ 0.

Then by Schur’s lemma, it is equivalent to X − ε Y
Y ∗ Z − ε 0

0 −Φ

+ ζ

(
µ∗1
µ∗2

)(
µ1 µ2

)
≥ 0.

Applying Finsler’s lemma, it is equivalent to
M21 M22

0 I
I 0
M11 M12


∗ X − ε Y

Y ∗ Z − ε 0

0 −Φ




M21 M22

0 I
I 0
M11 M12

 ≥ 0

which is exactly condition 3 of Theorem 3.1 after rearrangement.

Sufficiency The necessity can be proved by supposing condition 2 and condition 3 of Theorem 3.1

and prove that the system Ω ? M is {X, Y, Z} dissipative.

Condition 2 of Theorem 3.1 is equivalent to(
p
w

)∗(
I 0
M11 M12

)∗
Φ

(
I 0
M11 M12

)(
p
w

)
≥ 0 (25)
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After rearrangement Condition 3 of Theorem 3.1 can be written as
M21 M22

0 I
I 0
M11 M12


∗ X − ε Y

Y ∗ Z − ε 0

0 −Φ




M21 M22

0 I
I 0
M11 M12

 ≥ 0

which can be decomposed to:(
M21 M22

0 I

)∗(
X − ε Y
Y ∗ Z − ε

)(
M21 M22

0 I

)
−
(

I 0
M11 M12

)∗
Φ

(
I 0
M11 M12

)
≥ 0

Post and pre multiplying by

(
p
w

)
yields

(
p
w

)∗(
M21 M22

0 I

)∗(
X − ε Y
Y ∗ Z − ε

)(
M21 M22

0 I

)(
p
w

)
− . . .

· · · −
(
p
w

)∗(
I 0
M11 M12

)∗
Φ

(
I 0
M11 M12

)(
p
w

)
≥ 0

(26)

Adding (25) to (26) gives(
p
w

)∗(
M21 M22

0 I

)∗(
X − ε Y
Y ∗ Z − ε

)(
M21 M22

0 I

)(
p
w

)
≥ 0

That is equivalent to Ω ? M is {X, Y, Z} dissipative.
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