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Abstract

Learning probabilistic models over strings is an important issue for many applications.
Spectral methods propose elegant solutions to the problem of inferring weighted automata
from finite samples of variable-length strings drawn from an unknown target distribution p.
These methods rely on a singular value decomposition of a matrix HS , called the empirical
Hankel matrix, that records the frequencies of (some of) the observed strings S. The accu-
racy of the learned distribution depends both on the quantity of information embedded in
HS and on the distance between HS and its mean Hp. Existing concentration bounds seem
to indicate that the concentration over Hp gets looser with its dimensions, suggesting that it
might be necessary to bound the dimensions of HS for learning. We prove new dimension-
free concentration bounds for classical Hankel matrices and several variants, based on
prefixes or factors of strings, that are useful for learning. Experiments demonstrate that
these bounds are tight and that they significantly improve existing (dimension-dependent)
bounds. One consequence of these results is that the spectral learning approach remains
consistent even if all the observations are recorded within the empirical matrix.

Keywords: Hankel matrices, Matrix Bernstein bounds, Probabilistic Grammatical In-
ference, Rational series, Spectral learning

1. Introduction

Many applications in natural language processing, text analysis or computational biology
require learning probabilistic models over finite variable-size strings such as probabilistic au-
tomata, Hidden Markov Models (HMM), or more generally, weighted automata. Weighted
automata exactly model the class of rational series, and their algebraic properties have been
widely studied in that context (Droste et al., 2009). In particular, they admit algebraic rep-
resentations that can be characterized by a set of finite-dimensional linear operators whose
ranks are closely linked to the minimum number of states needed to define the automa-
ton. From a machine learning perspective, the objective is then to infer good estimates
of these linear operators from finite samples. In this paper, we consider the problem of
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learning the linear representation of a weighted automaton, from a finite sample, composed
of variable-size strings i.i.d. from an unknown target distribution.

Recently, the seminal papers of (Hsu et al., 2009) for learning HMM and (Bailly et al.,
2009) for weighted automata, have defined a new category of approaches - the so-called spec-
tral methods - for learning distributions over strings represented by finite state models (Sid-
diqi et al., 2010; Song et al., 2010; Balle et al., 2012; Balle and Mohri, 2012). Extensions to
probabilistic models for tree-structured data (Bailly et al., 2010; Parikh et al., 2011; Cohen
et al., 2012), transductions (Balle et al., 2011) or other graphical models (Anandkumar
et al., 2012c,b,a; Luque et al., 2012) have also attracted a lot of interest.

Spectral methods suppose that the main parameters of a model can be expressed as the
spectrum of a linear operator and estimated from the spectral decomposition of a matrix
that sums up the observations. Given a rational series r, the values taken by r can be
arranged in a matrix Hr whose rows and columns are indexed by strings, such that the
linear operators defining r can be recovered directly from the right singular vectors of Hr.
This matrix is called the Hankel matrix of r.

In a learning context, given a learning sample S drawn from a target distribution p, an
empirical estimate HS of Hp is built and then, a rational series p̃ is inferred from the right
singular vectors of HS . However, the size of HS increases drastically with the size of S
and state of the art approaches consider smaller matrices HU,V

S indexed by limited subset
of strings U and V . It can be shown that the above learning scheme, or slight variants
of it, are consistent as soon as the matrix HU,V

S has full rank (Hsu et al., 2009; Bailly,
2011; Balle et al., 2012) and that the accuracy of the inferred series is directly connected
to the concentration distance ∣∣HU,V

S −HU,V
p ∣∣2 between the empirical Hankel matrix and its

mean (Hsu et al., 2009; Bailly, 2011).

On the one hand, limiting the size of the Hankel matrix avoids prohibitive calculations.
Moreover, most existing concentration bounds on sum of random matrices depend on their
size and suggest that ∣∣HU,V

S − HU,V
p ∣∣2 may become significantly looser with the size of U

and V , compromising the accuracy of the inferred model.

On the other hand, limiting the size of the Hankel matrix implies a drastic loss of
information: only the strings of S compatible with U and V will be considered. In order to
limit the loss of information when dealing with restricted sets U and V , a general trend is to
work with other functions than the target p, such as the prefix function p(u) ∶= ∑v∈Σ∗ p(uv)
or the factor function p̂ ∶= ∑v,w∈Σ∗ p(vuw) (Balle et al., 2013; Luque et al., 2012). These
functions are rational, they have the same rank as p, a representation of p can easily
be derived from representations of p or p̂ and they allow a better use of the information
contained in the learning sample.

A first contribution of this paper is to provide a dimension free concentration inequality
for ∣∣HU,V

S −HU,V
p ∣∣2, by using recent results on tail inequalities for sum of random matri-

ces (Tropp, 2012), and in particular a dimension-free Matrix Bernstein Bound Theorem
stated in (Hsu et al., 2011). As a consequence, the spectral learning approach is consistent
whatever sets U and V are chosen, and even if they are set to Σ∗, showing that restricting
the dimensions of H is not mandatory.

However, this Matrix Bernstein Bound Theorem cannot be directly applied as such to the
prefix and factor series, since the norm of the corresponding random matrices is unbounded.
A second contribution of the paper is then to define two classes of parametrized functions,
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pη and p̂η, that constitute continuous intermediates between p and p (resp. p and p̂), and
to provide analogous dimension-free concentration bounds for these two classes. Lastly, we
adapt a Matrix Bernstein bound theorem for subexponential matrices from (Tropp, 2012)
to the dimension free case, using a technique similar as the one used in (Hsu et al., 2011)
and we apply it to the prefix Hankel matrices.

These bounds are evaluated on a benchmark made of 11 problems extracted from the
PAutomaC challenge (Verwer et al., 2012). These experiments show that the bounds derived
from our theoretical results for bounded random matrices are quite tight - compared to the
exact values - and that they significantly improve existing bounds, even on matrices of fixed
dimensions. By contrast, the bounds obtained in the subexponential case are somewhat
loose.

Our theoretical results entail that spectral learning is consistent whatever dimensions
of the Hankel matrix are chosen but they give no indication on what should be done in
practical cases. We have computed the distance between the spaces spanned by the first
right singular vectors of HU,V

S and HU,V
p for various sizes of U and V , for each target of

our benchmark. These experiments seem to indicate that the best results are obtained by
limiting one dimension and taking the other as large as possible but a theoretical justification
remains to be provided.

The paper is organized as follows. Section 2 introduces the main notations, definitions
and concepts. Section 3 provides some Matrix Berstein bounds that will be used to prove
the different results of the paper. Section 4.1 presents a first dimension free-concentration
inequality for the standard Hankel matrices. Then, we introduce the prefix and the factor
variants and provide analogous concentration results in Sections 4.3 and 4.5 respectively.
Section 6 describes some experiments before the conclusion presented in Section 7. The
Appendix contains the proof of an original result, which states that the series u↦ p(Σ∗uΣ∗),
i.e. the probability that a random string contains a substring u as a factor, may be not
rational even if p is rational, explaining why we have considered the less natural series p̂. It
also contains two small proofs of known results, in order to keep the paper self-contained.

2. Preliminaries

We first present some preliminary definitions and results about matrices, rational languages,
Hankel matrices and spectral learning algorithms for the inference of rational stochastic
languages.

2.1 Matrices

The identity matrix of size n is denoted by In, or simply by I. Let M ∈ Rm×n be a m × n
real matrix. The singular values of M are the square roots of the eigenvalues of the matrix
M⊺M, where M⊺ denotes the transpose of M: σmax(M) and σmin(M) denote the largest
and smallest singular value of M, respectively. The spectral radius ρ(M) of a square matrix
M is the supremum among the modulus of the eigenvalues of M. If M is symmetric,
σmax(M) coincides with ρ(M).

Every rank-d matrix M ∈ Rm×n admits a factorization of the form M = UDV⊺, called a
reduced singular value decomposition (SVD), where U ∈ Rm×d and U⊺U = Id, V ∈ Rn×d and
V⊺V = Id and D is a diagonal matrix whose diagonal elements, listed in descending order,
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are the singular values of M. The columns of U (resp. of V) are called the right-singular
vectors of M (resp. left-singular vectors of M).

The notion of singular values, singular vectors and singular value decomposition can be
extended to infinite matrices via the notion of Hilbert spaces compact operators (see (Stein
and Shakarchi, 2005) for example). Let (ei)i∈N be an orthonormal basis of a separa-
ble Hilbert space H. A bounded operator T on H can be represented by the matrix
(⟨T(ei), ej⟩H)i,j∈N. Compact operators are the closure of finite-rank operators in the uni-
form operator topology: max∥x∥=1 ∥Tn(x)−T(x)∥→ 0. A sufficient condition for a matrix M
to represent a compact operator is that it has a finite Frobenius norm: ∑i,j∈NM[i, j]2 <∞.
The matrix of any compact operator admits a reduced SVD. In particular, if M is the
matrix of a finite rank bounded operator, it admits a reduced singular value decomposition
M = UDV⊺.

The operator norm ∥ ⋅ ∥k induced by the corresponding vector norm on Rn is defined by

∥M∥k ∶= maxx≠0
∥Mx∥k
∥x∥k . It can be shown that

∥M∥1 = max
1≤j≤n

m

∑
i=1

∣M[i, j]∣, ∥M∥∞ = max
1≤i≤m

n

∑
j=1

∣M[i, j]∣ and ∥M∥2 = σmax(M).

We will mainly use the spectral norm ∥ ⋅ ∥2 and we will omit the sub index 2 for the sake
of simplicity. It can be shown that

∥M∥ ≤
√

∥M∥1∥M∥∞ (1)

These norms can be extended, under certain conditions, to infinite matrices. For exam-
ple, the previous inequality remains true (with possibly infinite right-hand side term) if M
represents the matrix of a compact operator in an orthonormal basis of a separable Hilbert
space.

A symmetric matrix M ∈ Rn×n is positive semidefinite if u⊺Mu ≥ 0 for all vectors u ∈ Rn.
Let ≼ denotes the positive semidefinite ordering (or Löwner ordering) on symmetric matri-
ces: A ≼ B means that B −A is positive semidefinite. The family of positive semidefinite
matrices in Rn×n forms a convex closed cone.

Any real valued function can be extended to symmetric matrices by the following
method: let A = U⊺diag(λ1, . . . , λn)U where diag(x1, . . . , xn) is the diagonal matrix built
over x1, . . . , xn and where U ∈ Rn×n is unitary, i.e. U⊺U = UU⊺ = I; define the matrix f(A)
by f(A) ∶= U⊺diag(f(λ1), . . . , f(λn))U. It can be shown that this definition is independent
of the chosen eigenvalue decomposition. The transfer rule states that f ≤ g implies that
f(A) ≼ g(A) for any symmetric matrix A. The definition above can be used to define the
exponential eA of a symmetric matrix A and the logarithm log B of a positive semidefinite
matrix B. It can be shown that the logarithm preserves the semidefinite order: 0 ≼ A ≼ B
implies log A ≼ log B. See (Tropp, 2012) for a short overview of matrix properties.

2.2 Rational stochastic languages and Hankel matrices

Most classical results on rational series can be found in one of the following references (Bers-
tel and Reutenauer, 1988; Salomaa and Soittola, 1978). Let Σ be a finite alphabet. The set
of all finite strings over Σ is denoted by Σ∗, the empty string is denoted by ε, the length of
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string w is denoted by ∣w∣ and Σn (resp. Σ≤n, resp. Σ≥n) denotes the set of all strings of
length n (resp. ≤ n, resp. ≥ n). For any string w, let Pref(w) ∶= {u ∈ Σ∗∣∃v ∈ Σ∗ w = uv}
and Suff(w) ∶= {v ∈ Σ∗∣∃u ∈ Σ∗ w = uv}.

A series is a mapping r ∶ Σ∗ → R. The support of the series r is the set supp(r) =
{u ∈ Σ∗ ∶ r(u) ≠ 0}. A series r is non negative if it takes only non negative values. A non
negative series r is convergent if the sum ∑u∈Σ∗ r(u) is bounded: for any A ⊆ Σ∗, let us
denote r(A) ∶= ∑u∈A r(u). A stochastic language p is a probability distribution over Σ∗, i.e.
a non negative series p satisfying p(Σ∗) = 1.

Let n ≥ 1 and M be a morphism defined from Σ∗ to Mn, the set of square n×n matrices
with real coefficients. For all u ∈ Σ∗, let us denote M(u) by Mu and Σx∈ΣMx by MΣ.
A series r over Σ is rational if there exists an integer n ≥ 1, two vectors I, T ∈ Rn and a
morphism M ∶ Σ∗ → Mn such that for all u ∈ Σ∗, r(u) = I⊺MuT . The triplet ⟨I,M, T ⟩ is
called an n-dimensional linear representation of r. The vector I can be interpreted as a
vector of initial weights, T as a vector of terminal weights and the morphism M as a set of
matrix parameters associated with the letters of Σ. A rational stochastic language is thus
a stochastic language admitting a linear representation.

Let U,V ⊆ Σ∗, the Hankel matrix HU,V
r , associated with a series r, is the matrix indexed

by U × V and defined by HU,V
r [u, v] ∶= r(uv), for any (u, v) ∈ U × V . If U = V = Σ∗, HU,V

r ,
simply denoted by Hr, is a bi-infinite matrix. In the following, we always assume that
ε ∈ U ∩ V and that U and V are ordered in quasi-lexicographic order: strings are first
ordered by increasing length and then, according to the lexicographic order. It can be
shown that a series r is rational if and only if the rank of the matrix Hr is finite. The rank
of Hr is equal to the minimal dimension of a linear representation of r: it is called the rank
of r. The Hankel matrix Hr represents a bounded operator if and only if ∑u∈Σ∗ r2(u) <∞;
in particular, if r is a non negative convergent rational series, then Hr represents a compact
operator, which admits a reduced singular value decomposition.

Let r be a non negative convergent rational series and let ⟨I,M, T ⟩ be a minimal d-
dimensional linear representation of r. Then, the matrix Id −MΣ is invertible and the sum
Id+MΣ+. . .+Mn

Σ+. . . converges to (Id−MΣ)−1. For any ρr such that ρ(MΣ) < ρr < 1, there
exists a constant Cr > 0 such that r(Σ≥n) ≤ Crρnr for any integer n (we show in Section 6.1
how such constants can be computed in pratical cases). For any integer k ≥ 1, let us define

the moments S
(k)
r ∶= ∑u1u2...uk∈Σ∗ r(u1u2 . . . uk). It can easily be shown that

S(k)
r = I⊺(Id −MΣ)−kT. (2)

Several rational series can be naturally associated with a rational non negative conver-
gent series r (see (Balle et al., 2014) for example):

• r, defined by r(u) ∶= ∑v∈Σ∗ r(uv) = r(uΣ∗), associated with the prefixes of the support
of r,

• r̂, defined by r̂(u) ∶= ∑v,w∈Σ∗ r(vuw), associated with the factors of the support of r.

If p is a stochastic language, it can be noticed that p(u) is the probability that a string begins
with u and that p̂(u) = Ev∼p∣v∣u, where ∣v∣u = ∑x,y∈Σ∗ 1xuy=v. We have p̂(u) ≥ p(Σ∗uΣ∗),
the probability that a string contains u as a substring. The function u ↦ p(Σ∗uΣ∗) has a
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simpler probabilistic interpretation than p̂. However, this function is not rational in general
and cannot easily be used in a learning context.

Proposition 1 There exists a rational stochastic language p of rank one and built on a
two-letter alphabet Σ such that the series u↦ p(Σ∗uΣ∗) is not rational.

Proof See Appendix.

If ⟨I,M, T ⟩ is a minimal d-dimensional linear representation of r, then ⟨I,M, (Id −
MΣ)−1T ⟩ (resp. ⟨[I⊺(Id −MΣ)−1]⊺,M, (Id −MΣ)−1T ⟩) is a minimal linear representation
of r (resp. of r̂). Conversely, a linear representation of r can be deduced from any linear
representation of r or of r̂. Clearly,

r(Σ∗) = S(1)
r , r(Σ∗) = S(2)

r and r̂(Σ∗) = S(3)
r .

Let U,V ⊆ Σ∗. For any string w ∈ Σ∗, let us define the matrices HU,V
w , H

U,V
w and ĤU,V

w

by

HU,V
w [u, v] ∶= 1uv=w,H

U,V
w [u, v] ∶= 1uv∈Pref(w) and ĤU,V

w [u, v] ∶= ∑
x,y∈Σ∗

1xuvy=w

for any (u, v) ∈ U × V .

For any non empty multiset of strings S, let us define the matrices HU,V
S , H

U,V
S and

ĤU,V
S by

HU,V
S ∶= 1

∣S∣ ∑w∈S
HU,V
w ,H

U,V
S ∶= 1

∣S∣ ∑w∈S
H
U,V
w and ĤU,V

S ∶= 1

∣S∣ ∑w∈S
ĤU,V
w .

Let pS be the empirical stochastic language associated with S, defined by pS(u) ∶= ∣{u∈S}∣
∣S∣ .

We have
HU,V
pS

= HU,V
S ,HU,V

pS
= H

U,V
S and HU,V

p̂S
= ĤU,V

S .

For example, let S = {a, ab}, U = V = {ε, a, b}. We have

HU,V
S =

⎛
⎜
⎝

0 1/2 0
1/2 0 1/2
0 0 0

⎞
⎟
⎠
, H

U,V
S =

⎛
⎜
⎝

1 1 0
1 0 1/2
0 0 0

⎞
⎟
⎠

and ĤU,V
S =

⎛
⎜
⎝

5/2 1 1/2
1 0 1/2

1/2 0 0

⎞
⎟
⎠
.

2.3 Spectral Algorithm for Learning Rational Stochastic Languages

Rational series admit canonical linear representations determined by their Hankel matrix.
Let r be a rational series of rank d and U ⊂ Σ∗ such that the matrix HU×Σ∗

r (denoted by H
in the following) has rank d. Moreover, suppose that ∑u∈Σ∗ r(u)2 <∞.

• For any string s, let Ts be the constant matrix whose rows and columns are indexed
by Σ∗ and defined by Ts[u, v] ∶= 1 if v = us and 0 otherwise.

• Let E be a vector indexed by Σ∗ whose coordinates are all zero except the first one
equals to 1: E[u] = 1u=ε and let P be the vector indexed by Σ∗ defined by P [u] ∶= r(u).
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• Let H = LDR⊺ be a reduced singular value decomposition of H: R (resp. L) is
a matrix whose columns form a set of orthonormal vectors - the right (resp. left)
singular vectors of H - and D is a d × d diagonal matrix, composed of the singular
values of H.

Then, ⟨R⊺E, (R⊺TxR)x∈Σ,R⊺P ⟩ is a linear representation of r (Bailly et al., 2009; Hsu
et al., 2009; Bailly, 2011; Balle et al., 2012).

Proposition 2 ⟨R⊺E, (R⊺TxR)x∈Σ,R⊺P ⟩ is a linear representation of r

Proof See Appendix.

The basic spectral algorithm for learning rational stochastic languages aims at identi-
fying the canonical linear representation of the target p determined by its Hankel matrix
Hp.

Let S be a sample independently drawn according to p:

• choose sets U,V ⊆ Σ∗ and build the Hankel matrix HU×V
S ,

• choose a rank d, compute a SVD of HU×V
S , and consider the d right singular vectors

RS associated with the d largest singular values,

• build the canonical linear representation ⟨R⊺
SE, (R

⊺
STxRS)x∈Σ,R⊺

SPS⟩ where E and
P are the vectors indexed by V s.t. E[v] = 1v=ε and P [v] ∶= pS(v).

Alternative learning strategies consist in learning p or p̂, using the same algorithm, and
then to compute an estimate of p. In all cases, the accuracy of the learned representation
mainly depends on the estimation of R. The Stewart formula (Stewart, 1990) bounds the
principle angle θ between the spaces spanned by the right singular vectors of R and RS :

∣ sin(θ)∣ ≤
∥HU×V

S −HU×V
r ∥

σmin(HU×V
r )

.

According to this formula, the concentration of the Hankel matrix around its mean is critical
and the question of limiting the sizes of U and V naturally arises. Note that the Stewart
inequality does not give any clear indication on the impact or on the interest of limiting
these sets. Indeed, it can be shown that both the numerator and the denominator of the
right part of the inequality increase with U and V (see Appendix).

3. Matrix Bernstein bounds

Let p be a rational stochastic language over Σ∗, let ξ be a random variable distributed
according to p, let U,V ⊆ Σ∗ and let Z(ξ) ∈ R∣U ∣×∣V ∣ be a random matrix. For instance, Z(ξ)
may be equal to HU,V

ξ , H
U,V
ξ or ĤU,V

ξ (ξ will be often omitted for the sake of simplicity).
Let S be sample of strings drawn independently according to p.

Concentration bounds for sum of random matrices can be used to estimate the spec-
tral distance between the empirical matrix ZS computed on the sample S and its mean.
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However, most of classical inequalities depend on the dimensions of the matrices. For eam-
ple, the following result describes a simple matrix Bernstein inequality on sum of random
matrices (Ahlswede and Winter, 2002; Tropp, 2012).

Suppose that EZ(ξ) = 0 and let ν(Z) = max{∥EZZ⊺∥, ∥EZ⊺Z∥}. Then,

Pr(∥ZS∥ ≥
t

N
) ≤ (d1 + d2) exp(− t2

2Nν(Z) + 2Mt/3
) (3)

where N is the size of S, d1 and d2 are the dimensions of the matrix Z and ∥Z∥ ≤M almost
surely.

We would like to apply this result to Z = HU,V
ξ −EHU,V

ξ , Z = H
U,V
ξ −EH

U,V
ξ and Z = ĤU,V

ξ −

EĤU,V
ξ . However, we will see that while ∥HU,V

ξ ∥ is bound, ∥HU,V
ξ ∥ = Ω(max(∣U ∣1/2, ∣V ∣1/2))

in the worst case, and ∥ĤU,V
ξ ∥may be unbounded even for fixed U and V .

These concentration bounds get worse with both sizes of the matrices. Coming back to
the discussion at the end of Section 2, they suggest to limit the size of the sets U and V ,
and therefore, to design strategies to choose optimal sets. However, dimension-free bounds
can be obtained.

3.1 A dimension-free Matrix Bernstein bound theorem

We then use recent results from (Tropp, 2012; Hsu et al., 2012) to obtain dimension-free
concentration bounds for Hankel matrices.

Theorem 3 (Hsu et al., 2012). Let ξ1, . . . , ξN be random variables, and for each i =
1, . . . ,N , let Xi(ξi) be a symmetric matrix-valued functional of ξi

1. For any η ∈ R and
any t > 0,

Pr[∥η
N

∑
i=1

Xi −
N

∑
i=1

logE[exp(ηXi)]∥ > t] ≤

Tr(E[−η
N

∑
i=1

Xi +
N

∑
i=1

logE[exp(ηXi)]]) ⋅ (et − t − 1)−1.

A matrix Bernstein bound can be derived from previous Theorem.

Theorem 4 (Hsu et al., 2012). If there exists b > 0, σ > 0, k > 0 s.t. for all i = 1, . . . ,N ,

Ei[Xi] = 0, ∥Xi∥ ≤ b, ∥ 1
N ∑

N
i=1 Ei(X2

i )∥ ≤ σ2 and E[Tr( 1
N ∑

N
i=1 Ei(X2

i ))] ≤ σ2k almost

surely, then for all t > 0,

Pr[∥ 1

N

N

∑
i=1

Xi∥>
√

2σ2t

N
+ bt

3N
]≤k ⋅ t(et − t − 1)−1.

1. (Hsu et al., 2011) consider the more general case, where Xi be a symmetric matrix-valued functional of
ξ1, . . . , ξi.
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Previous theorem is valid for symmetric matrices, but it can be extended to general
real-valued matrices thanks to the principle of dilation.

Let Z be a matrix, the dilation of Z is the symmetric matrix X defined by

X = [ 0 Z

ZT 0
]. Then X2 = [ ZZT 0

0 ZTZ
]

and ∥X∥ = ∥Z∥, Tr(X2) = Tr(ZZT ) +Tr(ZTZ) and ∥X2∥ ≤ max(∥ZZT ∥ , ∥ZTZ∥).
We can then reformulate previous theorem as follows.

Theorem 5 Let ξ1, . . . , ξN be i.i.d. random variables, and for i = 1, . . . ,N , let Zi = Z(ξi)
be i.i.d. matrices and Xi the dilation of Zi. If there exists b > 0, σ > 0, and k > 0 such that
E[X1] = 0, ∥X1∥ ≤ b, ∥E(X2

1)∥ ≤ σ2 and Tr(E(X2
1)) ≤ σ2k almost surely, then for all t > 0,

Pr[∥ 1

N

N

∑
i=1

Xi∥ >
√

2σ2t

N
+ bt

3N
] ≤ k ⋅ t(et − t − 1)−1.

We will then make use of this theorem to derive our new concentration bounds. Sec-
tion 4.1 deals with the standard case, Section 4.3 with the prefix case and Section 4.5 with
the factor case.

3.2 The subexponential case

Theorem 5 needs that the random matrices are bounded. However, the norm of H
U,V
ξ

depends on the size of U and V and ĤU,V
ξ may be unbounded even in U and V are finite.

Fortunately, Bernstein inequalities for subexponential random variables have been extended
to unbounded random matrices whose moments grow at a limited rate [Th. 6.2 in (Tropp,
2012)]. We adapt this result to the dimension-free case in a similar way as what has been
done in (Hsu et al., 2012) for Theorem 4.

Theorem 6 [Matrix Bernstein bound: subexponential case.] If there exist k > 0, R > 0,
and a symmetric matrix A such that for all i = 1, . . . ,N , EXi = 0, EXp

i ≼
p!
2 R

p−2A2 for any

integer p ≥ 2, Tr(A2) ≤ kσ2 where σ2 = ∥A2∥, then for any t > 0,

Pr[∥ 1

N

N

∑
i=1

Xi∥ >
Rt

N
+
√

2σ2t

N
] ≤ k ⋅ t(et − t − 1)−1.

Proof Let 0 < η < 1/R. We have

EeηXi = E∑
p≥0

1

p!
ηpXp

i = I +∑
p≥2

1

p!
ηpEXp

i ≼ I + η2

2(1 − ηR)
A2.

Hence, by using the monotonicity of the logarithm function and the transfer rule applied
to the inequality log(1 + x) ≤ x,

logEeηXi ≼ η2

2(1 − ηR)
A2.

9
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Now, let η and t such that

∥η
N

∑
i=1

Xi −
N

∑
i=1

logEeηXi∥ ≤ t.

Then,

∥η
N

∑
i=1

Xi∥ ≤ t + ∥
N

∑
i=1

logEeηXi∥ ≤ t +N η2

2(1 − ηR)
∥A2∥

and

∥ 1

N

N

∑
i=1

Xi∥ ≤
t

Nη
+ η

2(1 − ηR)
σ2.

Moreover,

Tr(E[−η
N

∑
i=1

Xi +
N

∑
i=1

logEeηXi]) ≤ Nη2

2(1 − ηR)
kσ2.

Hence,

Pr[∥ 1

N

N

∑
i=1

Xi∥ >
t

Nη
+ η

2(1 − ηR)
σ2] ≤ Pr[∥η

N

∑
i=1

Xi −
N

∑
i=1

logEeηXi∥ > t]

≤ Nη2

2(1 − ηR)
kσ2(et − t − 1)−1from Theorem 3.

It can easily be checked that t
Nη +

η
2(1−ηR)σ

2 takes its minimal positive value m at

ηmin =

√
2t
Nσ2

1 +R
√

2t
Nσ2

and that m = Rt
N

+
√

2σ2t

N
.

We have also
η2

min

1 −Rηmin
≤ ( ηmin

1 −Rηmin
)

2

= 2t

Nσ2

which entails the theorem.

4. Concentration bounds for Hankel matrices: main results

In this section, we present the main results of the paper. All proofs are reported in Section 5.
Let p be a rational stochastic language over Σ∗, let S be a sample independently drawn

according to p, and let U,V ⊆ Σ∗ be finite set of strings.

4.1 Concentration Bound for the Hankel Matrix HU,V
p

We first describe a bound on ∥HU,V
S −HU,V

p ∥, independent from the sizes of U and V .

Let ξ be a random variable distributed according to p, let Z(ξ) = HU,V
ξ −HU,V

p be the

random matrix defined by Z[u, v] = 1ξ=uv − p(uv) and let X be the dilation of Z.

10
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Clearly, EX = 0. In order to apply Theorem 5, it is necessary to compute the parameters

b, σ and k. We show in Lemma 14 that ∥X∥ ≤ 2, ETr(X2) ≤ 2S
(2)
p and ∥EX2∥ ≤ S(2)

p which

entails that 4 conditions of Theorem 5 are fulfilled with b = 2, σ2 = S(2)
p and k = 2.

Theorem 7 Let p be a rational stochastic language and let S be a sample of N strings
drawn i.i.d. from p. For all t > 0,

Pr

⎡⎢⎢⎢⎢⎢⎣
∥HU,V

S −HU,V
p ∥ >

¿
ÁÁÀ2S

(2)
p t

N
+ 2t

3N

⎤⎥⎥⎥⎥⎥⎦
≤ 2t(et − t − 1)−1.

This bound is independent from U and V . It can be noticed that the proof of Lemma 14

also provides a dimension dependent bound by replacing S
(2)
p with ∑(u,v)∈U×V p(uv), which

may result in a significative improvement if U or V are small.

The moment S
(2)
p is generally unknown. However, it can be estimated from S. Indeed,

S
(2)
p = ∑u,v∈Σ∗ p(uv) = ∑w∈Σ∗(∣w∣+1)p(w) = E∣ξ∣+1 and 1

N ∑w∈S ∣w∣+1 is an natural estimate

for S
(2)
p .The random variable ∣ξ∣ is sub-exponential and its concentration around its mean

can be estimated using Bernstein-type inequalities (see (Vershynin, 2012) for example).

Thus, Theorem 7 can easily be reformulated replacing S
(2)
p by its estimate.

4.2 Concentration Bound for the smoothed prefix Hankel Matrix HU,V
pη

The random matrix Z(ξ) = H
U,V
ξ −HU,V

p is defined by Z[u, v] = 1uv∈Pref(ξ) − p(uv), where

references to U and V are omitted for the sake of readability. It can easily be shown that ∥Z∥
may be unbounded if U or V are unbounded. For example, consider the stochastic language
defined on a one-letter alphabet Σ = {a} by p(an) = (1 − ρ)ρn. If U = V = Σ≤n, Z may be
equal to the (n + 1) × (n + 1) upper triangular all-ones matrix whose norm is Θ(n). Hence,
Theorem 5 cannot be directly applied to obtain dimension-free bounds. This suggests that
the concentration of Z around its mean could be far weaker than the concentration of Z.

For any η ∈ [0,1], we define a smoothed variant2 of p by

pη(u) ∶= ∑
x∈Σ∗

η∣x∣p(ux) = ∑
n≥0

ηnp(uΣn). (4)

Note that p1 = p, p0 = p and that p(u) ≤ pη(u) ≤ p(u) for every string u: the functions
pη are natural intermediates between p and p.

Any function pη can be used to compute p:

p(u) = pη(u) − ηpη(uΣ). (5)

Moreover, when p is rational, each pη is also rational and a linear representation of p
can be derived from any linear representation of pη. More precisely,

2. Note that our smoothed variant can also be interpreted as a discounted variant since the parameter η
helps to reduce the impact of long strings.

11
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Proposition 8 Let p be a rational stochastic language, let ⟨I, (Mx)x∈Σ, T ⟩ be a minimal
linear representation of p and let T η = (Id − ηMΣ)−1T . Then, ⟨I, (Mx)x∈Σ, T η⟩ is a linear

representation of pη. Hence, S
(k)
pη

= IT (Id − MΣ)−k(Id − ηMΣ)−1T . In particular, S
(k)
p =

S
(k+1)
p .

Therefore, it is a consistent learning strategy to learn pη from the data, for some η,
and next, to derive p. A theoretical study that would guide the choice of the parameter
η remains to be done. In the absence of such indications, its value can be set by cross
validation.

For any 0 ≤ η ≤ 1, let Zη(ξ) be the random matrix defined by

Zη[u, v] ∶= ∑
x∈Σ∗

η∣x∣1ξ=uvx − pη(uv) = ∑
x∈Σ∗

η∣x∣(1ξ=uvx − p(uvx)).

for any (u, v) ∈ U ×V . It is clear that EZη = 0. We show that ∥Zη∥ is bounded by 1
1−η +S

(1)
pη

if η < 1 (Lemma 15), that ∥EX
2
η∥ ≤ S

(2)
pη

and ETr(X2
η) ≤ 2S

(2)
pη
. (Lemma 17).

Therefore, we can apply Theorem 5 with b = 1
1−η + S

(1)
pη
, σ2 = S(2)

pη
and k = 2.

Theorem 9 Let p be a rational stochastic language, let S be a sample of N strings drawn
i.i.d. from p and let 0 ≤ η < 1. For all t > 0,

Pr

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∥HU,V
η,S −HU,V

pη
∥

2
>

¿
ÁÁÁÀ2S

(2)
pη
t

N
+ t

3N
[ 1

1 − η
+ S(1)

pη
]

⎤⎥⎥⎥⎥⎥⎥⎥⎦

≤ 2t(et − t − 1)−1.

Remark that when η = 0 we find back the concentration bound of Theorem 7. When U

and V are finite, a careful examination of the proof of Lemma 15 shows that S
(2)
pη

can be

replaced with ∑(u,v)∈U×V pη(uv), which may provide a significant better bound if U and V
are small. Moreover, Inequality 8 can be used to provide a finite bound depending on the
sizes of U and V , when η = 1.

As for Theorem 7, the moment S
(2)
pη

is generally unknown but it can be estimated from

S, with controled accuracy, providing a reformulation of the theorem that would not depend
on this parameter.

4.3 Concentration Bound for the prefix Hankel Matrix HU,V
p

Theorem 9 does not provide a dimension-free bound for the prefix Hankel matrices H
U,V
S .

However, we show that Z(ξ) is a subexponential random matrix (Lemma 21), and that
Theorem 6 can be used to provide a bound in this case.

More precisely, let X(ξ) be the dilation of the matrix Z(ξ), let Cp > 0 and 0 < ρp < 1 be
such that p(Σn) ≤ Cpρnp for any integer n.

For any 0 < β < − lnρp, we show in Lemma 21 the existence of a symmetric matrix
A2 satisfying ∥A2∥ ≤ K(1 − ρpeβ)−1,Tr(A2) ≤ 2K(1 − ρpeβ)−2and such that for any k ≥ 0,

12
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EXk ≼ k!
2 R

k−2A2 where R = e1/eβ−1 and K = 2e3/eβ−3CpS
(3)
p eβS

(2)
p is a constant that only

depends on p and β.
Hence, we can apply Theorem 6 to obtain the following dimension free bound:

Theorem 10 Let p be a rational stochastic language and let S be a sample of N strings
drawn i.i.d. from p. For all t > 0,

Pr

⎡⎢⎢⎢⎢⎣
∥HU,V

S −HU,V
p ∥

2
> e

1/et
Nβ

+
√

2σ2t

N

⎤⎥⎥⎥⎥⎦
≤ 2

1 − ρpeβ
⋅ t(et − t − 1)−1

where σ2 =K(1 − ρpeβ)−2, K = β−2CpS
(3)
p eβS

(2)
p and 0 < β < − lnρp.

Note that β can be set to 1 − ρp but depending on the particular values of the terms, β
can be adjusted to obtain better bounds.

Thus, Theorem 10 describes a dimension free concentration bound for the prefix Hankel
matrix. However, the constants K and σ that occur in this bound can be very large, which
makes it impossible to use it in practical cases, such as those we consider in Section 6.

4.4 Concentration Bound for the smoothed factor Hankel Matrix HU,V
p̂η

The random matrix Ẑ(ξ) = ĤU,V
ξ −Hp̂U,V is defined by

Ẑ[u, v] = ∑
x,y∈Σ∗

1ξ=xuvy − p̂(uv),

where references to U and V are omitted for the sake of readability. ∥Ẑ∥ is unbounded if

the support of p is unbounded. Indeed, Ẑ[ε, ε] = ∣ξ∣+ 1− p̂(ε). Hence, Theorem 5 cannot be
directly applied either.

We can also define smoothed variants p̂η of p̂, for any η ∈ [0,1] by

p̂η(u) = ∑
x,y∈Σ∗

η∣xy∣p(xuy) = ∑
m,n≥0

ηm+np(ΣmuΣn)

which have properties similar to functions pη:

• p ≤ p̂η ≤ p̂, p̂1 = p̂ and p̂0 = p,

• when p is rational, each p̂η is also rational,

• if ⟨I, (Mx)x∈Σ, T ⟩ be a minimal linear representation of p then ⟨Îη, (Mx)x∈Σ, T η⟩ is a
linear representation of p̂η, where Îη = (Id − ηM⊺

Σ)−1I,

• I and T can be computed from Îη and T̂η when η and MΣ are known:

T = (Id − ηMΣ)T̂η, I = (Id − ηMΣ)Îη and (6)

p(u) = p̂η(u) − ηp̂η(uΣ) − ηp̂η(Σu) + η2p̂η(ΣuΣ) (7)

• therefore, it is a consistent learning strategy to learn p̂η from the data, for some η,
and next, to derive p.

13
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For η ∈ [0,1], let Ẑη(ξ) be the random matrix defined by

Ẑη[u, v] = ∑
x,y∈Σ∗

η∣xy∣1ξ=xuvy − p̂η(uv) = ∑
x,y∈Σ∗

η∣xy∣(1ξ=xuvy − p(xuvy))

for any (u, v) ∈ U × V . Clearly, E Ẑη = 0. We show that ∥Ẑη∥ is bounded by (1− η)−2 +S(1)
p̂η

if η < 1 (lemma 24).

While p is bounded by 1, a property which is often used in the proofs, p̂ is unbounded
when η converges to 1. Let us introduce a new constant Kη defined by

Kη = { 1 if η ≤ e−1

(−eη lnη)−1 otherwise.

We show in Lemma 26 that

∥EX̂2
η∥ ≤KηS

(2)
p̂η

and Tr(E(X̂2
η)) ≤ 2KηS

(2)
p̂η
.

Eventually, we can apply Theorem 5 with b = (1 − η)−2 + S(1)
p̂η
, σ2 =KηS

(2)
p̂η

and k = 2.

Theorem 11 Let p be a rational stochastic language, let S be a sample of N strings drawn
i.i.d. from p and let 0 ≤ η < 1. For all t > 0,

Pr

⎡⎢⎢⎢⎢⎢⎢⎣

∣∣ĤU,V
η,S −HU,V

p̂η
∣∣2 >

¿
ÁÁÀ2KηS

(2)
p̂η
t

N
+ t

3N
[ 1

(1 − η)2
+ S(1)p̂η ]

⎤⎥⎥⎥⎥⎥⎥⎦

≤ 2t(et − t − 1)−1.

Remark that when η = 0 we find back the concentration bound of Theorem 7. As in the

previous cases, S
(2)
p̂η

can be replaced with ∑(u,v)∈U×V p̂η(uv), which may provide a significant
better bound if U and V are small. However, it not possible to use these results to obtain
a bound, even depending on U and V , when η = 1.

As for the previous theorems, the moment S
(2)
p̂η

can be estimated from S in order to
provide a reformulation of the theorem that would not depend on this parameter.

4.5 Concentration Bound for the factor Hankel Matrix HU,V
p̂

Ẑ(ξ) is not a subexponential random matrix, and therefore, Theorem 6 cannot be used to
provide a bound in this case. This suggests that the concentration of Ẑ(ξ) around its mean
is quite loose.

5. Proofs of all concentration bounds results

In this section, we detail the proofs of all the results stated in Section 4, keeping the titles of
all subsections and the notations that have been introduced in the corresponding subsection.
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5.1 Concentration Bound for the Hankel Matrix HU,V
p : proofs

Recall that X is the dilation of the random matrix Z(ξ) = HU,V
ξ −HU,V

p .

Clearly, EX = 0. We need technical lemmas in order to obtains bound on EX2 and
ETr(X2) and apply Theorem 5.

Lemma 12 Let X and Y be two random variables such that 0 ≤X,Y ≤M . Then,

∣E (X −EX)(Y −EY )∣ ≤M min{EX,EY }.

Proof Indeed, 0 ≤ EXY ≤ M min{EX,EY } and 0 ≤ EXEY ≤ M min{EX,EY }, which
entails the lemma.

Lemma 13 For any u,u′ ∈ U , v, v′ ∈ V ,

∣EZ[u, v]Z[u′, v′]∣ ≤ min{p(uv), p(u′v′)}.

Proof This a corollary of Lemma 12 with X ∶= 1ξ=uv, Y ∶= 1ξ=u′v′ and M = 1.

Lemma 14 ∥X∥ ≤ 2, ETr(X2) ≤ 2S
(2)
p and ∥EX2∥ ≤ S(2)

p .

Proof

1. ∀u ∈ U , ∑v∈V ∣Z[u, v]∣ = ∑v∈V ∣1ξ=uv − p(uv)∣ ≤ 1 + p(uΣ∗) ≤ 2. Therefore, ∥Z∥∞ ≤ 2.
In a similar way, it can be shown that ∥Z∥1 ≤ 2. Hence,

∥X∥ = ∥Z∥ ≤
√

∥Z∥∞ ∥Z∥1 ≤ 2.

2. For all (u,u′) ∈ U2 : ZZT [u,u′] = ∑v∈V Z[u, v]Zu′,v. Therefore,

ETr(ZZT ) = E ∑
u∈U

ZZT [u,u] = E ∑
u∈U,v∈V

Z[u, v]Z[u, v] ≤ ∑
u,v∈Σ∗

EZ[u, v]2 ≤ ∑
u,v∈Σ∗

p(uv) ≤ S(2)
p .

In a similar way, it can be proved that ETr(ZTZ) ≤ S(2)
p . Therefore, ETr(X2) ≤ 2S

(2)
p .

3. For any u ∈ U ,

∑
u′∈U

∣EZZT [u,u′]∣ ≤ ∑
u′∈U,v∈V

∣EZ[u, v]Z[u′, v]∣ ≤ ∑
u′∈U,v∈V

p(u′v) ≤ S(2)
p .

Hence, ∥ZZT ∥∞ ≤ S(2)
p . It can be proved, in a similar way, that ∥ZTZ∥∞ ≤ S(2)

p , ∥ZZT ∥
1
≤

S
(2)
p and ∥ZTZ∥

1
≤ S(2)

p . Therefore, ∥X2∥ ≤ S(2)
p .

15
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5.2 Concentration Bound for the smoothed prefix Hankel Matrix HU,V
pη

: proofs

Proof (Proposition 8.)
For every string u, pη(u) = ∑n≥0 I

TMuη
nMn

ΣT = ITMu(∑n≥0 η
nMn

Σ)T = ITMuT η. The

expression of S
(k)
pη

comes directly from Equation 2.

Lemma 15 For any U,V ⊆ Σ∗,

∥Zη∥ ≤
1

1 − η
+ S(1)

pη
.

Proof Indeed, let u ∈ U .

∑
v∈V

∣Zη[u, v]∣ ≤ ∑
v,x∈Σ∗

η∣x∣1ξ=uvx + ∑
v∈Σ∗

pη(uv)

≤ (1 + η + . . . + η∣ξ∣−∣u∣) + S(1)
pη

≤ 1

1 − η
+ S(1)

pη
.

Hence, ∥Zη∥∞ ≤ 1
1−η + S

(1)
pη

. Similarly, ∥Zη∥1
≤ 1

1−η + S
(1)
pη

, which completes the proof.

When U and V are bounded, let l be the maximal length of a string in U ∪ V . It can

easily be shown that ∥Zη∥ ≤ l + 1 + S(1)
pη

and therefore, in that case,

∥Zη∥ ≤Min(l + 1,
1

1 − η
) + S(1)

pη
(8)

which holds even if η = 1.

Lemma 16 ∣E(Zη[u, v]Zη[u′, v′])∣ ≤ min{pη(uv), pη(u′v′)}, for any u,u′ ∈ U and v, v′ ∈ V .

Proof This a corollary of Lemma 12 with X ∶= ∑x∈Σ∗ η∣x∣1ξ=uvx, Y ∶= ∑x∈Σ∗ η∣x∣1ξ=u′v′x and
M = 1.

Let Xη be the dilation of Zη. We can now propose bounds for EX
2
η and ETr(X2

η).

Lemma 17
∥EX

2
η∥ ≤ S

(2)
pη

and ETr(X2
η) ≤ 2S

(2)
pη
.

Proof Indeed,

∥EZηZ
T
η ∥∞

≤ max
u∈Σ∗

∑
u′,v∈Σ∗

∣EZη[u, v]Zη[u′, v]∣ ≤ ∑
u′,v

pη(u′v) ≤ S
(2)
pη
.

We have also
∥EZηZ

T
η ∥

1
≤ S(2)

pη
and therefore ∥EZη Z

T
η ∥ ≤ S

(2)
pη
.

Similar computations provide all the inequalities.
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5.3 Concentration Bound for the prefix Hankel Matrix HU,V
p : proofs

Let X(ξ) be the dilation of the matrix Z(ξ). It can easily be shown that

X2k+1 =
⎡⎢⎢⎢⎢⎢⎣

0 (Z ⋅Z⊺)
k
Z

Z
⊺ (Z ⋅Z⊺)

k
0

⎤⎥⎥⎥⎥⎥⎦
and X2k =

⎡⎢⎢⎢⎢⎢⎣

(Z ⋅Z⊺)
k

0

0 (Z⊺ ⋅Z)
k

⎤⎥⎥⎥⎥⎥⎦
.

Let t ∈ Σ∗ be a realization of ξ.

Lemma 18 For any strings u, v, t ∈ Σ∗ and any stochastic language p,

∑
v∈V

∣Z[u, v]∣ ≤ ∣t∣ + p(uΣ∗),∑
u∈U

∣Z[u, v]∣ ≤ ∣t∣ + p(Σ∗u)

and

∑
u∈U,v∈V

∣Z[u, v]∣ ≤ ∣t∣(∣t∣ + 3)
2

+ S(3)
p .

Proof We have ∑v∈V ∣Z[u, v]∣ ≤ ∑w∈Σ∗,uw∈Pref(t) ∣1−p(uw)∣+p(uΣ∗). Moreover, if u = w = ε,
p(uw) = 1. Hence, there are at most ∣t∣ strings w such that uw ∈ Pref(t) and ∣1−p(uw)∣ ≠ 0,
which proves the first inequality. The second one is proved in a similar way. A similar
argument proves that there are at most (∣t∣ + 1)(∣t∣ + 2)/2 − 1 = ∣t∣(∣t∣ + 3)/2 pairs of words
u,w such that uw ∈ Pref(t) and ∣1 − p(uw)∣ ≠ 0, which entails the third inequality.

Lemma 19 Let M be a matrix of the form (Z⊺)e(Z ⋅Z⊺)kZf , where k ∈ N and e, f ∈ {0,1}.

Then, for any strings u, v ∈ Σ∗, ∣M[u, v]∣ ≤ (∣t∣ + S(2)
p )h where h = e + 2k + f . Moreover,

∑u∈U ∣M[u, v]∣ and ∑v∈V ∣M[u, v]∣ are bounded by S
(3)
p (∣t∣ + 1)(∣t∣ + S(2)

p )h.

Proof By induction on h = e + 2k + f . The inequality is obvious if h = 0. Let M = ZN.

∣M[u, v]∣ ≤ ∑
w∈V

∣Z[u,w]N[w, v]∣ ≤ (∣t∣ + S(2)
p )h−1 ∑

w∈V
∣Z[u,w]∣ by induction hypothesis.

By Lemma 18, we have

∣M[u, v]∣ ≤ (∣t∣ + S(2)
p )h since p(uΣ∗) ≤ S(2)

p

and

∑
u∈U

∣M[u, v]∣ ≤ (∣t∣ + S(2)
p )h−1 (∣t∣(∣t∣ + 3)

2
+ S(3)

p ) ≤ S(3)
p (∣t∣ + 1)(∣t∣ + S(2)

p )h

since 1 ≤ S(3)
p and ( ∣t∣(∣t∣+3)

2 + 1) ≤ (∣t∣ + 1)(∣t∣ + S(2)
p ).

The other cases are proved in a similar way.

Corollary 20 For any integer k, ∥Xk∥ ≤ S(3)
p (∣t∣ + 1)(∣t∣ + S(2)

p )k.
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Proof Indeed, it can easily be shown that for any k ∈ N and e ∈ {0,1}, ∥X2k+e∥ =

∥(Z ⋅Z⊺)
k
Z
e∥. The result is a consequence of Lemma 19.

Let Cp > 0 and 0 < ρp < 1 be such that p(Σn) ≤ Cpρnp .

Let Xk(t) = U⊺
t diag(λ1, . . . , λr,0, . . . ,0)Ut be an eigenvalue decomposition of Xk, where

λ1, λ2, . . . , λr are the non zero eigenvalues of Xk(t), and let Jt = diag(1, . . . ,1,0, . . . ,0) the
matrix whose coefficients are all equal to 0 but the r upper diagonal elements which are
equal to 1. We have

Xk ≼ U⊺diag(∣λ1∣, . . . , ∣λr ∣,0, . . . ,0)U ≼ ∥Xk
t ∥U⊺

t JtUt. (9)

For any n ∈ N, let

Mn = ∑
t∈Σn

p(t)
p(Σn)

U⊺
t JtUt if p(Σn) ≠ 0 and Mn = 0 otherwise.

We can remark that ∥Mn∥ ≤ 1 and 0 ≼ Mn.

Let A be the symmetric matrix such that

A2 =K ∑
n≥0

ρnpe
βnMn

where K = 2e3/eβ−3CpS
(3)
p eβS

(2)
p and 0 < β < − lnρp. For example, β can be taken equal to

1 − ρp.

Since ρpe
β < 1 and ∥Mn∥ ≤ 1, A is well defined. Moreover, 0 ≼ A2.

Lemma 21 We have ∥A2∥ ≤ K(1 − ρpeβ)−1,Tr(A2) ≤ 2K(1 − ρpeβ)−2 and for any k ≥ 0,

EXk ≼ k!
2 R

k−2A2 where R = e1/eβ−1.

Proof The bound on ∥A∥ is straightforward.

The rank of Xk, equal to the rank of Jt, is bounded by 2(∣t∣ + 1) and hence, Tr(Mn) ≤
2(n + 1). The bound on Tr(A2) comes from the following classical equality: if ∣x∣ < 1 then,

∑n≥0(n + 1)xn = (1 − x)−2.

18



Concentration Bounds on Hankel Matrices

We have

EXk ≼∑
t

p(t)S(3)
p (∣t∣ + 1)(∣t∣ + S(2)

p )kU⊺
t JtUt from Eq 9 and Cor. 20

≼∑
t

p(t)S(3)
p (∣t∣ + S(2)

p )k+1U⊺
t JtUt since S(2)

p ≥ 1

= S(3)
p ∑

n≥0

p(Σn)(n + S(2)
p )k+1Mn

≼ CpS(3)
p ∑

n≥0

ρnp
[(n + S(2)

p )β]k+1

(k + 1)!
(k + 1)!
βk+1

Mn since p(Σn) ≤ Cpρnp

≼ CpS(3)
p ∑

n≥0

ρnpe
(n+S(2)p )β (k + 1)!

βk+1
Mn since xk/k! ≤ ex

≼ k!(e
1/e

β
)
k
e1/e

β
CpS

(3)
p eS

(2)
p β ∑

n≥0

(ρpeβ)nMn since k + 1 ≤ e(k+1)/e

= k!

2
Rk−2A2.

5.4 Concentration Bound for the smoothed factor Hankel Matrix HU,V
p̂η

: proofs

Lemma 22 Let 0 < η ≤ 1. For any integer n, (n + 1)ηn ≤Kη.

Proof Let f(x) = (x+ 1)ηx. We have f ′(x) = ηx(1+ (x+ 1) lnη) and f takes its maximum
for xM = −1−1/ lnη, which is positive if and only if η > 1/e. We have f(xM) = (−eη lnη)−1.

Lemma 23 Let w,u ∈ Σ∗. Then,

∑
x,y∈Σ∗

η∣xy∣1w=xuy ≤Kη and p̂(u) ≤Kηp(Σ∗uΣ∗).

Proof Indeed, if w = xuy, then ∣xy∣ = ∣w∣− ∣u∣ and u appears at most ∣w∣− ∣u∣+ 1 times as a
factor of w. Therefore, ∑x,y∈Σ∗ η∣xy∣1w=xuy ≤ (∣w∣ − ∣u∣ + 1)η∣w∣−∣u∣ ≤Kη. Moreover,

p̂(u) = ∑
x,y∈Σ∗

η∣xy∣p(xuy) = ∑
w∈Σ∗uΣ∗

p(w) ∑
x,y∈Σ∗

η∣xy∣1w=xuvy ≤Kηp(Σ∗uΣ∗).

For η ∈ [0,1], let Ẑη(ξ) be the random matrix defined by

Ẑη[u, v] = ∑
x,y∈Σ∗

η∣xy∣1ξ=xuvy − p̂η(uv) = ∑
x,y∈Σ∗

η∣xy∣(1ξ=xuvy − p(xuvy))

for any (u, v) ∈ U × V . Clearly, E Ẑη = 0. We show below that ∥Ẑη∥ is bounded if η < 1.
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The moments S
(k)
p̂η

satisfy S
(k)
p̂η

= I⊺(Id−ηMΣ)−1(Id−MΣ)−k(Id−ηMΣ)−1T , S
(k)
p̂0

= S(k)
p

and S
(k)
p̂1

= S(k+2)
p .

Lemma 24
∥Ẑη∥ ≤ (1 − η)−2 + S(1)

p̂η
.

Proof Indeed, for all u,

∑
v∈V

∣Ẑη[u, v]∣ ≤ ∑
v,x,y∈Σ∗

[η∣xy∣1ξ=xuvy + p̂η(uv)] ≤ ∑
x,y∈Σ∗

η∣xy∣1ξ∈xΣ∗y + S
(1)
p̂η

≤ (1 − η)−2 + S(1)
p̂η
.

Hence, ∥Ẑη∥∞ ≤ (1 − η)−2 + S(1)
p̂η

. Similarly, ∥Zη∥1
≤ (1 − η)−2 + S(1)

p̂η
, which completes the

proof.

Lemma 25 For any u,u′, v, v′ ∈ Σ∗, ∣E(Ẑη[u, v]Ẑη[u′, v′])∣ ≤Kη min{p̂(uv), p̂(u′v′)}.

Proof This a corollary of Lemmas 12 and 23 withX ∶= ∑x,y∈Σ∗ η∣xy∣1ξ=xuvy, Y ∶= ∑x,y∈Σ∗ η∣xy∣1ξ=xu′v′y
and M =Kη.

Let X̂η be the dilation of Ẑη. We can now propose bounds for E X̂2
η and ETr(X̂2

η).

Lemma 26
∥EX̂2

η∥ ≤KηS
(2)
p̂η

and Tr(E(X̂2
η)) ≤ 2KηS

(2)
p̂η
.

Proof Indeed,

∣∣E(ẐẐ⊺)∣∣∞ ≤ max
u
∑
u′,v

∣E(Ẑη[u, v]Ẑη[u′, v])∣ ≤Kη ∑
u′,v

p̂(u′v) ≤KηS
(2)
p̂η
.

We have also
∣∣E(ẐẐ⊺)∣∣1 ≤KηS

(2)
p̂η

and therefore ∣∣E(ẐẐ⊺)∣∣ ≤KηS
(2)
p̂η
.

Similar computations provide all inequalities.

5.5 The factor Hankel Matrix HU,V
p̂ is not subexponential: proof

Ẑ(ξ) can be not a subexponential random matrix. Let Σ = {a} be a one-letter alphabet
and let p be the rational stochastic language defined by p(an) = 2−(n+1). When ξ = an, Ĥξ

is the matrix defined by Ĥξ[i, j] = n+ 1− (i+ j) if i+ j ≤ n and 0 otherwise. Let Ĥn ∈ Rn×n
be the nonnegative symmetric matrix defined by

Ĥn =

⎛
⎜⎜⎜⎜⎜⎜
⎝

n n − 1 ⋯ ⋯ 1
n − 1 n − 2 ⋯ 1 0
⋮ ⋮ ⋰ ⋮
⋮ 1
1 0 ⋯ 0

⎞
⎟⎟⎟⎟⎟⎟
⎠
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It can easily be deduced from the definition of a subexponential random matrix that if Ẑ(ξ)
were subexponential then, there would exist constants C,R > 0 such that for every integer
k,

max
n≥0

2−n∥Ĥk
n∥ ≤ ∥∑

n≥0

2−nĤk
n∥ ≤ Ck!Rk.

Proposition 27 Ẑ(ξ) is not subexponential.

We need the following Lemma.

Lemma 28 Bo (2000) Let A be a n × n nonnegative symmetric matrix with positive row
sums d1, . . . , dn. Then, the spectral radius of A satisfies ρ(A) ≥ n−1/2√∑ni=1 d

2
i .

Proof (of Proposition 27) Lemma 28 applied to the matrix Ĥn gives that ρ(Ĥn) = Ω(n2).
Indeed, we have the row sums di satisfy di ≥ (n + 1 − i)2/2 and ∑ni=1 d

2
i = Θ(n5). Hence, for

every integer k, ∥Ĥk
n∥ ≥ n2k. Now, taking n = k, we should have 2−kk2k ≤ CRkk! ≤ CRkkk

for every integer k, which is false.

6. Experiments

The theoretical bounds described in the previous Sections have been evaluated on the bench-
mark of PAutomaC (Verwer et al., 2012).

6.1 Presentation of the benchmark

The benchmark of PAutomaC provides samples of strings generated from probabilistic au-
tomata and designed to evaluate probabilistic automata learning. We have selected eleven
problems from that benchmark, for which the sparsity of the Hankel matrices makes the
use of standard SVD algorithms available from NumPy or SciPy possible. Table 1 provides
some information about the selected problems.

• Target models are of different types: non deterministic probabilistic automata (PA),
deterministic probabilistic automata (DPA) and hidden Markov models (HMM). Each
target is a rational stochastic language. We display the size of the corresponding
alphabet, its 2nd and 3rd moments and the spectral radius ρ of MΣ

3, for a minimal
representation ⟨I,M, T ⟩ of p. We display the number of states of the target automaton
and the rank of the corresponding Hankel matrix computed using NumPy: the true
rank of the target lies between these two values. We also provide constants Cp and
ρp satisfying p(Σn) ≤ Cpρnp for any integer n4.

3. Since the matrices MΣ corresponding to two minimal representations are similar, the spectral radius ρ
only depends on the underlying rational series.

4. From Gelfand’s formula, ∣∣Mk
Σ∣∣

1/k converges to ρ when k → ∞. For any k satisfying ∣∣Mk
Σ∣∣

1/k
< 1, we

can take ρp = ∣∣M
k
Σ∣∣

1/k and Cp = max0≤r<kmin0≤s≤r ∣∣I
⊺Ms

∣∣ ⋅ ∣∣Mr−sT ∣∣. We have noted in practice that
when k increases, ρp decreases to ρ while Cp increases very slowly. We have uniformly taken the values
computed for k = 100.
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• Each problem comprises a sample S of strings independently drawn from the target.
We provide the cardinal of S, the maximal length and the average length of strings
in S.

• The empirical Hankel matrices are built on the prefixes, suffixes or factors of elements
of S. We provide their size computed as the product of the number of non null rows
by the number of non null columns. Almost all their cells are null: we provide the
sparsity ratio.

Table 1: The 11 selected problems. The size of the Hankel matrices matrices is expressed in
billions, where 1 g stands for 109. Sparsity indicates the ratio of non zero entries
in the matrix: for example, there are 5.3× 1.9 104 non empty cells in HS for pb 3.

Pautomac ID 3 4 7 15 25 29 31 38 39 40 42
Target
Type PA PA DPA PA HMM PA PA HMM PA DPA DPA
∣Σ∣ 4 4 13 14 10 6 5 10 14 14 9
NbStates 25 12 12 26 40 36 12 14 6 65 6
Rank 25 10 12 26 28 36 12 13 6 65 6

S
(2)
p 8.23 6.25 6.52 13.40 10.65 6.35 6.97 8.09 8.82 9.74 7.39

S
(3)
p 57.84 31.06 29.61 160.92 93.34 38.11 43.53 65.87 90.81 111.84 62.11
ρ(MΣ) 0.85 0.77 0.72 0.92 0.88 0.83 0.84 0.88 0.90 0.91 0.88
ρp 0.87 0.79 0.73 0.95 0.92 0.87 0.86 0.91 0.92 0.96 0.90
Cp 0.24 0.42 0.80 0.09 0.21 0.37 0.23 0.29 0.29 0.26 0.25
Sample
∣S∣ 20 k 100 k 20 k 20 k 20 k 20 k 20 k 20 k 20 k 20 k 20 k
Avg ∣w∣ 7.22 5.26 5.52 12.46 9.72 5.29 6.00 7.18 7.74 8.72 6.36
max ∣w∣ 67 55 36 110 90 59 59 84 106 106 70
Hankel mat.
∣Pref ∣ × ∣Suff ∣ 1.9g 0.6g 0.2g 28g 13g 0.5g 1.4g 8.0g 7.7g 15g 3.4g
HS sparsity 5.3e-5 1.9e-4 2.1e-4 9.0e-6 1.5e-5 1.2e-4 6.1e-5 1.8e-5 1.9e-5 1.1e-5 3.3e-5
∣Pref ∣ × ∣Fact∣ 11g 1.8g 0.7g 291g 99g 2.4g 7.6g 60g 76g 165g 25g

HS sparsity 5.8e-5 1.9e-4 2.1e-4 1.0e-6 1.6e-5 1.2e-4 6.6e-5 1.9e-5 2.0e-5 1.2e-5 3.5e-5
∣Fact∣ × ∣Fact∣ 73g 6.4g 3g 3363g 797g 15.7g 44g 460g 761g 1925g 202g

ĤS sparsity 5.8e-5 2.0e-4 2.0e-4 1.0e-6 1.6e-5 1.2e-4 6.9e-5 2.0e-5 2.0e-5 1.2e-5 3.6e-5

Figure 1 shows the typical behavior of S
(1)
pη

and S
(1)
p̂η

, similar for all the problems.

Figure 1: Behavior of S
(1)
pη

and S
(1)
p̂η

for η ∈ [0; 1].
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6.2 Accuracy of the bounds

For each problem, the exact value of ∣∣HU,V
S −HU,V

p ∣∣2 is computed for sets U and V of the
form Σ≤l, where we have maximized l according to our computing resources. This value is
compared to the bounds provided by Theorem 7 and Equation (3), with δ = 0.05 (Table 2).
The optimized bound (”opt.”), refers to the case where σ2 has been calculated over U × V
rather than Σ∗ ×Σ∗ (see the remark at the end of Section 4.1). Tables 3 and 4 show analog
comparisons for the prefix and the factor cases with different values of η. We can remark
that our dimension-free bounds are significantly more accurate than the one provided by
Equation (3). Similar results have been obtained for all the problems of PautomaC.

We have not reported experimental results based on Theorem 10, as for all the problems
we consider, the constant σ is extremely large. For example, on Problem 3, with β = 1− ρp,
and using the parameters of Table 1, we have σ ≃ 5308, which would provide non significant
accuracy values.

Table 2: Concentration bounds for ∣∣HU,V
S −HU,V

p ∣∣ where U = V = Σ≤l.

Problem number 3 4 7 15 25 29 31 38 39 40 42

l 8 9 8 5 5 9 7 4 6 4 7

∣∣HU,V
S −HU,V

p ∣∣ 0.005 0.003 0.006 0.004 0.003 0.005 0.005 0.006 0.005 0.004 0.005
Eq. (3) 0.100 0.039 0.088 0.127 0.115 0.088 0.092 0.097 0.103 0.105 0.095
Th. 7 0.067 0.026 0.060 0.085 0.076 0.059 0.062 0.066 0.069 0.073 0.063

Th. 7 (opt.) 0.048 0.023 0.053 0.028 0.032 0.047 0.044 0.028 0.033 0.024 0.038

Table 3: Concentration bounds for ∣∣HU,V
S − HU,V

p,η ∣∣ (prefix case) where U = V = Σ≤l. The
first part of the array is computed for η = 1/2, the second part for η = 1. The
limiting case η = 1 (Th. 9 (opt.)) uses the remark at the end of Section 4.3

Problem number 3 4 7 15 25 29 31 38 39 40 42

l 8 9 8 5 5 9 7 4 6 4 7

∣∣H
U,V

S −HU,V
p,1/2
∣∣ 0.007 0.004 0.009 0.004 0.004 0.006 0.007 0.006 0.006 0.004 0.006

Eq. (3) 0.140 0.052 0.121 0.186 0.164 0.121 0.126 0.136 0.148 0.154 0.134
Th. 9 0.089 0.034 0.078 0.116 0.103 0.077 0.081 0.088 0.093 0.098 0.084

Th. 9 (opt.) 0.064 0.030 0.070 0.040 0.046 0.062 0.058 0.037 0.043 0.032 0.050

∣∣H
U,V

S −HU,V
p,1 ∣∣ 0.014 0.006 0.022 0.012 0.015 0.012 0.018 0.013 0.014 0.009 0.013

Eq. (3) 0.281 0.089 0.200 0.476 0.361 0.229 0.241 0.291 0.355 0.387 0.293
Th. 9 (opt.) 0.128 0.052 0.117 0.106 0.106 0.118 0.110 0.078 0.102 0.0761 0.108

6.3 Implication for learning

The theoretical results of the last sections show that ∥HU,V
S −HU,V ∥, and similar expressions

for other variants of the Hankel matrices, are bounded by a term that converges to 0 as the
size of S increases, and is independent from U and V . This entails that the spectral learning
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Table 4: Concentration bounds for ∣∣ĤU,V
S − HU,V

p̂,η ∣∣ (factor case) where U = V = Σ≤l and

η = 1/e.

Problem number 3 4 7 15 25 29 31 38 39 40 42

l 6 7 5 4 4 6 6 4 4 4 5

∣∣ĤU,V
S −HU,V

p̂,1/e
∣∣ 0.007 0.003 0.007 0.004 0.003 0.005 0.007 0.006 0.007 0.005 0.006

Eq. (3) 0.148 0.056 0.127 0.206 0.177 0.130 0.138 0.152 0.155 0.177 0.142
Th. 11 0.099 0.037 0.086 0.129 0.114 0.0845 0.090 0.098 0.103 0.109 0.093

Th. 11 (opt.) 0.060 0.030 0.062 0.036 0.041 0.056 0.059 0.0401 0.036 0.035 0.044

algorithm is consistent, whatever sets U and V are chosen, as soon as the rank of HU,V is
equal to the rank of the target, and even if we set U = V = Σ∗. But these concentration
bounds give no indication of what should be done in pratical cases.

The spectral learning algorithm first computes the r-first right singular vectors RU,VS of

HU,V
S and then build a linear representation from RU,VS . Since an exact linear representation

of the target can be computed from the r-first right singular vectors RU,V of HU,V , where r
is the rank of the target, the distance between the linear spaces spanned by RU,VS and RU,V

seems to be a relevant measure to evaluate the impact on learning of the choice of U and
V .

There are several ways to measure the distance between two linear spaces. Most of them
are based on the principal angles θ1 ≥ θ2 ≥ . . . ≥ θr between them. The largest principal
angle θ1 is a harsh measure since, even if the two spaces coincide along the last r−1 principal
angles, the distance between the two spaces can be large. We have considered the following
measure

d(span(RU,V ), span(RU,VS )) = 1 − 1

r

r

∑
i=1

cos θi (10)

which is equal to 0 if the spaces coincide and 1 if they are completely orthogonal, and which
takes into account all the principal angles.

The tables 5 to 9 show the distance between span(RU,V ) and span(RU,VS ) for p, p1/2, p,
p̂1/2 and p̂, and for matrices having 100 columns and a variable number of rows, from 100
to 20,000 (i.e. ∣V ∣ = 100 and 100 ≤ ∣U ∣ ≤ 20,000).

These tables show that

• the distance between the empirical and true singular vector spaces is smaller for the
factor variant than for the prefix variant, and smaller for the prefix variant than for
the classical Hankel matrices

• for both the prefix and factor variants, the distance is smaller for η = 1 than for η = 1/2
(and η = 0)

• in most cases, the distance computed for ∣U ∣ = 20,000 is either minimal or not very
far from the minimum.

We have run similar experiences for increasing values of ∣V ∣, from 100 to 20,000. The
tables are very similar but the distances systematically increase with V . Table 10 shows the
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Table 5: Distance between the spaces spanned by the r first right singular vectors of HU,V

and HU,V
S for ∣V ∣ = 100 and 100 ≤ ∣U ∣ ≤ 20,000. Entries must be scaled by 10−1.

3 4 7 15 25 29 31 38 39 40 42

100 2.096 0.011 0.841 1.643 4.171 1.495 0.985 3.375 0.132 1.789 0.031
200 2.079 0.011 0.005 1.466 3.988 1.512 0.902 3.304 0.091 1.609 0.031
500 1.934 0.011 0.004 1.417 3.901 1.457 0.917 2.915 0.104 1.593 0.029
1000 1.883 0.010 0.004 1.421 3.530 1.363 0.908 2.578 0.108 1.501 0.029
2000 1.813 0.010 0.004 1.382 3.529 1.358 0.919 2.511 0.125 1.512 0.029
5000 1.766 0.010 0.004 1.423 3.442 1.134 0.940 2.380 0.172 1.485 0.029
10000 1.755 0.010 0.004 1.424 3.431 1.136 0.961 2.284 0.269 1.390 0.029
20000 1.739 0.011 0.004 1.401 3.257 1.283 0.986 2.051 0.728 1.457 0.029

Table 6: Distance between the spaces spanned by the r first right singular vectors of HU,V
p0.5

and H
U,V
0.5,S for ∣V ∣ = 100 and 100 ≤ ∣U ∣ ≤ 20,000. Entries must be scaled by 10−1.

3 4 7 15 25 29 31 38 39 40 42

100 1.880 0.010 0.535 1.683 4.211 1.342 0.304 2.931 0.077 1.782 0.015
200 1.717 0.009 0.004 1.631 3.928 1.281 0.251 2.867 0.049 1.730 0.015
500 1.646 0.009 0.004 1.500 3.847 1.161 0.284 2.590 0.047 1.578 0.013
1000 1.623 0.009 0.003 1.558 3.537 1.137 0.297 2.443 0.047 1.529 0.013
2000 1.549 0.009 0.003 1.504 3.514 1.107 0.329 2.391 0.047 1.524 0.013
5000 1.491 0.009 0.003 1.501 3.317 1.098 0.439 2.129 0.048 1.486 0.013
10000 1.459 0.009 0.003 1.495 3.284 1.059 0.783 1.785 0.049 1.450 0.013
20000 1.425 0.009 0.003 1.548 3.203 0.950 0.955 1.690 0.052 1.424 0.013

Table 7: Distance between the spaces spanned by the r first right singular vectors of HU,V
p

and H
U,V
S for ∣V ∣ = 100 and 100 ≤ ∣U ∣ ≤ 20,000. Entries must be scaled by 10−1.

3 4 7 15 25 29 31 38 39 40 42

100 1.281 0.010 0.554 1.729 4.095 1.221 0.224 2.778 0.009 1.662 0.005
200 1.185 0.008 0.007 1.472 4.016 1.237 0.204 2.732 0.006 1.497 0.005
500 1.074 0.007 0.006 1.388 3.886 1.194 0.238 2.619 0.006 1.352 0.005
1000 1.060 0.007 0.006 1.358 3.686 1.227 0.255 2.391 0.006 1.313 0.005
2000 1.054 0.007 0.006 1.179 3.682 1.174 0.288 2.349 0.006 1.341 0.005
5000 1.063 0.007 0.006 1.169 3.347 1.164 0.313 2.263 0.006 1.289 0.005
10000 1.073 0.007 0.006 1.181 3.244 1.165 0.332 2.156 0.006 1.347 0.005
20000 1.088 0.007 0.006 1.213 3.100 1.165 0.357 1.825 0.006 1.356 0.005

25



Denis and Gybels and Habrard

Table 8: Distance between the spaces spanned by the r first right singular vectors of HU,V
p̂0.5

and ĤU,V
0.5,S for ∣V ∣ = 100 and 100 ≤ ∣U ∣ ≤ 20,000. Entries must be scaled by 10−1.

3 4 7 15 25 29 31 38 39 40 42

100 1.917 0.009 0.004 1.317 3.507 1.229 0.273 2.814 0.082 1.780 0.013
200 1.832 0.008 0.005 1.328 3.445 1.234 0.266 2.740 0.072 1.683 0.013
500 1.796 0.008 0.004 1.344 3.410 1.231 0.284 2.515 0.069 1.600 0.009
1000 1.781 0.008 0.003 1.363 3.312 1.164 0.288 2.344 0.048 1.585 0.009
2000 1.738 0.008 0.003 1.324 3.281 1.221 0.311 2.319 0.048 1.596 0.009
5000 1.727 0.007 0.003 1.323 3.262 1.137 0.315 2.247 0.047 1.475 0.009
10000 1.718 0.007 0.003 1.321 3.156 1.094 0.319 2.164 0.047 1.480 0.009
20000 1.652 0.007 0.003 1.351 3.110 1.065 0.324 2.119 0.047 1.452 0.009

Table 9: Distance between the spaces spanned by the r first right singular vectors of HU,V
p̂

and ĤU,V
S for ∣V ∣ = 100 and 100 ≤ ∣U ∣ ≤ 20,000. Entries must be scaled by 10−1.

3 4 7 15 25 29 31 38 39 40 42

100 1.185 0.004 0.005 0.557 2.264 0.901 0.237 1.977 0.004 1.512 0.002
200 1.065 0.004 0.005 0.480 2.153 0.893 0.244 1.922 0.003 1.307 0.002
500 1.064 0.004 0.004 0.524 2.162 0.797 0.254 1.783 0.003 1.290 0.002
1000 1.048 0.004 0.004 0.529 2.098 0.784 0.260 1.613 0.002 1.294 0.002
2000 1.029 0.004 0.004 0.537 2.075 0.803 0.267 1.597 0.002 1.268 0.002
5000 1.011 0.004 0.004 0.570 2.085 0.822 0.280 1.560 0.002 1.278 0.002
10000 1.012 0.005 0.004 0.584 2.072 0.882 0.287 1.513 0.002 1.278 0.002
20000 1.011 0.005 0.004 0.620 2.072 0.914 0.297 1.499 0.002 1.279 0.002

Table 10: Distance between the spaces spanned by the r first right singular vectors of HU,V

and HU,V
S for 100 ≤ ∣U ∣ ≤ 20,000 and 100 ≤ ∣V ∣ ≤ 20,000 for problem 3. Entries

must be scaled by 10−1.

100 300 1,000 2,000 5,000 20,000

100 2.096 2.399 2.660 2.747 2.887 3.116
200 2.079 2.292 2.512 2.608 2.752 2.974
500 1.934 2.196 2.350 2.431 2.575 2.808
1000 1.883 2.134 2.306 2.401 2.543 2.767
2,000 1.813 2.052 2.239 2.331 2.475 2.711
5,000 1.766 1.981 2.183 2.274 2.410 2.664
10,000 1.755 1.924 2.132 2.221 2.349 2.615
20,000 1.739 1.876 2.077 2.159 2.276 2.543
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results for d(span(HU,V ), span(HU,V
S )) computed on problem 3 - the behavior is similar for

all the problems and all other variants.
These experiments call for the following recommendations that remain to be confirmed

by further theoretical studies.

• use the data to infer first the factor variant of p, rather than the prefix variant or p
itself,

• use a small number of columns,

• use as many rows as available, unless a specific information on the domain indicate
to bound their number.

7. Conclusion

We have provided dimension-free concentration inequalities for Hankel matrices in the con-
text of spectral learning of rational stochastic languages. These bounds cover 3 cases, each
one corresponding to a specific way to exploit the strings under observation, paying at-
tention to the strings themselves, to their prefixes or to their factors. For the last two
cases, we introduced parametrized variants which allow a trade-off between the rate of the
concentration and the exploitation of the information contained in data.

Experiments on the PAutomaC benchmark show that our dimension-free bounds are
quite tight (except the subexponential bound for the prefix variant) and significantly more
accurate than the bounds provided by classically used dimension-dependent bounds.

A consequence of these dimension-free inequalities is that the spectral learning algorithm
is consistent, even if the whole empirical Hankel matrix is used, suggesting that the choice
of relevant sets of rows and columns is maybe not critical. However, they do not provide
any indication on what should be done in pratical cases. Experiments indicate that the
singular vector spaces computed from the empirical Hankel matrices converge more quickly
to the true singular vector spaces for the factor variant of the Hankel matrix - which is
consistent with the experiments in (Balle et al., 2014), a small number of columns and a
large number of rows. It would be interesting to obtain concentration results which confirm
these practice. Another research direction would be to link up the prefix and factor cases
to concentration bounds for sum of random tensors and to generalize the results to the case
where a fixed number ≥ 1 of factors is considered for each string.
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8. Appendix

8.1 Proof of Proposition 1

On a one-letter alphabet, for any non negative rational convergent series r, the series u ↦
r(Σ∗uΣ∗) is rational. Indeed, r(Σ∗uΣ∗) = r(uΣ∗) = r(u) and r is rational. On the other
hand, this property may be false as soon as the alphabet contains at least two letters.

Proposition 1 There exists a rational stochastic language p of rank 1 and built over a
two-letter alphabet such that the series u↦ p(Σ∗uΣ∗) is not rational.

Proof Let Σ = {a, b} and p be the rational stochastic language defined by p(u) ∶= α∣u∣aβ ∣u∣bγ
where α,β, γ > 0, α + β + γ = 1 and where ∣u∣x denotes the number of occurrences of the
letter x ∈ Σ in u. We have

p(Σ∗) = ∑
u∈Σ∗

α∣u∣aβ ∣u∣bγ = γ
∞
∑
n=0

n

∑
m=0

(n
m

)αmβn−m = γ
∞
∑
n=0

(α + β)n = γ

1 − α − β
= 1.

Let f be the series defined by f(u) ∶= p(Σ∗uΣ∗). Let us compute f(an) for any integer n.
Clearly, f(ε) = 1. Let n ≥ 1. We can write

Σ∗ =
n−1

⋃
m=0

{am} ∪ anΣ∗ ∪
n−1

⋃
m=0

ambΣ∗

and

f(an) = p(anΣ∗) +
n−1

∑
m=0

p(ambΣ∗anΣ∗)

= αn +
n−1

∑
m=0

αmβp(Σ∗anΣ∗)

= αn + 1 − αn

1 − α
βf(an)

and therefore,

f(an) = (1 − α) αn

γ + βαn
.

Suppose that f is rational. Then, every submatrix of the Hankel matrix of f is of finite
rank. In particular, there exists an index k and real coefficients λ0, λ1, . . . , λk−1 such that
for any integer p,

f(ak+p) =
k−1

∑
i=0

λif(ai+p)

which is equivalent to
k−1

∑
i=0

λiα
i−k γ + βαk+p

γ + βαi+p
= 1.
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Let g(z) be the complex function defined by

g(z) ∶= (
k−1

∑
i=0

µi
δ + αkz
δ + αiz

) − 1

where δ = γ/β and µi = λiαi−k for 0 ≤ i ≤ k − 1.
The function g as poles at −δα−i and hence, is analytic on a neighborhood V of 0. Since

g(αp) = 0 for any integer p, the principle of permanence shows that g is uniformly equal to
0 on V , i.e.

k−1

∑
i=0

µi(δ + αiz)−1 = (δ + αkz)−1,∀z ∈ V.

In particular, these two functions and all their derivatives are equal for z = 0: we obtain
the system

k−1

∑
i=0

µiα
ih = αkh for every h ≥ 0. (11)

The Vandermonde matrix

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 1 1 . . . 1

1 α α2 . . . αk

1 α2 α4 . . . α2k

⋮ ⋮ ⋮ ⋱ ⋮
1 αk α2k . . . αk

2

⎞
⎟⎟⎟⎟⎟⎟
⎠

has a non zero determinant since αi ≠ αj for i ≠ j and therefore, the unique solution of the
system ∑ki=0 µiα

ih = 0 for 0 ≤ h ≤ k is µ0 = µ1 = ⋅ ⋅ ⋅ = µk = 0 and the system (11) has no
solution.

8.2 Proof of Proposition 2

From the definition of Ts, it can easily be shown that the mapping s↦ Ts is a morphism:
Ts1Ts2[u, v] = ∑w∈Σ∗ Ts1[u,w]Ts2[w, v] = 1 iff v = us1s2 and 0 otherwise.
If X is a matrix whose rows are indexed by Σ∗, we have TsX[u, v] = ∑w Ts[u,w]X[w, v] =
X[us, v]: i.e. the rows of TSX are included in the set of rows of X. Then, it follows
from the definition of E that E⊺Ts is equal to the first row of Ts (indexed by ε) with all
coordinates equal to zero except the one indexed by s which equal 1.

Now, from the reduced singular value decomposition of H = LDR⊺ at rank d, R is a
matrix of dimension ∞ × d whose columns form a set of orthonormal vectors - the right
singular vectors of H - such that R⊺R = Id and RR⊺H⊺ = H⊺ (RR⊺ is the orthogonal
projection on the subspace spanned by the rows of H).
One can easily deduce, by a recurrence over n, that for every string u = x1 . . . xn,

(R⊺Tx1R) ○ . . . ○ (R⊺TxnR)R⊺H⊺ = R⊺TuH
⊺.

Indeed, the inequality is trivially true for n = 0 since Tε = Id. Then, we have that
R⊺TxRR⊺TuH

⊺ = R⊺TxTuH
⊺ = R⊺TxuH

⊺ since the columns of TuH
⊺ are rows of H

and T is a morphism.
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If P ⊺ is the first row of H then: E⊺R(R⊺Tx1R)○ . . . ○(R⊺TxnR)R⊺P =E⊺TuP = r(u).
Thus, ⟨R⊺E, (R⊺TxR)x∈Σ,R⊺P ⟩ is a linear representation of r of dimension d.

8.3 Monotonicity in Stewart formula.

Let us first recall the min−max characterization of singular values derived from the Courant-
Fischer Theorem: for any matrix A ∈ Rm×n,

σk(A) = min
u1,...,uk−1∈Rn

max
x∈Rn,∥x∥=1,x∈[u1,...,uk−1]⊥

∥Ax∥ .

Let B be the result obtained by replacing all elements in the last column of A with 0 and
let uk ∈ Rn be defined by uk[i] = 1i=n.

σk(A) ≥ min
u1,...,uk−1∈Rn

max
x∈Rn,∥x∥=1,x∈[u1,...,uk]⊥

∥Ax∥

= min
u1,...,uk−1∈Rn

max
x∈Rn,∥x∥=1,x∈[u1,...,uk−1]⊥

∥Bx∥ = σk(B).

A similar argument holds if we delete a row of A. Then, it can easily be shown by induction
that if B is obtained by deleting some rows and columns in A, then σk(A) ≥ σk(B) (as far
as σk(B) is defined).

Therefore, if U ⊆ U ′ and V ⊆ V ′, then ∥HU×V
S −HU×V

r ∥ ≤ ∥HU ′×V ′

S −HU ′×V ′

r ∥ and

σmin(HU×V
r ) ≤ σmin(HU ′×V ′

r ).
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